RNA secondary structure

Modified from Jonathan D. Wren’s slides
RNA Basics

- RNA bases A, C, G, U
- Canonical Base Pairs
 - A-U
 - G-C
 - G-U

"wobble" pairing – less stable

"Bases can only pair with one other base"

http://www.bioalgorithms.info/
RNA types

- transfer RNA (tRNA)
- messenger RNA (mRNA)
- ribosomal RNA (rRNA)
- small interfering RNA (siRNA)
- micro RNA (miRNA)
- small nucleolar RNA (snoRNA)
- Long non-coding RNA (lncRNA)
-
RNA has many biological functions

- Enzymatic reaction (protein synthesis)
- Control of mRNA stability (UTR)
- Control of splicing (snRNP)
- Control of translation (microRNA)

The function of the RNA molecule depends on its folded structure
Protein structures

RNA structures
RNA Structural levels

Secondary Structure

Tertiary Structure

tRNA
RNA Secondary Structure

• The RNA molecule folds on itself.
• The base pairing is as follows:
 \[G \equiv C \quad A \equiv U \quad G \equiv U \]
 hydrogen bond

```
5'  C-G-U-A-U-G-A-U-C  3'

5'  U-U-G-A-U-C  3'
```
RNA Secondary Structure
RNA Secondary Structure (test)
RNA Structure Representations

A 2D model

B Circle with lines

C

D Ordered tree

E Mountains

 Balanced nested parenthesis
RNA secondary structure representation

No pseudoknots

Pseudoknots
RNA secondary Structure is only an approximation

We have to keep in mind that these 2D representations are an approximation – the real structure has 3D
Some biological functions of non-coding RNA

- RNA splicing (snRNAs)
- Guide RNAs (RNA editing)
- Catalysis
- Telomere maintenance
- Control of translation (miRNAs)

The function of the RNA molecule depends on its folded structure
When cells are deprived of iron, IRP binds to the IRE. If IRE is located at 5'UTR, IRP binding will inhibit translation initiation, else if IRE is at 3'UTR, IRP binding will stabilize mRNA and prevent it from degradation.
F: Ferritin = iron storage
TR: Transferrin receptor = iron uptake

Ferritin can store 2,250 iron ions in its globular shell

IRE-IRP inhibits translation of Ferritin
IRE-IRP Inhibition of degradation of TR

IRE-IRP off -> Ferritin translated
Transferrin receptor degraded
Examples of known interactions of RNA secondary structural elements

- Pseudo-knot
- Kissing hairpins
- Hairpin-bulge contact

These patterns are excluded from the prediction schemes as their computation is too intensive.
Structure-based similarity

Sequence Similarity

<table>
<thead>
<tr>
<th>gurken</th>
<th>AAGTAATTTCGTGCTCCTCAACAATTGTCGCCGTCACAGATTGTGTTTGAGCCGAATCTTACT 64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ifactor</td>
<td>---TGCACACCTCCCTCGTCACCTCTTGATTTT-TCAAGAGGCTTGCATCGAGTAGGTGTGCA-- 58</td>
</tr>
</tbody>
</table>

* * *** ** *** *** * * ***** * *

Structural Similarity

gurken
64nt stem loop

I Factor
58nt stem loop
RNA secondary structure prediction
Dynamic programming & free energy minimization
Predicting RNA Secondary Structure

• According to base pairing rules only, (A-U, G-C and wobble pairs G-U) sequences can potentially form many different structures
• An energy value is associated with each possible structure
• *Predict the structure with the minimal free energy (MFE)*
Simplifying Assumptions for Structure Prediction

• RNA folds into one minimum free-energy structure
• There are no knots (base pairs never cross)
• The energy of a particular base pair in a double stranded regions sequence independent
 – Neighbors do not influence the energy
Trouble with Pseudoknots

- Pseudoknots cause a breakdown in the Dynamic Programming Algorithm.
- In order to form a pseudoknot, checks must be made to ensure base is not already paired – this breaks down the recurrence relations.
Sequence alignment as a method to determine structure

- Bases pair in order to form backbones and determine the secondary structure
- Aligning bases based on their ability to pair with each other gives an algorithmic approach to determining the optimal structure
Base Pair Maximization – Dynamic Programming Algorithm

\[S(i,j) \text{ is the folding of the subsequence of the RNA strand from index } i \text{ to index } j \text{ which results in the highest number of base pairs} \]

\[
S(i,j) = \max \begin{cases}
S(i + 1,j - 1) + 1 & \text{if } i,j \text{ base pair} \\
S(i + 1,j) & \\
S(i,j - 1) & \\
\max_{i < k < j} S(i,k) + S(k + 1,j) &
\end{cases}
\]

Base pair at \(i \) and \(j \)
Unmatched at \(i \)
Unmatched at \(j \)
Bifurcation
Base Pair Maximization – Dynamic Programming Algorithm

- **Alignment Method**
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

Dynamic Programming – possible paths

<table>
<thead>
<tr>
<th></th>
<th>S(i + 1, j – 1) +1</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>0 0 0 0 0 0 1 2 2</td>
</tr>
<tr>
<td>G</td>
<td>0 0 0 0 0 0 1 2 2</td>
</tr>
<tr>
<td>A</td>
<td>0 0 0 0 1 1 1 1</td>
</tr>
<tr>
<td>A</td>
<td>0 0 0 1 1 1 1</td>
</tr>
<tr>
<td>A</td>
<td>0 0 1 1 1</td>
</tr>
<tr>
<td>U</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>C</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>C</td>
<td>0 0 0 0</td>
</tr>
</tbody>
</table>
Base Pair Maximization - Drawbacks

• Base pair maximization will not necessarily lead to the most stable structure
 – May create structure with many interior loops or hairpins which are energetically unfavorable
• Comparable to aligning sequences with scattered matches – not biologically reasonable
Energy Minimization

- Thermodynamic Stability
 - Estimated using experimental techniques
 - Theory: Most stable is the most likely
- No pseudoknots due to algorithm limitations
- Uses Dynamic Programming alignment technique
- Attempts to maximize the score taking into account thermodynamics
- MFOLD and ViennaRNA
Thermodynamics

- Gibbs Free Energy, G
 - Describes the energetics of molecules in aqueous solution. The change in free energy, ΔG, for a chemical process, such as nucleic acid folding, can be used to determine the direction of the process:
 - $\Delta G = 0$: equilibrium
 - $\Delta G > 0$: unfavorable process
 - $\Delta G < 0$: favorable process
 - Thus the natural tendency for biomolecules in solution is to minimize free energy of the entire system (biomolecules + solvent).

- $\Delta G = \Delta H - T\Delta S$
 - ΔH is enthalpy, ΔS is entropy, and T is the temperature in Kelvin.
 - Molecular interactions, such as hydrogen bonds, van der Waals and electrostatic interactions contribute to the ΔH term. ΔS describes the change of order of the system.
 - Thus, both molecular interactions as well as the order of the system determine the direction of a chemical process.
 - For any nucleic acid solution, it is extremely difficult to calculate the free energy from first principle
Free energy computation

ΔG = -4.6 kcal/mol
Adding Complexity to Energy Calculations

• Stacking energy - We assign negative energies to these *between base pair* regions.
 – Energy is influenced by the previous base pair (not by the base pairs further down).
 – These energies are estimated experimentally from small synthetic RNAs.

• Positive energy - added for destabilizing regions such as bulges, loops, etc.

• More than one structure can be predicted
Energy Minimization Drawbacks

• Compute only one optimal structure
• Usual drawbacks of purely mathematical approaches
 – Similar difficulties in other algorithms
 • Protein structure
 • Exon finding
Prediction Tools based on Energy Calculation

Fold, Mfold

RNAfold
Vienna RNA secondary structure server
Mfold = ‘Multiple’ Folding

- Original (~1980) computed one single minimum energy folding of RNA
- Multiple Folding algorithm - Given RNA:
 1) Predict min. free energy G
 2) Given a set of possible folds $F_1...F_n$, calculate their free energies $H_1...H_n$
 3) Eliminate all folds i with $H_i > G + g$
 a) $g = G*(P/100)$
 b) P is user defined
 4) Compute remaining folds; plot each with all base pairs.

http://www.bioinfo.rpi.edu/applications/mfold/
Submitting RNA to MFOLD

- Enter the sequence to be folded in the box. All non-alphabet characters will be removed. FASTA format may be used.
- Use default parameters
- Scroll wayyyy down and hit “Fold RNA”

Paste your sequence

Use default parameters

Scroll wayyy down and hit “Fold RNA”
Tools’ Features

• Sub-optimal structures
 - Provide solutions within a specific energy range.

• Constraints
 - Regions known experimentally to be single/double stranded can be defined.

• Statistical significance
 - Currently lacking in energy based methods
 - Recently was suggested to estimate a significant stable and conserved fold in aligned sequences (Washietl ad Hofacker 2004)

• Support by compensatory mutations.
Compensatory substitutions

Expect areas of base pairing in tRNA to be covarying between various species. Base pairing creates a stable tRNA structure in organisms. Mutation in one base makes pairing less favorable and breaks down the structure. Covariation ensures the ability to base pair is maintained and RNA structure is conserved.

Covariation ensures ability to base pair is maintained and RNA structure is conserved.
Evolutionary conservation of RNA molecules can be revealed by identification of compensatory mutations.
Information from multiple alignment about the probability of positions i,j to be base-paired.

- Conservation – no additional information
- Consistent mutations (GC → GU) – support stem
- Inconsistent mutations – does not support stem.
- Compensatory mutations – support stem.
RNA families

- Rfam: General non-coding RNA database
- 379 families annotating 280,000 regions

http://www.sanger.ac.uk/Software/Rfam/

Includes many families of non-coding RNAs and functional motifs, as well as their alignment and secondary structures
An example of an RNA family

miR-1 MicroRNAs

miR-1:
5'UUGAAUGUAAGAAGUAGUA-3'

miR-1 precursor RNAs:

C. elegans
Drosophila
Human

A Drosophila mir gene cluster
A human mir gene cluster

Chromosome 2r
Chromosome 13

Current Biology
Summary

• MFOLD and other RNA secondary structure prediction tools rarely give the right answer first (or at all)
 – Too many possible structures in the low energy neighbourhood

• Can be used as a “first-pass” tool
 – Eyeball key conserved motifs
 – Collect sequences to build a consensus

• Often need to adjust parameters
 – Use prior knowledge to force base pairing

• Motif-searching tools can be used to identify conserved secondary structure motifs in a sequence database
 – Retrieves more results than sequence-based searches