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Abstract. With the advances in next-generation sequencing technology, 16S ribosomal RNA
(rRNA) gene sequences are increasingly being used to interpret the phytogenetic relationship be-
tween organism. A common research question is the taxonomy independent analysis where se-
quences are clustered into operational taxonomic units (OTUs) to estimate microbial communities
in given environmental samples. Most existing clustering methods for 16S rRNA gene sequences are
computing intensive and the results often subjectively depend on some user-set parameters, which
often leads to a wide range of clustering results that are hard to interpret. To address these chal-
lenges, we propose a flexible and efficient gaussian mixture model combined with multidimensional
scaling (called GMM-MDS) to cluster 16S rRNA sequences for OTU prediction. The proposed
model requires no user-set parameters and produces the clustering results objectively and adap-
tively based on the data. Through applications to public datasets and numerical simulations, we
demonstrate that the proposed method performs competitively compared to the existing methods.

1 Introduction

In recent years, with the rapid development of 16S rRNA next-generation sequencing technology,
researchers can easily sequence millions of signature sequences from microbial communities in
an acceptable time with a reasonable cost, which provide new approaches to many metagenomic
problems. A major goal of these studies is to uncover the true structure of microbial community
in given environment samples. Many computational methods have been proposed to cluster
sequences into operational taxonomic units (OTUs) to approximate the number of microbial
communities which enable microbiologists to keep pace with the growth of huge amount of
genomic data sets available today. However, most existing clustering methods depend on some
user-set parameters, and typically a small change in the algorithm parameters can lead to
significantly varying clustering results [1–3], which makes the results hard to interpret and often
requires microbiologists to put more efforts to manually and subjectively choose the parameters.

Current taxonomy independent clustering algorithms can be grouped into several sub-
categories as introduced in [2, 4]. The three widely used approaches are hierarchical clustering
algorithm (HC) (e.g., ESPRIT-Tree [5], DOTUR [6], mothur [7]), greedy heuristic clustering
algorithm (GHC) (e.g., UCLUST [8], CD-HIT [9]), and Bayesian clustering algorithm (BC)
(e.g., CROP [3], BEBaC [4]). Most HC algorithms construct a hierarchical tree based on a com-
puted distance matrix between all sequences, then a user-specified cutoff is applied to assign the
leaves in the tree to different OTUs. For example, ESPRIT-Tree [5], an efficient HC algorithm,
represents each cluster of sequences as a probabilistic sequence to avoid extensive computation
of pairwise distances between clusters, and reports the clustering results for varying distance
cutoffs (e.g., from 0.01 to 0.15) in a single run. However, even for microbiologists with enough
background knowledge, the ‘optimal’ cutoff is hard to be decided. Furthermore, the reported
results by ESPRIT-Tree typically varies from different runs, which further complicates the in-
terpretation. Similar drawbacks have been observed in CROP [3], a BC algorithm, which splits
the sequences into random blocks and applies Bayesian clustering algorithms to each block. And
the lower and upper bound distance parameters need to be specified before running the pro-
gram. The CROP proposed the split and merge process to partially resolve the randomness of
clustering, but different runs still lead to largely different results. GHC approaches incorporated

? Email: baolin@umn.edu



2 Wei Zhang1, Rui Kuang1, and Baolin Wu2

a similar partition strategy, which however is not guaranteed to approximate the true structure
of microbial communities [2].

In this paper we developed a flexible and efficient taxonomy independent clustering model to
address some of the limitations of the existing methods. When analyzing two simulation datasets
and five 16S rRNA gene sequence datasets, the results reported by our model are comparable
to the best of the other methods across a range of user-set parameters.

2 Methods

In this section, we first describe the construction of distance matrix for 16S rRNA gene sequence
data by using the pairwise alignment algorithm. We then apply the multidimensional scaling
(MDS) based dimension reduction to the distance matrix to construct an Euclidean coordinate
matrix. A gaussian mixture model is then fitted to the coordinate matrix. And the Bayesian
Information Criterion (BIC) is used to adaptively and subjectively choose the dimensions of the
coordinate matrix and the number of OTUs.

Assume that there are n read sequences r = (r1, ..., rn) in total in the 16S rRNA data.

2.1 Pairwise alignment and dissimilarity matrix calculation

The Needleman-Wunsch algorithm [10] was used for pairwise alignment and we followed the
strategies described in CROP [3] and Quickdist algorithm [6] to calculate the dissimilarity
matrix D = {dij |i, j = 1, 2, ..., n} for the sequence pairs. The dissimilarity dij is calculated as a
percentage number of mismatches in the pairwise alignment between ri and rj .

2.2 Multidimensional scaling (MDS) and efficient parallel computation

We first apply the classical MDS procedure [11] to the dissimilarity matrix D to project the
data into a n× p dimensional Euclidean coordinate matrix X. Here p is typically much smaller
than n. Intuitively the first several dimensions of X will capture most of the information in
the dissimilarity matrix D. Our intuitive idea is to analyze the first several dimensions of
X using a model-based clustering algorithm, and then efficiently and adaptively choose the
dimension and the number of clusters (i.e., OTUs) automatically based on the data using a
model selection criterion. Note that,D is not a Euclidean distance matrix, and some eigenvalues
can be negative. We have observed that the negative eigenvalues are small in magnitude (Figure
1A), and generally only the first several positive eigenvalues are large (Figure 1B). Thus we can
approximate the dissimilarity matrix reasonably well using the first several dimensions of X.

For an extremely large dataset with hundreds of thousands sequences, parallel computing
system, such as Hadoop [12] or MPI [13], can be applied to parallelize an elegant algorithm,
SMACOF (Scaling by MAjorizing a COmplicated Function) [14], to efficiently compute MDS
solution. A previous method proposed in [15] analyzed the performance of block matrix de-
composition for parallel SMACOF implementation on multicore cluster system. Since only first
several dimensions (∼10) of X are informative, parallel SMACOF can efficiently compute and
export the result of MDS.

2.3 Gaussian mixture model for clustering

We apply a gaussian mixture model (GMM, [16]) to the 16S rRNA sequence data. Specifically,
for the first k dimensions of matrix X, denoted as Y , where Yi = (yi1, ..., yik), and given the
number of components G, we propose the following gaussian mixture model

Pr(Yi|θ,µ, σ2I) =
G∑

g=1

θgf(Yi|µg, σ
2I),

G∑
g=1

θg = 1, θg ≥ 0, (1)
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where θ = (θ1, . . . , θG) are the mixing proportions. The component means µ = (µ1, . . . ,µG)
are cluster and dimension specific, where µg = (µg1, ..., µgk). Here we have assumed an equal-
volume spherical covariance matrix σ2I, where I is an k × k identity matrix. The individual
component multivariate normal density is

f(Yi|µg, σ
2I) = (2π)−

k
2 σ−k exp

{
− 1

2σ2

k∑
j=1

(yij − µgj)2
}

(2)

We estimate the model parameters by maximizing the sequence data log likelihood

L =
n∑

i=1

log
{ G∑

g=1

θgf(Yi|µg, σ
2I)

}
. (3)

Standard EM algorithm can be applied to obtain the maximum likelihood estimator (MLE)
[16]. The gaussian mixture model typically has many local maxima and multiple random initial
values are applied to find a good solution. Here we propose a parameter initialization based on
the k-means++ algorithm [17].

The component centers are initialized following the setup in k-means++ as follows. The first
component center is chosen uniformly at random from the sequences that are being clustered,
after which each subsequent component center is chosen from the remaining sequences with
probability proportional to its squared distance from the sequence’s closest existing compo-
nent center. In our numerical studies, this parameter initialization method yields considerable
improvement in finding the MLE for the gaussian mixture model.

2.4 Model selection via BIC

We apply the Bayesian Information Criterion (BIC) [18] to select the matrix dimension k and
component number G (hence OTUs). For the proposed mixture model, the BIC is computed as a
penalized maximum log likelihood accounting for the number of parameters (model complexity),

BIC = 2L∗ − (k + 1)G log(n), (4)

where L∗ is the maximized log likelihood in equation (3). Then we pick up dimension k and
component number G based on the largest BIC. Given the estimated normal mixture model,
the posterior probability, τig = θgf(Yi|µg, σ

2I)/Pr(Yi), probabilistically quantifies the relative
chance of sequence belonging to each OTU, and is used to assign each sequence to the OTU
with the maximum posterior probability, arg maxg τig.

Fig. 1. Eigenvalues of D for the eMC dataset. (A) All the eigenvalues of dissimilarity matrix D sorted by
magnitude from largest to smallest (6782 total). (B) The first 50 largest eigenvalues of D.
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3 Results

In the experiments, we compare the proposed GMM-MDS to the following three representative
OTU prediction methods, CROP, ESPRIT-Tree and UCLUST.

3.1 Simulation study

Follow the steps described in [4], we simulated two datasets. The first one contains 9 taxonomic
unites that were designed as shown in Figure 2(A). The designed phytogenetic tree with a
simple structure contains two distances levels, 6% and 14%. Then, 9 consensus sequences each
with 500 base pairs were generated using the software Seq-Gen [19] according to the phyto-
genetic tree. We simulate 500 individual sequences from each consensus sequence, the average
deviation of a sequence from the consensus sequence was δ. Specifically, a random number is
drawn from a gaussian distribution N(0, δ), the absolute value of the number is the percent-
age of mismatches between an individual sequence and the consensus sequence. The δ was set
as 3% for all 9 taxonomic unites in this dataset. In total we simulated 4500 sequences each
with 500 base pairs generated from the 9 taxonomic unites. Similarly, we simulated the second
dataset consisting of 12 taxonomic unites that were designed as shown in Figure 3. The de-
signed phytogenetic tree was composed of a more complex structure, which contains multiple
distances levels with 1% minimum distance and 30% maximum distance. δi (i=1,2,...,12), which
are set as {2,2,3,3,4,5,3,2,3,4,3,3}% for the 12 taxonomic unites. We generated 500 sequences
from each consensus sequences (500 bp), and 6000 sequences in total. We ran our model on
each dataset with dimension k from 2 to 10 and component G from 2 to 100. For each specific
number of components G, we ran the model 100 times with different initials selected based on
the k-means++ and report the largest BIC, then pick up the k and G based on the largest BIC
for each dataset.

The results of clustering the 4500 and 6000 simulated sequences by different models are
reported in Table 1 and Table 2, respectively. Normalized mutual information (NMI) score [20]
and adjusted Rand index (ARI) [21] are used to evaluate how the clustering outcomes from each
model agree with the ground truth. NMI/ARI=1 means the clustering result is the same as the
ground truth, and NMI/ARI=0 means the sequences are randomly grouped. From Table 1 and
Table 2 we can see that the clustering results vary significantly across different parameters for
the UCLUST, ESPRIT-Tree and CROP. For CROP and ESPRIT-Tree, when the cut-off is low,
it tends to over-estimate the number of OTUs and report many false positive ones; when the
cut-off is high, it tends to under-estimates the number of OTUs and assign the closely related
taxonomic units into one OTU. The GHC algorithm UCLUST does not work well under a wide
range of parameter settings. In general the CROP performs better than UCLUST and ESPRIT-
Tree. When considering estimates of both the number of OTUs and clustering accuracy based
on NMI/ARI, the proposed GMM-MDS is comparable to the best results of CROP.

To assess the effectiveness of MDS for capturing the dissimilarity information, we evaluate
whether the first several dimensions of the projected matrix capture the major structure of the
phytogenetic tree in Figure 2(A). In Figure 2(B)-(E), we show the scatter plots of combinations
of the first several dimensions after applying MDS to the dissimilarity matrix. It is clear that
the first two dimensions capture the information to separate the three groups (Figure 2(B)) and
4th, 5th and 6th dimensions contain the information to distinguish the taxonomic unites within
group 3, 1 and 2, respectively. From the first several dimensions estimated by MDS, we can
easily reconstruct the phytogenetic tree. The similar analysis on the second simulated data is
shown in Figure 7 in Appendix. For the more complex real datasets, we therefore expect that
the MDS can provide valuable visualization information regarding the underlying structure of
the microbial communities.
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Fig. 2. Relations between phytogenetic tree and MDS. (A) Phytogenetic tree of 9 taxonomic unites within
3 groups. (B)-(E) Scatter plots of first several dimensions with largest eigenvalues on the first simulated dataset.
Taxonomic unites and groups are distinguished by colors and markers, respectively.

}
}
}

−10 −5 0 5 10
−8

−6

−4

−2

0

2

4

6

8

1st dimension

2n
d

di
m

en
si

on

Group 1

Group 3

Group 2

Best separation among Groups

−10 −5 0 5 10
−4

−3

−2

−1

0

1

2

3

4

5

6

1st dimension

4t
h

di
m

en
si

on

Taxon9

Taxon8

Taxon7
Group 3

−10 −5 0 5 10
−3

−2

−1

0

1

2

3

4

1st dimension

5t
h

di
m

en
si

on

Taxon2

Taxon1

Best separation of Group 1

Group 1

Taxon3

−8 −6 −4 −2 0 2 4 6 8
−4

−3

−2

−1

0

1

2

3

4

5

2nd dimension

6t
h

di
m

en
si

on

Taxon5

Taxon4

Taxon6

Best separation of Group 2

Group 2

Separated by 5th dimension (Fig. D)

Separated by 4th  dimension (Fig. C)

Separated by 6th  dimension (Fig. E)

Group 1

Group 2

Group 3

Taxon1

Taxon2

Taxon3

Taxon4

Taxon5

Taxon6

Taxon7

Taxon8

Taxon9

0.01A

B C

D E

Separated by 1st and 2nd 

dimensions (Fig. B)

Best separation of Group 3

3.2 16S rRNA gene sequence datasets preparation

Five 16S rRNA gene sequence datasets were used in the experiment to numerically compare
different methods for their estimation of the number of OTUs. Datasets Clone43A and Clone43B
were described by [22] and preprocessed following [3]. They are generated from 43 16S rRNA
templates with at least 3% difference from each other. Clone43A contained only the reads
that were within 3% of one of the 43 templates and Clone43B contained all the reads. Human
skin microbiome dataset Grice was generated by [23] and preprocessed following [3]. The Grice
data contained 33 genera classified by the ribosomal database project classifier [24], which
were considered as the ground truth. The Quince dataset [25] contained 10852 unique reads
sequenced from V5 and V6 regions of 90 different clones of bacteria. The even composition
Mock Communities (eMC) dataset was generated by [26] and preprocessed following [4]. We
extracted 10% of the reads from the data which consists of 6782 unique reads sequenced from
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Fig. 3. Phytogenetic tree of 12 taxonomic units.

Taxon 10

Taxon 11

Taxon 12

Taxon 1

Taxon 2

Taxon 3

Taxon 4

Taxon 5

Taxon 6

Taxon 7

Taxon 8

Taxon 9

0.02

Table 1. Results for the simulated dataset with 9 taxonomic units.

Algorithm (parameters) estimated number of OTUs NMI ARI
GMM-MDS 29 0.8334 0.7681

UCLUST(1%) 3865 0.4273 0.0064
UCLUST(3%) 2604 0.4786 0.0748
UCLUST(5%) 1356 0.5742 0.2959
UCLUST(10%) 173 0.7876 0.6763

ESPRIT-Tree(0.03) 2294 0.5512 0.3459
ESPRIT-Tree(0.05) 1126 0.7099 0.6894
ESPRIT-Tree(0.08) 255 0.8467 0.7511
ESPRIT-Tree(0.10) 198 0.6266 0.3887
ESPRIT-Tree(0.12) 69 0.6521 0.3960
ESPRIT-Tree(0.15) 14 0.4480 0.1808

CROP(1%) 1106 0.6580 0.4126
CROP(2%) 321 0.8084 0.6820
CROP(3%) 443 0.8381 0.8316
CROP(4%) 87 0.9530 0.9561
CROP(5%) 10 0.7997 0.6194
CROP(6%) 4 0.6410 0.3897

Ground truth 9

Table 2. Results for the simulated datasets with 12 taxonomic unites.

Algorithm (parameters) estimated number of OTUs NMI ARI
GMM-MDS 40 0.6264 0.4085

UCLUST(1%) 5287 0.4551 0.0047
UCLUST(3%) 3519 0.5022 0.0942
UCLUST(5%) 2091 0.5464 0.3336
UCLUST(10%) 448 0.6215 0.3057

ESPRIT-Tree(0.03) 3182 0.5340 0.2833
ESPRIT-Tree(0.05) 1873 0.6255 0.4721
ESPRIT-Tree(0.08) 924 0.5228 0.2483
ESPRIT-Tree(0.10) 521 0.5472 0.2566
ESPRIT-Tree(0.12) 186 0.5721 0.2597
ESPRIT-Tree(0.15) 88 0.3701 0.1019

CROP(1%) 1693 0.6282 0.3568
CROP(2%) 982 0.6678 0.4930
CROP(3%) 930 0.6341 0.3948
CROP(4%) 358 0.6043 0.3062
CROP(5%) 20 0.5877 0.2628
CROP(6%) 4 0.5774 0.2581

Ground truth 12

22 bacterial species and 28 reference sequences. Table 3 summarizes the five dataset with their
known number of OTUs.

We ran our model on each dataset with dimension k from 2 to 10 and component G from 2 to
150 for dataset Quince and 2 to 100 for the other ones. For each specific number of components
G, we ran the model 100 times and report the largest BIC, then pick up k and G based on
the largest BIC for each dataset. In Table 4, we report the optimal number of OTUs with the
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Table 3. Datasets.

Datasets Clone43A Clone43B Grice Quince eMC

number of unique reads 5296 9443 1009 10852 6782

known number of OTUs 43 43 33 90 28

corresponding BIC for each dimension k, the best one across all the dimensions are bolded. From
the results we can see that for four out of five datasets, we get the optimal number of OTUs when
dimension k = 2, which means that the first two dimensions of Euclidean coordinates capture
most of the dissimilarity information for estimating the structure of microbial communities. The
scatter plots in Figure 4 show the first two dimensions with the estimated cluster centers of the
four datasets. Besides that, we plot the eMC dataset with its ‘true label’, 22 bacterial species,
with the first two and first three dimensions with the largest eigenvalues in Figure 5(A) and
(B), respectively.

In Figure 6, we plot the BIC across different number of components G for the optimal
dimension k. The red marker is the estimated G. Note that, we only consider those components
with more than 4 sequences as an OTU. In most cases, the reported number of components G
in the plots are larger than the optimal number of OTUs.

Table 4. Number of OTUs estimated by GMM-MDS with dimensions k from 2 to 10.

Dataset Clone43DataA Clone43DataB Grice Quince eMC
Dimension(k) # of OTUs BIC # of OTUs BIC # of OTUs BIC # of OTUs BIC # of OTUs BIC

2 49 -67942.1 48 -121118.1 27 -2712.0 79 -83648.1 77 -45185.9
3 85 -90554.9 85 -164109.5 34 -2679.4 130 -103165.4 81 -46978.8
4 78 -112260.3 87 -203241.4 39 -1996.4 134 -120679.2 87 -49363.2
5 87 -132823.6 90 -241242.8 43 -1589.7 128 -135761.5 89 -53911.3
6 83 -152355.2 89 -277861.0 38 -1608.3 130 -154181.3 84 -60294.9
7 77 -173297.2 93 -315085.9 36 -1100.3 134 -171949.7 87 -65411.7
8 86 -193005.1 85 -352972.6 41 -871.2 131 -188590.2 93 -70180.0
9 85 -212906.2 91 -390824.7 38 -209.1 128 -204811.6 95 -82259.6
10 85 -232972.5 93 -427240.4 39 -364.6 129 -220762.3 94 -93780.5

Table 5 summarizes the results of OTU estimation by the other methods compared to GMM-
MDS. In most of the datasets, the numbers of OTUs estimated by GMM-MDS are very close
to the ground truth.

Table 5. Number of OTUs estimated by all the methods.

Datasets
Algorithms(parameters) Clone43A Clone43B Grice Quince eMC

GMM-MDS 49 48 38 79 77
UCLUST(1%) 3288 6002 149 2372 730
UCLUST(3%) 246 1763 59 133 79
UCLUST(5%) 89 260 40 79 36
UCLUST(10%) 46 79 29 42 19

ESPRIT-Tree(0.03) 533 1880 52 89 34
ESPRIT-Tree(0.05) 46 242 40 54 23
ESPRIT-Tree(0.08) 42 55 31 37 16
ESPRIT-Tree(0.10) 42 45 26 26 16
ESPRIT-Tree(0.12) 39 42 20 19 14
ESPRIT-Tree(0.15) 38 39 15 12 10

CROP(1%) 286 1373 84 193 106
CROP(2%) 61 334 58 63 31
CROP(3%) 50 109 42 43 22
CROP(4%) 44 71 37 30 21
CROP(5%) 44 53 21 19 15
CROP(6%) 43 44 16 13 14

Ground truth 43 43 33 90 28
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Fig. 4. Estimated cluster centers by GMM-MDS.
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4 Discussion

The proposed GMM-MDS for OTU prediction is motivated by the novel CROP method [3],
which is based on the birth-death process Bayesian mixture modeling. GMM-MDS had several
improvements compared to the CROP. (1) We utilize all the pairwise sequence distances and do
not need partition into random blocks, and hence can truly capture the underlying OTU. (2)
By projecting the dissimilarity matrix into Euclidean coordinates to be fitted by the mixture
model, we can construct a truly likelihood based approach, which enables a principled approach
to predicting the number of OTUs efficiently based on the well-established model selection
criterion. (3) We adapt the recently proposed remarkable k-means++ approach [17] to solve
the gaussian mixture model. In general finding the k-means solution is NP-hard and most
existing methods are heuristic leading to local maximum, while the k-means++ can reach the
global maximum with theoretical guarantee. In our limited numerical studies, we have found
that initializing the gaussian mixture model based on the k-means++ approach often leads to
solutions with the maximum log likelihood. (4) When using a large number of dimensions in
the covariate matrix X, we could exactly reproduce the dissimilarity matrix D (property of the
MDS algorithm), and the proposed GMM-MDS can then be roughly treated as an improved
frequentist version of CROP. Intuitively the computed pairwise sequence distance is discrete,
noisy, incomplete, and scattered. By selecting appropriate number of dimensions, we could
best capture the dissimilarity information that truly contributes to the OTU differences. In
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Fig. 5. Scatter plots of eMC dataset. The 22 bacterial species are labeled with different colors and markers.
(A) Scatter plot of the first two dimensions with the largest eigenvalues. (B) Scatter plot of the first three
dimensions with the largest eigenvalues.
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Fig. 6. Estimated BIC for different dataset. The red marker is the estimated number of components.
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addition, by applying parallel/cloud computing to the MDS step to avoid directly handling
the full dissimilarity matrix, GMM-MDS is, in principle, scalable to huge datasets in practical
metagenomics problems.

The proposed approach of projecting dissimilarity metric into Euclidean coordinates to be
incorporated into further statistical model building is a novel idea that transcends the metage-
nomic OTU prediction problem [27]. Similar approach has been successfully applied to the study
of disease risk and protein function inferences [28–30].

In the current paper, we have directly used the MDS of the calculated sequence dissimilarity
matrix D for Euclidean coordinates calculation. Note that D is not guaranteed to be a distance
matrix (i.e., non-negative definite). Nonetheless the current approach has performed consistently
well in our numerical studies. A further research topic is to build a regularized kernel matrix
in an RKHS based on the approach of [30], which could enable us to build a kernel based
nonlinear clustering approach. Some preliminary results are promising and we will report the
results elsewhere in the future.
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Appendix

Fig. 7. Relations between phytogenetic tree and MDS. (A) Phytogenetic tree of 12 taxonomic unites
within 3 groups. (B)-(H) Scatter plots of first several dimensions with largest eigenvalues on the seccond simulated
dataset. Taxonomic unites and groups are distinguished by colors and markers, respectively.

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

1st dimension

2n
d 

di
m

en
si

on

Group 1

Group 2

Group 3

Taxon 10

Taxon 11

Taxon 12

Taxon 1

Taxon 2

Taxon 3

Taxon 4

Taxon 5

Taxon 6

Taxon 7

Taxon 8

Taxon 9

0.02

BestyseparationyamongyGroups

−10 −5 0 5 10 15
−8

−6

−4

−2

0

2

4

6

8

2nd dimension

3r
d 

di
m

en
si

on

Taxon4

Taxon5−6

Group 2

Taxon7−9

−10 −5 0 5 10 15
−6

−4

−2

0

2

4

6

8

2nd dimension

4t
h 

di
m

en
si

on Taxon3

Taxon1

Taxon2

Group 1

−10 −5 0 5 10 15 20
−5

−4

−3

−2

−1

0

1

2

3

4

5

1st dimension

8t
h 

di
m

en
si

on

Taxon10

Taxon11

Taxon12

Group 3

−10 −5 0 5 10 15
−6

−4

−2

0

2

4

6

8

2nd dimension

5t
h 

di
m

en
si

on

Group 2
Taxon5

Taxon6

−10 −5 0 5 10 15
−4

−2

0

2

4

6

8

2nd dimension

6t
h 

di
m

en
si

on

Group 2

Taxon5−9

Taxon4

−10 −5 0 5 10 15
−6

−4

−2

0

2

4

6

2nd dimension

9t
h 

di
m

en
si

on

Group 2

Taxon4−6

Taxon8−9

Taxon7

BestyseparationyofyGroupy1

BestyseparationyofyGroupy3BestyrepresentytheystructureyofyGroupy2

BestyseparationyofyTaxony5yandy6yinyGroupy2 BestyseparationyofyTaxony4yinyGroupy2 BestyseparationyofyTaxony7yinyGroupy2

}

}
}

Groupy1
Separatedybyy4thydimensiony,Fig.yC9

Groupy3
Separatedybyy8thydimensiony,Fig.yE9

Groupy2
Separatedybyy3rdAy5thAy6thyandy9thydimensions
,Fig.yDyFyGyH9

Separatedybyy1stydimensiony,Fig.yA9

Separatedybyy2ndydimensiony,Fig.yA9

A

B C

D E

F G H


