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Abstract17

We present the first fine-grained complexity results on two classic problems on strings. The first18

one is the k-Median-Edit-Distance problem, where the input is a collection of k strings, each of19

length at most n, and the task is to find a new string s∗ that minimizes the sum of the edit distances20

from s∗ to all other strings in the input. Arising frequently in computational biology, this problem21

provides an important generalization of edit distance to multiple strings. We demonstrate that for22

any ε > 0 and k ≥ 2, an O(nk−ε) time solution for the k-Median-Edit-Distance problem over an23

alphabet of size O(k) refutes the Strong Exponential Time Hypothesis (SETH). This provides the24

first matching conditional lower bound for the O(nk) time algorithm established in 1975 by Sankoff.25

The second problem we study is the k-Center-Edit-Distance problem. Here also, the input is a26

collection of k strings, each of length at most n. The task is to find a new string that minimizes27

the maximum edit distance from itself to any other string in the input. We prove that the same28

conditional lower bound as before holds. Our results also imply new conditional lower bounds for29

the k-Tree-Alignment and the k-Bottleneck-Tree-Alignment problems in phylogenetics.30
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1 Introduction34

Recent years have seen a remarkable increase in our understanding of the hardness of35

problems in the complexity class P . By establishing conditional lower bounds based on36

popular conjectures, researchers have been able to identify which problems are unlikely37

to yield algorithms significantly faster than what is known, at least not without solving38

other long-standing open questions. We contribute to this growing body of research here39

by establishing tight conditional hardness results for the k-Median-Edit-Distance problem.40

This generalizes the seminal work by Backurs and Indyk in STOC 2015 which showed that41

conditioned on the Strong Exponential Time Hypothesis (SETH), there does not exist a42

strongly subquadratic algorithm for computing the edit distance between two strings [10].43

I Problem 1 (k-Median-Edit-Distance). Given a set S of k strings, each of length at most n,44

find a string s∗ (called a median string) that minimizes the sum of edit distances from the45

strings in S to s∗. This sum is called the median edit distance.46

When k = 2 this problem is equivalent to the well known edit distance problem, whose47

famous dynamic programming solution was first given in 1965 by Vintsyuk [45]. An algorithm48

for solving this problem on k strings in time O(nk) was then given by Sankoff in 1975 [42] in49

the more general context of tree alignment (mutation trees). Since Sankoff’s solution, no50

algorithms with significantly better time complexity have been developed. This is despite the51

problem being of practical importance as well as the subject of extensive study [30, 31, 34, 39].52

Compelling reasons for this were finally given 25 years later by Higuera and Casacuberta in53

2000 who showed the NP-completeness of the problem over unbounded alphabets [21]. This54

result was later strengthened to finite alphabets in [43] and then even to binary alphabets in55

[40]. In [40] it was also shown that the problem is W[1]-hard in k. This last result implies56

it is highly unlikely to find an algorithm with time complexity of the form f(k) · NO(1),57

where N is the sum of the lengths of the k strings. None of these hardness results, however,58

rule out the possibility of algorithms where the time complexity is of the form O(nk−ε).59

Nearly five decades after its creation, this paper gives a convincing argument as to why a60

significant improvement on Sankoff’s algorithm is unlikely. Specifically, we show that an61

O(nk−ε) algorithm for any ε > 0 would refute SETH. We also prove that the same lower62

bounds hold for a related problem known as the k-Center-Edit-Distance.63

I Problem 2 (k-Center-Edit-Distance). Given a set S of k strings, each of length at most n,64

find a string s∗ (called a center string) that minimizes the maximum of edit distances from65

the strings in S to s∗. The maximum edit distance from s∗ to any string in S is called the66

center edit distance.67

Like k-Median-Edit-Distance, the k-Center-Edit-Distance problem is known to be NP-68

complete and W[1]-hard in k [40]. Additionally, k-Center-Edit-Distance has been shown to69

have an O(n2k) solution [40]. However, ours are the first fine-grained complexity results70

for both these problems. Finally, we note that our results imply similar conditional lower71

bounds for two classic tree alignment problems from phylogenetics called k-Tree-Alignment72

and k-Bottleneck-Tree-Alignment [19, 29, 44, 46]. The k-Tree-Alignment (resp. k-Bottleneck-73

Tree-Alignment) problem is defined as follows: given a tree T with k leaves where each leaf74

is labelled with a string of length n, find an assignment of strings to all internal vertices of T75

such that the sum (resp. max) of edit distances between adjacent strings/vertices over all76

edges is minimal. Note that the median (resp. center) edit distance problem on k strings77

is a special case of the k-Tree-Alignment (resp. k-Bottleneck-Tree-Alignment) problem,78

specifically when the tree has only one internal vertex.79
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1.1 Related Work80

Recent progress in the field of fine-grain complexity has given us conditional hardness81

results for many popular problems. The list of problems includes those related to graphs,82

computational geometry, and strings [1, 3, 4, 6, 7, 8, 10, 11, 16, 18, 20, 22, 25, 24, 32, 33].83

Reductions based on SETH, such as the one considered here, tend to have a very similar84

structure. For example, the Orthogonal Vectors problem is often used as an intermediate85

problem. Relating this problem to SETH and using this for conditional lower bounds has86

been shown that a strongly subquadratic algorithm for Orthogonal Vectors would violate87

SETH [47]. It has since been extensively used in this field. The proof we provide here works88

off of a similar pattern as this, but with a generalized variant of the Orthogonal Vectors as89

used in [2]. Using these techniques, our work contributes to a growing list of conditional90

lower bounds for string problems which we describe in more detail below.91

Along with the SETH based lower bound for edit distance by Backurs and Indyk in [10],92

there has been a number of newly appearing conditional lower bounds for string related93

problems [9, 13, 15, 17]. Bringmann and Künnemann created a framework by which any string94

problem which allowed for a particular gadget construction could have similar SETH based95

lower bounds proven for it [14]. This framework includes the problems of longest common96

subsequence, dynamic time warping, and edit distance under under a binary alphabet (less97

than the four symbols used in the original reduction by Backurs and Indyk). Further work98

to extend these types of lower bounds to more than two strings was undertaken in [2], where99

it was shown than an algorithm which could find the longest common subsequence on k100

strings in time O(nk−ε) for any ε > 0 would refute SETH. The study of conditional hardness101

of problems on k strings also includes [23], where the longest increasing subsequence on k102

strings k-LCS was considered. More results on k strings were provided in [7], where the local103

alignment problem on k strings under sum of pairs was considered. In both of the last two104

works mentioned, it was showed that an O(nk−ε) algorithm would refute SETH.105

Another notable achievement in this direction is in [5], where it was shown that it is106

possible to weaken the assumptions used to achieve many of these results. They showed107

that under much weaker conjectures than SETH regarding circuit complexity, many of the108

same hardness results still hold. In fact, for any problem where the gadgetry of Bringmann109

and Künnemann can be applied, having a strongly sub-quadratic time algorithm would have110

drastic implications for our ability to solve satisfiability problems on Boolean circuits much111

more complex than those required for 3-SAT. Furthermore, their work also demonstrated that112

if one could shave off arbitrarily large logarithmic factors, it would have drastic implications113

in the field of circuit complexity. In this same work, they showed that their reduction from114

branching programs to string problems can be adapted for k-LCS, implying circuit based115

hardness results apply for LCS on k strings. However, their work left open the question116

hardness for median string and other problems related to edit distance on k strings.117

The problem of finding the center string of a set of k strings, the string which minimizes118

the maximum distance from itself to any string in the set, has more often been studied under119

the Hamming distance metric than the edit distance metric. In this context the problem120

is typically called the closest string problem [26, 28, 36, 37]. It has been shown that this121

problem under Hamming distance metric is NP-complete [35], whereas the median version122

under Hamming distance can be easily solved in polynomial time. In the cases where this123

problem has been studied under the edit distance metric, it has made use of a parameter d,124

the maximum distance any solution is allowed to have from an input string. The reason for125

this is that the problem is fixed parameter tractable in d, a fact which has been the basis of126

many algorithmic solutions [12, 27, 38].127

CVIT 2016
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2 Hardness for k-Median-Edit-Distance128

Our reduction will be from the k-Most-Orthogonal-Vectors problem, which was first intro-129

duced in [2]. It was shown that if it could be solved in O(nk−ε) time for some constant ε > 0,130

it would imply new upper bounds for MAX-CNF-SAT that would violate SETH.131

I Problem 3 (k-Most-Orthogonal-Vectors). Given k ≥ 2 sets S1, S2, . . . , Sk each containing n132

binary vectors v ∈ {0, 1}d, and an integer r < d, are there k vectors v1, v2, . . . , vk with vi ∈ Si133

such that their inner product, defined as
∑d

h=1
∏

t∈[1,k] vt[h], is at most r? A collection of134

vectors that satisfies this property will be called r-far, and otherwise called r-close.135

Modifying the Vectors: In our reduction we apply a modification to the vectors in136

our input sets S1, S2, . . . , Sk. We prepend (r+ 1) 0’s to each vector v ∈ S1 and (r+ 1) 1’s to137

each vector v ∈ Si where i > 1. Every vector is now of dimension d+ r + 1 ≤ 2d and the138

k-Most-Orthogonal-Vectors problem is identical on the original and modified sets.139

2.1 Technical Overview140

Given sets S1, S2, . . . , Sk of binary vectors, we will design strings T1, T2, . . . , Tk such that if141

there exists a collection of r-far vectors in the input, then their median edit distance will be142

at most a constant E−. Otherwise, if there does not exist any collection of r-far vectors in143

the input, their median edit distance will be equal to E+, where E− < E+. Our strings will144

be constructed in three levels of increasing scope: coordinate level, vector level, and set level.145

We use EDIT(x1, x2, . . . , xk) to denote the median edit distance of k strings x1, x2, . . . , xk.146

Coordinate Level: Given k bits b1, b2, . . . , bk, we construct coordinate gadget strings147

CGi(bi) that can distinguish between the case when b1b2 · · · bk = 0 and b1b2 · · · bk = 1.148

Specifically, we will show that there exist constants C− and C+ with C− < C+ such149

that if b1b2 · · · bk = 0, then EDIT(CG1(b1),CG2(b2), . . . ,CGk(bk)) = C−, and else if150

b1b2 · · · bk = 1, then EDIT(CG1(b1),CG2(b2), . . . ,CGk(bk)) = C+.151

Vector Level: Given vectors v1, v2, . . . , vk ∈ {0, 1}d+r+1, we construct vector gadget152

strings VGi(vi) for i ∈ [2, k] and a slightly more complicated decision gadget string153

DG1(v1) out of our coordinate gadgets. Together these gadgets can determine if the k154

vectors are r-far or not. Specifically, we will show that if v1, v2, . . . , vk are r-far, then155

EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) ≤ D− and else if v1, v2, . . . , vk are r-close, then156

EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) = D+, where D+ and D− < D+ are constants.157

Our construction here is a generalization of the work in [10] to k strings.158

Set Level: In the set level step of the reduction, we will build our final strings159

T1, T2, . . . , Tk by concatenating our vector level gadgets and adding special $i symbols. Our160

final strings will be designed so that if there is an r-far collection of vectors v1, v2, . . . , vk161

with vi ∈ Si, then the corresponding gadgets DG1(v1),VG2(v2),VG3(v3), . . . ,VGk(vk)162

will align in an optimal edit sequence of our strings. These vector gadgets will have163

a lower median edit distance, resulting in EDIT(T1, T2, . . . , Tk) ≤ E−. Otherwise,164

EDIT(T1, T2, . . . , Tk) = E+, where E− < E+.165

166

We now present a definition and an associated fact.167

I Definition 1 (Alignment). Given a particular edit sequence on strings x1, x2, . . . , xk, we168

say symbol α in xi is aligned with symbol β in another string xj if neither α nor β is deleted169

but are instead preserved or substituted to correspond to the same symbol. We say a substring170

s of xi is aligned with substring t of xj , if there exists a pair of aligned characters in s and t.171
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I Fact 1 (No criss-crossed alignments). Consider an edit sequence on a set of strings containing172

strings x and y. Let i1 < j1 and i2 < j2 be indices on these strings. If x[i1] is aligned with173

y[j2], then x[i2] cannot be aligned with y[j1].174

2.2 Coordinate level reduction175

For i ∈ [1, k], we define coordinate gadget strings CGi over the alphabet Σ = {21, 22, . . . , 2k, 3, 4}.176

Let `1 = 10k2. For bits b1, b2, . . . , bk ∈ {0, 1}, we define177

CGi(bi) := fi(bi) ◦ 4`1 ◦ gi(bi) ◦ 4`1 ◦ hi(bi) for i ∈ [1, k], where178

179

fi(bi) =


2k−1

i+1 if bi = 1, i < k

2k−1
1 if bi = 1, i = k

2k−1
i if bi = 0

gi(bi) =
{

3k−1 if bi = 1
2k−1

i if bi = 0
hi(bi) =

{
2k

i if bi = 1
©k

j=12j if bi = 0
180

We present the following examples on k = 3 to aid in the understanding of our CGi(bi).181

b1, b2, b3 f1(b1), f2(b2), f3(b3) g1(b1), g2(b2), g3(b3) h1(b1), h2(b2), h3(b3) EDIT(CG1(b1), ·, ·)
1, 1, 1 2222, 2323, 2121 33, 33, 33 212121, 222222, 232323 4 + 0 + 6 = 10
0, 1, 1 2121, 2323, 2121 2121, 33, 33 212223, 222222, 232323 2 + 2 + 4 = 8
0, 0, 0 2121, 2222, 2323 2121, 2222, 2323 212223, 212223, 212223 4 + 4 + 0 = 8

I Lemma 2. Let C− = 2(k − 1)2 and let C+ = C− + (k − 1) = (2k − 1)(k − 1). Then,182

EDIT(CG1(b1),CG2(b2), . . . ,CGk(bk)) =
{
C+ if b1b2 . . . bk = 1
C− otherwise

183

Proof. For the remainder of this proof, let π = b1 + b2 + · · ·+ bk ∈ [0, k].184

B Claim 3. The median edit distance of our fi gadgets is185

EDIT(f1(b1), . . . , fk(bk)) =
{

(k − 1)2 if π = 0 or k
(k − 1)(k − 2) otherwise

186

B Claim 4. The median edit distance of our gi gadgets is187

EDIT(g1(b1), . . . , gk(bk)) =
{

(k − 1)2 if π = 0
(k − 1)(k − π) otherwise

188

B Claim 5. The median edit distance of our hi gadgets is EDIT(h1(b1), . . . , hk(bk)) = (k−1)π.189

We have chosen `1 to be sufficiently large that all fi, gi, and hi gadgets align only with190

gadgets of their own type. Therefore,191

EDIT(CG1(b1), . . . ,CGk(bk)) =


(k − 1)2 + (k − 1)2 + 0 π = 0
(k − 1)(k − 2) + (k − 1)(k − π) + (k − 1)π 0 < π < k

(k − 1)2 + 0 + (k − 1)k π = k

192

A simple calculation will show that EDIT(CG1(b1), . . . ,CGk(bk)) is C− when π < k (and193

hence b1b2 · · · bk = 0) and is C+ when π = k (and hence b1b2 · · · bk = 1). J194

CVIT 2016
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2.3 Vector level reduction195

At this step of the reduction we are given binary vectors v1, v2, . . . , vk ∈ {0, 1}d+r+1 and we196

want to determine whether or not they are r-far. We accomplish this by constructing vector197

level gadgets that will have a ‘lower’ median edit distance if the vectors are r-far. Let integer198

parameters `2 = 10d`1 and `3 = (10`2)2. For vectors v1, v2, . . . , vk, we define199

VGi(vi) := 6`3 ◦Mi(vi) ◦ 6`3 , where200

Mi(vi) :=©j∈[1,d+r+1](5`2 ◦ CGi(vi[j]) ◦ 5`2)201
202

203
Observe that the vector gadget of a vector vi is just the concatenation of the coordinate204

gadgets corresponding to each coordinate in vi. It follows that the median edit distance of205

VG1(v1),VG2(v2), . . . ,VGk(vk) will be proportional to the inner product of v1, v2, . . . , vk.206

This is promising because we can now argue about whether or not v1, v2, . . . , vk are r-far207

based on the median edit distance of the VGi(vi)’s (a ‘lower’ distance implies the vectors are208

r-far and a ‘higher’ distance implies the vectors are r-close). Unfortunately, vectors with a209

very large inner product will result in a large median edit distance, which could interfere210

with our ability to detect r-far vectors in the next step of our reduction. What is desired here211

is to have vector level gadgets with a fixed ‘higher’ median edit distance when the vectors212

are r-close. We achieve this by replacing VG1(v1) with a decision gadget DG1(v1) that will213

ensure that no matter how large the inner product of a collection of r-close vectors, the214

median edit distance of their corresponding gadgets will be a constant D+. For vector v1,215

we define216

DG1(v1) := 7`3 ◦M1(v1) ◦ 6`3 ◦M1(θ) ◦ 7`3 , where217
218

θ ∈ {0, 1}d+r+1 such that θ[i] = 1 if i ≤ r + 1 and 0 otherwise.219

220

The key properties of our vector level gadgets are captured in Lemma 6 and Lemma 7.221

In both proofs we let m = |Mi| = (d + r + 1)(2`2 + 2`1 + 3k − 2), and we define D− =222

2`3 +m+ (d+ 1)C− + rC+ and D+ = D− + (k − 1).223

I Lemma 6. For any given r-far vectors v1, v2, . . . , vk ∈ {0, 1}d+r+1,224

EDIT(DG1(v1),VG2(v2),VG3(v3), . . . ,VGk(vk)) ≤ D−.225

Proof. To upper bound the median edit distance of our k strings by D−, we must give a226

complete edit sequence of our strings that requires D− or fewer edits. Let v1, v2, . . . , vk be227

r-far vectors. We decide to align VG2(v2),VG3(v3), . . . ,VGk(vk) with the 7`3 ◦M1(v1) ◦ 6`3228

substring of DG1(v1) as in Figure 1.229

Mi(v)i i

M1(v)1 M1(  )

Figure 1 An optimal alignment of DG1(v1),VG2(v2), . . . ,VGk(vk) when v1, v2, . . . , vk are r-far.

First we delete M1(θ) ◦ 7`3 from DG1(v1) in m+ `3 edits. Then we substitute all the 7230

symbols in the 7`3 prefix of DG1(v1) to 6 symbols in `3 edits. Finally, we must edit substrings231

M1(v1),M2(v2), . . . ,Mk(vk) to be the same. Each Mi(vi) contains d + r + 1 coordinate232
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gadgets, and for j ∈ [1, d+ r + 1], we choose to align the jth leftmost coordinate gadgets of233

all Mi(vi) for i ∈ [1, k]. Note that the inner product of v1, v2, . . . , vk is less than or equal to234

r because the vectors are r-far. It follows that we will have no more than r alignments of235

coordinate gadgets with cost C+ and at least d+1 alignments with cost C− (recall Lemma 2).236

Then EDIT(M1(v1),M2(v2), . . . ,Mk(vk)) ≤ (d + 1)C− + rC+. The total number of edits237

performed in this edit sequence is at most 2`3 +m+ (d+ 1)C− + rC+ = D−. J238

We note that if v1, v2, . . . , vk are r-close and as a result have an inner product greater239

than r, the optimal edit sequence of DG1(v1),VG2(v2), . . . ,VGk(vk) will align strings240

VG2(v2),VG3(v3), . . . ,VGk(vk) with the 6`3 ◦M1(θ) ◦ 7`3 substring of DG1(v1) as in Fig. 2.241

Mi(v)i i

M1(v)1 M1(  )

Figure 2 An optimal alignment of DG1(v1),VG2(v2), . . . ,VGk(vk) when v1, v2, . . . , vk are r-close.

I Lemma 7. For any given r-close vectors v1, v2, . . . , vk ∈ {0, 1}d+r+1,242

EDIT(DG1(v1),VG2(v2),VG3(v3), . . . ,VGk(vk)) = D+.243

Proof. Deferred to Appendix A. The proof is a generalization of the vector gadget proof in244

[10] to k strings and consists primarily of exhaustive case analysis. J245

2.4 Set level reduction246

$1

$2

$3

$4

$1

$2

$3

$4

Figure 3 Final strings T1, T2, . . . , Tk when k = 5 shown from top to bottom. The vector gadgets
corresponding to vectors from our input sets are shown in black, whereas the vector gadgets
corresponding to dummy vectors φ are shown in gray. The special $i symbols are shown in white.

In this step of the reduction we will construct our final strings T1, T2, . . . , Tk that can detect247

r-far vectors in our input sets S1, S2, . . . , Sk. We will accomplish this by embedding in string248

Ti the vector level gadgets of the vectors belonging to set Si for i ∈ [1, k]. Then if an r-far249

collection of vectors exists, we can align their corresponding vector gadgets and give our250

strings T1, T2, . . . , Tk a ‘lower’ median edit distance.251

We will construct our final strings in several steps. We start by padding our vector level252

gadgets to discourage them from aligning with more than one vector level gadget per string.253

We define integer parameter `4 = 10000k4d`3, and we add a new padding symbol 8 to our254

alphabet. For all v ∈ {0, 1}d+r+1, let255

DG′1(v) := 8`4 ◦DG1(v) ◦ 8`4256

VG′i(v) := 8`4 ◦VGi(v) ◦ 8`4 for i ∈ [1, k]257
258

CVIT 2016
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We now concatenate our vector level gadgets DG′1 and VG′i. Define259

P1 :=©v∈S1 DG′1(v)260

Pi :=©v∈Si
VG′i(v) for i ∈ [2, k]261

262

Strings P1, P2, . . . , Pk now contain all the vectors from our input sets. However, they263

are not sufficient to complete the reduction. To solve k-Most-Orthogonal-Vectors we must264

be able to check all nk collections of vectors in S1 × S2 × · · · × Sk for r-far-ness. Likewise,265

we must be able to align all nk corresponding vector level gadgets in our final strings. In266

P1, P2, . . . , Pk this is not always possible without incurring a large additional edit cost. For267

example, there is no optimal edit sequence of P1, P2, . . . , Pk that aligns the leftmost vector268

level gadget of a string Pi with the rightmost vector level gadget of another string Pj – the269

number of insertions or deletions necessary would be too high.270

Our strings P1, P2, . . . , Pk are rigid, but we can give them the freedom to slide around by271

making each string a different length. Specifically, we will add a varying number of vector272

level gadgets to each string so that Pi+1 will have more vector level gadgets than Pi for all273

i ∈ [1, k− 1]. We define the dummy vector φ to be a vector of all ones of length d+ r+ 1. Let274

L1 := VG′1(φ)(50k+1)n ◦DG′1(φ)50kn

Li := VG′i(φ)(100k+i)n

and
and

R1 := DG′1(φ)50kn ◦VG′1(φ)(50k+1)n

Ri := VG′i(φ)(100k+i)n for i ∈ [2, k]
275

Our strings Li and Ri will pad the left side and the right side of our Pi.276

P ′i := Li ◦ Pi ◦Ri for i ∈ [1, k]277
278

Observe that string P ′i+1 has 2nmore (dummy) vector level gadgets than P ′i for i ∈ [1, k−1].279

This gives P ′1, P ′2, . . . , P ′k a pyramid-like shape as in Figure 3. We will see that this allows280

the sort of sliding between strings necessary to complete our reduction.281

However, because our strings P ′1, P ′2, . . . , P ′k are of different lengths, any complete edit282

sequence will require inserting or deleting vector level gadgets. This is problematic because it283

is difficult to reason about the edit costs of our vector level gadgets if they must be inserted284

or deleted in the optimal edit sequence. To solve this problem we add special $i symbols to285

our strings. We will see that the $i symbols ‘absorb’ all the edits needed to make our final286

strings the same length, and no vector level gadgets will be inserted or deleted in the optimal287

edit sequence. We add $1, $2, . . . , $k−1 to our alphabet, and we let `5 = 1000kn`4. Define288

Ti := $`5
i ◦ P

′
i ◦ $`5

i for i ∈ [1, k − 1]289

Tk := P ′k290
291

This completes the construction of our final strings T1, T2, . . . , Tk. The length of each string292

as well as the time for their construction is O(ndO(1)). Their properties are summarized in293

Lemma 8 and Lemma 9 (proofs are deferred to Section 2.5 and Section 2.6, respectively).294

I Lemma 8. For any given sets S1, . . . , Sk such that there is some collection v1, v2, . . . , vk295

of r-far vectors with vi ∈ Si for i ∈ [1, k], EDIT(T1, T2, . . . , Tk) ≤ E−, where296

E− = D− + (100kn+ n− 1)D+ + 101k(k − 1)(2k − 1)(d+ r + 1)n+ 2(k − 1)`5.297

I Lemma 9. For any given sets S1, S2, . . . , Sk such that there is no collection v1, v2, . . . , vk of298

r-far vectors with vi ∈ Si for i ∈ [1, k], EDIT(T1, T2, . . . , Tk) = E+, where E+ = E−+(k−1).299

I Theorem 10. If there is an ε > 0, an integer k ≥ 2, and an algorithm that can solve300

k-Median-Edit-Distance on strings, each of length at most n, over an alphabet of size O(k)301

in O(nk−ε) time, then SETH is false.302

Proof. Follows from Lemma 8 and Lemma 9. J303
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2.5 Proof of Lemma 8304

Statement: For any given sets S1, S2, . . . , Sk such that there is some collection v1, v2, . . . , vk305

of r-far vectors with vi ∈ Si for i ∈ [1, k], EDIT(T1, T2, . . . , Tk) ≤ E−, where306

E− = D− + (100kn+ n− 1)D+ + 101k(k − 1)(2k − 1)(d+ r + 1)n+ 2(k − 1)`5.307

308

To upper bound the median edit distance of T1, T2, . . . , Tk by E−, we must give a complete309

edit sequence of our strings that requires E− or fewer edits. We start by aligning the vector310

level gadgets.311

312

Vector Level Gadget Alignment: We have assumed vectors v1, v2, . . . , vk are r-far, and313

we choose to align their corresponding vector level gadgets DG1(v1),VG2(v2), . . . ,VGk(vk).314

We then align the rest of our vector level gadgets using the following rules:315

1. Each vector level gadget in Ti aligns to exactly one vector level gadget in Tj for j > i.316

2. If two vector level gadgets are adjacent in Ti, then they will be aligned to adjacent vector317

level gadgets in Tj for j > i.318

Feasibility: We must demonstrate that this alignment is always achievable no matter how319

the vector level gadgets of v1, v2, . . . , vk are embedded in strings T1, T2, . . . , Tk. Recall that320

the vector level gadgets corresponding to vectors from our input sets are located in substrings321

Pi of Ti for all i ∈ [1, k]. Our construction gives paddings Li+1 and Ri+1 exactly n more322

dummy vector level gadgets than Li and Ri respectively for i ∈ [1, k − 1]. It follows that323

even if the leftmost (resp. rightmost) vector level gadget in Pi is aligned with the rightmost324

(resp. leftmost) vector level gadget in Pi+1, the rules above remain satisfied.325

326

Edit Cost for Vector Level Gadgets: There are 100kn+ n decision gadgets DG1 in T1,327

so our edit sequence will yield 100kn+n alignments of DG1,VG2, . . . ,VGk, of which at least328

one such alignment will have cost D− and the rest at most D+. This gives an edit cost of at329

most E−1 = D−+ (100kn+n− 1)D+. At this point, all vector level gadgets in P1, P2, . . . , Pk330

have been edited (refer to Figure 4).331

gadgets

gadgets gadgetsgadgets

Figure 4 Strings T1 and T2. All vector gadgets in P2 align with decision gadgets DG1 in T1.

Then there are exactly 2(50k + 1)n alignments of VG1(φ),VG2(φ), . . . ,VGk(φ) gadgets,332

and for all i ∈ [2, k] there are exactly 2n alignments containing precisely the gadgets333

VGi(φ),VGi+1(φ), . . . ,VGk(φ). We will count the minimal number of edits needed to make334

these dummy vector gadgets identical. Let Fi = (d+ r + 1)(2k − 1)(k − i).335

B Claim 11. For all i ∈ [1, k], EDIT(VGi(φ),VGi+1(φ), . . . ,VGk(φ)) = Fi.336

Proof. Each vector gadget VGj(φ) is composed of d + r + 1 coordinate gadgets. Each337

alignment of the coordinate gadgets CGi(1),CGi+1(1), . . . ,CGk(1) will incur (2k − 1)(k − i)338

total edits, with (k − 1)(k − i) edits from f gadgets and k(k − i) edits from h gadgets. J339
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Denote the sum of the internal edit costs of all alignments of VGi,VGi+1, . . . ,VGk gadgets340

for i ∈ [1, k] by341

E−2 = 2(50k + 1)nF1 +
∑

i∈[2,k]

2nFi = 101k(k − 1)(2k − 1)(d+ r + 1)n342

This completes our edits on all vector level gadgets.343

344

Total Edit Cost: All substrings P ′1, P ′2, . . . , P ′k have been edited to P ∗1 , P
∗
2 , . . . , P

∗
k , re-345

spectively, so that P ∗i is a substring of P ∗j for all i < j. To finish our edit sequence and346

make all strings equal, we extend all P ∗i for i ∈ [1, k − 1] to match P ∗k . We achieve this for a347

given P ∗i by substituting |P ∗k | − |P ∗i | of the $i symbols in Ti and deleting the remaining $i348

symbols in Ti. Since we substitute or delete every $i symbol, this will incur an edit cost of349

E−3 = 2(k − 1)`5. The total number of edits performed in our edit sequence is no more than350

E−1 + E−2 + E−3 = E−. This completes the proof.351

2.6 Proof of Lemma 9352

Statement: For any given sets S1, S2, . . . , Sk such that there is no collection v1, v2, . . . , vk353

of r-far vectors with vi ∈ Si for i ∈ [1, k], EDIT(T1, T2, . . . , Tk) = E+ = E− + (k − 1).354

B Claim 12. EDIT(T1, T2, . . . , Tk) ≤ E+
355

Proof. We can achieve this upper bound by giving an edit sequence identical to the edit356

sequence in Lemma 8. Note that the only difference now is that there is no longer an r-far357

collection of vectors, so the edit cost of D− in Lemma 8 is now D+. This yields a complete358

edit sequence with E− + (D+ −D−) = E+ edits, so our inequality holds. J359

We must now prove that EDIT(T1, T2, . . . , Tk) ≥ E+. Our lower bound on the number360

of edits comes from two disjoint sources: the edits incurred by the $i symbols and the edits361

incurred by alignments between vector level gadgets.362

B Claim 13. Every $i symbol in Ti for i ∈ [1, k − 1] incurs at least one edit in our edit363

sequence.364

Proof. Observe that each $i symbol occurs only in Ti for i ∈ [1, k− 1]. Then each $i symbol365

is deleted or is aligned with other symbols not equal to $i and incurs one edit. J366

There are 2(k − 1)`5 of the $i symbols in T1, T2, . . . , Tk, so they incur at least E+
1 =367

2(k − 1)`5 edits.368

We will reason about the lower bound on the edits incurred by vector level gadgets369

by considering every possible configuration of alignments between vector level gadgets. In370

order to do this, we define a graph G whose vertices correspond to vector level gadgets.371

More specifically, for the jth leftmost vector level gadget in Ti, we add a vertex xj
i to G for372

i ∈ [1, k]. Thus vertices x1
i , x

2
i , . . . , x

(200k+2i+1)n
i correspond to the 2(100k + i)n+ n vector373

level gadgets in Ti from left to right. Now for a particular edit sequence, we define G to have374

an unordered edge (xj1
i1
, xj2

i2
) if the j1th vector level gadget of Ti1 is aligned with the j2th375

vector level gadget of Ti2 in the edit sequence. Also, we say that xj1
i1

and xj2
i2

are from the376

same row if i1 = i2.377

Every edit sequence now corresponds to a graph G. This graph can be decomposed378

into a set of connected components C. For a component c ∈ C, we define #(c, i) as the379
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number of vertices belonging to string Ti in c. We say that width(c) of a component c380

is maxi∈[1,k] #(c, i). We let |c| denote the number of vertices in a component c. We now381

partition C into the following sets:382

C1 is the set of all components c with width(c) > 1383

C2 is the set of all components c with width(c) = 1 and #(c, k) = 0384

C3 is the set of all components c with width(c) = 1 and #(c, k) = 1385

We now lower bound the edit costs of components in C1, C2, and C3. Let Q = 10kd`3.386

I Lemma 14. Every component c in C1 incurs at least Q · width(c) edits.387

Proof. Because our component c is connected, the case illustrated in Figure 5 must occur at388

least width(c)− 1 times. Then at least 2`4(width(c)− 1) edits must be performed on the389

padding 8 symbols between the vector level gadgets of c. Observe that because `4 > Q, this390

cost is greater than Q ·width(c). These edits are disjoint from the edits of the $i symbols. J391

Figure 5 Case: one vector gadget in a string Ti is aligned with two vector gadgets in a string Tj .
This alignment requires 2`4 edits of 8 symbols.

I Lemma 15. Every component c in C2 incurs at least Q edits.392

Proof. By definition, the vector level gadgets in component c have no alignments with393

any vector level gadget VGk in Tk. It follows that we incur a cost of at least |VGk | > Q.394

Furthermore, this edit cost is disjoint from the E+
1 edit cost of our $i symbols because there395

are no $i symbols in Tk. J396

We have given lower bounds for the edit costs of every component in C1 and C2, and these397

edit costs are disjoint by nature. Now we bound the costs of every component in C3. It will398

be useful to partition the components in C3 into the following sets:399

C3.1 is the set of all components c containing a vertex corresponding to a DG1 gadget400

C3.2 is the remaining components in C3.401

I Lemma 16. All components c in C3.1 incur an edit cost of D+.402

Proof. We find the following claim useful in our proof.403

B Claim 17. No optimal edit sequence aligns a decision gadget DG1 with any $i symbol.404

Proof. Suppose some decision gadget DG1 is aligned with a $i symbol in string Ti for some405

i ∈ [2, k − 1]. We will show that this incurs an edit cost greater than our upper bound406

E+ established in Section 2.6, implying this cannot occur in an optimal edit sequence.407

We may assume w.l.o.g. that DG1 is aligned with a $i symbol on the left side of Ti. It408

follows that the substring VG′1(φ)(50k+1)n of T1 must occur to the left of the alignment, and409

the substring P ′i of Ti must occur to the right of the alignment (see Figure 4). Then this410

alignment of T1 and Ti has a combined length greater than or equal to |VG′1(φ)(50k+1)n|+|P ′i |.411

We observe that |VG′1(φ)(50k+1)n| > 100kn`4 and |P ′i | > 400kn`4, so our alignment of T1412
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and Ti has a combined length greater than 500kn`4. On the other hand, |Tk| = (202k +413

1)n|VG′k | < 203kn(3`3 + 2`4). Our alignment of T1 and Ti must be edited to have the414

same length as Tk in every complete edit sequence, so it follows that EDIT(T1, Ti, Tk) >415

500kn`4 − 203kn(3`3 + 2`4) = kn(94`4 − 609`3) > 1000k4dn`3. Then our edit sequence416

requires 1000k4dn`3 + E+
1 > E+ edits, so this alignment cannot occur in an optimal edit417

sequence. J418

Let c be a component in C3.1. Suppose #(c, i) = 0 for some i ∈ [2, k − 1]. Then by419

definition, our gadgets in c have no alignments with any vector level gadget in Ti. It follows420

that we must perform at least |VGi | > D+ insertions in Ti. Furthermore, these edits421

are disjoint from the E−1 cost of editing the $i symbols by Claim 17. Else, we have that422

#(c, i) = 1 for all i ∈ [1, k], and by our analysis in Lemma 8, the edit cost of aligning the k423

vector level gadgets is at least D+. J424

I Lemma 18. Let c be a component in C3.2 and let λ = |c|, then the edit cost incurred by425

the vector gadgets in c is (d+ r + 1)(2k − 1)(λ− 1).426

Proof. We begin with a claim (proof is similar to Claim 17 and is deferred to Appendix B).427

B Claim 19. Let vi ∈ Si for some i ∈ [2, k], then no optimal edit sequence aligns the vector428

gadget VGi(vi) in Ti with a $1 symbol in T1, nor a dummy vector gadget VG1(φ) in T1.429

Let c be in C3.2. Suppose there is some vi ∈ Si for i ∈ [2, k] such that vector gadget430

VGi(vi) corresponds to a vertex in component c. Then the gadgets in our component cannot431

align with any decision gadgets DG1, vector gadgets VG1(φ), or $1 symbols in T1. It follows432

that we must perform at least |VGi | > (d+ r + 1)(2k − 1)(λ− 1) insertions in Ti. Else, all433

vertices in component c correspond only to vector gadgets VGi(φ) for i ∈ [1, k]. By a similar434

argument as in Claim 11, the edit cost of component c is (d+ r + 1)(2k − 1)(λ− 1). J435

We have lower bounded the edit cost of all components in C1, C2, and C3. Now we must436

combine our component level arguments to obtain an overall lower bound on the edit cost.437

Let W =
∑

c∈C1∪C2
width(c). Then we know that the components in C1 ∪ C2 incur a cost of438

at least E+
2 = WQ edits by Lemma 14 and Lemma 15.439

We now lower bound the total number of edits from components in C3. Note that440

components in C3.1 incur a much higher cost than components in C3.2. Then to lower bound441

the edits in C3, we must assume the least possible number of components in C3.1. There are442

(100k + 1)n decision gadgets DG1 in our final strings and at most W decision gadgets in443

components in C1 ∪ C2, so there must be at least Z1 = (100k + 1)n−W components in C3.1.444

Note that if W ≥ (100k+ 1)n, then E+
1 +E+

2 ≥ E+, so we may assume Z1 is positive. Then445

components from C3.1 incur a cost of at least E+
3 = Z1D

+ by Lemma 16.446

There are at most V0 = kW vertices in components in C1 ∪ C2, and there are at most447

V1 = kZ1 vertices in C3.1. Furthermore, there are k(201k + 2)n vertices in our graph G. It448

follows that there must be at least V2 = k(201k + 2)n− V1 − V0 = k(101k + 1)n vertices in449

all components in C3.2.450

Because our edit cost lower bound for every component in C3.2 is linear in the component451

size, we have the following.452

B Claim 20. Suppose there are Z components in C3.2 and a total of V vertices in all453

components in C3.2. Then the components in C3.2 incur (d+ r + 1)(2k − 1)(V − Z) edits.454
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Proof. By Lemma 18, each component of size λ in C3.2 incurs cost (d+ r+ 1)(2k− 1)(λ− 1).455

Let zi denote the size of the ith component in C3.2 for i ∈ [1, Z]. Then we may sum the edit456

costs of all components in C3.2:457 ∑
i∈[1,Z]

(d+ r + 1)(2k − 1)(zi − 1) = (d+ r + 1)(2k − 1)(V − Z)458

where zi > 0 for i ∈ [1, Z] and z1 + z2 + · · ·+ zZ = V . J459

Claim 20 proves that the edit cost of all the components in C3.2 decreases with the number460

of components Z. Then to achieve our lower bound we must upper bound the number of461

components in C3.2. There are exactly (202k + 1)n vector level gadgets in Tk, so there can462

be at most Z2 = (202k + 1)n − Z1 components in C3.2. It follows that the total edit cost463

contributed by the components of C3.2 is at least E+
4 = (d+ r + 1)(2k − 1)(V2 − Z2).464

Then since the edit costs contributed by E+
1 , E

+
2 , E

+
3 , and E+

4 are disjoint, we achieve a465

lower bound EDIT(T1, T2, . . . , Tk) ≥ E+
1 +E+

2 +E+
3 +E+

4 . Straightforward calculation will466

show that E+
1 +E+

2 +E+
3 +E+

4 ≥ E+ for all W > 0. It follows that EDIT(T1, . . . , Tk) = E+.467

3 Hardness for k-Center-Edit-Distance468

We now provide a simple, yet previously unknown reduction from the k-Median-Edit-Distance469

to k-Center-Edit-Distance. Given a set of strings X = {x1, x2, . . . , xk}, each of length n470

over an alphabet Σ, we define another set of strings Y = {y1, y2, . . . , yk} over an alphabet471

Σ′ = Σ ∪ {$} (where $ 6∈ Σ) as follows (fix ` = k2n):472

y1 = x1 ◦ $` ◦ x2 ◦ $` ◦ · · · ◦ $` ◦ xk−1 ◦ $` ◦ xk473

y2 = x2 ◦ $` ◦ x3 ◦ $` ◦ · · · ◦ $` ◦ xk ◦ $` ◦ x1474

...475

yk = xk ◦ $` ◦ x1 ◦ $` ◦ · · · ◦ $` ◦ xk−2 ◦ $` ◦ xk−1476
477

It can be easily verified that the k-Center-Edit-Distance of the strings in Y is the same478

as the k-Median-Edit-Distance of the strings in X. The length of each string in Y is479

(k−1)k2n+kn = O(n). Therefore, an O(nk−ε) time algorithm for the k-Center-Edit-Distance480

would give an O(nk−ε) time algorithm for the k-Median-Edit-Distance and contradict SETH.481

I Theorem 21. If there is an ε > 0, an integer k ≥ 2, and an algorithm that can solve482

k-Center-Edit-Distance on strings, each of length at most n, over an alphabet of size O(k)483

in O(nk−ε) time, then SETH is false.484

4 Discussion485

Based on SETH, we have shown tight conditional hardness results for median string, center486

string, tree-alignment, and bottleneck-tree alignment problems, all under edit distance. These487

results show optimality (at least up to logarithmic factors) of algorithms for median string488

and tree-alignment problems established many decades ago. However, for the center string489

and bottleneck-tree alignment problem, they leave an intriguing gap between the best known490

upper bounds. For center string (or the star instance of the bottleneck-tree alignment) the491

known dynamic programming algorithm works in time O(n2k) [41], and as far as the authors492

no such algorithm for bottleneck-tree alignment on more general trees. We conclude by493

asking: is an O(nk) algorithm is waiting to be found for these problems, or does there exists494

a more efficient reduction which can prove that an O(n2k−ε) algorithm highly improbable?495
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A Proof of Lemma 7648

I Lemma 7. For any given r-close vectors v1, v2, . . . , vk ∈ {0, 1}d+r+1,649

EDIT(DG1(v1),VG2(v2),VG3(v3), . . . ,VGk(vk)) = D+.650

The proof of Lemma 7 is a straightforward generalization of the vector gadget proof in651

[10] to k strings. In the course of this proof we will make use of the fact that for any subset652

vi1 , vi2 , . . . , vij
of strings v1, v2, . . . , vk, EDIT(vi1 , vi2 , . . . , vij

) ≤ EDIT(v1, v2, . . . , vk).653

B Claim 22. EDIT(DG1(v1),VG2(v2),VG3(v3) . . . ,VGk(vk)) ≤ D+
654

Proof. Note that the inner product of θ, v2, v3, . . . , vk is equal to r + 1 by the definition of θ655

and our modifications to the input vectors. Then we can align VG2(v2),VG3(v3), . . . ,VGk(vk)656

with the 6`3 ◦M1(θ) ◦ 7`3 substring of DG1(v1) in a manner analogous to our edit sequence657

in Lemma 6. J658

Now we “just” need to prove that EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) ≥ D+. We659

proceed by cases on the alignments of the Mi(vi) substrings.660

661

Case 1: The Mi(vi) substring of some VGi(vi) gadget with i > 1 has alignments with both662

substrings 7`3 ◦M1(v1) and M1(θ) ◦ 7`3 of DG1(v1). In this case, the cost induced by the663

symbols in the 7`3 prefix and suffix of DG1(v1) and the 6`3 substring of DG1(v1) is `3 each,664

so EDIT(VGi(vi),DG1(v1)) ≥ 3`3 > D+. Our lower bound is satisfied.665

Case 2: The Mi(vi) substring of some VGi(vi) gadget with i > 1 does not have any align-666

ments with the 7`3 ◦M1(v1) substring of DG1(v1).667

Case 2.1: The Mj(vj) substring of some VGj(vj) gadget with j > 1 does not have any align-668

ments with substringM1(θ)◦7`3 of DG1(v1). We will consider EDIT(VGi(vi),VGj(vj),DG1(v1))669

or EDIT(VGi(vi),DG1(v1)) if i = j. The Mi(vi) substring of VGi(vi) has no alignments670

with the 7`3 ◦M1(v1) substring of DG1(v1). Therefore at least D1 = `3 + m edits need671

to be performed between the 6`3 prefix of VGi(vi) and the 7`3 ◦M1(v1) prefix of VG1(v1).672

Likewise, the Mj(vj) substring of VGj(vj) has no alignments with the M1(θ) ◦ 7`3 substring673

of DG1(v1), and so at least D1 edits need to be performed between the 6`3 suffix of VGj(vj)674

and the M1(θ) ◦ 7`3 suffix of DG1(v1). The above edit costs are disjoint, and it follows that675

EDIT(VGi(vi),VGj(vj),DG1(v1)) ≥ 2D1 > D+. Our lower bound is satisfied.676

Case 2.2: We consider the complement of Case 2.1: the Mi(vi) substrings of all VGi(vi)677

gadgets with i > 1 have alignments with the substring M1(θ) ◦ 7`3 of DG1(v1). By our678

analysis in Case 1, we may now assume that the Mi(vi) substrings of all VGi(vi) gadgets679

with i > 1 do not have alignments with the 7`3 ◦M1(v1) substring of DG1(v1). Then by our680

argument in Case 2.1, at least D1 edits must be performed on the 6`3 prefix of VGi(vi) and681

the 7`3 ◦M1(v1) prefix of VG1(v1). Additionally, note that all VGi(vi) share the suffix 6`3 ,682

whereas DG1(v1) has suffix 7`3 . It follows that at least D2 = `3 edits are needed to edit683

DG1(v1),VG2(v2), . . . ,VGk(vk) to have the same suffix. Furthermore, these edits are disjoint684

from the D1 edits performed on the prefixes of DG1(v1) and the VGi(vi). We have shown685

that at least D1 +D2 = 2`3 +m edits are required to align DG1(v1),VG2(v2), . . . ,VGk(vk).686

Now all we must do is lower bound the edits internal to our Mi(vi) substrings. Recall that687

our Mi(vi) substrings are composed of d+ r + 1 coordinate gadgets CGi(vi[j]).688

Case 2.2.1: There is some VGi(vi) gadget with i > 1 such that there are some j, ` ∈689

[1, d+ r + 1] with j 6= ` such that the jth leftmost coordinate gadget of Mi(vi) is aligned690

with the `th leftmost coordinate gadget of the M1(θ) in VG1(v1). Then we incur an edit691

cost of at least 2`2 from the 5 symbols between the coordinate gadgets. It follows that692
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EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) ≥ D1 +D2 +2`2 > D+. Our lower bound is satisfied.693

Case 2.2.2: We now consider the complement of Case 2.2.1. For all i ∈ [1, d+ r + 1], the694

ith leftmost coordinate gadget of Mj(vj) for all j > 1 is either aligned with the ith leftmost695

coordinate gadget of M1(θ) or it’s not aligned with any coordinate gadget of M1(θ).696

For all i ∈ [1, d+ r + 1] we analyze the edit costs of the ith leftmost coordinate gadgets697

in M1(θ),M2(v2), . . . ,Mk(vk). If, for some Mj(vj) with j > 1, the ith leftmost coordinate698

gadget CGj(vj [i]) is not aligned with any coordinate gadget of M1(θ), then it incurs cost699

|CGj(vj [i])| ≥ C+.700

Else the ith leftmost coordinate gadgets of all Mj(vj) for j > 1 are aligned with the ith701

leftmost coordinate gadget of M1(θ). Then by the transitivity of the alignment relation,702

we have that the ith coordinate gadgets of M1(θ),M2(v2), . . . ,Mk(vk) are aligned. By703

our analysis of the coordinate gadgets in Lemma 2, this alignment of coordinate gadgets704

will incur cost at least C− if uθ[i]v2[i]v3[i] . . . vk[i] = 0, and else incur cost at least C+ if705

θ[i]v2[i]v3[i] . . . vk[i] = 1.706

Combining our case analysis for all d+ r + 1 coordinate gadgets, we see that they col-707

lectively incur a cost of at least D3 = (r + 1)C+ + dC−, since the inner product of vectors708

θ, v2, v3, . . . , vk is r + 1 (this follows from our modification of the input vectors and our709

definition of θ). Then D1 +D2 +D3 = D+, and since the edits from D1, D2, and D3 are all710

necessarily disjoint, we have that EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) ≥ D+.711

Case 3: The Mi(vi) substring of some VGi(vi) with i > 1 does not have alignments with712

the M1(θ) ◦ 7`3 substring of DG1(v1). This case is symmetric to Case 2, with the only713

difference being that we have substring M1(v1) as opposed to M1(θ). Since we assumed that714

v1, v2, . . . , vk are r-close and hence have an inner product greater than or equal to r + 1, it715

must be the case that EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) ≥ D+.716

717

We have shown in every case that EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) ≥ D+, so we718

conclude that EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) = D+.719

B Proof of Claim 19720

B Claim 19. Let vi ∈ Si for some i ∈ [2, k], then no optimal edit sequence aligns the vector721

gadget VGi(vi) in Ti with a $1 symbol in T1, nor a dummy vector gadget VG1(φ) in T1.722

Suppose some vector gadget VGi(vi) in string Ti with i ∈ [2, k] and vi ∈ Si is aligned723

with a dummy vector gadget VG1(θ) in string T1. We will show that this incurs an edit cost724

greater than our upper bound E+, implying this cannot occur in an optimal edit sequence.725

We may assume w.l.o.g. that VGi(vi) is aligned with a VG1(θ) gadget on the left side of726

T1. It follows that the substring Li of Ti must occur to the left of the alignment and the727

substring DG′1(φ)50kn ◦ P1 ◦R1 of T1 must occur to the right of the alignment. Then we can728

consider this alignment of Ti and T1 to have a combined length greater than or equal to729

|Li|+ |DG′1(φ)50kn ◦ P1 ◦R1|.730

We observe that |Li| > 200kn`4 and |DG′1(φ)50kn ◦P1 ◦R1| > 400kn`4, so our alignment731

of Ti and T1 has a combined length greater than 600kn`4. On the other hand, |Tk| =732

(202k + 1)n|VG′k | < 203kn(3`3 + 2`4).733

Our alignment of Ti and T1 must be edited to have the same length as Tk in every734

complete edit sequence, so it follows that EDIT(T1, Ti, Tk) > 600kn`4 − 203kn(3`3 + 2`4) =735

kn(194`4 − 609`3) > 1000k4dn`3. Then our edit sequence requires 1000k4dn`3 + E+
1 > E+

736

edits, so this alignment cannot occur in an optimal edit sequence. It follows that VGi(vi) in737

Ti cannot align with a VG1(θ) gadget (and by extension a $1 symbol) in T1.738
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