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Abstract. Aligning a sequence to a walk in a labeled graph is a problem of fundamental importance to7

Computational Biology. For finding a walk in an arbitrary graph with |E| edges that exactly matches8

a pattern of length m, a lower bound based on the Strong Exponential Time Hypothesis (SETH)9

implies an algorithm significantly faster than O(|E|m) time is unlikely [Equi et al., ICALP 2019].10

However, for many special graphs, such as de Bruijn graphs, the problem can be solved in linear11

time [Bowe et al., WABI 2012]. For approximate matching, the picture is more complex. When edits12

(substitutions, insertions, and deletions) are only allowed to the pattern, or when the graph is acyclic,13

the problem is again solvable in O(|E|m) time. When edits are allowed to arbitrary cyclic graphs, the14

problem becomes NP-complete, even on binary alphabets [Jain et al., RECOMB 2019]. These results15

hold even when edits are restricted to only substitutions. Despite the popularity of de Bruijn graphs in16

Computational Biology, the complexity of approximate pattern matching on de Bruijn graphs remained17

open. We investigate this problem and show that the properties that make de Bruijn graphs amenable18

to efficient exact pattern matching do not extend to approximate matching, even when restricted to19

the substitutions only case. Specifically, we prove that determining the existence of a matching walk20

in a de Bruijn graph is NP-complete when substitutions are allowed to the graph. In addition, we21

demonstrate that an algorithm significantly faster than O(|E|m) is unlikely for de Bruijn graphs in22

the case where only substitutions are allowed to the pattern. This stands in contrast to pattern-to-text23

matching where exact matching is solvable in linear time, like on de Bruijn graphs, but approximate24

matching under substitutions is solvable in subquadratic Õ(n
√
m) time, where n is the text’s length25

[Abrahamson, SIAM J. Computing 1987].26



1 Introduction27

De Bruijn graphs are an essential tool in Computational Biology. Their role in de novo assembly28

spans back to the 1980s [39], and their application in assembly has been researched extensively since29

then [10,11,17,32,37,38,42,45]. More recently, de Bruijn graphs have been applied in metagenomics30

and in the representation of large collections of genomes [14,26,29,36,44] and for solving other31

problems such as read-error correction [31,34] and compression [9,23]. Due to the popularity of de32

Bruijn graphs in the modeling of sequencing data, an algorithm to efficiently find walks in a de33

Bruijn graph matching (or approximately matching) a given query pattern would be a significant34

advancement. For example, in metagenomics, such an algorithm could quickly detect the presence of35

a particular species within genetic material obtained from an environmental sample. Or, in the case36

of read-error correction, such an algorithm could be used to efficiently find the best mapping of reads37

onto a ‘cleaned’ reference de Bruijn graph with low-frequency k-mers removed [31]. To facilitate38

such tasks, several algorithms (often seed-and-extend type heuristics) and software tools have been39

developed that perform pattern matching on de Bruijn (and general) graphs [5,21,22,28,30,33,35,41].40

The importance of pattern matching on labeled graphs in Computational Biology and other41

fields has caused a recent surge of interest in the theoretical aspects of this problem. In turn,42

this has led to many new fascinating algorithmic and computational complexity results. However,43

even with this improved understanding of the theory of pattern matching on labeled graphs, our44

knowledge is still lacking in many respects concerning specific, yet extremely relevant, graph classes.45

An overview of the current state of knowledge is provided in Table 1.46

Exact Matching Approximate Matching

Solvable in Linear Time Solvable in O(|E|m) time

• Wheeler Graphs [16] • DAGs: Substitutions/Edits to graph [28]
Easy (e.g. de Bruijn graphs, • General graphs: Substitutions/Edits to pattern [6]

NFAs for multiple strings) • de Bruijn Graphs: Substitutions to pattern
-No strongly Sub-O(|E|m) algorithm (this paper)

NO Strongly Sub-O(|E|m) Algorithm NP-Complete

• General graphs [13,19] • General graphs: Substitutions/Edits to vertex labels [6,25]
Hard (including DAGs with • de Bruijn Graphs: Substitutions to vertex labels

total degree ≤ 3) (this paper)

Table 1. Overview of the computational complexity of pattern matching on labeled graphs

For general graphs, we can consider exact and approximate matching. For exact matching,47

conditional lower-bounds based on the Strong Exponential Time Hypothesis (SETH), and other48

conjectures in circuit complexity, indicate that an O(|E|m1−ε + |E|1−εm) time algorithm with any49

constant ε > 0, for a graph with |E| edges and a pattern of length m, is highly unlikely (as is50

the ability to shave more than a constant number of logarithmic factors from the O(|E|m) time51

complexity) [13,19]. These results hold for even very restricted types of graphs, for example, DAGs52

with maximum total degree three and binary alphabets. For approximate matching, when edits are53

only allowed in the pattern, the problem is solvable in O(|E|m) time [6]. If edits are also permitted54

in the graph, but the graph is a DAG, matching can be done in the same time complexity [28].55

However, the problem becomes NP-complete when edits are allowed in arbitrary cyclic graphs. This56

was originally proven in [6] for large alphabets and more recently proven for binary alphabets in57

[25]. These results hold even when edits are restricted to only substitutions. The distinction between58

2



modifications to the graph and modifications to the pattern is important as these two problems59

are fundamentally different. When changes are made to cyclic graphs the same modification can60

be encountered multiple times while matching a pattern with no additional cost. Furthermore,61

algorithmic solutions appearing in [28,35,41] are for the case where modifications are performed62

only to the pattern.63

De Bruijn graphs are an interesting case from a theoretical perspective. Many graphs allow for64

extending Burrows-Wheeler Transformation (BWT) based techniques for efficient pattern matching.65

Sufficient conditions for doing this are captured by the definition of Wheeler graphs, introduced in66

[16], and further studied in [3,4,12,15,20]. De Bruijn graphs are themselves Wheeler graphs, hence67

on a de Bruijn graph the exact pattern matching problem is solvable in linear time. However, the68

complexity of finding an approximate match in a de Bruijn graph when permitting modifications69

to the graph or modifications to the pattern remained open [25].70

Our work makes two important contributions (see Table 1). First, we prove that for de Bruijn71

graphs, despite exact matching being solvable in linear time, the approximate matching problem72

with vertex label substitutions is NP-complete. Second, we prove that a strongly subquadratic time73

algorithm for the approximate pattern matching problem on de Bruijn graphs, where substitutions74

are only allowed in the pattern, is not possible under SETH. Such a proof confirms the optimality75

of the known quadratic time algorithms when considering polynomial factors. Note that pattern-76

to-text matching (under substitutions) can be solved in sub-quadratic Õ(n
√
m) time, where n is77

the length of the text [2,7]. Our results demonstrate that the properties that make de Bruijn graphs78

amenable to efficient exact pattern matching do not extend to approximate matching. To the best79

of our knowledge, these are the first such results for any type of Wheeler graph.80

1.1 Technical Background and Our Results81

Some necessary terminology is presented next.82

Notation for edges: For a directed edge from a vertex u to a vertex v we will use the notation83

(u, v). Additionally, we will refer to u as the tail of (u, v), and v as the head of (u, v).84

Walks versus paths: A distinction must be made between the concept of a walk and a path in85

a graph. A walk is a sequence of vertices v1, v2, ..., vt such that for each i ∈ [1, t−1], (vi, vi+1) ∈ E.86

Vertices can be repeated in a walk. A path is a walk where vertices are not repeated. The length87

of a walk is defined as the number of edges in the walk, t − 1, or equivalently one less than the88

number of vertices in the sequence (counted with multiplicity). This work will be concerning the89

existence of walks.90

Induced subgraphs: An induced subgraph of a graph G = (V,E) consists of a subset of91

vertices V ′ ⊆ V , and all edges (u, v) ∈ E such that u, v ∈ V ′. This is in contrast to an arbitrary92

subgraph of G, where an edge can be omitted from the subgraph, even if both of its incident vertices93

are included.94

De Bruijn graphs: A full de Bruijn graph is a directed graph whose vertices consists of all95

k-mers (strings of length k) from an alphabet Σ = {0, 1, ..., σ− 1} in which there is a directed edge96

from each vertex s1s2...sk ∈ Σk to the σ vertices s2s3...skα, α ∈ Σ. We will work with induced97

subgraphs of full de Bruijn graphs in this paper. We consider a vertex v as being labeled with a98

single symbol L(v) ∈ Σ. The k-mer corresponding to the vertex is referred to as its implicit label.99

Formally, the implicit label of a vertex v is L(u1)L(u2)...L(uk−1)L(v) where u1, u2, ..., uk−1, v is100

any length k − 1 walk ending at v. When no such walk exists, we assume v has an implicit label101
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compatible with the other implicit labels in the graph. This is equivalent to the notion of a de102

Bruijn graph constructed from k-mers commonly used in Computational Biology.103

Strings and Matching: For a string S of length n indexed from 1 to n, we use S[i] to denote104

the ith symbol in S. We use S[i, j] to denote the substring S[i]S[i+ 1]...S[j]. If j < i, then we take105

S[i, j] as the empty string. As mentioned above, we will consider every vertex v as labeled with a106

single symbol L(v) ∈ Σ = {0, 1, ..., σ − 1}. We say that a pattern P matches a walk v1, v2, ..., vm107

iff P [i] = L(vi) for every i ∈ [1,m].108

With these definitions in hand, we can formally define our first problem.109

Problem 1 (Approximate matching with vertex label substitutions). Given a vertex labeled graph110

D = (V,E) with alphabet Σ, pattern P [1,m], and integer δ ≥ 0, determine if there exists a walk111

in D matching P after at most δ substitutions to the vertex labels.112

Theorem 1. Problem 1 is NP-complete on de Bruijn graphs having an alphabet of size σ ≥ 4.113

Theorem 1 is proven in Section 2. Intuitively, our reduction transforms a general directed graph114

into a de Bruijn that maintains key topological properties related to the existence of walks. In our115

proof, the k-mer size is dependent on the alphabet size σ. For example, when σ = 4, we require116

k = Θ(log2 |V |), but when σ = Θ(log |V |), we can reduce the value of k to Θ(log |V |). An extension117

of the hardness result for large σ on connected graphs is given at the end of Section 2.1.118

The distinct problem of approximately matching a pattern to a path in a de Bruijn graph was119

shown to be NP-complete in [30]. As mentioned by the authors of that work, the techniques used120

there do not appear to be easily adaptable to the problem for walks. Our approach uses edge121

transformations more closely inspired by those used in [27] for proving hardness on the paired de122

Bruijn sound cycle problem.123

Problem 2 (Approximate matching with substitutions within the pattern). Given a vertex labeled124

graph D = (V,E) with alphabet Σ, pattern P [1,m], and integer δ ≥ 0, determine if there exists a125

walk in D matching P after at most δ substitutions to the symbols in P .126

For Problem 2, in Section 3 we provide a SETH-based hardness result. The Strong Exponential127

Time Hypothesis, or SETH, is frequently utilized in establishing the conditional optimality of128

polynomial time algorithms, often for problems on strings or graphs [1,8,13,18,19,24]. We refer the129

reader to [43] for the definition of SETH and for the reduction to the Orthogonal Vectors problem130

(OV), which is utilized to prove Theorem 2.131

Theorem 2. Conditioned on SETH, for all constants ε > 0, there does not exist an algorithm for132

Problem 2 on de Bruijn graphs running in time O(|E|m1−ε+ |E|1−εm). This holds for alphabets of133

size four (or greater) and k-mer size that is Θ(log |E|).134

2 NP-Completeness of Problem 1 on De Bruijn Graphs135

Our proof of NP-completeness uses a reduction from the Hamiltonian Cycle Problem on directed136

graphs. To present the reduction, we introduce the concept of merging two vertices. To merge137

vertices u and v, we create a new vertex w. We then take all edges with either u or v as their head138

and make w their new head. Next, we take all edges with either u or v as their tail and make w139

their new tail. This makes the edges (u, v) and (v, u) (if they existed) into self-loops for w. If two140

self-loops are formed, we delete one of them. Finally, we delete the original vertices u and v.141
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Fig. 1. Gadget to remove cycles of length 2 from the
initial input graph.

Fig. 2. The transformation from edges to paths used in
our reduction.

Fig. 3. Vertices with the same implicit label are merged while transforming D to D′, causing edges with shared
vertices to become paths with shared vertices.

2.1 Reduction142

We start with an instance of the Hamiltonian cycle problem on a directed graph where the number of143

edges is linear in the number of vertices. The Hamiltonian cycle problem remains NP-complete even144

when restricted to such graphs [40]. We can assume there are no self-loops or vertices with in-degree145

or out-degree zero. To simplify the proof, we first eliminate any cycles of length 2 using the gadget146

in Figure 1. We denote the resulting graph as D = (V,E) and let n = |V |. We assign each vertex147

v ∈ V a unique integer L(v) ∈ [0, n− 1]. Let ℓ = ⌈log n⌉, bin(i) be the standard binary encoding of148

i using ℓ bits, σ ∈ [4, 2ℓ], and Σ = {$,#, 0, 1, ..., σ − 3}. Define enc(i) = (02ℓ1)α23...(σ − 3) bin(i),149

where if σ = 4 then the substring 23...(σ − 3) is the empty string, and α = 2ℓ − σ + 4. Let150

W = | enc(i)| = (2ℓ+ 1)α+ σ − 4 + ℓ and k = 3W . Note that if σ = 2ℓ, k = O(log n).151

We construct a new (de Bruijn) graph D′ = (V ′, E′) as follows: Initially D′ is the empty152

graph. For i = 0, 1, . . . , n − 1, for each edge (u, v) ∈ E where L(v) = i, create a new path whose153

concatenation of vertex labels is #W enc(i)$W enc(i). The vertex u will correspond with a new154

vertex ϕ(u) at the start of this path, and the vertex v will correspond with a new vertex ϕ(v) at the155

end of this path. The vertex ϕ(v) has the implicit label enc(L(v))$W enc(L(v)). The vertex ϕ(u) is156

temporarily assigned the implicit label enc(L(u))$W enc(L(u)). See Figure 2. We call vertices with157

implicit labels of the form enc(L(·))$W enc(L(·)) marked vertices. We use the notation ϕ((u, v)) to158

denote the path created when applying this transformation to (u, v) ∈ E. After the path ϕ((u, v))159

is created, vertices in V ′ having the same implicit label are merged, and parallel edges are deleted160

(Figure 3). See Figure 4 for a complete example. Finally, let δ = 2ℓ(n− 1) and161

P = #W enc(0)$W enc(0)#W enc(1)$W enc(1)#W . . .#W enc(n−1)$W enc(n−1)#W enc(0)$W enc(0).

We will show that there exists a walk in D′ matching P with at most δ vertex label substitutions162

iff D contains a Hamiltonian cycle.163
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Fig. 4. (Left) A graph before the reduction is applied to it. (Right) The transformed graph. A subset of the implicit
labels are shown, and the path directions are annotated by arrows beside each path. Note that enc(·) has been
modified to have the prefix (0ℓ1)ℓ+1 so that it fits in the figure. Also, unlike in the figure, we assume in our reduction
that there are no vertices with in-degree or out-degree zero.

Proof of Correctness164

Lemma 1. The graph D′ constructed as above is a de Bruijn graph.165

Proof. (Overview) Three properties must be proven: (i) Implicit labels are unique, meaning for166

every implicit label at most one vertex is assigned that label; (ii) No edges are missing, i.e., if the167

implicit label of y ∈ V ′ is Sα for some string S[1, k−1] and symbol α ∈ Σ, and there exists a vertex168

x ∈ V ′ with implicit label βS[1, k− 1] for some symbol β ∈ Σ, then (x, y) ∈ E′; (iii) Implicit labels169

are well-defined, in that every walk of length k − 1 ending at a vertex x ∈ V ′ matches the same170

string (the implicit label of x); The most involved of these is proving property (ii), which requires171

analyzing several cases. The full proof is given in Appendix 1.172

The correctness of the reduction remains to be shown. Lemmas 2-4 establish useful structural173

properties of D′, Lemma 5 proves that the existence of a Hamiltonian Cycle in D implies an174

approximate matching in D′, and Lemmas 6-9 demonstrate the converse.175

Lemma 2. Any walk between two marked vertices ϕ(u) and ϕ(v) containing no additional marked176

vertices has length 4W . Hence, we can conclude any such walk is a path.177

Proof. (Overview) This is proven using induction on the number of edges transformed. It is shown178

that for every vertex, a key property regarding the distances to its closest marked vertices continues179

to hold after vertices on any newly created path are merged. See Appendix 1 for the full proof.180

Lemma 3. For (u1, v1), (u2, v2) ∈ E, unless u1 = u2 or v1 = v2, ϕ((u1, v1)) and ϕ((u2, v2)) share181

no vertices.182
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Proof. In the case where {u1, v1} ∩ {u2, v2} = ∅ (Figure 5 left), every implicit vertex label in183

ϕ((u1, v1)) contains enc(L(u1)) or enc(L(v1)) (or both), and contains neither enc(L(u2)) nor enc(L(v2)).184

Similarly, every implicit vertex label in ϕ((u2, v2)) contains enc(L(u2)) or enc(L(v2)) (or both) and185

contains neither enc(L(u1)) nor enc(L(v1)). This implies that none of the implicit labels match186

between the two paths, thus no vertices are merged. In the case where v1 = u2 and u1 ̸= v2 (Figure187

5, right), the implicit labels of vertices ϕ((u1, v1)) not containing enc(L(u1)) have # symbols in188

different positions than implicit labels of vertices in ϕ((u2, v2)) not containing enc(L(v2)), and, since189

v1 ̸= v2, cannot match the implicit labels of vertices in ϕ((u2, v2)) containing enc(L(v2)). Vertices190

in ϕ((u1, v1)) with implicit labels containing enc(L(u1)) have # symbols in different positions than191

implicit labels of vertices in ϕ((u2, v2)) not containing enc(L(u2)), and, since u1 ̸= u2, cannot match192

the implicit labels of vertices in ϕ((u2, v2)) containing enc(L(u2)). The case u1 = v2 and u2 ̸= v1 is193

symmetric. The case u1 = v2 and v1 = u2 cannot happen since, by the use of our gadget in Figure194

1, D cannot contain the edges (u1, v1) and (v1, u1).195

Fig. 5. Examples where paths between marked vertex cannot share any vertex: (Left) The case where {u1, v1} ∩
{u2, v2} = ∅. (Right) The case where v1 = u2 and u1 ̸= v2.

Lemma 4. There exists a path from a marked vertex ϕ(u) ∈ V ′ to a marked vertex ϕ(v) ∈ V ′
196

containing no other marked vertices iff there is an edge (u, v) ∈ E.197

Proof. (Overview) It is clear from construction that if (u, v) ∈ D, then such a path exists in D′.198

In the other direction, we utilize Lemmas 2 and 3 to show that such a path existing without a199

corresponding edge would create a contradiction. The full proof is provided in Appendix 1.200

Lemma 5. If D has a Hamiltonian cycle, then P can be matched in D′ with at most δ substitutions201

to vertex labels of D′.202

Proof. To obtain a matching walk, follow the cycle corresponding to a solution in D starting with203

the marked vertex in V ′ corresponding to the vertex in V with label 0. By Lemma 4, each edge204

traversed in D corresponds to a path in D′. While traversing these paths, modify the vertex labels205

in D′ corresponding to the substrings bin(i) to match P . Assuming no conflicting substitutions are206

needed, this requires at most 2ℓ(n− 1) substitutions.207

It remains to be shown that no conflicting label substitutions will be necessary. Consider the208

edges (u1, v1), (u2, v2) ∈ E used in the Hamiltonian cycle in D. We will never have u1 = u2 or209

v1 = v2. Hence, by Lemma 3, the sets of vertices on the paths ϕ((u1, v1)) and ϕ((u2, v2)) are210

disjoint.211
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Lemma 6. If P can be matched in D′ with at most δ substitutions to vertex labels of D′, then212

all $’s in P are matched with non-substituted $’s in D′ and all #’s in P are matched with non-213

substituted #’s in D′. Consequently, we can assume the only substitutions are to the vertex labels214

corresponding to bin(i)’s within enc(i)’s.215

Proof. (Overview) We establish the existence of a long, non-branching path for every marked vertex216

that can be traversed at most once when matching P . This, combined with maximal paths of, $, #,217

and 0/1-symbols, all being of length W , makes it so that ‘shifting’ P to match a portion of D forces218

the shift to occur throughout the walk traversed while matching P . Utilizing the large Hamming219

distance between shifted instances of two encodings, we can then show that not matching all non-0/1220

symbols requires more than δ substitutions. The full proof is provided in Appendix 1.221

Post-substitution to vertex labels, we will refer to a vertex as marked if there exists a walk222

ending at it that matches a string of the form enc(L(u))$W enc(L(u)), u ∈ V . Note that this223

definition does not require all length k− 1 walks ending at such a vertex to match the same string.224

Lemma 7. If P can be matched in D′ with at most δ substitutions to vertex labels of D′, then no225

additional marked vertices are created due to vertex substitutions.226

Proof. Pre-substitution, only marked vertices have implicit labels of the form S1$
WS2 where S1227

and S2 contain no $ symbols. Hence, the only way that a vertex could have a walk ending at it228

that matches a pattern of that form post-substitution is if either it was originally a marked vertex,229

or some non-0/1-symbols were substituted in D′. However, by Lemma 6 the latter case cannot230

happen, and only originally marked vertices have walks ending at them matching strings of the231

form S1$
WS2 post-substitution.232

Lemma 8. If P can be matched in D′ with at most δ substitutions to vertex labels of D′, then each233

originally marked vertex in D′ is visited exactly once, except for an originally marked vertex at the234

end of a path matching enc(0)$W enc(0) that is visited twice.235

Proof. First, we show that all marked vertices, except the one with implicit label enc(0)$W enc(0),236

are visited at most once. Pre-substitution, a marked vertex with implicit label enc(i)$W enc(i) is237

at the end of a unique, branchless path of length W matching enc(i). By Lemma 6, the only238

substitutions to this path made while matching P are substitutions making it match enc(i′), i′ ̸= i.239

If this path were modified to match enc(i′), i′ > 0, then the only way the marked vertex could240

be visited twice while matching P is if after traversing the path, another path matching $W is241

taken back to the start of this enc(i′) path. However, any edges leaving this marked vertex are242

labeled with #, making this impossible. By similar reasoning, the path matching enc(0) ending at243

a marked vertex is visited at most twice. We now show that each marked vertex is visited at least244

once. Suppose some marked vertex is not visited. By Lemma 7, no additional marked vertices are245

created. Hence, a marked vertex ending a path matching enc(i), i > 0 is visited at least twice, or246

a marked vertex ending a path matching enc(0) is visited at least three times, a contradiction.247

Lemma 9. If P can be matched in D′ with at most δ substitutions to vertex labels of D′, then D248

has a Hamiltonian cycle.249

Proof. By Lemma 4, the paths between marked vertices traversed while matching with P correspond250

to edges between vertices in D. Combined with marked vertices being visited exactly once from251

Lemma 8 (except the marked vertex ending a path matching enc(0)), the walk matched by P in D′
252

corresponds to a Hamiltonian cycle through D beginning and ending at the vertex labeled 0.253
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Finally, we note that the proof of Lemma 6 establishes that there is a unique set of at least254

Θ(k) vertices for every marked vertex. Additionally, at most 4W |E| = O(k|V |) vertices are created255

in the reduction. Hence, |V ′| = Θ(k|V |). For constant alphabet sizes, k = Θ(log2 |V |), implying256

k = Θ(log2 |V ′|), and for σ = 2⌈log n⌉, k = Θ(log |V |), implying k = Θ(log |V ′|). This completes257

the proof of Theorem 1 and subsequent statements regarding k and σ.258

Hardness for large alphabets: One can increase the alphabet size to σ′ > σ for σ′ ≤ |V ′′|
2 (|V ′′|259

being the final number of vertices in the instance of Problem 1). This can be done with only slight260

modifications to the existing reduction. Additionally, with the modifications, the implicit label261

length k remains unaltered. For every symbol α ∈ {σ+1, σ+2, ..., σ′}, add a new vertex y labeled262

with α to V ′. Pick an arbitrary original vertex x ∈ V ′ and add the edge (x, y). Then y can only be263

used when matching P if it is matched with the end symbols in P . However, in an optimal solution,264

we can assume this is not done, as α matches no symbol in P .265

3 SETH-Based Hardness for Problem 2 on De Bruijn Graphs266

Reduction The Orthogonal Vectors Problem is defined as follows: given two sets of binary vectors267

A,B ⊆ {0, 1}d where |A| = |B| = N , determine whether there exists vectors a ∈ A and b ∈ B268

such that their inner product is zero. Conditioned on SETH, a standard reduction shows that this269

cannot be solved in time dΘ(1)N2−ε for any constant ε > 0 [43].270

Fig. 6. An illustration of the reduction from OV to Problem 2.

Let the given instance of OV consist of A,B ⊆ {0, 1}d where |A| = |B| = N = 2m for some271

natural number m. Hence, we have ⌈log(N + 1)⌉ = logN +1. This will ease computation later. We272

also assume that d > logN . This is reasonable, as if d ≤ logN , then |A| and |B| would contain273

either all vectors of length d or repetitions.274
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We will next provide a formal description of the graph D our reduction creates from the set275

A = {a1, a2, ..., aN} and the pattern P it creates from the set B = {b1, b2, ..., bN}. The reader276

may find Figure 6 helpful. The graph will consist of four sections. We name these according to277

their function in the reduction: the Selection fan-in, the Selection section, the Post-Selection merge278

section, and the Synchronization loop.279

We start with the Selection fan-in. Let 2c be the smallest power of 2 such that 2c ≥ N +1. The280

Selection fan-in consists of a complete binary tree with 2c leaves where all paths are directed away281

from the root. The root is labeled 0 and the children of every node are labeled 0 and 1, respectively.282

The Selection section consists of N+1 paths. We first define the mappings fA and fB from {0, 1}283

to sequences of length four as fA(0) = 1100, fA(1) = 1111, fB(0) = 0110, fB(1) = 0000. These284

mappings have the property that dH(fA(0), fB(0)) = dH(fA(0), fB(1)) = dH(fA(1), fB(0)) = 2285

and dH(fA(1), fB(1)) = 4. We make the ith path for 1 ≤ i ≤ N a path of 4(d + 1) vertices with286

labels matching the string fA(ai[1])fA(ai[2])...fA(ai[d])fA(0). We make the (N + 1)th path have287

4(d + 1) vertices and match the string fA(0)
dfA(1). Let si denoted the start vertex of path i. We288

arbitrarily choose N + 1 leaves, l1, l2,..., lN+1, from the Selection fan-in and add the edges (li, si)289

for 1 ≤ i ≤ N + 1.290

We define the implicit label size as k = ⌈log(N + 1)⌉ + 4(d + 1) and ℓ = k − 1. To construct291

the Post-selection merge section, we start with N + 1 length ℓ− 1 paths, each matching the string292

2ℓ. For every path in the Selection section, we add an edge from the last vertex in the path to one293

of the paths matching 2ℓ. This is done so that every path matching 2ℓ in the Post-selection merge294

section is connected to exactly one path from the Selection section. Next, we merge two vertices295

if they have the same implicit label. This is repeated until all vertices in the Post-selection merge296

section have a unique implicit label.297

To construct the Synchronization loop we create a directed cycle with ℓ+1 = k vertices. One of298

these is labeled with the symbol 3, and the rest with the symbol 2. Edges from each ending vertex299

in the Post-selection Merge section to the vertex labeled 3 are then added. A final edge from the300

vertex labeled 3 to the root of the binary tree in the Selection fan-in completes the graph, which301

we denote as D.302

Let t = 5d+ ⌈log(N + 1)⌉. To complete the reduction, we make the pattern

P =(2ℓ3)t 2⌈log(N+1)⌉fB(b1[1])fB(b1[2]) . . . fB(b1[d])fB(1)

(2ℓ3)t 2⌈log(N+1)⌉ fB(b2[1])fB(b2[2]) . . . fB(b2[d])fB(1)

. . .

(2ℓ3)t 2⌈log(N+1)⌉fB(bN [1])fB(bN [2]) . . . fB(bN [d])fB(1)

and the maximum number of allowed substitutions δ = N⌈log2(N+1)⌉+2(d+1)+(2d+4)(N−1).303

We call substrings in P of the form fB(bi[1])fB(bi[2]) . . . fB(bi[d])fB(1) and paths in D matching304

strings of the form fA(ai[1])fA(ai[2])...fA(ai[d])fA(0) vector gadgets. Note that |E| = O(dN) and305

m = |P | = O(d2N). Hence, an algorithm for approximate matching running in time O(m|E|1−ε +306

m1−ε|E|) for some ε > 0 would imply an algorithm for OV running in time dΘ(1)N2−ε. This implies307

that once the correctness of the reduction has been established, Theorem 2 follows.308

3.1 Proof of Correctness309

Proofs of Lemma 10 and Lemma 11 are given in Appendix 2.310
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Lemma 10. The graph D is a de Bruijn graph.311

Lemma 11. In an optimal solution, 3’s in P are matched with 3’s in D.312

Lemma 12. In an optimal solution, vector gadgets in P are matched with vector gadgets in D.313

Proof. Suppose otherwise. By Lemma 11, this can only occur if some vector gadget in P is matched314

against the Synchronization loop. This requires at least 4(d + 1) substitutions. We can instead315

match the ⌈log(N + 1)⌉ 2’s preceding the vector gadget in P with the Selection fan-in and the316

vector gadget in P with the (N + 1)th path in the Selection section. Due to dH(fA(0), fB(0)) =317

dH(fA(0), fB(1)) = 2 and d(fA(1), fB(1)) = 4, this requires ⌈log(N + 1)⌉+ 2d+ 4 substitutions in318

P . Since, logN < d < 2d we have logN < 2d− 1. Using that N is some power of 2, ⌈log(N +1)⌉+319

2d+ 4 = logN + 1 + 2d+ 4 < 4d+ 4. Hence, the cost decreases by matching the vector gadget in320

P to a vector gadget in D instead.321

Lemma 13. If there exists a vector a ∈ A and b ∈ B such that a · b = 0, then P can be matched322

to D with at most δ substitutions.323

Proof. Match the vector gadget for b in P with the vector gadget for a in the Selection section324

of D. This costs 2(d + 1) substitutions. Match the remaining N − 1 vector gadgets in P with the325

(N + 1)th path in the Selection section, requiring (2d+ 4)(N − 1) substitutions in total. The total326

number of substitutions of 2’s in P to match the Selection fan-in is N⌈log(N + 1)⌉. Adding these,327

the total number of substitutions is exactly δ. The synchronization loop can be used for matching328

all additional symbols in P without any further substitutions.329

Lemma 14. If P can be matched in D with at most δ substitutions, then there exists vectors a ∈ A330

and b ∈ B such a · b = 0.331

Proof. By Lemma 12, we can assume vector gadgets in P are only matched against vector gadgets332

in D. Suppose that there does not exist a pair of orthogonal vectors a ∈ A and b ∈ B. Then, which333

ever vector gadget in D we choose to match a vector gadget in P to, matching the vector gadget334

requires at least 2d+4 substitutions. Hence, the total cost is at least (2d+4)N+N⌈log(N+1)⌉ > δ,335

proving the contrapositive of Lemma 14.336

4 Discussion337

We leave open several interesting problems. An NP-completeness proof for Problem 1 on de Bruijn338

graphs when k = O(log n) and the alphabet size is constant is still needed. Additionally, we need to339

extend these hardness results to when substitutions are allowed in both the graph and the pattern,340

and when insertions and deletions in some form are allowed in the graph and (or) the pattern. It341

seems unlikely that adding more types of edit operations would make the problems computationally342

easier, and we conjecture these variants are NP-complete on de Bruijn graphs as well. It also needs343

to be determined whether Problem 1 is NP-complete on de Bruijn graphs with binary alphabets,344

or whether the SETH-based hardness results hold for Problem 2 on binary alphabets. A practical345

question is whether these problems (in general, not just on de Bruijn graphs) are hard for small346

δ values. In applications, the allowed error thresholds are quite small. Clearly, the problems are347

slice-wise-polynomial with respect to δ, i.e., for a constant δ it is solvable in polynomial time via348

brute force, but are they fixed-parameter-tractable in δ? The reduction presented here (as well as349

the reductions in [6,25]) is based on the Hamiltonian cycle problem, where a large δ value is used.350

This makes the existence of such a fixed-parameter-tractable algorithm a distinct possibility.351
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465

Appendix466

1 Missing Proofs in Section 2.1467

Lemma 1. The graph D′ constructed as above is a de Bruijn graph.468

Proof. There are three properties that must be proven: (i) Implicit labels are unique, meaning for469

every implicit label at most one vertex is assigned that label; (ii) There are no edges missing, i.e.,470

if the implicit label of y ∈ V ′ is Sα for some string S[1, k − 1] and symbol α ∈ Σ, and there471

exists a vertex x ∈ V ′ with implicit label βS[1, k− 1] for some symbol β ∈ Σ, then (x, y) ∈ E′; (iii)472

Implicit labels are well-defined, in that every walk of length k−1 ending at a vertex x ∈ V ′ matches473

the same string (the implicit label of x). Property (i) holds since after every edge transformation,474

vertices with the same implicit label are merged, making every implicit label occur at most once. For475

property (ii), consider the completed D′ and an arbitrary vertex y on an arbitrary path ϕ((u, v)).476

Regarding a possible edge (x, y) ∈ E′, we have the following cases:477

– Case: the implicit label of y is Sα = enc(L(u))$W enc(L(u)). Then, any potential x ∈ V ′ must478

have an implicit label βS = β enc(L(u))$W enc(L(u))[1,W−1]. However, the only implicit labels479

created that have a suffix of the form enc(L(u))$W enc(L(u))[1,W − i] have a prefix #W−i. This480

implies that β = #, and the edge (x, y) already exists in E′ (under the assumption that there481

are no vertices with in-degree zero in V ).482

– Case: the implicit label of y is Sα = enc(L(u))[i,W ]$W enc(L(u))#i−1, 1 < i ≤ W + 1. Then,483

any potential x must have an implicit label βS = β enc(L(u))[i,W ]$W enc(L(u))#i−2. Because484

the only implicit labels with the substring $W enc(L(u)) have a prefix consisting of some suffix485

of enc(L(u)), this implies β = enc(L(u))[i− 1], and (x, y) already exists in E′.486

– Case: the implicit label of y is Sα = $W−i enc(L(u))#W enc(L(v))[1, i], 1 ≤ i ≤ W. Then, any487

potential x must have an implicit label βS = β$W−i enc(L(u))#W enc(L(v))[1, i − 1]. In the488

case i < W , since there are no runs of $ in any implicit label shorter than W , this implies that489

β = $, and the edge (x, y) already exists in E′. In the case where i = W , the only implicit label490

with a suffix of the form enc(L(u))#W enc(L(v))[1,W − 1], has a prefix $, and the edge (x, y)491

already exists in E′.492

– Case: the implicit label of y is Sα = enc(L(u))[i,W ]#W enc(L(v))$i−1, 1 < i ≤ W + 1. Then,493

any potential x must have an implicit label βS = β enc(L(u))[i,W ]#W enc(L(v))$i−2. Because494

the only implicit labels with the substring #W enc(L(v)) have a prefix consisting of some suffix495

of enc(L(u′)) where the edge (u′, v) is in D, the edge (x, y) already exists in E′. This is an496

interesting case, as merges can happen, i.e., β enc(L(u))[i,W ] = enc(L(u′))[i− 1,W ], u′ ̸= u.497

– Case: the implicit label of y is Sα = #W−i enc(L(v))$W enc(L(v))[1, i], 1 ≤ i ≤ W. Then, any498

potential x must have an implicit label βS = β#W−i enc(L(v))$W enc(L(v))[1, i−1]. For i < W ,499

since there are no runs of # in any implicit label shorter than W , β = #, and the edge (x, y)500

already exists in E′. For i = W , this is equivalent to the first case.501

We prove (iii) using induction on the number of edges transformed into paths. Our inductive502

hypothesis (IH) is that prior to an edge being replaced by a path, property (iii) holds for every503

vertex added to V ′ thus far. Let i denote the number of edges transformed. For i = 1, all vertices504
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where there exists such a walk ending at them are on the newly created path, and implicit labels505

are well-defined.506

For i > 1, we assume the IH holds for all vertices created in the previous i − 1 steps of507

transforming edges and merging. First consider a new vertex x that is created by transforming the508

ith edge (ui, vi). Starting with x = ϕ(ui). If x is merged with another transformed vertex x′ having509

the same implicit label, then all length k − 1 walks ending at x′ match this implicit label, and510

thus the IH holds for x after merging. Using a secondary induction step, we assume the IH holds511

post-merging for all vertices between ϕ(ui) and x (not including x) on ϕ((ui, vi)). Let xprev be the512

vertex on ϕ((ui, vi)) before x. Since all length k − 1 walks ending at xprev match xprev’s implicit513

label, the length k − 1 walks obtained by disregarding the vertex at the start of these walks, and514

adding the vertex x at the end, all match the implicit label of x. At the same time, any vertices515

merged with x, by the IH also have the same implicit label and hence the walks ending at them516

match the implicit label of x. Hence, the IH holds for x after merging it with all vertices having517

the same implicit label. After processing all vertices on ϕ((ui, vi)), we next consider a previously518

created vertex x′′ ∈ V ′ not in ϕ((ui, vi)). Consider a newly created walk W ending at x′′ that is due519

to a vertex merging with vertices in ϕ((ui, vi)). Since all length k − 1 walks ending at a vertex in520

ϕ((ui, vi)) match the same implicit label, when disregarding some number of vertices at the start521

of a walk that ends in ϕ((ui, vi)) and adding new vertices at the end to obtain W , the resulting522

walk W matches the implicit label for x′′, and the IH continues to hold for x′′ as well.523

Lemma 2. Any walk between two marked vertices ϕ(u) and ϕ(v) containing no additional marked524

vertices has length 4W . Hence, we can conclude any such walk is a path.525

Proof. We first define forward distance and backward distance. Let x, y ∈ V ′. The forward distance526

from x to y is defined as the minimum number of edges on any path from x to y (the usual distance527

in a directed graph). The backward distance from x to y is defined as the minimum number of528

edges on any path from y to x. We say a marked vertex ϕ(u) is backward adjacent to x if there529

exists a walk from ϕ(u) to x not containing any other marked vertices, and x is forward adjacent530

ϕ(u) if there exists a walk from x to ϕ(u) not containing any other marked vertices.531

We use induction on the number of edges transformed. Our inductive hypothesis (IH) will be532

that the length of all walks that end at and contain only two marked vertices is 4W . We add to533

our IH that a vertex x created from an edge transformation having an implicit label of the form:534

1. enc(L(u))[j,W ]$W enc(L(u))#j−1, 1 ≤ j ≤ W , has backward distance j − 1 from ϕ(u), which535

is its only backward adjacent marked vertex, and forward distance 4W − j + 1 from all of its536

forward adjacent marked vertices;537

2. $W−j enc(L(u))#W enc(L(v)))[1, j], 0 ≤ j ≤ W , has backward distance W + j from ϕ(u), which538

is its only backward adjacent marked vertex, and forward distance 3W−j from all of its forward539

adjacent marked vertices;540

3. enc(L(u))[j,W ]#W enc(L(v)))$j−1, 1 ≤ j ≤ W , has backward distance 2W + j − 1 from all of541

its backward adjacent marked vertices, and forward distance 2W − j+1 from ϕ(v), which is its542

only forward adjacent marked vertex;543

4. #W−j enc(L(v)))$W enc(L(v))[1, j], 0 ≤ j ≤ W , has backward distance 3W + j from all of its544

backward adjacent marked vertices, and forward distance W − j from ϕ(v), which is its only545

forward adjacent marked vertex.546

The base case, i = 1, is satisfied since there exists only one such path and all stated properties hold.547

Now, for i > 1, let (ui, vi) be the ith edge transformed. We assume the IH holds for all vertices and548
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walks created in the first i−1 edge transformations. First, observe that for any walk ending at, and549

containing only two previously created marked vertices, for all vertices on this walk the distances550

from their forward adjacent marked vertices and backward adjacent marked vertices will not be551

altered unless one of the vertices on this walk is merged with a vertex on ϕ((ui, vi)). Also, all of the552

stated properties in the IH also hold for ϕ((ui, vi)) prior to merging any vertices. Now, let y be a553

vertex on ϕ((ui, vi)). Starting with y = ϕ(ui), and continuing from ϕ(ui) to ϕ(vi), we merge y with554

existing vertices when their implicit labels match. Because the stated distance properties hold for555

x and y prior to merging, they continue to hold for the vertex created from merging x and y as556

well. Moreover, for all of the vertices on any walk containing this now merged vertex the distances557

from its forward adjacent and backward adjacent marked vertices are unaltered. Because for every558

vertex in the new graph, these distances are unaltered, the IH regarding the length of 4W for walks559

containing only two marked vertices continues to hold as well.560

Fig. 7. In the proof of Lemma 4, we consider
whether the path ϕ((ui, vi)) being added could
potentially cause a path between ϕ(u) and ϕ(v).
The white circles connected by the thin dashed
curve represent merged vertices.

Fig. 8. In the proof of Lemma 4, the case where u = ui and v′ ̸= vi.

Fig. 9. In the proof of Lemma 4, the case where u ̸= ui,
v′ = vi, and ui ̸= u′. Fig. 10. In the proof of Lemma 4, the case where u ̸= ui,

v′ = vi, and ui = u′.

Lemma 4. There exists a path from a marked vertex ϕ(u) ∈ V ′ to a marked vertex ϕ(v) ∈ V ′
561

containing no other marked vertices iff there is an edge (u, v) ∈ E.562

Proof. It is clear from construction that if there is an edge (u, v) ∈ D, then such a walk is in D′.563

In the other direction, suppose for the sake of contradiction that there exists such a walk starting564

at ϕ(u) and ending at ϕ(v) with no other marked vertices between ϕ(u) and ϕ(v) on the walk, and565
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(u, v) /∈ E. Let the first such walk be created when transforming the ith edge (ui, vi). The only way566

such a walk could exists is if some vertex in ϕ((ui, vi)) is merged with a vertex on a walk ϕ((u, v′))567

for some v′ ̸= v, and some vertex in ϕ((ui, vi)) merged with a vertex in a walk ϕ((u′, v)) for some568

u′ ̸= u. This is since, prior to creating ϕ((ui, vi)) all walks starting at ϕ(u) encountered some other569

marked vertex, say ϕ(v′), before ϕ(v). Similarly, there existed some set of marked vertices not570

including ϕ(u) such that every walk containing a marked vertex and ending at ϕ(v) must include571

at least one vertex in this set, say ϕ(u′). See Figure 7. Consider cases:572

– u = ui and v′ = vi: This contradicts the assumption that (ui, vi) is transformed on the ith step.573

– u = ui and v′ ̸= vi (Figure 8): By Lemma 3, since ui = u ̸= u′, ϕ((ui, vi)) and ϕ((u′, v)) can only574

share a vertex if vi = v. However, this implies the edge (ui, vi) = (u, v) ∈ E, a contradiction.575

– u ̸= ui and v′ ̸= vi: We can directly use Lemma 3 to say no such merged vertices exists between576

ϕ((u, v′)) and ϕ((ui, vi)).577

– u ̸= ui and v′ = vi (Figure 9): By Lemma 3, if ui ̸= u′, then ϕ((ui, vi)) and ϕ((u′, v)) can only578

share a vertex v = vi. However, this would imply v = v′, a contradiction.579

The more interesting case is if ui = u′ (Figure 10). Any vertex y having an implicit label con-580

taining enc(L(u′)) and occuring in ϕ((ui, vi)) and ϕ((u′, v)) occurs before (has smaller backward581

distance to ϕ(u′)) any vertex with implicit label containing enc(L(v′)). At the same time, any582

vertex x occuring in ϕ((u, v′)) and ϕ((ui, vi)) has an implicit label containing enc(L(v′)). Since583

the vertex x occurs later in ϕ((ui, vi)) than any shared vertex y in ϕ((ui, vi)) and ϕ((u′, v)), the584

only way any vertices in ϕ((ui, vi)) are in a walk from ϕ(u) to ϕ(v) not containing any other585

marked vertices is if there is walk from x to y not containing marked vertices, however, the586

cycle this creates contradicts Lemma 2.587

Lemma 6. If P can be matched in D′ with at most δ substitutions to vertex labels of D′, then588

all $’s in P are matched with non-substituted $’s in D′ and all #’s in P are matched with non-589

substituted #’s in D′. Consequently, we can assume the only substitutions are to the vertex labels590

corresponding to bin(i)’s within enc(i)’s.591

Proof. We first make the following observations: pre-substitution of any of the vertex labels in D′,592

– (1) For all u ∈ V , there is exactly one path in D′ that matches enc(L(u))#W enc(L(u))[1,W−ℓ],593

and all vertices on this path have in-degree and out-degree one. This follows from the only594

vertices with in-degree greater than one having implicit labels enc(L(u))[i,W ]#W enc(L(v))$i−1
595

where W − ℓ < i ≤ W +1 (these vertices have vertex label $). And the vertices with out-degree596

greater than one having implicit labels of the form $W−i enc(L(u))#W enc(L(v))[1, i] where597

W − ℓ ≤ i ≤ W (the last ℓ symbols in #W enc(L(v)). This path contains the marked vertex598

ϕ(u). Furthermore, all marked vertices are included on exactly one such path.599

– (2) Every maximal walk containing only $ or # symbols is of length W , and the distance600

from the end of any maximal walk consisting of only $ symbols (or # symbols) to the start of a601

maximal walk consisting of only # (or $ symbols resp.) is W . This follows from the construction602

of D′: every vertex added in the construction has an implicit label where all maximal substrings603

consisting of non-$ or non-# are of length W , and maximal substrings consisting of $ or # are604

of length W .605

To see the ‘local’ number of substitutions caused by matching a #/$-symbol in D′ to a 0/1606

symbol in P , suppose the matching of enc(L(u)) in P is ‘shifted left’ by 1 ≤ s < W so that607
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the first s symbols of some enc(L(u)) in P are matched against the last s symbols in some walk608

of $/#-symbols in D′, requiring s substitutions. Now, assuming s < 2ℓ and σ > 4, due to the609

prefix (02ℓ1)α23...(σ − 3) of enc(L(u)), matching the shifted enc(L(u)) in D′ will require at least610

α− 1 + (σ − 3) substitutions that do not involve a # or $ symbol. When σ = 4, α = 2ℓ the prefix611

is (02ℓ1)2ℓ and at least 2ℓ− 1 substitutions that do not involve a # or $ symbol are needed.612

We now look at the number of substitutions needed on a ‘global’ level. Using Lemma 2, it can be613

inferred that every walk of length 4W contains an originally marked vertex. Hence, while matching614

P ′ at least ⌊|P ′|/4W ⌋ = 4Wn/4W = n times an originally marked vertex is visited. Because every615

substring of P ′ = P [1, |P |−4W ] of length 3W −ℓ is distinct, every path described in Observation 1616

is traversed at most once while matching P ′. Since each originally marked vertex is on a unique path617

that can be traversed at most once, and we traverse at least n such paths, we traverse n distinct618

paths described in Observation 1. We can now use Observation 2 to infer that the substitutions619

needed to match the shifted patterns in P ′ must be repeated n times. Hence, to match P ′ the total620

number of substitutions involving $/# symbols is at least sn. For s < 2ℓ and σ > 4, the total number621

of substitutions involving only non-$/# symbols is at least (α+σ−4)n. Using that α = 2ℓ−σ+4,622

we have that the total number of substitutions is at least (s+α+σ−4)n = (s+2ℓ)n > 2ℓ(n−1) = δ.623

When σ = 4 and α = 2ℓ the inequality above becomes (s+ 2ℓ− 1)n > 2ℓ(n− 1) = δ. Independent624

of σ, when 2ℓ ≤ s < W , then α substitutions to match the substring (02ℓ1)α in P may not be625

needed, but the total number of substitutions required is still greater than δ since sn ≥ 2ℓn > δ.626

A symmetric argument can be used for when the matching of P to D′ is ‘shifted right’ by s so627

that the last s symbols in enc(L(u)) in P are matched against the first s symbols in some walk of628

$/#-symbols in D′.629

For W < s < 4W , it still holds that all paths described in Observation 1 are traversed exactly630

once. Combined with Observation 2, we can infer that the substitution cost incurred when making631

one path of length W originally matching #W ’s match a substring of P without #’s is incurred at632

least n times. This results in the total number of needed substitutions being at least nW > δ.633

2 Missing Proofs in Section 3.1634

Lemma 10. The graph D is a de Bruijn graph.635

Proof. For each of the four graph sections discussed above, we will prove for each vertex in that636

section that Conditions (i)-(iii) from the proof of Lemma 1 hold. That is, every vertex v, v’s implicit637

label well-defined, unique, and there are no additional edges that should have v as their head.638

– Selection fan-in:639

• (well-defined) For any vertex v in the Selection fan-in, there are two paths of length k − 1640

leading to v (one containing vertices labeled with 2’s from the Post-selection merge section641

and one containing vertices labeled with 2’s from the Synchronization loop). Both match642

the same string 2ℓ
′
3B where ℓ′ < ℓ and B is a binary string of length at most ⌈logN + 1⌉.643

• (unique) The binary string B could only possibly occur again as a suffix the Selection section.644

However, all implicit labels occurring in that section contain longer binary strings. Hence645

the implicit label occurs only once in D.646

• (no missing inbound edges) Let u be any vertex such that (u, v) is in D. A vertex v in the647

Selection fan-in has an implicit label of the form Sα = 2ℓ
′
3Bi′ [1, i], ℓ

′ < ℓ, 1 ≤ i < ⌈logN⌉,648

0 ≤ i′ ≤ N + 1. This implies that u has the implicit label βS = β2ℓ
′
3Bi′ [1, i− 1]. Based on649
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the limited number of implicit labels present in D, it must be that β = 2, and there exists650

only one such u. Hence, the edge (u, v) already exists.651

– Selection section:652

• (well-defined) For a vertex v in the Selection section, there are two length k−1 paths leading653

to v (one with 2’s from the Post-selection merge section and one with 2’s from the Syn-654

chronization loop). Both match a string of the form 2ℓ
′
3Bi′fA(ai[1])fA(ai[2])...fA(ai[j])[1, h]655

where 0 ≤ ℓ′ < ℓ and 1 ≤ h ≤ 4.656

• (unique) If v has a path of length k − 1 matching 2ℓ
′
3Bi′fA(ai[1])fA(ai[2])...(fA(ai[j])[1, i],657

then it must be in the Selection section. The substring Bi′ following the prefix 2ℓ
′
3 is distinct,658

hence this implicit label only occurs once in the Selection section.659

• (no missing inbound edges) Taking u and v as above, if the vertex v has an implicit label of660

the form Sα = 2ℓ
′
3Bi′fA(ai[1])fA(ai[2])...fA(ai[j])[1, h], 1 ≤ h ≤ 4, this implies that the any661

potential u has an implicit label βS = β2ℓ
′
3Bi′ [1, h−1]fA(ai[1])fA(ai[2])...fA(ai[j])[1, h−1]662

or βS = β2ℓ
′
3Bi′ [1, h − 1]fA(ai[1])fA(ai[2])...fA(ai[j − 1]). In either case, β = 2, and663

the edge (u, v) already exists. If the vertex v has an implicit label of the form Sα =664

Bi′fA(ai[1])fA(ai[2])...fA(ai[d]), then any potential vertex u has an implicit label βS =665

βBi′fA(ai[1])fA(ai[2])...fA(ai[d])[1, 3] where β must be 3, and the edge (u, v) already exists.666

– Post-selection merge section:667

• (well-defined) For a vertex v in this section, all length k−1 paths ending at v match a string668

of the form B2ℓ
′
where B is a binary string. By construction, the paths ending at v match669

the same string (they were merged based on this condition).670

• (unique) Again by construction, if another vertex v′ in the Post-selection merging section671

has a length k−1 path ending at it that matches v’s implicit label v′ will be merged with v.672

At the same time, vertices in the other sections of D will not have an implicit label of the673

form B2ℓ.674

• (no missing inbound edges) Taking u and v as above, vertex v has an implicit label of the675

form Sα = B2ℓ
′
, ℓ′ ≥ 1, this implies that any potential vertex u has an implicit label676

βS = βB2ℓ
′−1. Such a vertex u is already in the Post-selection merge section or is a vertex677

at the end of a path in the Selection section (if ℓ′ = 1). Since appending a 2 and removing678

β will make the implicit label of u equal to the implicit label of v, the vertex at the head of679

the edge with tail u must have been merged with v. Hence, the edge (u, v) already exists.680

– Synchronization loop:681

• (well-defined) There are two length k − 1 paths to a vertex v in the synchronization loop.682

Both match the string 2ℓ
′
32ℓ

′′
where ℓ′ + ℓ′′ = k − 1 = ℓ, and ℓ′ depends on v’s position683

within the Synchronization loop.684

• (unique) An implicit label for a vertex in any other section contains a symbol that is not a685

2 or a 3. Within the synchronization loop, each implicit label clearly occurs exactly once.686

• (no missing inbound edges) Taking u and v as above, vertex v has an implicit label of the form687

Sα = 2ℓ
′
32ℓ

′′
. This implies that any potential vertex u has an implicit label βS = β2ℓ

′
32ℓ

′′−1.688

If ℓ′ < ℓ it must be that β = 2 and the edge (u, v) already exists. If instead ℓ′ = ℓ, then for689

both βS = 02ℓ3 and βS = 12ℓ3 there already exists an edge (u, v) as well.690

Lemma 11. In an optimal solution, 3’s in P are matched with 3’s in D.691
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Proof. Suppose that some 3 in P is not matched with 3 in D or with the final vertex in a path in692

the Selection section. Since any walk between 3’s in D has a length that is a multiple of k and 3 in693

P are k− 1 symbols apart, all 3’s must then not be matched with 3 in D. This requires at least tN694

substitutions within P . On the other hand, when 3’s in P are matched with 3’s in D, there exists695

a solution requiring at most 4d(N + 1) +N⌈log(N + 1)⌉. Specifically, this is obtained by matching696

each vector gadget in P , fB(bi[1])...fB(bi[d]) to the N + 1th path in the Selection section. Since697

t = 5d+ ⌈log(N + 1)⌉ > 4d+ 4d
N + ⌈log(N + 1)⌉ for d = o(N) and N large enough, we can assume698

that tN > 4d(N + 1) + N⌈log(N + 1)⌉. Hence, all 3’s in P are matched with the 3 in D or with699

some final vertex in a path in the Selection section700

Next, suppose some 3 in P is matched with the last vertex in a path in the Selection section. We701

consider the first such occurrence. In the case where this occurrence of 3 in P is followed in P by702

a substring 2⌈log(N+1)⌉fB(ai[1])...fB(ai[d])fB(1), a cost of at least 8(d+1) is incurred, first at least703

4(d+1) from matching the substring 2ℓ3 in P to a path through Selection fan-in and the Selection704

section, then an additional 4(d + 1) from matching a vector gadget in P to a path of 2’s in the705

Post-selection merge section. We could have instead matched the Synchronization loop twice with706

a cost of only 4(d+1) substitutions, and started and ended at the same vertex while still matching707

2ℓ32⌈log(N+1)⌉fB(ai[1])...fB(ai[d])fB(1). Hence, in this case, matching 3 in P with the last vertex in708

a path in the Selection section is suboptimal. In the case where the occurrence of 3 in P is followed709

in P by 2ℓ3, then the cost incurred is only 4(d+1). However, we could have instead matched 2ℓ32ℓ3710

with the Synchronization loop twice with a substitution cost of 0, and again started and ended at711

the same vertex. Hence, matching 3 in P with the last vertex in a path in the Selection section is712

again suboptimal.713
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