
844 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Revisiting Nakamoto Consensus in Asynchronous
Networks: A Comprehensive Analysis of

Bitcoin Safety and Chain Quality
Muhammad Saad , Afsah Anwar, Srivatsan Ravi , Member, IEEE, and David Mohaisen , Senior Member, IEEE

Abstract— The Bitcoin blockchain safety relies on strong
network synchrony. Therefore, violating the blockchain safety
requires strong adversaries that control a mining pool with
≈51% hash rate. In this paper, we show that the network
synchrony does not hold in the real world Bitcoin network
which can be exploited to feasibly violate the blockchain safety
and chain quality. Towards that, first we construct the Bitcoin
ideal functionality to formally specify its ideal execution model
in a synchronous network. We then develop a large-scale data
collection system through which we connect with more than
103K IP addresses of the Bitcoin nodes and identify 871 mining
nodes. We contrast the ideal functionality against the real world
measurements to expose the network anomalies that can be
exploited to optimize the existing attacks. Particularly, we observe
a non-uniform block propagation pattern among the mining
nodes showing that the Bitcoin network is asynchronous in
practice. To realize the threat of an asynchronous network,
we present the HashSplit attack that allows an adversary to
orchestrate concurrent mining on multiple branches of the
blockchain to violate common prefix and chain quality properties.
We also propose the attack countermeasures by tweaking Bitcoin
Core to model the Bitcoin ideal functionality. Our measurements,
theoretical modeling, proposed attack, and countermeasures open
new directions in the security evaluation of Bitcoin and similar
blockchain systems.

Index Terms— Nakamoto consensus, Bitcoin partitioning.

I. INTRODUCTION AND RELATED WORK

B ITCOIN is a dynamically evolving distributed system
that has significantly scaled up in recent years [2].

As Bitcoin continues to grow and inspire other decentralized
applications, its security features are continuously investigated
using theoretical analysis and measurement techniques [3], [4].
However, as evident from the prior work, various aspects of
theory and measurements have not been combined under a
unified framework to fully characterize the Bitcoin network
anatomy and synthesize a computation model that captures the

Manuscript received 20 August 2022; revised 24 January 2023; accepted
9 July 2023; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor N. Zhang. Date of publication 21 August 2023; date of current version
16 February 2024. An earlier version of this work has appeared in CCS
2021 [DOI: 10.1145/3460120.3484561]. The new manuscript advances upon
the previous version with new datasets and more accurate evaluation. This
work was supported in part by NRF under Grant 2016K1A1A2912757.
(Corresponding author: Muhammad Saad.)

Muhammad Saad, Afsah Anwar, and David Mohaisen are with the
Department of Computer Science, University of Central Florida, Orlando,
FL 32816 USA (e-mail: saad.ucf@knights.ucf.edu).

Srivatsan Ravi is with the Department of Computer Science, University of
Southern California, Los Angeles, CA 90089 USA.

Digital Object Identifier 10.1109/TNET.2023.3302955

intricacies of its real world deployments. We bridge this gap by
formally contrasting Bitcoin’s theoretical underpinnings with
network-wide measurements to investigate its security. To put
our work in the appropriate context, below we briefly discuss
some notable related works and their limitations.

A. Theoretical Models’ Shortcomings

The existing theoretical models [5], [6], [7], [8] that for-
mally analyze the Nakamoto consensus (1) sidestep the mining
power centralization in the real world Bitcoin implementation,
and (2) implicitly assume a form of synchronous execution that
uniformly applies to all network nodes. However, the proof-
of-work (PoW) difficulty has considerably increased over the
years, allowing only a few nodes to mine blocks. As a result,
the network is naturally divided between mining and non-
mining nodes [9], [10].1 To incorporate the mining centrality
in a theoretical model, we construct the Bitcoin ideal func-
tionality (§II), which acknowledges the distinction between
the mining and non-mining nodes and presents an execution
model that preserves the blockchain safety properties.

Another limitation of the existing theoretical models is
that they assume uniform block propagation delay patterns.
The Bitcoin backbone protocol, proposed by Garay et al. [6],
assumes a lock-step synchronous network in which the adver-
sary does not benefit from the block propagation delay. This
assumption is impractical for a large-scale distributed system
such as Bitcoin, where block propagation incurs non-zero
delay [11]. To address this limitation, Pass et al. [7] extended
the work in [6] and analyzed Bitcoin in the non-lock-step syn-
chronous settings [8]. The non-lock-step synchronous model
assumes a network in which all miners experience the same
block propagation delay, giving a uniform advantage to the
adversary over all other miners. Our measurements provide a
different view of the network as we observe that miners receive
blocks at different times thereby indicating that the network
is neither lock-step nor non-lock-step synchronous. In fact,
the network exhibits a notion of asynchrony whereby block
reception at different times can influence the mining strategy of
the nodes. Furthermore, by exploiting the potential change in

1The Bitcoin network consists of full nodes and SPV clients. Among the
full nodes, there are mining and non-mining nodes. The mining nodes are
used by the mining pools to broadcast blocks in the network. In [9] and
[10], mining nodes are also called the “gateway nodes” of mining pools. The
non-mining nodes do not mine blocks and only maintain the blockchain. Our
work focuses on the mining and non-mining nodes.

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Central Florida. Downloaded on October 11,2025 at 17:37:10 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8762-4566
https://orcid.org/0000-0002-2965-3940
https://orcid.org/0000-0003-3227-2505

SAAD et al.: REVISITING NAKAMOTO CONSENSUS IN ASYNCHRONOUS NETWORKS 845

mining strategies, an adversary can frequently fork the chain.
In §V, we conduct experiments to show that the real world
execution of Nakamoto consensus in Bitcoin is asynchronous.
We note that the change in the execution model affects
the information propagation which is pertinent to ensure the
two blockchain safety properties, namely the common prefix
and the chain quality [6], [12]. In §VI, we show that the
asynchronous network relaxes the requirement to violate these
two properties.

B. Measurement Studies

In addition to the theoretical models, notable works on
network measurements have focused on (1) analyzing Bitcoin
nodes distribution across autonomous systems (ASes) [9],
[13], [14], (2) discovering influential nodes controlled by the
mining pools [9], [10], and (3) measuring the information
propagation [11]. The security evaluations of these studies
proposed (1) partitioning attacks through BGP prefix hijacking
of high profile ASes [9], (2) majority attacks with less than
51% hash rate (≈49% in [11]), and (3) a combination of the
two attacks (i.e., the balance attack in [15]).

In 2012, Decker and Wattenhofer [11] conducted the first
measurement study to analyze the block propagation pattern
in the Bitcoin Peer-to-Peer (P2P) network. They reported a
block propagation delay of≈11 seconds after which 90% of all
the reachable nodes received a newly mined block. Using the
non-lock-step synchronous model, they derived a relationship
between the block propagation delay and the effective network
hash rate, concluding that the block propagation delay of
11 seconds reduces the majority attack requirement to 49%
hash rate. Our measurements validate the initial premise of
block propagation delay in [11], and further demonstrate that
the mining nodes receive blocks at different times. As a
result, we conclude that the Bitcoin P2P network cannot be
characterized as a non-lock-step synchronous network with
uniform delay experienced by the mining nodes.

C. Limited Attack Strategies

The attacks proposed in prior studies have not been fre-
quently observed in the wild due to strong adversarial require-
ments and limited attack strategies. First, their threat models
directly inherit the assumptions of theoretical frameworks
in [6] and [7] and ignore the critical distinction between
the mining and non-mining nodes (i.e., in [11], [13], and
[15]). As a result, their models require the adversary to target
all the network nodes. Moreover, the inability to distinguish
between the mining and non-mining nodes prevents them from
analyzing the block propagation patterns among the mining
nodes which exposes the asynchronous network. Therefore,
these studies have assumed a synchronous network which only
allows limited attack strategies [7]. The key challenge lies in
getting visibility into the network intricacies to (1) identify
the mining nodes, (2) study the block propagation pattern, and
(3) uncover the actual execution model. With the aid of such
measurements and their deviation from the ideal functionality,
requirements for existing attacks can be lowered, which we
demonstrate in this work.

D. Splitting Mining Power

As mentioned earlier, the effect of block propagation delay
on the Bitcoin blockchain has been discussed in theoretical
models and measurement studies. Particularly, in the routing
attack in [9], the authors show that BGP attacks can reduce
the mining power of the Bitcoin network. In [15], Natoli and
Gramoli used the routing attack model to present a trade-off
between the network delay and the adversary’s mining power
(also simulated by Gervais et al. [16]). Similarly, the Eclipse
attack [17] showed that an adversary can influence the hash
rate of the mining nodes by occupying all their incoming
and outgoing connections. However, all these attacks rely
on disrupting the network communication to create a split
between the mining nodes [18]. Therefore, they implicitly
assume a form of route manipulation (i.e., BGP hijacking
or occupying incoming and outgoing connections [15], [17])
as a prerequisite to introduce delay and split the mining
power. In contrast, we show that the non-uniform delay in
the existing block propagation patterns can be exploited to
split the mining power without disrupting the communication
model through route manipulation or connection control. We
show that by only leveraging the observed block propagation
pattern among the mining nodes and selective block broadcast,
an adversary can violate the safety properties of the Bitcoin
blockchain.2

E. Contributions and Roadmap

Combining our insight from the theoretical analysis and
measurements, we present the HashSplit attack which relaxes
the requirements to violate the blockchain safety properties.
We model the attack on an adversary with 26% mining
power and demonstrate that with less than the majority hash
rate (51%), the adversary can still violate the blockchain
safety properties by exploiting the non-uniform blockchain
propagation pattern. The underpinnings of the HashSplit attack
are grounded in systematic theoretical analysis and mea-
surements that represent independent contributions in their
own right. Along with the attack and its countermeasures,
our work exposes the anatomy and characteristics of the
Bitcoin network which are summarized below as the key
contributions.

1) We construct the Bitcoin ideal world functionality to
formally specify the safety properties of the Bitcoin
ledger; the common prefix property and the chain quality
property [6] (§II). The ideal world functionality faith-
fully models the expected functionality of a correct
Bitcoin implementation across prevalent deployments in
real world Bitcoin network.

2) We deploy crawlers in the Bitcoin network and con-
nect with over 103K IP addresses of Bitcoin nodes in
47 days (§III). Using heuristics, we identify 871 IP
addresses of the mining nodes. (§IV).

2Note that HashSplit does not rely on the absolute delay in the block
propagation as used previously in [11]. Instead, we show that as long as mining
nodes receive blocks at different times, irrespective of the absolute delay, the
adversary can exploit the protocol specifications in order to partition them
and violate the blockchain safety and chain quality with a high probability.

Authorized licensed use limited to: University of Central Florida. Downloaded on October 11,2025 at 17:37:10 UTC from IEEE Xplore. Restrictions apply.

846 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

3) We measure the block propagation patterns in the Bit-
coin network, and through a fine-grained analysis of the
block propagation patterns, we show that execution of
the Nakamoto consensus in Bitcoin is asynchronous §V.

4) We show the effect of the asynchronous execution
by presenting the HashSplit attack which allows an
adversary to violate the safety properties of the Bit-
coin blockchain. We model our attack for an adversary
with 26% hash rate and show that the common prefix
and the chain quality properties are violated with high
probability. We also propose attack countermeasures by
tweaking Bitcoin Core in order to closely model the
ideal functionality [19].

The HashSplit attack is a lower bound construction and
it can be launched as long as there is a non-uniform block
propagation in the network. The attack is based on the gaps
between the Bitcoin ideal world functionality and its real world
implementation. Therefore, in keeping with the flow, this paper
first introduces the ideal world functionality followed by the
measurements, attack, and conclusion.

II. THE BITCOIN IDEAL FUNCTIONALITY

In this section, we present the Bitcoin ideal world func-
tionality, which we later contrast with our measurements to
present the HashSplit attack. The Bitcoin white paper assumed
a decentralized network where any node in the network could
compete to mine a block (1 CPU=1 Vote) [5]. However, over
the years, Bitcoin mining became more competitive, with large
mining pools becoming the key players in the network that
mined most of the blocks [20]. While mining centralization
has become a reality in the Bitcoin network, we note that the
existing theoretical models do not incorporate this change in
their analysis of the Bitcoin network.

In our ideal world functionality, we embrace the practical
aspects of the Bitcoin network to distinctly characterize the
role of mining and non-mining nodes. We define mining nodes
as nodes that are owned by the mining pools and are respon-
sible for mining blocks. On the other hand, the non-mining
nodes use those blocks for transaction validation. Note that the
formulation of our ideal functionality is inspired by theoretical
models proposed in [6] and [7], with necessary adjustments to
incorporate the mining centrality. To formulate the safety and
liveness of the blockchain, we adopt the formalism from the
Bitcoin backbone protocol [6].

First, we define N as the set of all reachable IP addresses
of Bitcoin nodes. We define VIEWPi

C as the blockchain view
of a single node Pi ∈ N, where C is the blockchain ledger.
The Bitcoin backbone protocol [6] states that the inter-arrival
time between two blocks must be sufficiently large that each
Pi ∈ N has VIEWPi

C (i.e., in ≈10 minutes, all Pi ∈ N have the
up-to-date blockchain). Next, we define {M ⊂ N} as a set IP
addresses of the mining nodes.3 For each Pi ∈M , hi is Pi’s
hash power, where 0 < hi < 1. H =

∑|M |
i hi = 1 is the total

hash power of all the mining nodes. With the network entities

3M = N, implies all nodes are the mining nodes. However, in §IV, we show
that due to mining centralization, there are only 871 mining nodes among
103K IP addresses (|M |=871 and |N|=103K).

TABLE I
CONTRASTING OUR IDEAL FUNCTIONALITY AGAINST THE PRIOR

THEORETICAL MODELS. THE KEY DIFFERENCE IS THE DISTINCTION
WE MAKE BETWEEN THE MINING AND NON-MINING NODES

BY EMBRACING THE MINING CENTRALITY IN THE
CURRENT BITCOIN NETWORK

defined, below, we discuss the common prefix property and
the chain quality property of the Bitcoin blockchain.

A. Common Prefix Property

The common prefix property Qcp, with parameter k speci-
fies that for any pair of honest nodes P1 and P2, adopting the
chains C1 and C2 at rounds r1 ≤ r2, it holds that C⌈k1 ⪯ C2. C⌈k1

denotes the chain obtained by pruning the last k blocks from C,
and ⪯ is the prefix relationship. For transaction confirmation,
the common prefix property must hold for 6 blocks (C⌈k1 ⪯ C2
for k = 6) [21].

B. Chain Quality Property

The chain quality property Qcq with parameters µ and l
specifies that for any honest node Pi with chain C, it holds
that for any l consecutive blocks of C, the ratio of honest
blocks is at least µ.4 Qcq ensures that for a sufficiently large
value of l, the contribution of Pi in C is proportional to its
hash rate hi. Moreover, Qcq assumes that no Pi ∈M acquires
more than 50% hash rate [22], [23], [24], [25], [26].

Using these properties, we define the Bitcoin ideal world
functionality in Figure 1. Our formulation assumes Pi ∈ N
as “interactive Turing machines” (ITM) that execute the
Nakamoto consensus for l rounds, arbitrated by a trusted
party F . A round is a time in which each Pi ∈M is mining
on the same block. For any Pi ∈M , a round terminates when
the VIEWPi

C is updated with a new block. The network N×N
is fully connected such that when a block is released by any
Pi ∈ M at t1, all nodes receive it at the next time step t2.
As a result, the network exhibits a lock-step synchronous
execution [8].

Due to varying roles in the system, the mining nodes
Pi ∈ M and the non-mining nodes Pi /∈ M have unique
operations. The mining nodes participate in the block race,
while the non-mining nodes simply maintain the blockchain
ledger. Moreover, when a mining node receives two blocks
in a round, referencing the same parent block, it gives time-
based precedence to the block received earlier and starts
extending the chain on that block. Note that if the network
does not form a fully connected topology as specified in the
ideal functionality, the network will deviate from the expected
behavior of a lock-step synchronous network. As a result,
nodes may receive a new block at different times. If two blocks
are mined in a round, the mining nodes will mine on the block
that they receive first, leading to concurrent mining on two

4Honest blocks refer to blocks mined by the honest nodes that faithfully
follow the Bitcoin protocol specifications.

Authorized licensed use limited to: University of Central Florida. Downloaded on October 11,2025 at 17:37:10 UTC from IEEE Xplore. Restrictions apply.

SAAD et al.: REVISITING NAKAMOTO CONSENSUS IN ASYNCHRONOUS NETWORKS 847

Fig. 1. The Bitcoin ideal functionality closely modeled on the practical implementation of Bitcoin as we largely see it. We use Pi to denote any node in
the network. If Pi is among the mining nodes Pi ∈ M , then it possesses the hashing power to mine blocks. If Pi is not among the mining nodes Pi /∈ M ,
then it simply maintains a blockchain and contributes to network synchronization by relaying blocks to other nodes.

branches of the public chain. We will later show in §V, how
the real world network deviates from the ideal functionality,
thereby creating opportunities to launch the HashSplit attack.
In Table I, we contrast our ideal world functionality against
the prior theoretical models and in the following, we provide
the ideal world functionality proof.

In the following, we provide the proof for the ideal world
functionality (§II and Figure 1).

Theorem 1 (Bitcoin Ideal World Functionality): If the pro-
tocol is run for l = 6 consecutive rounds, in which k =
6 blocks are produced, then with high probability, F guaran-
tees the common prefix property and the chain quality, as long
as the adversary is bounded by H/2 hash rate.

Proof: Prior to the proof, we present some practical
considerations for our execution model. In the current Bitcoin
protocol specifications, the average duration of a round is
10 minutes (600 seconds) and the parameter k for the common
prefix is 6 blocks [21]. Moreover, Theorem 1 assumes that
in each round, only one block is produced, and therefore,

for l consecutive rounds, a total of k = l blocks are
produced.

To prove Theorem 1, we assume by contradiction that the
ideal world execution runs for l = 6 consecutive rounds after
which C⌈61 ⪯ C2 does not hold. In other words, the two chains
do not share a common prefix after pruning the last 6 blocks.
For this to be true, in each round, at least two miners in M
should concurrently produce a block at the same time t0 and
due to a fully connected or close to a fully connected graph,
the remaining miners should receive the two blocks at t1.
As shown in Figure 1, the recipients toss a coin and select one
of the two blocks (for generalization if x blocks are received,
recipients roll x sided dice). The probability that for l = k
rounds, x blocks are concurrently produced is:

P (x|λ) =
(

e−λλx

x!

)k

(1)

Now assume a random variable X which represents an event
that C⌈61 ⪯̸ C2 for l = k rounds due to x concurrent blocks.

Authorized licensed use limited to: University of Central Florida. Downloaded on October 11,2025 at 17:37:10 UTC from IEEE Xplore. Restrictions apply.

848 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

And since each recipient has to roll an x sided dice if x blocks
are received, therefore P (X) (from (1)) becomes:

P (X) =
(

e−λλx

x2(x− 1)!

)k

(2)

With λ = 1/600, k = 6, and x = 2, P (X) is 0.00001. In other
words, the ideal world functionality guarantees the common
prefix for k = 6 with an overwhelming probability of 0.99999.

To ensure the chain quality property, F specifies that no
hi for Pi ∈ M has more than 50% hash rate. Otherwise,
hi

H does not hold and F aborts. Moreover, in the winning
chain, the number of blocks contributed by the honest miners
is proportional to their hash rate. For instance, in a chain length
of l = 6 rounds in which 6 consecutive blocks are produced,
a miner with 14.3% hash rate should be able to contribute
1 block (µi). If a miner faithfully respects the protocol in
Figure 1, its probability of contributing 1 block becomes
k hi

H . Plugging in the experimental values, the probability is
0.999 (µ′i. Therefore, µi − µ′i is 0.001. This is negligible (ϵ)
as defined in the ideal world functionality Figure 1.

In the following, we elaborate on prior theoretical models
in [6] and [7] by analyzing their key model primitives in the
context of our ideal functionality.

The first model is the foundational work proposed by
Garay et al. [6] which provides the formal definitions of the
“Common Prefix Property” and the “Chain Quality Property.”
The second model is another prominent work proposed by
Pass et al. [7] which analyzes the performance of Blockchain
protocols in asynchronous networks.5

C. The Bitcoin Backbone Protocol [6]

Garay et al. proposed a synchronous network in which when
a miner releases a block, the block is received by all other
miners without delay. Therefore, the protocol is run in a lock-
step synchronous network [8]. Moreover, the model assumes
M = N, where the hash rate is uniformly distributed among
all miners. Finally, the adversary does not control more than
|M |/2 = |N|/2 miners. In other words, the miner is bounded
by 50% hash rate. Using these parameters, [6] proposes two
theorems for common prefix and chain quality properties.

Theorem 2: (Common Prefix). In a typical execution, the
common prefix property holds with a parameter k ≥ 2λf .
Here, k is the number of blocks for the common prefix
property, f is the probability that at least one honest miner
produces a block, and λ ≥ 2/f is defined as the security
parameter.

Theorem 3: (Chain Quality). In a typical execution, the
common prefix property holds with a parameter l ≥ 2λf .

Although the Bitcoin backbone protocol in [6] formally
specifies the properties of the Bitcoin system, however,
it makes some assumptions that deviate from the real world
implementation. In the following, we briefly discuss them.

(1) First, the model assumes M = N and the mining
power to be uniformly distributed. However, as shown in §IV,
M ≪ N and the mining power is not uniformly distributed.

5Although Pass et al. call their model asynchronous, however, Ren [8] show
that their model is actually non-lock-step synchronous.

(2) Second, the synchronous network assumes that in each
round, the block experiences no propagation delay. As a result,
the adversary gains no advantage from the propagation delay.
Our measurements showcase a different network state where
mining power is centralized and block propagation incurs
delay. Moreover, block propagation can vary in each execution
round, which can be exploited by an adversary to create forks.

D. Blockchains in Non-Lock-Step Synchronous Networks [7]

Improving the model of Garay et al. [6], Pass et al. [7] pro-
posed an non-lock-step synchronous model to evaluate Bitcoin.
Their proposition introduces a network delay parameter ∆ that
an adversary can add during block propagation. By the time
the block reaches other miners, the adversary leverages ∆ to
gain a head start mining advantage towards computing the next
block. In the following, we analyze the model proposed in [7].

(1) The primary assumption of their model is that an
adversary is able to compute a block, delay its transmission
by an upper bound ∆, and broadcast it to the network. After
the broadcast, all participants receive the block and the non-
lock-step synchronous network starts to emulate the lock-step
synchronous network [6]. Therefore the key difference in
the non-lock-step synchronous model [7] and the lock-step
synchronous model [6] is ∆, after which both models emulate
the same behavior. (2) ∆ gives an advantage to the adversary
over all the other participants. Roughly speaking, in the ∆
time window, the adversary is able to mine on top of its
previous block. Moreover, [7] assumes that during ∆, all
the other participants remain idle. More formally, the model
specifies α ≈ p(1 − ρ)n to be the probability that an honest
player computes the block. Here, p is the mining hardness,
and ρ is the fraction of nodes in n that the adversary controls.
Moreover, β = ρnp is the expected number of blocks that an
adversary can mine in a round. (3) Once the bounded delay
∆ is plugged into the system, the model in [7] assumes a
parameter δ > 0 such that to meet consistency property, the
model has to satisfy α(1− (2∆ + 2)α) ≥ (1 + δ)β. As long
as ρ < 0.5 and p < 1

pn∆ , consistency is satisfied. (3) The
bounded delay ∆ also discounts the capability α of honest
nodes to produce blocks in a round. To formally capture that,
the model in [7] introduces γ = α

1+∆α which is the discounted
version of α or the effective mining power gained by delaying
the block propagation by ∆.

Using the aforementioned assumptions and a security
parameter κ, [7] proposes two theorems to characterize
Nakamoto consensus specific to the Bitcoin operations.

Theorem 4 (Chain Quality): For all δ > 0 any p(.),
(
∏p

nak, Cp
nak) has the chain quality:

µp
δ(κ, n, ρ, ∆) = 1− (1 + δ)

β

γ
(3)

Theorem 5 (Consistency): Assume there is δ > 0 such that

α(1− (2∆ + 2)α) ≥ (1 + δ)β (4)

Then, except with an exponentially small probability (in
T), Nakamoto consensus satisfies T -consistency under the
assumption that the network latency is bounded by ∆.

Authorized licensed use limited to: University of Central Florida. Downloaded on October 11,2025 at 17:37:10 UTC from IEEE Xplore. Restrictions apply.

SAAD et al.: REVISITING NAKAMOTO CONSENSUS IN ASYNCHRONOUS NETWORKS 849

The consistency property in (4) can also be interpreted
as the common prefix property in [6]. The T -consistency
specifies that the two ledgers must share a common prefix after
pruning the last T blocks from their chains (C⌈T1 ⪯ C2). More-
over, in [7] (Section 3.5), the authors mention “for instance,
in the Bitcoin application, we are interested in achieving
T -consistency for T = 6.” This is similar to our formulation
of the ideal world functionality and its proof, where we prove
that (C⌈k1 ⪯ C2, for k = 6). However, in the HashSplit attack,
we show that the adversary violates the consistency property
by deviating from the ideal world functionality.

E. Key Takeaways

Theoretical models proposed by Garay et al. [6] and
Pass et al. [7] have generated an ecosystem impact by signif-
icantly enhancing our understanding of the Bitcoin network.
Although our ideal world functionality is inspired from their
models, we make an effort to embrace practical aspects of
Bitcoin implementation. For that purpose, our ideal world
functionality incorporates mining and non-mining nodes as
well as their actions when presented with varying protocol
conditions (i.e., select the earliest received block if more than
one block is mined in a round).

In the rest of the paper, we perform a data-driven study to
investigate the size |M | of the mining nodes and the block
propagation patterns in the network. Analyzing these two
aspects is critical for the following reasons. Discovering the
size of mining nodes |M | will justify the need to create a
distinction between mining and non-mining nodes in our ideal
world functionality. The difference between |N| and |M | will
empirically show the degree of mining centrality in the current
network. Moreover, variation in the block propagation pattern
of the mining nodes M is necessary to highlight network
asynchrony.

III. DATA COLLECTION

In this section, we present our data collection system used
for conducting measurements and analysis. Prior to highlight-
ing the system details, it is important to discuss the Bitcoin
network anatomy and the characteristics of reachable and
unreachable nodes.

A. Bitcoin Peer-to-Peer Network

Broadly, there are two types of Bitcoin full nodes, namely
the reachable nodes and the unreachable nodes. The reach-
able nodes establish outgoing connections as well as accept
incoming connections from other reachable and unreachable
nodes. The unreachable nodes (often behind a NATs [10])
only establish outgoing connections. For simplicity, we can
characterize the Bitcoin network between the reachable space
and the unreachable space, as shown in Figure2.

It is argued that mining pools prefer to host their mining
nodes in the unreachable space due to security concerns.
As such, if we assume that all mining nodes exist in the
unreachable space, it implies that mining nodes cannot accept
incoming connections from other mining nodes, and their

Fig. 2. An illustration of our data collection system contextualized in
the Bitcoin network. Mining pools can have reachable (Mining Pool A),
unreachable (Mining Pool C), or both (Mining Pool B) types of nodes.
Note that unreachable nodes cannot connect with each other. Therefore,
a block must appear in the reachable space to reach other miners. Our crawler
connected with the reachable nodes to receive the blocks relayed by the
mining pools.

blocks will have to be relayed by the non-mining nodes in the
reachable space to reach other mining nodes. This assumption
alone reflects an asynchronous network that deviates from
the ideal world functionality and therefore vulnerable to the
attack construction presented in §VI. Moreover, hosting only
the unreachable nodes also adds delay in block propagation
since the block is first relayed to a reachable node which then
relays the block to its connections. This delay is undesirable
for the miner and the Bitcoin network at large [11]. To further
understand these arguments, we reached out to developers
and authors of prior works. From our discussions, we learned
that there is no empirical evidence to support the argument
that all the mining nodes exist in the unreachable space.
In fact, mining pools host both reachable and unreachable
mining nodes. From those discussions, we made the following
characterizations.

(1) Mining pools typically host both reachable and unreach-
able nodes. (2) Since two unreachable nodes cannot directly
connect to each other, blocks between the unreachable nodes
are relayed by the reachable nodes. (3) Reachable nodes
are responsible for relaying blocks and maintaining network
synchronization. (4) This block relaying method is followed
even when miners use fast relay networks [27]. (5) Since
reachable nodes are the entry points for a block in the network,
if a crawler connects to a large number of reachable nodes,
it can label these entry points as mining nodes.

B. Data Collection System

We deployed a crawler in the Bitcoin network to connect
with the reachable nodes using the RPC API. Our crawler
node also accepted incoming connections from other reachable
and unreachable nodes. We conducted our study for 5,750
consecutive blocks (≈47 days). The default Bitcoin Core client
does not support large-scale network mapping by limiting

Authorized licensed use limited to: University of Central Florida. Downloaded on October 11,2025 at 17:37:10 UTC from IEEE Xplore. Restrictions apply.

850 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Fig. 3. The number of nodes to which our crawler connected during 47 days
of data collection. The x-axis denotes the time represented as the number
of consecutive blocks and the y-axis denotes the node count. We connected
to ≈103K nodes during the measurement duration with ≈10,459 reachable
nodes present in the network at any time. The maximum number of reachable
nodes present in the network at any time was 13,134.

the outgoing connections to 10 nodes only. To overcome
this limitation, we modified the Bitcoin source code and
increased the file descriptor limits on our crawler. We did not
make any additional changes to the source code (i.e., disable
block forwarding) to comply with the ethical standards.6

In 47 days, we connected to 103,895 unique IP addresses,
including 70,148 IPv4, 24,895 IPv6, and 8,852 Tor addresses.
In Figure 3, we show the number of nodes to which our crawler
was connected at any time. We found that on average, ≈10,459
nodes were present in the network. The maximum number of
nodes to which we connected at any time was 13,134.

Compared to our previous measurements in [1], our new
experiments revealed that the Bitcoin network size has
increased over the years. In [1], we connected to 36,360 unique
IP addresses over five weeks, including 29,477 IPv4, 6,391
IPv6, and 522 Tor addresses. In our new experiment, we con-
nected to 103,895 unique IP addresses, including 70,148 IPv4,
24,895 IPv6, and 8,852 Tor addresses. Although there is a
general increase among all address types, the number of Tor
addresses increased by ≈16 times, indicating that Bitcoin users
are adopting more privacy-preserving node hosting techniques.
Figure 2 provides an illustration of our data collection system
in the context of the Bitcoin peer-to-peer network.

IV. IDENTIFYING THE MINING NODES

To detect the mining nodes, we used the Bitcoin RPC
API to sample the network information and developed a
heuristic to detect the mining nodes. The Bitcoin RPC API
command getblockchaininfo provides information about the
latest block on the blockchain. We deployed a socket listener
at the RPC client-side implementation to record the arrival
of a new block from a mining node. When a new block
was received, it generated an interrupt that invoked the get-
peerinfo API. The getpeerinfo renders up-to-date interactions
with all connected peers. A sample interaction with one
peer is shown in Figure 4 and the key variables to note
are “addr”, “lastsrecv”, “synced_headers”, “synced_blocks”,

6When connected with thousands of nodes in the network, disabling block
forwarding may cause some concerns since connected nodes may not benefit
from the opportunity of receiving a newly mined block earlier than they
actually receive it.

Fig. 4. A sample JSON output when a block is received by our crawler
from a peer. Here, “addr” is the IP address of the peer to which the crawler is
connected to, “synced_headers” is the height of blockchain header at which
the crawler has synchronized with the node, and “inflight” is the block that
the node is relaying to the crawler.

and “inflight.” “addr” is the connected peer’s IP address,
“lastrecv” is the latest UNIX timestamp at which the peer
relayed any information, “synced_headers” is the last block
header message sent by the peer, “synced_blocks” is the last
block INV message sent by the peer, and “inflight” is the block
relayed by the peer. In terms of our ideal world functionality,
“synced_blocks” renders the view VIEWPi

C of a peer Pi with
the chain tip at C. An update on the tip C + 1 is captured
by “synced_headers”. Using this information, we developed a
heuristic to detect the mining nodes.

A. Heuristic

For a peer Pi, when the blockchain view is updated from
VIEWPi

C to VIEWPi

C+1, if the “synced_headers” value and the
inflight value are equal to C + 1, then the “addr” value is the
mining node Pi ∈M ’s IP address.

The heuristic above is a mapping between the informa-
tion exposed by the RPC API and the Bitcoin network
traffic of a crawler. For more clarity on the heuristic,
revisit Figure 4 that shows a sample interaction of a crawler
connected to peers in N with its blockchain tip C = 570366
(“synced_blocks”=570366). When the crawler receives an
update “570367” from getblockchaininfo, it checks the infor-
mation of all its connected peers using getpeerinfo. One
information sample of a connected peer is shown in Figure 4.
For each peer, the crawler checks if “synced_headers” value
is 570367 (C + 1). If the crawler is downloading that block
from the mining node, the “inflight” value is also set to C+1.
The example in Figure 4 shows that the “inflight” value is
“570367,” hence the “addr” is the mining node’s IP address.

B. Results

We report our findings in Figure 5. To preserve the
anonymity of the mining nodes, we mask the last two octets
of their IP addresses. Overall, we discovered 871 mining
nodes. Among them, 637 (73.1)% used IPv4, 163 (18.7%)
used IPv6, and 71 (8.15)% used Tor (OnionCat) addresses.
Our results indicate that the mining pools use Tor to shield
their nodes from the routing attacks [28]. Compared to our
previous study conducted last year [1], our new results show
a notable change in the Bitcoin P2P network. Previously,

Authorized licensed use limited to: University of Central Florida. Downloaded on October 11,2025 at 17:37:10 UTC from IEEE Xplore. Restrictions apply.

SAAD et al.: REVISITING NAKAMOTO CONSENSUS IN ASYNCHRONOUS NETWORKS 851

Fig. 5. Results obtained by applying the mining node detection heuristic.
The histograms show the percentage of blocks contributed by mining nodes.
We mask the IP addresses of the mining nodes to preserve their privacy. The
subplot is the CDF showing the distribution of IP addresses with respect to
the blocks produced.

we identified 359 mining nodes in the network during 35 days
of data collection. Our recent results indicate an increase in
the number of mining nodes with two plausible explanations.
First, due to an increase in the network hash rate, more mining
pools have joined the network thereby increasing the number
of mining nodes. Second, a significant mining decentralization
has occurred over the years with the percentage of unknown
mining pools increasing from 10% in 2020 to ≈ 48% in
2021 [29]. The decentralized mining power has resulted in
new miners joining the network.

With the overall increase in the network size (§III-B),
including the number of mining nodes, a few logical inferences
can be made regarding the Bitcoin network. First, since
the number of outgoing connection slots in Bitcoin Core
has not changed in the last few years, an increase in the
number of nodes would have logically contributed to the
network asynchrony. Second, the increase in the number of
mining nodes reflects that Bitcoin mining is displaying trends
of decentralization. As such, mining decentralization along
with an increasing network size means a higher diversity in
the block propagation patterns. As we later show in §VI,
non-uniform block propagation is at the core of network
asynchrony and the HashSplit attack. Therefore, our new
results indicate that the Bitcoin network has become more
vulnerable to the attack.

V. BITCOIN NETWORK ASYNCHRONY

After identifying the mining nodes, we analyzed the network
communication model to validate its compliance with the ideal
world functionality. Our main objective was to understand the
variance in the block propagation pattern of the mining nodes
based on their network reachability. Using that observation,
we validated the network asynchrony in Bitcoin.

The most commonly referenced theoretical model in this
context is by Pass et al. [7] in which they analyzed the Bit-
coin blockchain consistency in the non-lock-step synchronous
network. The non-lock-step synchronous network allows an

adversary to delay the block by a parameter ∆, giving
the adversary a head start mining advantage. Pass et al. [7]
assumed that after ∆, all the mining nodes simultaneously
receive a block to start the next round. Although Pass et al. [7]
called their model “asynchronous,” however, Ren [8] showed
that the model is actually non-lock-step synchronous.

Ren [8] further specified that an asynchronous model is
weaker than the non-lock-step synchronous model whereby
an adversary can arbitrarily delay blocks in order to fork the
blockchain. In other words, one of the key outcomes of the
asynchronous model is a fork caused by the delay in block
delivery. Note that in our ideal world functionality, if miners
receive two valid blocks in a round, they will mine on the
block that they receive first while keeping the other block
as a fork. We observe that as long as the network is neither
lock-step synchronous nor non-lock-step synchronous, such
forks can be created without arbitrarily delaying the block
delivery to the mining nodes. This situation can be created if
the mining nodes receive at least two blocks in each round
and both blocks are received at different times. In line with
Ren’s [8] definition, a network where this mining activity can
be orchestrated is weaker than both lock-step synchronous and
non-lock-step synchronous networks. Therefore, we call it an
asynchronous network where heterogeneous latency combined
with the principles of block mining, allows the adversary to
fork the blockchain.

As mentioned above, the prerequisite to an asynchronous
model would be that the mining nodes (1) receive blocks
at different times, and (2) do not form M × M topology.
In this section, we show that these two observations can be
made in the current Bitcoin network, thus satisfying the notion
of “asynchrony” established in [8]. In §VI, we will further
demonstrate how the adversary exploits the asynchronous
network to maintain a fork by orchestrating concurrent mining
on two branches of the public chain.

To analyze the block propagation pattern among the mining
nodes, we collected information from Bitnodes data propaga-
tion API [30].7 The Bitnodes data propagation API reports
the block reception time for the first 1,000 reachable nodes
that report the block before the other reachable nodes. For our
analysis, we assumed that the 871 mining nodes are among
those fast 1,000 nodes. Our assumption in this case helps in
constructing a lower bound estimate for the adversary in order
to partition the mining nodes. If 871 nodes with the minimum
block propagation delay experience non-uniform delay in the
block reception, we can generalize that observation across
the actual mining nodes. Moreover, if in practice, the mining
nodes are not among the 1,000 nodes with the minimum block
propagation delay, then the network becomes more vulnerable
to the HashSplit attack (§VI)

Block Propagation Among Mining Nodes: Through the data
propagation API, we observed that no two block propagation
patterns are the same, and some blocks propagate faster than
others. In Figure 6, we show a sample from our measurements

7We recently discovered that the RPC API, despite being useful for mining
nodes detection, may not yield desirable results for the block propagation
delay in the network. For that purpose, we found an alternative source in
Bitnodes data propagation API.

Authorized licensed use limited to: University of Central Florida. Downloaded on October 11,2025 at 17:37:10 UTC from IEEE Xplore. Restrictions apply.

852 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Fig. 6. Block propagation pattern of two miners Ma and Mb at heights
800552 and 800553, respectively. Ma’s block reached |M |/2 miners in
228 milliseconds and |M | miners in 276 milliseconds. Mb’s block reached
|M |/2 miners in 1,108 milliseconds and |M | miners in 1,337 milliseconds.

consisting of two consecutive blocks at heights 800552 and
800553, respectively. For simplicity, we refer to the miners
of blocks 800552 and 800553 as Mb and Ma, respectively.
We observed that Ma’s block propagated faster than block
Mb’s block. Ma’s block reached 435 nodes in 228 millisec-
onds, and 871 nodes in 276 milliseconds. In contrast, Mb’s
block reached 435 nodes in 1,108 milliseconds and 871 nodes
in 1,337 milliseconds. As discussed in the previous section,
we use |M | = 871 nodes with the minimum propagation
delay as an illustrative example to model the mining nodes.
Therefore, |M |/2 = 435 nodes become 50% of the mining
nodes.

From the analysis above, we derived the following con-
clusions. (1) The current Bitcoin network is neither lock-step
synchronous [6] nor non-lock-step synchronous [7], [31], [32].
(2) The block propagation pattern suggests that the mining
nodes do not form a completely connected M ×M topology.8

The mining nodes topology is analogous to our illustration
in Figure 2, where Mining Pool A is two hops away from
Mining Pool B, and Mining Pool C is one hop away from
Mining Pool B. If Mining Pool B broadcasts a block through
its mining node, Mining Pool C is likely to receive it before
Mining Pool A. (3) Variations in the propagation suggest
that the mining nodes have varying network reachability.
(4) Based on the observed network characteristics and the
specifications provided in [8], the Bitcoin network can be
considered asynchronous.

VI. THE HashSplit ATTACK

Nakamoto’s consensus in a non-lock-step synchronous net-
work increases the fork probability, wastes the effort of the
honest miners, and lowers the cost for the majority attack [7],
[11], [13]. Moreover, as indicated by Pass et al. [7], the prob-
lem becomes worse if the network is fully asynchronous,
thus allowing an adversary to mount new attack strategies to
violate the blockchain safety properties. Since our measure-
ments indicate that the Bitcoin network is asynchronous, the
next objective becomes formulating a new and feasible attack
that violates the common prefix (Qcp) and the chain quality

8Prior work [10] also reported that that mining nodes do not have a high
network outdegree and they typically follow the standard node configurations.
Our findings are consistent with the prior work.

Fig. 7. Generalized illustration of Figure 6. For simplicity of modelling,
we assume a uniform hashing power distribution in M (i.e., M1 ≈ |M |/2 ≈
51% hash rate and i.e., M2 ≈ |M |/2 ≈ 49% hash rate). Am is well
connected compared to Hm. If Hm and Am concurrently produce a block,
Am wins race due to Hm’s propagation delay. Here ta,1, ta,2, ta,3 and ta,4

are times when Am’s block reaches 50% miners, 100% miners, 50% network,
and 100% network. Accordingly, th,1 . . . th,4 are the corresponding values
for Hm.

(Qcq) properties with high probability. Towards this objective,
we present HashSplit which allows an adversary to exploit
the asynchrony and orchestrate concurrent mining on multiple
branches of a public chain to violate Qcp and Qcq .

HashSplit is a lower bound construction and it shows that
an adversary with 26% hash rate can violate both Qcp and Qcq

with high probability. The key idea behind HashSplit attack is
that due to varying block propagation pattern, an adversary
can compute a block and withhold it until another honest
miner also produces a block. As the honest miner’s block
propagates in the network, the adversary releases its own block
to 51% of the mining nodes. As mentioned in the ideal world
functionality, when a miner receives more than one valid block
in a round, it mines on the earliest received block. As a result,
the 51% of the miners mine on the adversary’s block while
49% of the miners mine on the other block. With 51% of the
miners working to extend the adversary’s block, the probability
of the honest miner’s block being accepted in the long run
reduces in each round. By adopting this strategy, the adversary
can continuously fork the chain whenever it mines the block
and keep invalidating the work of other honest miners, thereby
violating the chain quality. In case the adversary sustains the
fork for a few blocks, it may also violate the common prefix
property.

A. Threat Model and Attack Objectives

For HashSplit , we assume an adversary Am ∈M with less
than 51% hash rate. Am follows the experiment methodology
in §III–§V to connect to all Pi ∈ N, identify the mining nodes
M , and estimate their hashing power using the block mining
rate (Figure 5). Additionally, Am follows the measurement
technique of Bitnodes data propagation API [30] to obtain the
block propagation pattern of each mining node in the network.
Using the block propagation pattern, Am calculates how a
block generated by each Pi ∈ M reaches all Pi ∈ N. Am

then maintains a direct connection with each mining node to
instantly send or receive blocks. If Am samples the block

Authorized licensed use limited to: University of Central Florida. Downloaded on October 11,2025 at 17:37:10 UTC from IEEE Xplore. Restrictions apply.

SAAD et al.: REVISITING NAKAMOTO CONSENSUS IN ASYNCHRONOUS NETWORKS 853

propagation pattern of each Pi ∈M , Figure 6 can be expressed
in terms of the general model in Figure 7. Note that Figure 7
is a generalized illustration that can be abstracted from any
sequence of non-uniform block propagation patterns of two
mining nodes, irrespective of the absolute delay.

Figure 7 shows that Am has a strong network reachability
like Ma in Figure 6, while Hm (an honest miner) has a weaker
network reachability like Mb in Figure 6. From Figure 6,
Am can precisely determine the time at which each Pi ∈ N
receives a block. By calculating the difference in the block
generation time and the time at which each Pi ∈ N receives the
block, Am can calculate the delay in the block reception for
each Pi ∈ N. For each Pi ∈M , we define the reachability time
Ti,j = [ti,1, ti,2, ti,3, ti,4] as four time indexes at which the
block is received by 50% miners, 100% miners, 50% network,
100% network.

We further assume that each Pi ∈M , except Am, conforms
to the ideal functionality such that when any Pi ∈M generates
a block, it immediately releases the block to the network
without withholding. Moreover, when a Pi ∈M receives two
blocks with a hash pointer to the same parent block, Pi ∈M
gives a time-based precedence to the block received earlier,
and mines on top of it. The time-based precedence is a mining
policy proposed by Nakamoto [5] and is currently deployed
in Bitcoin Core clients. Finally, we assume that (1) Am

cannot influence the communication model of other Pi ∈ N
by launching routing attacks [9], [15], and (2) there is no
other attack (i.e., selfish mining) taking place concurrent with
the HashSplit attack. We specifically model HashSplit for a
weaker adversary as a lower bound construction. Logically, the
attack is more favorable for a stronger adversary considered
in prior works on Bitcoin partitioning attacks [7], [9], [11].

Attack Objectives: Given that Am is a miner with a view
of the network’s communication model, Am can: (1) deviate
from the ideal functionality and violate Qcp and Qcq , (2)
waste the mining power of honest miners, and (3) prevent
non-mining nodes from generating or receiving k-confirmed
transactions [5]. In HashSplit , Am achieves these goals by
exploiting the block propagation pattern to split the public
chain into two branches C1 and C2, and the mining nodes M
into two groups M1 and M2. Here, M1 is the group of miners
mining on branch C1, while M2 is the group of miners mining
on branch C2. In a perfect split, Am splits the network hash
rate into C1 ← α = 0.51 (mined by M1), and C2 ← β = 0.49
(α + β = 1) (mined by M2, and mines on the branch with a
higher hash rate. To violate Qcp for any Pi ∈ N, Am ensures
that C⌈k1 ⪯̸ C2 for k = 6. To violate Qcq , Am ensures that
for any Pi ∈ N, µi − µ′i ̸= ϵ (the blockchain ledger has
disproportionately high blocks mined by the adversary). In the
following, we show that the HashSplit adversary meets these
objectives with high probability.

B. Attack Procedure

1) Identifying Vulnerable Nodes: To split the blockchain,
Am first identifies the vulnerable mining nodes with a high
reachability time by running Algorithm 1. In Algorithm 1,
Ta,j and Ti,j are reachability times for Am and other

Algorithm 1 Identifying Vulnerable Mining Nodes

1 Input: Reachability time of the adversary
(Ta,j = [ta,1, ta,2, ta,3, ta,4]), and the reachability
time of the other mining nodes
(Ti,j = [ti,1, ti,2, ti,3, ti,4])

2 Initialize: aList, bList, cList, dList
3 Initialize: aMax, bMax, cMax, dMax = 0
4 for i = 0; i < |M |; i++ do
5 δ1 = ti,1 − ta,1, aList ← δ1

6 if δ1 > aMax then
7 aMax = δ1

8 δ2 = ti,2 − ta,2, bList ← δ2

9 if δ2 > bMax then
10 bMax = δ2

11 δ3 = ti,3 − ta,3, cList ← δ3

12 if δ3 > cMax then
13 cMax = δ3

14 δ4 = ti,4 − ta,4, dList ← δ4

15 if δ4 > dMax then
16 dMax = δ4

return: aList, bList, cList, dList, aMax, bMax, cMax

Pi ∈M , respectively. Am initializes four lists (aList. . . dList)
and four variables (aMax. . . dMax). For each Pi ∈ M , Am

computes the time windows δ1 . . . δ4 that represent the differ-
ence between the block propagation time of Am and the target
mining node. For intuition, we again refer to Figure 6, in which
if assume Ma as Am and Mb asHm, then Algorithm 1 outputs
δ1 = 880, δ2 = 1061 milliseconds, respectively. Therefore,
Algorithm 1 provides the difference in the reachability time
of all Pi ∈M relative to Am’s reachability time. Additionally,
Algorithm 1 also determines the most vulnerable node with
the maximum reachability time difference, which can be the
easiest target to initiate the split. Note that we have used four
discreet time windows (δ1 . . . δ4) for simplicity. In practice,
the adversary can compute the mining node’s reachability
with respect to any reachable mining or non-mining node as
shown in Figure 6. This computation will increase the attack
precision.

2) Blockchain Splitting: After discovering the vulnerable
nodes, Am splits the blockchain into two branches, C1 and C2,
and miners into two groups, M1 and M2, using algorithm 2.
We define the combined hash rate of M1 as α and M2 as β.
algorithm 2 provides two attack strategies to achieve the split.

Strategy 1: In this strategyAm produces a block br+1 before
any Pi ∈M , and withholds it. Am waits for another Pi ∈M
to produce a block b′r+1. With the apriori knowledge of b′r+1

propagation pattern in the network (Algorithm 1), Am releases
br+1 to M1 while b′r+1 reaches M2. As a result, when b′r+1

reaches M1 after ta,1, M1 will not mine on it (time-based
precedence [5]). However, by ti,2, M2 receive b′r+1 and start
mining on it. Since the miners mine on the earliest received
block (br+1 for M1 and b′r+1 for M2), the blockchain forks
into two branches C1 ← α and C2 ← β.

Strategy 2: In this strategy, an honest miner Pi ∈ M
produces the block b′r+1 before Am. Since Am knows that
b′r+1 will take ti,1 time to reach M1 (see Figure 7), Am

Authorized licensed use limited to: University of Central Florida. Downloaded on October 11,2025 at 17:37:10 UTC from IEEE Xplore. Restrictions apply.

854 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Algorithm 2 Attack Procedure (Split Ledger)

1 Input: M , Am

2 Case 1: Am finds br+1 before any Pi ∈M
3 Strategy 1: Am waits for another Pi ∈M to find

b′r+1. When Am receives b′r+1 from Pi ∈M , Am

releases br+1 only to M1 before M1 receive b′r+1.
Am does not release br+1 to M2, which invariably
receive b′r+1 from the other miner at ti,2 (Figure 7).

4 Case 2: Any Pi ∈M finds b′r+1 before Am

5 Strategy 2: Am violates the ideal functionality (see
onStart in Figure 1) and keeps mining br+1. By ti,1,
b′r+1 reaches M1 miners. If Am finds br+1 before
ti,1, it releases br+1 to M2 before b′r+1 reaches them.

6 Result: In Strategy 1, M1 receives br+1 and M2

receives b′r+1. In Strategy 2, M1 receives b′r+1 and
M2 receives br+1. In both cases, the chain C splits
into two branches C1 and C2, and the network hash
rate into α and β.

violates the ideal functionality and keeps mining for br+1 until
ti,1. If Am succeeds in mining br+1 by ti,1, Am will release
br+1 to the other set of miners (M2) to which b′r+1 is yet to
reach. As a result, and similar to Strategy 1, the blockchain
splits into C1 ← α and C2 ← β. Therefore, algorithm 2
provides two strategies to split the chain into two branches.

Perfect Split: As described in §VI-A, the perfect split leads
to C1 ← α = 0.51 and C2 ← β = 0.49. If Am, with a hash
rate α1, mines on C1, we define the combined hash rate of all
miners in M1 as α = α1 + α2. Am can achieve the perfect
split since it knows the block propagation pattern and the hash
rate distribution (Figure 7) of all the miners. Am can time both
strategies in algorithm 2 to achieve the perfect split such that
α1 + α2 = 0.51.

Without losing generality, in the rest of the analysis we
assume: (1) Am achieves perfect split from algorithm 2,
(2) there are four miners in the network (Am, h1, h2, and h3),
(3) Am and h1 mine on C1 with α1 = 0.26 and α2 = 0.25,
(4) h2 and h3 mine on C2 with hash rates β1 = 0.25 and
β2 = 0.24, respectively (β = β1 + β2 = 0.49), and (5) Am

has block propagation pattern similar to Ma in Figure 6
and all other miners have block propagation patterns of Mb

in Figure 6. At ta,1, Am’s block reaches h1, and reaches both
h2 and h3 at ta,2. Similarly, for h2, th,1 and th,2 are times at
which Am and both h2 and h3 receive a block. We can extend
the same propagation sequence for h2 and h3.

We make these assumptions to simplify the analysis. The
model can be easily generalized to more than four miners
with varying hash rates and reachability times. The key idea
is that as long as there is variation in block propagation
patterns of the mining nodes (irrespective of the actual delay
value), an adversary with better network reachability and faster
block propagation can split the network and trigger concurrent
mining on multiple branches of the public blockchain.

3) Block Race: Once the perfect split is achieved, the
two chains, C1 and C2, enter in a block race. To formally
analyze the race conditions, we first revisit the mathematical
underpinnings of the Nakamoto consensus in Bitcoin.

Bitcoin mining can be modeled as a Poisson process with
inter-block times exponentially distributed with mean τ =
600 seconds. A valid block has the double hash of the block
header less than the difficulty SHA256(SHA256((Header))<
d ∈ [0, 2256 − 1]. On average, a miner computes m = 2256/d

hashes to mine a block [33]. With the total network hash rate
α+β, m = (α+β)×τ is the total number of hashes required
to mine a block at the specified block time τ [33]. When the
hash rate is split into α and β (algorithm 2), the time required
to mine the next block on each branch becomes to = m/α
and t′o = m/β. In other words, after executing algorithm 2, the
next block from C1 is mined at to, and at t′o for C1, respectively.
Therefore, the probability that C1 succeeds in producing the
block before C2 becomes t′o/(to + t′o) = α/(α+β) [25], [33],
[34]. Similarly, the probability that Am mines the next block
on C1 before h1 is α1/(α1 + α2), and the probability that h1

mines the next block on C1 before Am is α2/(α1 + α2). This
analysis can be easily extended to the miners h1 and h2 on
the branch C2.

After executing algorithm 2, Am needs to maintain the fork
for k consecutive blocks to violate Qcp. However, if the fork
gets resolved and the resulting chain has more blocks than
100α1 (i.e., out of 100 blocks, more than 26 mined by Am),
Qcq is violated. Note that since there are two public chains,
if the fork gets resolved before k, and C1 is the winning chain,
Qcq is violated even when Qcp is preserved. Considering these
cases, in the following, we concretely specify the conditions
under which the HashSplit attack succeeds or fails:

1) If the forks get resolved before k blocks and C1 wins,
Qcq is violated, and the attack succeeds partially.

2) If the forks persist for k blocks and get resolved at k +
1 block with C1 as the winning branch, both Qcp and
Qcq are violated, and the attack succeeds completely.

3) If the forks get resolved before or after k blocks and C2
wins, Am loses all blocks, and the attack fails.

Clearly, HashSplit relies on the block race outcomes in
which the blockchain forks persist or get resolved. In Figure 8,
we formally analyze all outcomes of a block race along with
their probability distribution and Am’s strategies for the next
round. We define a random variable X that specifies the
probability distribution of the block race outcome in Figure 8.
We further define F and R as the sum of events in which forks
persist or get resolved. In (5) and (6), we show the probability
P[X = F] and P[X = R].
P[X = F] = α1(1− α2)(1− β1)(1− β2) + α1β1(1− α2)

× (1− β2) + α1β2(1− α2)(1− β1) + α1β1

× β2(1− α2) + α1α2(1− β1) + (1− β2)
+ α2β1(1− α1)(1− β2) + α2β2(1− α1)
× (1− β1) + α2β1β2(1− α1) + α1α2

× β1(1− β2) + α1α2β2(1− β1) + α1α2β1β2

+ β1β2(1− α1)(1− α2) + (1− α1)(1− α2)
+ (1− β1)(1− β2)

P[X = F] = 3α1α2β1β2 − 2α1α2β2 − 2α1β1β2 − 3α2β1β2

− 2α1α2β1 + α1β2 + 2α2β2

+ 2β1β2 + α1α2 + α1β1 + 2α2β1

Authorized licensed use limited to: University of Central Florida. Downloaded on October 11,2025 at 17:37:10 UTC from IEEE Xplore. Restrictions apply.

SAAD et al.: REVISITING NAKAMOTO CONSENSUS IN ASYNCHRONOUS NETWORKS 855

− β2 − α2 − β1 + 1 (5)
P[X = R] = α2(1− α1)(1− β1)(1− β2) + β1(1− α1)

(1− α2)(1− β2) + β2(1− α1)(1− α2)(1− β1)
P[X = R] = 2α1α2β1 + 2α1α2β2 + 2α1β1β2 − 3α1α2β1β2

+ 3α2β1β2 − α1α2 − α1β1 − α1β2 − 2α2β1

− 2α2β2 − 2β1β2 + α2 + β1 + β2 (6)

Plugging the hash rate of each miner from our threat model,
P[X = F] and P[X = R] become 0.6892 and 0.3108,
respectively. From these values and Figure 8, we make the
following conclusions. leftmargin=0.5cm

1) With algorithm 2 as the starting point of a block race,
there is a higher probability that the given fork persists
or new forks appear. This favors the violation of Qcp.

2) The probability that a fork is resolved by an honest
miner on C1 is α2(1−α1)(1−β1)(1−β2) = 0.1275; sig-
nificantly less than 0.6892 and favors Qcq’s violation.9

3) The probability that a fork is resolved by any honest
miner on C2 is β1(1 − α1)(1 − α2)(1 − β2) + β2(1 −
α1)(1 − α2)(1 − β1) = 0.2401. This is the failure
probability for the attack, and it is considerably less than
0.6892.

4) With M miners, potentially M branches can appear
after a block race, although with a negligible probability(∏|M |

i=1 h(i)
)

. More branches increase the probability of
violating Qcp, and we show in Figure 8 how Am can
deal with more than two branches.

5) Block race can be modeled as a state machine in which
the outcomes can be a fork with probability P[Xk = F]
or no fork with probability P[Xk = R] [22], [35].
Figure 9 presents a state machine with S0 and S1

denoting states of forks and no forks, respectively. The
transition probabilities p00, p01, p10, and p11 are P[X =
F], P[X = R], P[X = F], and P[X = R], respectively.

6) Using Figure 9 and incorporating the propagation pat-
tern, we can compute the long term probability of a
forked blockchain that violates Qcp and Qcq .

a) Incorporating propagation advantage: Before com-
puting the stationary distribution of Figure 9, it is important
to incorporate Am’s mining advantage due to delay and block
withholding. For instance, in f1, when Am produces a block
and withholds until h2 or h3 produce blocks, Am can leverage
the waiting time and the block propagation time to extend the
newly mined block. The gap between ta,1 and th,1 (or ta,2

and th,2) provides additional time for Am to mine the next
block. To model this advantage, we first need to characterize
the effect of delay on each miner’s hash rate. Let ta,0, th1,0 ,
th2,0 , th3,0 be times at which Am, h1, h2, and h3 mine
blocks with hash rates α1, α2, β1, and β2, respectively. The
relationship between delay and the hash rate can be obtained
as:

α1 =
τ

ta,0
, α2 =

τ

th1,0
, β1 =

τ

th2,0
, β2 =

τ

th3,0
(7)

9If a fork is resolved by an honest miner, the adversary loses all blocks on
the blockchain. Although, the probability of such an event is low (0.127).

α1 =
τ

ta,0 + ta,1
, α2 =

τ

th1,0 + th,1
,

β1 =
τ

th2,0 + th,1
, β2 =

τ

th3,0 + th,1
(8)

Considering α1 = 0.26, α2 = 0.25, β1 = 0.25, β2 = 0.24,
and τ = 600 seconds, from (7), ta,0, th1,0, th2,0 become
≈ 2308, 2400, 2400, and 2500, respectively. Plugging these
values in (8), the hash rate of each miner becomes α1 =
0.2599, α2 = 0.2499, β1 = 0.2499, and β2 = 0.2399. Note
that Am also has an additional head start mining advantage
if it is the first miner to produce a block on C1. In Figure 8
(f1), when Am mines the block before any other miner, it does
not stop its computations. Instead, Am continues to mine the
next block until another miner produces a block on either
C1 or C2, thereby maximizing Am’s advantage over other
miners. In case Am succeeds in mining the subsequent block,
it follows algorithm 2 to maintain the perfect split by only
releasing the block that is at the same height as the competitive
block. Although this mining advantage can be characterized
to gain deeper insights into the block race, it might add more
complexity to our current analysis. Therefore, for simplicity,
we do not consider the head start mining advantage and instead
rely solely on the propagation delay advantage. By following
this approach, we recognize that the attack success probability
might be less than the true probability that can be obtained by
incorporating the head start mining advantage. However, even
with a potentially lower success rate, we can still show that
Am can violate Qcp and Qcq in the block race.

Using α1 = 0.2599, α2 = 0.2499, β1 = 0.2499, and
β2 = 0.2399, P[X = F] and P[X = R] become 0.6892 and
0.3108, respectively. Using these values, we can construct the
transition probability matrix for Figure 9.

P =

S0 S1

S0 p00 p01

S1 p10 p11

=

S0 S1

S0 0.6892 0.3108
S1 0.6892 0.3108

In (9), we derive the stationary distribution of P to calculate
the long-term probability of a forked blockchain. The station-
ary distribution of P is a row vector π such that πP = π.

0.6892π1 + 0.3108π2 = π1

0.6892π1 + 0.3108π2 = π2, π1 + π2 = 1 (9)

From (9), π1 = 0.689 and π2 = 0.311, and the long-term
probability of a forked chain is greater than the probability of
a single branch. Using the stationary distribution, we evaluate
the impact of HashSplit on Qcp and Qcq .

b) Common prefix property: Our analysis reveals that for
any block race of length k, Qcp is violated (C⌈k1 ⪯̸ C2) with
0.69 probability. For k = 6, P 6 yields P[X = F] = 0.69.
Therefore, HashSplit violates Qcp with a high probability.

c) Common prefix and chain quality: To violate Qcp and
Qcq , a fork needs to persist or get resolved after k blocks,
and C1 is the winning branch. Figure 8 shows that r2 is the
only outcome where forks get resolved to C2 with probability
0.2053. We analyze that by branching S1 in Figure 9 into two
states and calculate the probability of C2 being the winning

Authorized licensed use limited to: University of Central Florida. Downloaded on October 11,2025 at 17:37:10 UTC from IEEE Xplore. Restrictions apply.

856 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Fig. 8. Block race after the Am executes algorithm 2. For each event in the block race, we show the event probability and Am’s next strategy.

Fig. 9. State machine representation of a block race. Transition probabilities
are p00, p01, p10, and p11 are P[X = F], P[X = R], P[X = F], and
P[X = R], respectively.

chain (computed as 0.21). Therefore, both Qcp and Qcq are
violated with a probability of 1− 0.21 = 0.79.10

In summary, HashSplit violates the blockchain safety and
chain quality with a high probability. Moreover, our attack
construction in §VI-B is modeled on nodes with the minimum
block propagation delay. In practice, if the mining nodes are
not among the nodes with the minimum block propagation
delay, the attack becomes more feasible. As noted in §I,
splitting the mining power to lower the cost of the 51% attack
is known in the literature [9], [15], [16]. However, these attacks
require an adversary to disrupt the communication model
which can be detected by the victims. In contrast, the Hash-
Split adversary does not disrupt the communication model.
Instead, the notable aspect of HashSplit is the evaluation of
the network behavior when mining nodes receive blocks at
different times, and if presented with two valid blocks, they
chose to mine on the block that they receive first. These two
aspects create an opportunity for an adversary to leverage the
network asynchrony and fork the chain when the adversary
mines a new block. These characteristics highlight the novelty
of HashSplit over the other attacks proposed on Bitcoin.

10Another way to analyze Qcq violation is by taking into account Am’s
effective hash rate which is more than its default hash rate due to higher
block propagation speed. Moreover, since Am frequently forks the chain after
mining blocks, it naturally increases the number of orphaned blocks. As a
result, if a branch containing Am’s blocks wins, honest miners do not mine
blocks proportional to their hash rate which violates Qcq .

We acknowledge that the asynchronous network can be
exploited in several other ways to launch new attacks similar
to HashSplit or further refine HashSplit by incorporating new
strategies. However, covering all those attacks is beyond the
scope of this paper. Moreover, since the Bitcoin network is
permissionless and dynamic, the information propagation can
significantly vary with time (see [30]). However, irrespective
of those changes, as long as the block propagation pattern of
the mining nodes is different from each other, HashSplit can
be launched by an adversary with better network reachability.

VII. ATTACK COUNTERMEASURES

In this section, we discuss the attack countermeasures.
It can be argued that mining pools can prevent the HashSplit
attack by using dedicated relay servers to communicate blocks.
However, we note that using such techniques have some key
challenges that may inhibit their adoption. First, blockchain
systems that use Nakamoto consensus are considered to be
decentralized, with no apriori coordination among entities that
aim to mine blocks. Second, since the blockchain peer-to-peer
networks are permissionless, new miners can join the network
at any time and use the default network to relay their blocks.
As such, the new miners may be at a disadvantage of using
the default network to relay blocks if other miners are using a
faster relay network. Keeping these challenges in mind, a more
practical approach to counter HashSplit is by to enhancing
the connectivity among the mining nodes in the peer-to-peer
network as well as adding application layer defenses. Our
proposed countermeasures below showcase the possibilities of
creating such countermeasures in Bitcoin.

Since HashSplit exploits asynchronous network and block
propagation pattern, if δ1 . . . δ4 in Algorithm 1 yield to 0, Am

cannot split the mining nodes or leverage a significant mining
advantage [36]. Additionally, M can form M ×M topology,

Authorized licensed use limited to: University of Central Florida. Downloaded on October 11,2025 at 17:37:10 UTC from IEEE Xplore. Restrictions apply.

SAAD et al.: REVISITING NAKAMOTO CONSENSUS IN ASYNCHRONOUS NETWORKS 857

Fig. 10. Evaluation of our Bitcoin client deployed on a custom node.
In ≈700 seconds, the node connected with over 3K reachable nodes. The
average bandwidth consumption over the experiment duration (876 seconds)
was under 8MBPs. The bandwidth consumption was high during the initial
connectivity phase after which it reduced as the connections stabilized.

Bitcoin will exhibit a lock-step or non-lock-step synchronous
network which can be used to counter HashSplit .

In order to expedite block reception and form M × M
network topology, we made a few refinements to the local
version of the Bitcoin Core client [19]. We modified the source
code to allow fast connectivity with Bitcoin nodes. From a
mining node’s perspective, the existing Bitcoin client may not
offer good network reachability to form M×M topology. For
instance, it can take several days for all incoming connection
slots to be full [37]. If those incoming connections include
mining nodes, it would rather be desirable to connect with
them sooner in order to form the desired topology. For that
purpose, we made refinements to our Bitcoin Core client by
adding scripts that allow faster connectivity. We increased
the file descriptor limits on the local machine, crawled IP
addresses of reachable nodes from Bitnodes [30], and used
Bitcoin RPC API to connect with the reachable nodes.
To expedite the connectivity process, we used a shell tool to
enable multiple connection requests in parallel [38].

For performance evaluation, we deployed our client on a
DigitalOcean droplet with 16GB memory and 8 CPUs. Pre-
viously, we conducted the experiment on a local lab machine
with better specifications. However, since most Bitcoin nodes
operate on cloud [30], we re-conducted the experiment on
a cloud machine so that our results are more generalizable.
In our experiment, we evaluated the connectivity speedup and
bandwidth consumption, with results reported in Figure 10.
Our node connected with over 3K reachable nodes in ≈700
seconds, with the average bandwidth consumption under

8MBps (1.9MBps incoming and 5.3Mbps outgoing). The
bandwidth consumption was high during the initial con-
nectivity phase, after which it dropped significantly as the
connections stabilized. The results reported in Figure 10 were
taken from an experiment duration of 876 seconds while only
connecting to IPv4 and IPv6 nodes.

From Figure 10, we note that by direct connectivity and
better reachability, the node can instantly receive blocks from
honest mining nodes, thereby minimizing Am’s advantage.
Moreover, by leveraging publicly available data of Bitnodes
and establishing parallel connections through RPC API, new
mining nodes can quickly connect with a large number of
reachable nodes (including the mining nodes). During the
process, the overall bandwidth consumption is tolerable, espe-
cially after connections stabilize.

We acknowledge that even after connecting to all mining
nodes through this process and ideally forming M × M
topology, the risk of HashSplit attack may still exist. Due to
characteristics of the underlying Internet infrastructure (i.e.,
low bandwidth), the network latency can be heterogeneous
such that two peers connected to the same node can experience
non-uniform propagation delay. Heterogeneous latency can
be leveraged by Am to launch the HashSplit attack even in
M × M topology. Therefore, in addition to network layer
remedies, we also require application layer defenses to counter
the HashSplit attack.

For application layer defenses, we applied a fork resolution
mechanism in our local Bitcoin Core client [19]. We note
from Figure 8, that the victim nodes have multiple branches
of the same length in each round (i.e., C1 and C2) dur-
ing the attack. Particularly, miners on C1 will continuously
receive blocks from Am, immediately followed by blocks
from other honest miners. We leveraged this sequence of
block arrival to eliminate Am’s advantage and reduce the
likelihood of a perfect split. In our proposed fork resolution
method, a node removes the connection and bans the IP
address for twenty-four hours in the event of receiving k = 6
consecutive blocks from it [19]. This means that Am loses a
direct connection to all mining nodes and will not be able
to achieve a perfect split. Am may deploy Sybil nodes in
the network to connect to the victim. However, in that case,
Am will lose δ1 advantage over the victim since the block
will be first relayed to the Sybil and then to the victim node.
Therefore, a combination of high network reachability and fork
resolution mechanism can alleviate the risk of the HashSplit
attack.

VIII. CONCLUSION

In this paper, we formulate the Bitcoin ideal functionality,
identify the mining nodes, and show the network asynchrony
in the real word. Across various measures, we show that the
Bitcoin network is evolving, where known attacks can be
optimized and new attacks can be launched, as demonstrated
by HashSplit . Our work bridges the gap between theory and
practice of blockchain security and draws attention to the
Bitcoin security properties. Moreover, our proposed counter-
measures provide means to mitigate the attack by creating a
lock-step synchronous network.

Authorized licensed use limited to: University of Central Florida. Downloaded on October 11,2025 at 17:37:10 UTC from IEEE Xplore. Restrictions apply.

858 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

REFERENCES

[1] M. Saad, A. Anwar, S. Ravi, and D. Mohaisen, “Revisiting Nakamoto
consensus in asynchronous networks: A comprehensive analysis of
Bitcoin safety and ChainQuality,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Nov. 2021, pp. 988–1005.

[2] P. Das et al., “FastKitten: Practical smart contracts on
Bitcoin,” in Proc. USENIX Secur. Symp., N. Heninger and
P. Traynor, Eds., 2019, pp. 801–818. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/das

[3] S. Matetic, K. Wüst, M. Schneider, K. Kostiainen, G. Karame, and
S. Capkun, “BITE: Bitcoin lightweight client privacy using trusted
execution,” in Proc. USENIX Secur. Symp., 2019, pp. 783–800. [Online].
Available: https://www.usenix.org/conference/usenixsecurity19/
presentation/matetic

[4] G. Naumenko, G. Maxwell, P. Wuille, A. Fedorova, and I. Beschast-
nikh, “Erlay: Efficient transaction relay for Bitcoin,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Nov. 2019, pp. 817–831, doi:
10.1145/3319535.3354237.

[5] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[6] J. A. Garay, A. Kiayias, and N. Leonardos, “The Bitcoin backbone
protocol with chains of variable difficulty,” in Advances in Cryptology
Cham, Switzerland: Springer, 2017, pp. 291–323, doi: 10.1007/978-3-
319-63688-7_10.

[7] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain protocol
in asynchronous networks,” IACR Cryptol. ePrint Arch., vol. 2016,
p. 454, Apr. 2016. [Online]. Available: http://eprint.iacr.org/2016/454

[8] L. Ren, “Analysis of Nakamoto consensus,” IACR Cryptol. ePrint
Arch., Tech. Rep. 2019/943, 2019. [Online]. Available: https://eprint.
iacr.org/2019/943

[9] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking Bitcoin: Routing
attacks on cryptocurrencies,” in Proc. IEEE Symp. Secur. Privacy (SP),
May 2017, pp. 375–392, doi: 10.1109/SP.2017.29.

[10] A. Miller, J. Litton, A. Pachulski, N. Gupta, D. Levin, N. Spring,
and B. Bhattacharjee, “Discovering Bitcoin’s public topology and
influential nodes,” Univ. Maryland, College Park, MD, USA,
Tech. Rep., 2015, p. 54. [Online]. Available: https://www.cs.umd.edu/
projects/coinscope/coinscope.pdf

[11] C. Decker and R. Wattenhofer, “Information propagation in the
Bitcoin network,” in Proc. IEEE P2P, Sep. 2013, pp. 1–10, doi:
10.1109/P2P.2013.6688704.

[12] R. Zhang and B. Preneel, “Lay down the common metrics:
Evaluating proof-of-work consensus protocols’ security,” in Proc.
IEEE Symp. Secur. Privacy (SP), May 2019, pp. 175–192, doi:
10.1109/SP.2019.00086.

[13] M. Saad, V. Cook, L. Nguyen, M. T. Thai, and A. Mohaisen, “Par-
titioning attacks on Bitcoin: Colliding space, time, and logic,” in
Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2019,
pp. 1175–1187, doi: 10.1109/ICDCS.2019.00119.

[14] A. E. Gencer, S. Basu, I. Eyal, R. van Renesse, and E. G. Sirer,
“Decentralization in Bitcoin and Ethereum networks,” 2018, arXiv:1801.
03998.

[15] C. Natoli and V. Gramoli, “The balance attack or why forkable
blockchains are ill-suited for consortium,” in Proc. 47th Annu.
IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2017,
pp. 579–590, doi: 10.1109/DSN.2017.44.

[16] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2016, pp. 3–16, doi: 10.1145/2976749.2978341.

[17] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse
attacks on Bitcoin’s peer-to-peer network,” in Proc. USENIX
Secur. Symp., 2015, pp. 129–144. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity15/technical-sessions/presentation/
heilman

[18] K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining: Gener-
alizing selfish mining and combining with an eclipse attack,” in Proc.
IEEE Eur. Symp. Secur. Privacy (EuroS¶), Mar. 2016, pp. 305–320, doi:
10.1109/EuroSP.2016.32.

[19] Anonymous. (2020). Improved Bitcoin Core to Counter Hashsplit.
[Online]. Available: https://anonymous.4open.science/r/56e77487-0470-
4e10-b634-b13e939863c0/

[20] C. Wang, X. Chu, and Q. Yang, “Measurement and analysis of the
Bitcoin networks: A view from mining pools,” 2019, arXiv:1902.07549.

[21] B. Community. (2019). Six Confirmation Practice in Bitcoin. [Online].
Available: https://en.bitcoin.it/wiki/Confirmation

[22] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining
is vulnerable,” in Financial Cryptography and Data Security. Cham,
Switzerland: Springer, 2014, pp. 436–454, doi: 10.1007/978-3-662-
45472-5_28.

[23] Y. Kwon, D. Kim, Y. Son, E. Y. Vasserman, and Y. Kim, “Be selfish
and avoid dilemmas: Fork after withholding (FAW) attacks on Bitcoin,”
in Proc. Conf. Comput. Commun. Secur., 2017, pp. 195–209, doi:
10.1145/3133956.3134019.

[24] S. Goldberg and E. Heilman, “Technical perspective: The rewards of
selfish mining,” Commun. ACM, vol. 61, no. 7, p. 94, Jun. 2018, doi:
10.1145/3213006.

[25] C. Grunspan and R. Pérez-Marco, “On profitability of selfish mining,”
2018, arXiv:1805.08281.

[26] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish min-
ing strategies in Bitcoin,” in Financial Cryptography Data Security.
Cham, Switzerland: Springer, 2016, pp. 515–532, doi: 10.1007/978-3-
662-54970-4_30.

[27] R. Nagayama, R. Banno, and K. Shudo, “Identifying impacts of
protocol and internet development on the Bitcoin network,” in Proc.
IEEE Symp. Comput. Commun. (ISCC), Jul. 2020, pp. 1–6, doi:
10.1109/ISCC50000.2020.9219639.

[28] M. Apostolaki, G. Marti, J. Müller, and L. Vanbever, “SABRE:
Protecting Bitcoin against routing attacks,” in Proc. Netw.
Distrib. Syst. Secur. Symp., 2019, pp. 1–15. [Online]. Available:
https://www.ndss-symposium.org/ndss-paper/sabre-protecting-bitcoin-
against-routing-attacks/

[29] BitcoinCommunity. Bitcoin Hash Rate Distribution. [Online]. Available:
https://www.blockchain.com/charts/pools

[30] BitcoinCommunity. (2020). Bitnodes: Discovering All Reachable Nodes
in Bitcoin. [Online]. Available: https://bitnodes.earn.com/

[31] J. Zhao, J. Tang, Z. Li, H. Wang, K.-Y. Lam, and K. Xue, “An
analysis of blockchain consistency in asynchronous networks: Deriving
a neat bound,” in Proc. IEEE 40th Int. Conf. Distrib. Comput. Syst.
(ICDCS), Nov. 2020, pp. 179–189, doi: 10.1109/ICDCS47774.2020.
00039.

[32] L. Kiffer, R. Rajaraman, and A. Shelat, “A better method to analyze
blockchain consistency,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2018, pp. 729–744, doi: 10.1145/3243734.3243814.

[33] C. Grunspan and R. Pérez-Marco, “Double spend races,” 2017,
arXiv:1702.02867.

[34] M. Rosenfeld, “Analysis of hashrate-based double spending,” 2014,
arXiv:1402.2009.

[35] Q.-L. Li, Y.-X. Chang, X. Wu, and G. Zhang, “A new theoretical
framework of pyramid Markov processes for blockchain selfish mining,”
2020, arXiv:2007.01459.

[36] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “Modeling the impact of net-
work connectivity on consensus security of proof-of-work blockchain,”
in Proc. IEEE INFOCOM Conf. Comput. Commun., Jul. 2020,
pp. 1648–1657, doi: 10.1109/INFOCOM41043.2020.9155451.

[37] M. Tran, I. Choi, G. J. Moon, A. V. Vu, and M. S. Kang,
“A stealthier partitioning attack against Bitcoin peer-to-peer network,”
in Proc. IEEE Symp. Secur. Privacy (SP), May 2020, pp. 894–909, doi:
10.1109/SP40000.2020.00027.

[38] O. Tange et al., “GNU parallel-the command-line power tool,” USENIX
Mag., vol. 36, no. 1, pp. 42–47, 2011.

Authorized licensed use limited to: University of Central Florida. Downloaded on October 11,2025 at 17:37:10 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/3319535.3354237
http://dx.doi.org/10.1007/978-3-319-63688-7_10
http://dx.doi.org/10.1007/978-3-319-63688-7_10
http://dx.doi.org/10.1109/SP.2017.29
http://dx.doi.org/10.1109/P2P.2013.6688704
http://dx.doi.org/10.1109/SP.2019.00086
http://dx.doi.org/10.1109/ICDCS.2019.00119
http://dx.doi.org/10.1109/DSN.2017.44
http://dx.doi.org/10.1145/2976749.2978341
http://dx.doi.org/10.1109/EuroSP.2016.32
http://dx.doi.org/10.1007/978-3-662-45472-5_28
http://dx.doi.org/10.1007/978-3-662-45472-5_28
http://dx.doi.org/10.1145/3133956.3134019
http://dx.doi.org/10.1145/3213006
http://dx.doi.org/10.1007/978-3-662-54970-4_30
http://dx.doi.org/10.1007/978-3-662-54970-4_30
http://dx.doi.org/10.1109/ISCC50000.2020.9219639
http://dx.doi.org/10.1109/ICDCS47774.2020.00039
http://dx.doi.org/10.1109/ICDCS47774.2020.00039
http://dx.doi.org/10.1145/3243734.3243814
http://dx.doi.org/10.1109/INFOCOM41043.2020.9155451
http://dx.doi.org/10.1109/SP40000.2020.00027

