IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 8, AUGUST 2015 1

Mujaz: A Summarization-based Approach for
Normalized Vulnerability Description

Hattan Althebeiti

, Brett Fazio, William Chen |,

Jamen Park®|and David Mohaisen®| Senior Member, IEEE

Abstract—Public vulnerability databases are an indispensable source of information for tracking vulnerabilities and ensuring their
consistency and readability is crucial for developers and organizations to patch and update their products accordingly. While the prior
works improve consistency, unifying and standardizing vulnerability descriptions is mostly unexplored. In this paper, we present Mujaz,
a multi-task natural language processing-based system to normalize and summarize vulnerability descriptions. In doing so, we
introduce a parallel and manually annotated corpus of vulnerability summaries and annotations that emphasizes several constituent
entities representing a particular aspect of the description. Mujaz employs pre-trained language models, fine-tuned for our
summarization tasks, allowing for joint and independent training for those tasks and producing operational results in terms of ROUGE
score and compression ratio. Using human evaluation metrics, we also show Mujaz produces complete, correct, understandable,
fluent, and uniform summaries. Experts evaluation was conducted to investigate MujaZz's effectiveness, providing simplified, coherent,

and understandable descriptions.

Index Terms—Vulnerability, Neural networks, Datasets, Natural language generation, Text tagging

1 INTRODUCTION

HE vulnerabilities in modern software systems can put

businesses and users at significant risk, making pub-
lic vulnerability disclosure crucial for security information
sharing and risk mitigation [1]. For instance, vulnerabilities
in software have had a catastrophic impact on vendors’
profit and reputation, as demonstrated in [2]. To mitigate
this risk through threat information sharing, MITRE’s Com-
mon Vulnerabilities and Exposures (CVE) [3] was designed
to allow the disclosure of software vulnerability information
in a centralized repository that can be used for improving
the security of the deployed systems. The CVE entry has
multiple attributes for each vulnerability, including a unique
CVE identifier, description, affected software, software ver-
sion, vulnerability types, and other information [4]. The
National Vulnerability Database (NVD) [5], managed by
NIST [6], is synchronized with MITRE’s CVE and seeks to
structure CVE data to help inform stakeholders through a
unified threat information sharing.

The information in CVE/NVD varies [7]], calling for
normalization. As the number of discovered and disclosed
vulnerabilities increases over time, manually addressing
those inconsistencies for a standard becomes significantly
impractical, necessitating the development of an automated
solution to unify vulnerabilities” attributes in a single, con-
cise, and accurate context without any conflicts [2], [8], [9].

Researchers addressed the inconsistency issues in vul-
nerability reports by analyses, understanding, and miti-
gation using various Natural Language Processing (NLP)
techniques [7]], [9], [10], [11]I, [12], [13]], [14], [15], [16]. For

H. Althebeiti and D. Mohaisen are with the Department of Computer Science
at the University of Central Florida (UCF). B. Fazio is with TwoSigma. W.
Chen is with the Carnegie Mellon University.]. Park is with the Department
of Software at the Kyung Hee University. This work was done while all authors
were at the University of Central Florida. D. Mohaisen is the corresponding
author (mohaisen@ucf.edu).

instance, Dong et al. [7] introduced a system that detects
inconsistencies between NVD/CVE and third-party reports,
however, their vulnerability type representation is biased
toward memory corruption. Kithn et al. [16] developed
a system to update the NVD database and improve the
Information Quality (IQ) using structural data, such as
name tags in the description and the Common Vulnerability
Scoring System (CVSS) score, although they only utilized
information within the vulnerability itself, limiting the im-
provement the system can achieve.

Organizations addressed inconsistency issues by creat-
ing their repositories for vulnerabilities [17], [18], but they
are primarily concerned with their products and hardly
address other vulnerabilities in other products, particularly
those without such initiatives. In academia, researchers ad-
dressed the inconsistency issues in vulnerability reports us-
ing various Natural Language Processing (NLP) techniques.
Kiihn et al. [16] developed a system to update the NVD
database and improve the information quality using struc-
tural data (e.g., CVSS score). Dong et al. [7] introduced a sys-
tem that detects inconsistencies in vulnerabilities. However,
their dataset lacks vulnerability type representation and is
biased toward memory corruption vulnerabilities. The lack
of normalized vulnerability reporting costs security analysts
significantly in terms of their man-hours for understanding
the vulnerability reports. Given this gap, we propose a
new approach, called Mujaz, focusing on the vulnerability
description as a source for unified vulnerability reports.
Our Approach. Mujaz addresses the inconsistency
by industry- and vulnerability type-independent
summarization-based technique that varies the underlying
learning objectives to achieve a highly accurate, consistent,
and normalized vulnerability description. We curate a
parallel dataset that consists of three features extracted from
the description, and each is viewed as a task to train a

https://orcid.org/0000-0003-1834-025X
https://orcid.org/0000-0002-3251-3084
https://orcid.org/0000-0003-4387-8780
https://orcid.org/0000-0003-3227-2505

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 8, AUGUST 2015 2

multi-task model independently or jointly with another
feature to produce the target summary.

The rich semantics of a vulnerability description neces-
sitate curating such a dataset because it typically includes
the software name/version, the type of bug/threat, and a
summary describing their interactions. We offer a multi-
task model to abstractively summarize and normalize CVE
description to improve quality. Multiple system variations
are developed and tested to attend to the information nec-
essary for the summary while optimizing two objectives: ®
normalizing the resulting description and @ shortening the
original description in the resulting one.

To achieve both objectives, we build a generic pipeline
based on the transformer architecture using our curated
dataset and deploy its features to generate the summary.
Each feature represents a task that our multi-task model
can learn and predict. Moreover, two or more tasks can be
learned independently, and their predictions can be com-
bined to produce a new summary, providing more deploy-
ment options. To the best of our knowledge, our work is
the first to curate a parallel dataset from a vulnerability
database and deploy it to produce a new standard and
uniform vulnerability description.

Mujaz operates on a dataset that contains the original
CVE description and three manually created features: a
normalized summary (SUM), software name & version in-
formation (SWV), and the details of the bug itself (BUG).
Moreover, our dataset only considers descriptions from reli-
able sources, excluding any third-party reports due to their
inconsistencies. Utilizing public and official sources such as
CVE/NVD ensures reliability and accessibility. We propose
Mujaz, a system that generates a uniform and normalized
summary for a vulnerability regardless of the underlying
structure or quality of the original description by attending
to particular components of the description and utilizing
them in a self-contained manner. The customizable nature
of Mujaz allows us to deploy it for various tasks with
datasets and objectives similar to ours. We evaluate Mujaz
using traditional metrics, measuring the overlap between
the ground truth and the generated summary. However,
missing or including the wrong software names/versions
or bug types could be intolerable. To address this issue, we
present our human metrics to measure the accuracy and
completeness of the generated summary in relation to bug
information. Moreover, we present other metrics to evaluate
the generated content to quantify distinctive aspects con-
cerning human understanding and summary normalization.
Our proposed human metrics extend the evaluation rigor,
ensuring the quality of the generated target summary.
Contribution. Our contributions are as follows: ® We
present Mujaz, an NLP-based pipeline customized on a
parallel dataset and fine-tuned on two pre-trained models
for vulnerability summarization with different parameters
and settings to boost its performance. @ We evaluate Mujaz
across standard metrics commonly used for summariza-
tion along with new metrics that we introduce for human
evaluation to judge various aspects of the generated sum-
maries. ® A byproduct of our work is the curated new
parallel dataset that consists of three features that define
a vulnerability, which will be released along with the code
upon publication. ® Our experts’ evaluations highlight the

effectiveness of Mujaz in producing simplified, coherent,
and easy-to-understand summaries.

Organization. In section [} we present the related work. In
section 4] we present Mujaz’s pipeline, including challenges,
design overview, and details. In section |5, we present our
evaluation. In section |6} we discuss our findings, followed
by a user study to support the efficacy of our approach in
section[7] and conclusion in section

2 RELATED WORK

Vulnerability databases have been scrutinized in the prior
works. For instance, NVD has been analyzed in [9], [22],
where it is shown to be inaccurate. Given the nature of
NVD, most studies rely on statistical or deep learning
models to carry out their analysis. Statistical methods uti-
lize feature (e.g., word) frequency to derive a numeri-
cal representation of a vulnerability summary, capturing
specific patterns/characteristics. In contrast, deep learning
methods utilize different neural network architectures to
learn the underlying features of a summary (unsupervised)
or to approximate the input to the target label (super-
vised). However, most studies focus on identifying software
names/versions, predicting vulnerable versions, or detect-
ing inconsistencies between different databases. We divide
the studies in this space into three major categories.
Contents Enrichment. The first category of studies focused
on improving/enriching the content of NVD [16], [23]] or de-
tecting inconsistencies against third-party reports [7]. As the
number of vulnerability databases increased, inconsistency
and inaccuracy across those databases have been magnified,
calling for methods to ensure consistency and accuracy.

Guo et al. [23] extracted key features from X-Force
Exchange [18] and SecurityFocus [24] to enrich CVE de-
scriptions. While this improves coverage, it does not tackle
description normalization. Moreover, without ground truth,
the supplemented descriptions may inherit inconsistencies
from the sources. Kuehn et al. [16] proposed OVANA,
which leverages vulnerability attributes and NER-extracted
features to predict CVSS scores and update the NVD.
While it improves Information Quality, results varied across
datasets, and the approach does not enforce consistency or
guarantee description accuracy.

To resolve inconsistencies between software names and
versions in NVD and third-party reports, Dong et al. [7]
proposed VIEM, which combines a NER-based module and
a Relational Extractor (RE). The NER module uses word and
character embeddings to identify software names/versions
in descriptions, while the RE module links scattered men-
tions to the correct entity. VIEM effectively addresses
name/version inconsistencies but is limited to memory
corruption vulnerabilities and does not generate normalized
vulnerability descriptions.

Vulnerability Documentation. The diversity of vulnera-
bilities and their associated threats require different forms
of documentation and targeted embedding, which we dis-
tinguish as the second category of works explained next.
Niakanlahiji et al. [25] proposed SECCMiner to analyze
Advanced Persistent Threat (APT) reports. SECCMiner
uses techniques such as Part-of-Speech (PoS) tagging and
Context-Free Grammar (CFG) to extract Noun-Phrases (NP)

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 8, AUGUST 2015 3
TABLE 1: Comparison with Prior Studies

Work Task Target Architecture Metric Score Human Eval.
Dong et al. 7] NER Software names GRU Accuracy 0.98 b 4
Kanakogi et al. [19] Mapping CAPEC Embeddings Recall@10 0.75 X
Gonzalez et al. [20] Classification VDO Labels Majority Vote RBF 0.42 X
Wareus et al. [21] NER CPE Labels Bi-LSTM F1-Score 0.86 X
Our work Summarization Normalized Summary Multi-task T5 F1 Score 0.85 v

from the reports and then uses count-based methods to
measure the importance of NP in a report. NP with the
highest score is passed to the information retrieval system
to map NP to a specific technique or tactic. However, their
dataset is small, covering only 10 years.

Feng et al. [26] introduced IoTSheild, deploying NLP
techniques to extract Internet of Things (IoT) reports and
cluster them into different categories based on their se-
mantics and structure. IoTSheild uses these reports to gen-
erate vulnerability-specific signatures that are deployed in
Intrusion Detection System (IDS) for matching signatures
and detecting exploits associated with them. However, their
dataset was built using honeypots, collecting attacks on
specific IoT devices, thus restricting the generalization.

Developing domain-specific embedding for vulnerabili-

ties allows a better representation, improving the model’s
performance for various tasks [27]. Similarly, Yitagesu et
al. [28] built a targeted embedding using PenTreebank (PTB)
to train a BILSTM network to tag key concepts and technical
tokens, creating an annotated corpus from a vulnerability
description. Although this line of work utilizes some vul-
nerability information, it does not address the shortcomings
in vulnerability databases or aim to fix them.
Vulnerability Classification. These studies map a vulner-
ability to a particular attribute. Gonzalez et al. [20] used
NLP and machine learning approaches to map Vulnerability
Description Ontology (VDO) to a vulnerability based on
a vulnerability description. Similarly, Kanakogi et al. [19],
[29] used NLP techniques with the cosine similarity to
map CVE description to its corresponding Common Attack
Pattern Enumeration and Classification (CAPEC). Three
distinct embedding techniques were used to represent the
description of all CAPEC and the CVE, CAPEC with the
highest similarity to the CVE is assigned to it.

Wareus et al. [21] proposed a method to automate label-
ing CVE with its appropriate Common Platform Enumer-
ation (CPE), which identifies vulnerable versions in NVD.
The model was trained using BiLSTM with a Conditionally
Random Field (CRF) in the last layer to predict the corre-
sponding CPEs from the text description.

Compared to them, Mujaz stands out as we focus on
the descriptive summary of a vulnerability rather than the
structural information. Moreover, Mujaz could be easily
adapted to various vulnerability reports, giving it general-
ization features. Table [1| shows some of the previous works
along with their features (task, target, architecture, metrics,
performance, and whether the human evaluation is used or
not), in contrast to our work.

3 BACKGROUND

In developing Mujaz, we leverage pre-trained models and,
for assessment, employ two large language models for

comparative evaluation. Accordingly, we review these tech-
niques in this section.

3.1

Pre-trained models are language models trained on large
corpora with unsupervised objectives to learn patterns in
text [30]. Most rely on transformers [31]], an architecture
that outperformed earlier baselines, e.g.,, BERT [32], AL-
BERT [33], BART [34], RoBERTa [35], and GPT models [30],
[36], [37]. Transformers eliminate recurrence in RNNs by us-
ing self-attention to capture dependencies while processing
inputs in parallel. Pre-trained models also leverage transfer
learning, introduced in vision [38], [39], [40] and NLP [41],
enabling knowledge transfer to new tasks.

Language models are categorized by training objective:

causal models predict the next token from prior context,
while masked models predict missing tokens given both
sides of context. Pre-training produces weights that can
be reused across tasks, while fine-tuning adjusts them for
specific downstream objectives. We consider BART [34] and
T5 [42] due to their strong performance in summarization
and encoder—decoder architectures, required in Section [4.1}
BART. The Bidirectional and Auto-Regressive Transformer
(BART) [34] is trained with a masked language modeling
objective. It corrupts input text using a noising function
and reconstructs it via a transformer encoder—decoder. The
encoder processes corrupted text, while the decoder predicts
the missing spans. Although not inherently multi-task, we
fine-tuned separate BART instances for different features,
later combining outputs into the target summary. This ap-
proach is resource-intensive since BART has 140M parame-
ters and requires training distinct models with independent
weights and hyperparameters.
T5. The Text-to-Text Transfer Transformer (T5) [42] is a
multi-task model that reformulates every NLP task into
a text-to-text format, requiring only task-specific prefixes.
Like BART, it corrupts and reconstructs text, but corruption
is applied to spans (15% of text, average span length 3),
which yielded optimal performance. Unlike BART, a single
T5 instance consolidates multiple tasks with shared weights
and hyperparameters, making training more efficient. How-
ever, T5 is larger (220M parameters vs. BART’s 140M). In
our work, we fine-tuned the base versions of both models
due to the significant costs of larger variants.

Pre-trained Models

3.2 Large Language Models

Large Language Models (LLMs) extend Pre-trained Lan-
guage Models (PLMs) by scaling model size and training
data, enhancing downstream performance and enabling
new capabilities without changing pre-training objectives or
architecture. Examples include ChatGPT [43], Gemini [44],
and LLaMA 3.1 [45], which can generate human-like text

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 8, AUGUST 2015 4

and engage in dynamic conversations. LLMs differ from
PLMs in three key aspects: (1) In-Context Learning: adapting
to new tasks from natural language instructions without
retraining; (2) Instruction Following: improved ability to in-
terpret and execute diverse natural language tasks; and (3)
Complex Problem-Solving: outperforming PLMs on intricate
tasks such as mathematical word problems.

Fine-tuning LLMs also differs from PLMs due to their
massive parameter size, making local hosting resource-
intensive and often impractical. Fine-tuning is typically
done via APIs, where datasets of input-output pairs are
provided, after which the model can be queried with specific
instructions to generate the desired output.

ChatGPT. ChatGPT is a conversational Al built on the
GPT framework and transformer architecture, optimized
for dialogue. Trained on a vast and diverse corpus, it cap-
tures grammar, context, and cultural references to engage
in natural conversations. It performs tasks ranging from
question answering and code generation to creative writ-
ing. ChatGPT was trained using Reinforcement Learning
from Human Feedback (RLHF) [46] to align outputs with
human preferences. For our experiments, we fine-tuned
ChatGPT 3.5 for 3 epochs, as OpenAl currently limits fine-
tuning to 3.5, while ChatGPT 4.0 [47] (released May 13, 2024)
is available only to certain subscription tiers.

LLaMA 3.1. LLaMA 3.1 is Meta’s most advanced language
model, trained on 15 trillion tokens from public and human-
annotated data. Compared to LLaMA 3, it introduces key
improvements, most notably a context window of 128,000
tokens (vs. 8,192), enabling much longer text processing.
Unlike the closed-source ChatGPT, LLaMA 3.1 is open-
source. It is available in 8B, 70B, and 405B parameters; given
the resource demands of the 405B model and the moderate
complexity of our task, we used the 70B model for a balance
of performance and cost.

4 Mujaz: DESIGN AND TECHNICAL DETAILS

We formulate our problem as a sequence-to-sequence
(Seq2Seq) learning task [48], and Mujaz pursues the abstrac-
tive approach to solve this task. Given a CVE description,
the goal of Mujaz is to summarize the description by ex-
tracting the relevant information for vulnerability analysis
and presenting it in a standardized format as an output. In
this section, we first outline the challenges in developing
a model for summarization and normalization to present a
unified format. Second, we present an overview of Mujaz’s
pipeline along with the goals we aim to achieve.

4.1 Design Challenges

While our problem statement is relatively simple, address-
ing it technically is challenging. In the following, we set up
our design by enumerating the challenges we address.

Challenge 1: Dimensionality. Per §1} Mujaz aims to curate
multiple features from the original CVE description. Utiliz-
ing such features for summarization requires the underlying
model to support dimensional data. Therefore, we propose
deploying a multi-task model with the ability to learn dif-
ferent tasks simultaneously based on the selected dimension
(feature), which enables the model to be self-contained and

comprehensive when combining the output of two different
tasks. Our multi-task model adjusts its parameters to inte-
grate multiple tasks within the same model, giving it the
ability to generate a concise and informative summary.
Challenge 2: Domain-specific Language. Our model should
support domain-specific language (i.e., security) by the ap-
propriate encoding and decoding. For our summarization
task, the model must constitute an encoder to represent the
input and a decoder to produce the output. Unfortunately,
vulnerability descriptions are limited in scope and content,
typically including 1-3 lines of text.

Training a model for vulnerability summarization re-
quires a massive dataset for accurate output. Under realistic
settings, the model’s linguistic capacity will be fixed and
limited for generating a summary with limited labeled data
for model training. On the other hand, pre-trained language
models are already trained on massive textual data and
provide an excellent alternative to bootstrapping our model.
Fine-tuning such a pre-trained model is orders of magnitude
simpler than training a model from scratch and works by
adjusting the model’s weights on a labeled dataset for the
chosen task. Fine-tuning is convenient, fast, and demands
much fewer resources than training a model from scratch.
We employ pre-trained language models using our parallel
dataset for constructing a domain-specific language model.
Challenge 3: Consistency and Evaluation. Mujaz aims to
summarize vulnerability descriptions in a consistent and
accurate manner. We approach this issue systematically
for a unified structure that incorporates critical informa-
tion regardless of the original description organization. We,
however, note that the existing summarization evaluation
metrics are limited to term overlap between the original
text and the generated summary. Given the nature of our
dataset, such metrics are insufficient since the input and
target texts are short, and the overlap is expected to be high.

Vulnerability description also contains important aspects
that render their accuracy paramount. As such, we propose
human metrics to quantify the accuracy, correctness, and
completeness. We also devise additional metrics to judge the
linguistic aspects (e.g., fluency and understanding, which
cannot be measured using conventional methods).

4.2 Pipeline: High-level Overview

Mujaz follows a conventional architecture of an
encoder/decoder-based transformer, as shown in Figure
The pipeline consists of two independent phases illustrating
our design. The first phase represents our parallel dataset
curation, showing how a CVE description is broken into
three features as in @. In this phase, Mujaz integrates
several preprocessing techniques to ensure the high quality
of the input text and the extracted features. The second
phase includes the entire pipeline from @ to ®, depicting a
multi-task transformer model, task specification, multiple
embedding layers, an encoder, and a decoder, which we
review in the following.

The Seq25eq model expects two sequences, representing
an input of size n and a target of size m, as shown in step
0. However, the target text is represented by three distinct
features, each with a corresponding prefix, which designates
the task for mapping X1.,, — Yi.p,. In step @, the selected

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 8, AUGUST 2015

Tokenization Positional embedding

fs6) =S = {54525y 0 Su}

'
L] .
e 19
1

a

%7 d) = g

T 5]
4 Buppaqui3 uaxoL

ra

o

(8)/

o Buippaqus3 [euonisod|”

f5(S) = P= [Pupaps - Pal [g

(§)) =

Trainable weights

Embedding layer

f(S) 2 E=[eyeye5 ., €,) E ER

Encoder
foone = Pe1n= X'sn

Fine-tuning -[L
I

Fig. 1. Mujaz multi-task pipeline: (1) dataset curation to build the prospective dataset, and (2) task-specific training using CVE descriptions with

extracted features for simultaneous multi-task learning.

prefix will pass the input text to step @ and allow the
matching feature to be passed as the target text Y7.,, for
training in step @. The input is then passed to the tokenizer
in step @, breaking a text into a set of tokens followed
by the embedding layer in step @, projecting tokens into
d dimensional space to be used by the transformer.

The positional embedding in step ® gives an embedding
of d dimensions to maintain a token position within the
sequence. The final embedding is produced by adding both
embeddings from steps ® and ®, passed to the encoder
in step @. The encoder consists of N layers, deploying bi-
directional self-attention to produce the encoded sequence
X{.,- The decoder in ® utilizes the encoded sequence X7.,
to produce a probability distribution over the entire vocab-
ulary used by the LM head in step ®, which consolidates of
various decoding methods to generate the most probable
token. The decoder uses uni-directional self-attention to
prevent it from looking into the next token during training.

In step @, the predicted token is used with the target text
from step ® to compute the loss with cross-entropy. The
training is done using teacher forcing, indicated with the
gray arrows, where the predicted token is used to compute
the loss, and the correct token is fed back to the decoder for
the next token prediction.

4.3 Pipeline: Technical Details

For convenience, we describe the internal architecture of the
original Transformer presented in [31] within our pipeline.
Architecture Overview. The transformer is depicted in Fig-
ure (1| and consists of two components: an encoder and a
decoder. The encoder transforms a sequence into a represen-
tation capturing the relationship between tokens, while the
decoder utilizes this representation to perform the summa-
rization task. Our pipeline in Figure 1] reflects a multi-task
model with T5. We will highlight the differences between
that and BART in each step of the pipeline.

Preprocessing. The first step in our pipeline is curating the
dataset using original CVE entries. As depicted in step @

in Figure [1} the annotation process starts by having a CVE
description manually annotated to extract three features, the
BUG, SWV, and SUM. The BUG feature in @ is a summa-
rization and normalization of the description that identifies
the type of bug and how it could be exploited. The key
information consolidated here is the vulnerability type and
a summarized version of the affected interfaces or functions.
A CVE description of a library could include the library
name (e.g., myLibrary 4.1.2)and affected headers (e.g.,
myFunction in myHeader.h). myLibrary 4.1.2, being
the software with the version, would be included as the
SWV feature. In contrast, myFunction in myHeader.h,
being part of how the vulnerability is exploited, is part
of the BUG feature. The SWV feature in @ is a list of
vulnerable software and their versions present in the CVE
description. This information could be spread throughout
the description, and we consolidate it and make it semi-
uniform. The relevant software is represented in this feature
as a list with its affected versions followed by other affected
software and versions.

The SUM feature in ® is a grammatical concatenation
of SWV and BUG with additional context and wording in
an attempt to improve the reader’s understanding. This
grammatical connection is an attempt to provide uniformity
to the summarized SWV and BUG features. The target struc-
ture of a summary is “in SWV (vulnerability types—BUG) are
present via (method of exploitation—BUG)”. Where there is a
hierarchy of vulnerabilities i.e., software A in software B is
vulnerable, the SUM feature represents this case by listing
the software in order at the summary’s beginning.

In @, the input text in the original CVE entry is pre-
ceded by a prefix, indicating a feature the model has to
learn. Moreover, the target text comprises the three features,
serving as a target text based on the appended prefix. In
®, the prefix determines the task and target text and passes
the input with the prefix to the next step, tokenization. The
detail of each task is explained in section [4.4}

Tokenization. Our tokenizer in @ breaks the input into a

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 8, AUGUST 2015 6

set of tokens. Most pre-trained models deploy sub-word
tokenization, which decomposes a token into meaningful
sub-word units that appear within other tokens. Sub-word
tokenizers are trained separately on a corpus to learn the
best set of characters representing most words within a cor-
pus. The trained tokenizer is then integrated into the model
to perform tokenization. BART uses Byte Pair Encoding [49],
while T5 uses SentencePiece [50]|; both sub-word tokenizers.
The tokenizer performs other related tasks required by
the model, such as adding the beginning and ending sym-
bols <START> and <EOS>, indicating the start and end of
the sequence, respectively. Also, arranging a series of tokens
into a fixed-length sequence such that a batch constitutes
multiple sequences of the same length.
Embedding. The embedding layer in ® projects a token
into a vector space of a certain dimension that can be fed
into a neural network. Each token is represented with a
vector of dimension d such that a token x € R?. Token
embedding could be initialized with random values or
using precomputed embedding like Word2Vec [51], [52] or
Glove [53]. In both cases, the embedding will improve and
get updated according to the training dataset. The vector’s
dimensionality is a hyperparameter, typically set to 512.
Positional embeddings are essential in Transformer mod-
els because they provide information about the position of
tokens in a sequence. Unlike recurrent neural networks that
process data sequentially, Transformers process all tokens
in parallel and lack inherent awareness of their order. The
token embedding in step ® and positional embedding in
step ® are added together to form the final embedding,
which is passed to the encoder.
Encoder. The encoder in @ consists of two components: (1)
multi-headed attention and (2) feed-forward network. The
encoder is fed an embedded sequence PFE}., to produce
encoded sequences X7.,,.
Multi-Headed Attention. Self-attention is a sequence-to-
sequence operation that relies on the dot-product to capture
the attention surrounding token x;. A token x; is multiplied
by every other token in the sequence including itself to
produce attention scores, which are passed through a soft-
max layer to produce a probability distribution over tokens’
scores, summing up to 1. The scores are multiplied against
their respective embedding, followed by a linear combi-
nation to obtain the final representation y;. The following
equation can represent the self-attention:

Yi = Zsoftmax(xiij)ij 1)
J

1 is the token’s index where the embedding is computed,
and j is the index of the tokens within the i-th sequence.

A single self-attention layer is referred to as a “head”.
Multi-headed attention is obtained by deploying multiple
heads for the same sequence to capture various semantic
characteristics. The final output of each head is concatenated
and passed through a linear transformation to construct the
final embedding for each token. The encoder in step @ uses
a bi-directional self-attention, meaning a token incorporates
the context from both sides of the sequence.

Query, Key, and Value. The transformer improves the self-
attention mechanism using the concepts of query, key, and

value. Each token in the sequence is passed through three
linear transformations. Each transformation introduces a
weight matrix that is optimized during training to fit its role.
The outputs produced by these transformations are denoted
as query ¢, key k, and value v of a token, all with the same
dimensionality d = 512. Each query g of a token is matched
against every other token’s key in the sequence. For op-
timization, g¢; is multiplied by K 17?71, producing similarity
scores. We down-scaled these scores by the square root of
the embedding dimension d to prevent the softmax output
from growing too large, which may slow down training or
vanish the gradient.

The scaled scores are passed through a softmax layer,
producing a probability distribution. A weighted sum of the
value in v for each token in the sequence corresponding
to the key vector is calculated, representing the new token
embedding capturing attention with every other token.

The novel attention mechanism is expressed as:

Attention(Q, K, V') = softmax (QKT) V. 2
o Vv,

The encoder consists of /N layers where the output of one
layer is fed to the next. The last encoder will produce the
final sequence embedding passed to the decoder in step ©.
Decoder. The decoder’s objective in step ®© is to learn
the parameters § of the function f, which maps the en-
coded sequence into the target sequence. Formally, fggec =
1w = Yiim, utilizing the sequence representation built by
the encoder to auto-regressively generate the most plausible
token for the target sequence based on the task. The encoded
sequence X71., is fed into the decoder with a special input
token y;, indicating the start of the sequence. The decoder
uses self-attention to produce y;, which is fed into the
language model head in step ®, responsible for selecting the
most probable token. In step ©, the selected token produced
by the language model head is then used to compute the
loss against the corresponding token from the target text
passed from step @. Formally, the cross-entropy loss for n

classes is defined as I(y,y) = — Z?Zl y; log ;.

Instead of passing the predicted token to the decoder
for the next token generation, the token from the target is
passed, also known as teacher forcing [54]. The decoder uses
uni-directional self-attention, conditioning the new output
vectors on the encoded sequence and any previously gener-
ated token, blocking tokens’ visibility from the target text.
Decoding Method. The language model head in step © re-
lies on generating a token giving a sequence of words using
softmax over the vocabulary, as shown in the following:

exp(u;)
>, explug)’

The next token generation depends on the chosen gen-
eration method. The prediction of the next word follows a
probability distribution over the entire vocabulary set. The
greedy search method selects the token with the highest
probability, thus reducing the hypothesis space for the entire
sequence and producing a repetitive model. To this end, we
use the beam search, top-k sampling, and top nucleus.
Beam Search. The beam search [48] extends the hypothesis
space to include longer sequences at each timestep and

P(zilx1.i-1) = 3)

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 8, AUGUST 2015 7

select the sequence that produces the highest probability for
that sequence. The number of beams is a hyperparameter
that defines how far the model should look behind a token
to compute the probability before choosing the next token.
Top-k. Top-k sampling selects K tokens with the highest
probability over the vocabulary and picks a word randomly
from such a group, where K is a hyperparameter.

Top Nucleus. This sampling method [55] chooses a small set
of tokens whose cumulative probability exceeds a prede-
fined probability p, which is a hyperparameter; this is:

Z P(zi|z1:6-1) > p. 4)

zeV (@)

Finally, the sampling methods aim to restrict the number
of tokens that a model can sample from at each time step.

4.4 Multi-task Model

The pre-trained models are a central component in our
pipeline to alleviate the need for a large amount of data
in our summarization task. Fine-tuning those models, how-
ever, is essential to customize for domain-specific summa-
rization. In the following section, we introduce the details of
our fine-tuning steps for the T5 and BART models. We start
with T5 by designating our normalized summarization task
with the label “SUM”, so the input provided to the model
would be “SUM: INPUT” to designate it as a SUM task.
Our pipeline, as shown in Figure |1} is a multi-step pro-
cess consisting of feature creation, tokenization, encoding,
learning, and decoding to produce an abstractive summary
task of the input. The three tasks are BUG, SWV, and SUM.

o The BUG task seeks to produce the description of the
software vulnerability given a CVE description.

e The SWV task seeks to output the vulnerable soft-
ware and versions, similar to the NER system of [7].

e The SUM seeks to summarize the original CVE de-
scription while keeping all necessary software ver-
sions and bug text while normalizing it so that the
output structure will be similar to other entries.

We also devised four variations to attend to various por-

tions of the input and evaluate the method’s effectiveness.
Single-task Model. In the single-task model, T5 is trained
solely on the SUM task where the input is the source
vulnerability description, and the output is the SUM feature
of our curated dataset. Since this is a Single-task Model, we
can fine-tune T5 and BART (see §4.1). However, in our eval-
uation (see the model showed serious deficiencies, e.g.,
omitting part of the description or the software associated
with it, necessitating the development of multi-task models,
as we aim to force the model to attend to specific portions
of the description.
SWV/BUG Concatenation Model. The first multi-task
model was devised using a naive approach: the model
is trained on both the SWV and BUG tasks such that it
attends explicitly to those sections separately. Given a CVE
sample, the output produced by the model is obtained by
concatenating the output of the BUG task (the vulnerability
description) to the output of the SWV task (the affected
software). One can think of this step as focusing on the nec-
essary information without regard to the overall summary.

This approach, however, may associate the two tasks as
a result of a strong correlation in the output, particularly
when the output of the SWV task contains words or sen-
tences that overlap with the BUG task, causing the final
output to have repeated sections. Thus, we fine-tune the
model on BART using two separate models for each task
and concatenating the output of each model.
3-Task Model. Our solution to the potential repetition
of the concatenation model was a true multi-task model.
The 3-Task Model uses all of the available information for
training—that is, it trains on all three tasks (SUM, BUG, and
SWYV) jointly. The final output of this model’s run is the SUM
task output for the input. The idea is that training on the
BUG and SWYV sub-tasks would allow the model to better
attend to those input sections without the loss of linguistic
fluency associated with the concatenation.
3-Task Concatenation Model. The 3-task concatenation
model uses multi-task learning. However, rather than treat-
ing the BUG and SWYV tasks as sub-tasks of the SUM, we
inverse the order where the SUM task is used to support the
BUG and SWV tasks training.

The 3-task concatenation model is trained on all three
tasks. However, instead of using the output of the SUM task,
the final output is the concatenation of the SWV task and the
BUG task. The idea with this heuristic is that if the model
outputs the information that it thinks is part of the SWV
and BUG tasks, then all necessary information should be
present. In essence, one can observe that the 3-Task Model is
an effort to prioritize fluency while the 3-task concatenation
model is an effort to prioritize completeness (see §5).

It is essential to remember that our methodology signif-
icantly depends on the multi-task capabilities inherited in
T5. Therefore, training BART on some of these models is
infeasible because it is not intended as a multi-task model.

5 EVALUATION
5.1 Experimental Setup

We use the T5-base variation of the T5 model as the foun-
dation for our models. The dataset is split into 1,204 for
training and 379 for testing. The training set was split with
10% to be used for validation. 100 samples were randomly
selected from the testing set for evaluation on the human
metrics (§5.3). All models were fine-tuned on our labeled
dataset (§5.2) for 4 epochs with a batch size of 8 and a
learning rate of 0.0001.

We set the repetition penalty to 2 to discourage the
model from repeating already generated words. We set the
length penalty to 2 to encourage the model to produce a
longer summary. For the decoding method used to generate
the next token, beam search was used as a decoding method
to generate the next token with the number of beams set to
2. We also set early stopping to True to ensure all beam
hypotheses have reached the end of the sequence.

For our experimental evaluation, we used Pytorch
v1.12 and Pytorch lightning v1.9 as a framework to
train both models. Preprocessing and splitting the dataset
was accomplished using Sklearn v1.0.2 and Pandas v1.3
libraries. The models were deployed using the transformers
library v.4.10 provided by Hugging Face [56] to model

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 2: Examples of simple task labels

Type Content

Original ~ index.php in ownCloud 4.0.7 does not properly
validate the oc_token cookie, which allows remote
attackers to bypass authentication via a crafted
oc_token cookie value.

BUG remote bypass vulnerability exists via a crafted
oc_token cookie value.

SWV ownCloud 4.0.7

SUM in ownCloud 4.0.7 a remote bypass vulnerability

exists via a crafted oc_token cookie value.

BART and T5. We ran the experiment on a cloud GPU of
type Tesla P100 with a memory of 16 GB.

5.2 Dataset and Data Curation

We introduce a manually-annotated parallel dataset to fine-
tune and evaluate Mujaz. CVE entry descriptions are ab-
stract multi-sentence summaries of a bug and the software
it affects. Our dataset removes the abstract nature in the
description, puts summaries into a uniform (normalized)
format, and extracts necessary information about the vul-
nerability and the affected software.

This manual process uses tokenized CVE descriptions
from [7]. A traditional tokenization system like moses [57]
could be used here, but since punctuation is important to
CVE entries (periods in version numbers, in file names, etc.),
not over-tokenizing is vital to maintain the performance.
The tokenization method from [7] was highly effective.
Still, one flaw noticed was the improper segmentation of
namespace specifiers (i.e., ::) where A::B would be tokenized
as A : :B but the proper tokenization would be to leave it as
A:B. In this dataset, Dong et al.’s tokenization [7] is used as a
starting point for the features. Still, apparent errors, such as
improper namespace segmentation, are corrected manually
to allow the model to summarize properly.

With these tokenized descriptions, we filter out any
descriptions that do not come directly from CVE descrip-
tions, e.g., Exploit-DB or SecurityFocus, as many of those
descriptions contain dozens of lines of code and require
debugging, which is outside the scope of this work. We only
consider CVE descriptions of 13 words or longer as shorter
descriptions tend to be too succinct to summarize.

Upon the filtering steps, 15,209 entries are left, from
which the dataset is manually created. From each entry,
a parallel corpus of 3 features is created: summary, soft-
ware/version, and bug (SUM, SWV, and BUG tasks in the
model). The final size of the dataset was 1,583 entries,
each with SUM, SWV, and BUG features. Examples of each
feature on an input description are shown in Table

Creating the features and choosing what information to
include or omit is to make the summaries complete (con-
taining all necessary information to see if the used software
is vulnerable and how one may be exploited) but increase
readability by omitting more technical information that was
not necessary to just seeing how one may be exploited, such
as memory address or snippets.

One of the key qualities of the dataset we sought to
have is a lack of vulnerability-type bias. The previous work
by Dong et al. [7] introduced a manually annotated CVE
dataset for NER. However, their dataset was heavily biased
towards Memory Corruption, where 66.3% of the dataset is
in that category. Our dataset gives near-equal representation
to each of the 13 vulnerability types.

Ground truth
summaries

Generated
summaries

Input text

\Scoring (0 or 1). 1if all the feature (SW?
! BUG) details are included. 0 otherwis:

Scoring (0 or 1). 1if all the feature (SWV or |
BUG) details are correct. 0 otherwise. !

matching ,yram(ground truth < generated) |
number generated g on H

s very hard to understand, !
lerstandable, 3 s easily understood 1

sran(@round truth < generated) |

1 for no/poorly structul
, 3 for well structu

Fig. 2. Evaluation metrics.

5.3 Evaluation Metrics

Mujaz was evaluated using computational and human met-
rics. Computational metrics provide quantitative perfor-
mance measures, enabling large-scale evaluation and future
benchmarking. Human evaluation captures aspects difficult
to assess automatically, such as fluency and ease of under-
standing. In this process, reviewers assign each summary a
score for every metric, and final scores are averaged across
samples. Figure [2|summarizes our evaluation metrics.
Computational Metrics. Two metrics are used to evaluate
our models: ROUGE and compression ratio.

ROUGE [58]. ROUGE (Recall-Oriented Understudy for Gist-
ing Evaluation) compares a generated summary with a ref-
erence using n-gram overlap and is widely correlated with
human judgment. It reports recall (R), precision (P), and F1:
recall is the fraction of matching n-grams over all reference
n-grams, precision is the fraction over all generated n-
grams, and F1 is their harmonic mean, F1 = 2(PR)/(P+R).
Compression Ratio. This measures sentence reduction as out-
put length normalized by input length. Lower values are
better, as Mujaz should shorten input while maintaining
strong human metrics.

Human Metrics. Computational metrics like ROUGE focus
on n-gram overlap and fail to capture coherence, motivating
additional measures of summary quality. We define five
human metrics to assess accuracy, structure, and coherence,
with binary or small-scale grading to reduce subjectivity.
Fluency. This score is rated 1-3: 1 for incoherent, 2 for
somewhat intelligible, 3 for grammatically and semantically
fluent. Since the system aims to produce clearer descrip-
tions, incoherent outputs are unacceptable.

Completeness. This score consists of two binary sub-scores.
SWV-completeness: 1 if all software and versions appear in
the summary; 0 otherwise. BUG-completeness: 1 if all bug
details are included; 0 otherwise.

Correctness. This score also consists of two binary sub-
scores. SWV-correctness: 1 if all software and versions in the
summary are correct; 0 otherwise. BUG-correctness: 1 if all
included bug details are correct; 0 otherwise.

Understanding. This score is rated 1-3: 3 if meaning is very
easy to grasp, 2 if somewhat difficult but possible, 1 if very
hard to understand. Inputs are expected to score high in this
metric to ensure Mujaz does not degrade quality.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 3: Comparison of fine-tuned T5 across recall (R),
precision (P), F1, and compression ratio (CR).

Task Model R P F1 CR
SUM T5 0.80 0.86 0.82 0.61
SUM BART 083 0.82 0.82 0.63
SUM ChatGPT 0.89 0.89 0.88 0.63
SUM LLAMA 3.1 046 023 030 176
SWV/BUG Concat. T5 0.78 091 0.84 0.55
SWV/BUG Concat. BART 0.79 0.86 0.81 0.56
3-Task Concat. T5 0.80 092 0.85 0.56
3-Task Model T5 080 0.86 0.82 058

TABLE 4: The impact of decoding methods on the model

accuracy when using BART for training on the SUM task.
Decoding Method Recall Precision F1 CR

Beam Search 0.83 0.82 0.82 0.63
Top K-Sampling 0.82 0.81 0.81 0.63
Top Nucleus 0.83 0.81 0.81 0.64

Uniformity. Evaluates structural consistency across outputs.
A score of 3 indicates high consistency, 2 moderate consis-
tency with differences, and 1 little to no consistency.

5.4 Results

Computational Evaluation. We first report the score for all
computational metrics in Table 3} The computational results
are not meant to provide a comprehensive insight into the
performance of each model, but a high-level idea of how
compressed the text became and the recall quality whereas
the human metrics will give an idea of the semantic quality.

Per Table 3| the 3-task concatenation model achieved
the best score for recall, precision, and F1 compared to
other T5 models. This is anticipated, considering that the
model trained on the three tasks, allowing it to generate
summaries that overlap with the CVE description. How-
ever, the SWV/BUG concatenation model achieved the best
compression ratio. This could be attributed to both tasks, as
their content is shorter than the SUM task, considering they
focus on very specific information with minimal words.

BART results for the SUM task achieved better recall
and F1 score compared to the SWV/BUG concatenation
model, which excelled in precision and compression ratio.
The SWV /BUG concatenation model was devised using two
models to learn how to attend to each feature.

We tested each model with different decoding methods
to evaluate token generation. Beam search was the best
method for BART with a slightly higher Fl-score than
Top-k sampling and Top nucleus sampling. In contrast, T5
achieved very good results with the Beam search method
but a very low score with the other methods. Therefore, we
only consider Beam search as our decoding method for all
other models. The evaluation of different decoding methods
for BART is shown in Table 4
Human Evaluation. The goal of the human evaluation is
to convey an understanding of the generated summary
in terms of its semantics, cohesion, and overall structure.
A sample of 100 summaries from every model has been
reviewed by 3 evaluators with a degree in computer science.
This will provide an accurate score as they can judge the
domain-specific content. The final evaluation of each metric
is then averaged to get the score for each metric.

Almost all models did not perform well for the BUG
completeness metric, per Table The BUG attribute in-

cludes more descriptive information about the bug, which
may span over several sentences, while SWV is usually short
and self-contained, explaining the high completeness.

One reason that contributed to these results is that we
consider completeness as a binary metric. Therefore, when
the generated summary misses some information from the
BUG, the completeness is assigned 0 which affects the final
score. However, the BUG correctness score is still high,
meaning that even when the model does not capture the
entire information about a bug, the partially captured infor-
mation is correct. Fluency, understanding, and uniformity
are subjective metrics, and they vary based on the evalua-
tor’s native language. However, we can see their evaluation
are mostly consistent within a reasonable margin. We can
justify the gap between their scores as their judgment might
be lenient or conservative.

For SWV’s completeness and correctness, all Mujaz
scores remained above 0.83 except for BART on SUM. Com-
pared to the more abstract summarization of BUG, SWV is
more extractive of distinctive words, making it easier for
the model to capture. Since it is extractive, it is unlikely an
incorrect software name will be produced, resulting in high
correctness scores. As seen in Table[5] thorough vulnerability
detection proved to be the most difficult task for both
humans and models alike. Scores for output completeness
were substantially lower compared to other metrics, show-
ing that the models were unable to consistently grasp all
necessary vulnerability details. However, the details that the
models were able to capture were mostly correct.

6 DiscussiON
6.1 The BART Models

We conducted a thorough investigation of the 100 samples
used for evaluation and discussed insights into each model.
Although discussed individually, we note that some of the
insights appear in more than one model.

SUM Task. Our first observation is that when our CVE input
has multiple software versions, the model will produce
some versions and miss the rest. Moreover, we observe that
the model will wrongly predict some versions and add new
versions that were not present in the input CVE description.

In some extreme cases, the model will add new informa-
tion that did not exist across the entire dataset, indicating
such information was learned from the pretraining stage
of the model. We notice that if the model predicts the
incorrect software version for a CVE, the wrong prediction
will propagate to other CVEs with similar content, e.g.,
adding punctuation where it is unnecessary.

However, this could be explained by the often abnormal

utilization of punctuation in CVEs that may confuse the
model. In some cases, the software version numbers are
written as a word instead of a number, although rarely
encountered in our sample set.
SWV/BUG Concatenation Task. Two BART models were
trained on each prefix and their predictions were concate-
nated. Therefore, no punctuation nor preposition to bridge
this gap between the two outputs is utilized. To this end,
we found that the model sometimes confuses some words
that may occur interchangeably in the dataset or overuses a
technical concept, such as “denial of service”.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 8, AUGUST 2015 10
TABLE 5: Comparison of TS5 and BART across subjective metrics (fluency, completeness, correctness, understanding,

uniformity) and Rouge. Concat. denotes concatenation.

Mode Task Fluency g‘j)vr{}pleter];e;s; gxsfecﬂf; Understanding ~ Uniformity ~F1 score
3-Task Concat. 224 090 066 094 092 2.63 248 0.85
T5 3-Task 282 0.8 057 097 0.89 2.81 2.84 0.82
SUM Task 278 0.89 058 097 0.83 2.73 2.81 0.82
SWYV /Bug Concat. 230 0.89 057 096 0.87 273 2.46 0.84
BART SUM Task 278 0.83 070 076 0.92 277 2.83 0.82
SWV/Bug Concat. 281 0.90 069 0.83 091 2.84 2.85 0.81

In one instance, “executing arbitrary commands” ap-
peared in many CVEs and was summarized as “execut-
ing arbitrary code”. Other substitutions included replacing
“firmware” with “software”, “and” with “or”, and “with-
out” with “with”, which impacted the semantics of the
generated summary. We found the model captures most
versions, although it still makes a mistake in a digit after
a dot separator or generates an incorrect BUG description
for a CVE with the same SWV. Our training of two separate
models explains these deficiencies.

6.2 The T5 Models

We highlight some of the observed issues in each model
and contrast them. We first discuss the 3-task concatenation
model and SWV/BUG concatenation model, as they both
produce a summary by concatenating the prediction of SWV
prefix and BUG prefix.

Concatenation Models. Both models did not produce punc-
tuation, although the 3-Task Model was trained on the SUM
task with punctuation. However, the models learned specific
keywords, such as “by” and “via”, allowing them to locate
the bug accurately. These keywords are used interchange-
ably by the models preceding the bug details. Similarly,
other keywords that appeared frequently, such as “gaining
information”, “csrf”, and “denial of service,” are learned
and used repeatedly in the generated summary.

We found the concatenation models to be inclusive, com-
prising CVE details except for a few cases, and that the 3-
task concatenation model confuses keywords that appear in
context, e.g., producing “gaining privilege” instead of “gain-
ing information” in one CVE. In contrast, the SWV/BUG
concatenation model predicts the correct words, implying
that this confusion may come from the SUM prefix and
showing the impact of using multiple prefixes.
3-Task and SUM Task. Both models generated summaries
with punctuation and context, producing coherent sum-
maries. Both models also learned keywords and used them
in the prediction. Similarly, both models missed some in-
formation about the BUG if there were too many software
versions. Besides, both models still had some shortcomings.

The SUM Task Model produced more abstractive sum-
maries, often adding or substituting words, which some-
times affected bug correctness. In contrast, the 3-Task Model
generated outputs closer to the target summary. Both mod-
els frequently replaced “execute arbitrary code” with “php
code execution,” despite php not appearing in the source,
suggesting influence from pretraining or the SUM prefix
used in training and prediction. Although the 3-Task Concat.
Model was also trained with the SUM prefix, it rarely pro-
duced this phrase. Overall, both models generated correct,
concise, and easy-to-understand summaries.

All models, except SWV/BUG Concat. correctly identi-
fied SWV even when hierarchically structured. A CVE entry
may include multiple levels (organization, software suite,
or sub-components), yet models followed the chain to the
last preposition “in,” marking the vulnerable software—an
observation confirmed across multiple samples. Computa-
tional metrics, however, can be misleading for pre-trained
models on our dataset. Although they showed higher F1
and compression, this is expected since SWV and BUG
prefixes are shorter than SUM’s, inflating both scores. These
results align with human metrics, reinforcing our claim.

The concatenation models scored lower in fluency, un-
derstanding, and uniformity, indicating that training on the
SUM prefix yields better and richer summaries. This also
shows that compression ratio alone is not a reliable measure
of summary quality.

6.3 Large Language Models

As discussed in section LLMs have demonstrated
remarkable capabilities across various language tasks.
However, our task—generating uniform and consistent
summaries—is relatively uncommon. Given the extensive
training data of LLMs, this task could either be challenging
or straightforward for these models. We fine-tuned both
models with identical parameters and used the same query
(instruction) to generate a normalized and consistent sum-
mary, focusing specifically on the SUM task (Task-1).

Per Table [3 ChatGPT 3.5 outperformed all models in
terms of recall and F1 scores, though its compression ratio
was not as efficient as that of T5, which achieved better
ratios. On the other hand, LLAMA 3.1 scored lowest in com-
putational metrics. The difference between the two mod-
els is their ability to follow specific instructions. ChatGPT
generated summaries closely aligned with the fine-tuning
dataset, and LLAMA 3.1 produced longer, more structured
outputs with additional details beyond the dataset’s scope,
such as affected system, privileges required, and severity.
While this structured output provides a constructive way
to understand the vulnerability and its impact, it did not
meet the primary objective of this experiment, which was to
generate a normalized and consistent description.

As model size increases, the dataset must be sufficiently
large to influence the model’s output. However, this con-
clusion cannot be applied to ChatGPT since its number
of parameters is not publicly known. ChatGPT’s improved
performance could also be attributed to various proprietary
techniques used during its training and alignment. It is
worth noting that, despite these results, LLAMA 3.1 outper-
forms ChatGPT 3.5 in standard NLP benchmarks. Samples
of the outputs are provided in the appendix (Table 12).

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 8, AUGUST 2015 11

REFERENCES

alll
+

NI

Fig. 3. User study results with 100 samples generated by BART using
the USE dataset with five evaluators. The evaluation is conducted across
three metrics: understanding, coherence, and simplicity.

7 USER STUDY

Ensuring the effectiveness of Mujaz requires further testing
to prove its usefulness. Thus, we performed a user study
to examine Mujaz predictions and whether they support
the human and computational metrics. Participants are pre-
sented with the original and normalized descriptions and
asked to evaluate them across three metrics: understanding,
coherence, and simplicity. These metrics estimate the impact
of the generated summaries for comprehension.

Understanding follows the criteria and scale in Co-
herence measures the logical connection of ideas within and
across sentences on a 1-3 scale: 3 for fully coherent and
smooth flow, 2 for partial coherence with minor disruptions,
and 1 for incoherent text lacking structure. Simplicity quan-
tifies whether the normalized description makes the content
easier for a security analyst to grasp. Also graded 1-3, a
score of 3 indicates the normalized description is simpler, 2
means both are equally clear, and 1 implies the normalized
version is more complex.

We recruited 12 participants, all with at least a BS in
computer science, including 9 Ph.D. students in computer
security focused on operations and threat intelligence. Each
participant evaluated 100 generated normalized descrip-
tions and their original counterparts, assigning scores for
each metric based on predefined definitions and scales. The
average scores per metric are reported in Figure

For understanding, scores ranged from 2.44 to 2.95,
with 75% above the lower quartile of 2.595 and a median
of 2.695, showing that Mujaz produces easy-to-understand
descriptions. Coherence varied more (2.29-2.96), though its
range (2.60-2.86) and median (2.77) align with understand-
ing, suggesting correlation. This variability likely stems
from participants’ differing English proficiency. Simplicity
showed the widest spread (2.21-2.95), with a range of
2.467-2.895 and a median of 2.67; still, 75% of scores >2.467
indicate that Mujaz generally yields simpler descriptions.

8 CONCLUSION

We presented Mujaz, a new multi-task system that exploits
pretraining language models to tackle vulnerability descrip-
tion summarization and normalization. We assess Mujaz
using a parallel corpus emphasizing three different features.
Mujaz was able to generate coherent summaries with a
consistent and uniform structure and is shown effective in
learning multiple features, measured by both computational
and (our newly defined and justified) human metrics. Our
results showed that attending to different aspects from the
description is possible using Mujaz’s architecture.

(1]

(2]

(3]
(4]

(5]
(6]
(71

(8]

(9]

[10]

[11]

(12]

(13]

(14]

[15]

[16]

[17]
(18]

(19]

[20]

[21]

[22]

(23]

[24]

F. Skopik, G. Settanni, and R. Fiedler, “A problem shared is a
problem halved: A survey on the dimensions of collective cyber
defense through security information sharing,” Computers & Secu-
rity, vol. 60, pp. 154-176, 2016.

A. Anwar, A. Khormali, J. Choi, H. Alasmary, S. Choi, S. Salem,
D. Nyang, and D. Mohaisen, “Measuring the cost of software
vulnerabilities,” EAI Endorsed Transactions on Security and Safety,
vol. 7, no. 23, 2020.

MITRE, “Common vulnerabilities and exposures (cve),” Online,
2022. [Online]. Available: https://cve.mitre.org/

B. Liu, G. Meng, W. Zou, Q. Gong, F. Li, M. Lin, D. Sun, W. Huo,
and C. Zhang, “A large-scale empirical study on vulnerability
distribution within projects and the lessons learned,” in ICSE,
2020, pp. 1547-1559.

NIST, “National vulnerability database (nvd),” Online, 2022.
[Online]. Available: https://nvd.nist.gov/

——, “National institute of standards and technology,” Online,
2022. [Online]. Available: https://www.nist.gov/

Y. Dong, W. Guo, Y. Chen, X. Xing, Y. Zhang, and G. Wang,
“Towards the detection of inconsistencies in public security vul-
nerability reports,” in USENIX Security, 2019, pp. 869-885.

P. Nespoli, D. Papamartzivanos, F. G. Marmol, and G. Kam-
bourakis, “Optimal countermeasures selection against cyber at-
tacks: A comprehensive survey on reaction frameworks,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 2, pp. 1361-1396,
2018.

A. Anwar, A. Abusnaina, S. Chen, F. Li, and D. Mohaisen, “Clean-
ing the nvd: Comprehensive quality assessment, improvements,
and analyses,” IEEE Transactions on Dependable and Secure Comput-
ing, vol. 19, no. 6, pp. 4255-4269, 2022.

P. Johnson, R. Lagerstrom, M. Ekstedt, and U. Franke, “Can
the common vulnerability scoring system be trusted? a bayesian
analysis,” IEEE Transactions on Dependable and Secure Computing,
vol. 15, no. 6, pp. 1002-1015, 2016.

L. K. Shar, L. C. Briand, and H. B. K. Tan, “Web application vul-
nerability prediction using hybrid program analysis and machine
learning,” IEEE Transactions on Dependable and Secure Computing,
vol. 12, no. 6, pp. 688-707, 2014.

H. Holm, M. Ekstedt, and D. Andersson, “Empirical analysis of
system-level vulnerability metrics through actual attacks,” IEEE
Transactions on Dependable and Secure Computing, vol. 9, no. 6, pp.
825-837, 2012.

M. Shahzad, M. Z. Shafiq, and A. X. Liu, “Large-scale character-
ization of software vulnerability life cycles,” IEEE Transactions on
Dependable and Secure Computing, vol. 17, no. 4, pp. 730-744, 2019.
B. Zhao, S. Ji, W.-H. Lee, C. Lin, H. Weng,]. Wu, P. Zhou, L. Fang,
and R. Beyah, “A large-scale empirical study on the vulnerability
of deployed iot devices,” IEEE Transactions on Dependable and
Secure Computing, vol. 19, no. 3, pp. 1826-1840, 2020.

H. Althebeiti and D. Mohaisen, “Enriching vulnerability reports
through automated and augmented description summarization,”
in International Conference on Information Security Applications
(WISA), ser. LNCS, vol. 13009. Springer, 2022, pp. 265-277.

P. Kuehn, M. Bayer, M. Wendelborn, and C. Reuter, “Ovana:
An approach to analyze and improve the information quality of
vulnerability databases,” in ARES, 2021, pp. 22:1-22:11.
Microsoft, “Microsoft security response center,” Online, 2022.
[Online]. Available: https://cwe.mitre.org/

IBM, “X-force exchange,” Online, 2022. [Online]. Available:
https:/ /exchange.xforce.ibmcloud.com/

K. Kanakogi, H. Washizaki, Y. Fukazawa, S. Ogata, T. Okubo et al.,
“Tracing capec attack patterns from cve vulnerability information
using natural language processing technique,” in HICSS, 2021.

D. Gonzalez, H. Hastings, and M. Mirakhorli, “Automated char-
acterization of software vulnerabilities,” in IEEE ICSME, 2019, pp.
135-139.

E. Wéreus and M. Hell, “Automated cpe labeling of cve sum-
maries with machine learning,” in DIMVA, 2020, pp. 3-22.

V. H. Nguyen and F. Massacci, “The (un)reliability of nvd vul-
nerable versions data: an empirical experiment on google chrome
vulnerabilities,” in ACM AsiaCCS, 2013, pp. 493—498.

H. Guo, Z. Xing, S. Chen, X. Li, Y. Bai, and H. Zhang, “Key as-
pects augmentation of vulnerability description based on multiple
security databases,” in IEEE COMPSAC, 2021, pp. 1020-1025.
Accenture Security, “Bugtrag,” Online, 2021. [Online]. Available:
https:/ /bugtraq.securityfocus.com/

https://cve.mitre.org/
https://nvd.nist.gov/
https://www.nist.gov/
https://cwe.mitre.org/
https://exchange.xforce.ibmcloud.com/
https://bugtraq.securityfocus.com/

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 8, AUGUST 2015 12

[25] A. Niakanlahiji, J. Wei, and B.-T. Chu, “A natural language
processing based trend analysis of advanced persistent threat
techniques,” in IEEE BigData, 2018, pp. 2995-3000.

[26] X. Feng, X. Liao, X. Wang, H. Wang, Q. Li, K. Yang, H. Zhu,
and L. Sun, “Understanding and securing device vulnerabilities
through automated bug report analysis,” in USENIX Security,
2019, pp. 887-903.

[27] S. Mumtaz, C. Rodriguez, B. Benatallah, M. Al-Banna, and S. Za-
manirad, “Learning word representation for the cyber security
vulnerability domain,” in IJCNN, 2020, pp. 1-8.

[28] S. Yitagesu, X. Zhang, Z. Feng, X. Li, and Z. Xing, “Automatic
part-of-speech tagging for security vulnerability descriptions,” in
MSR, 2021, pp. 29-40.

[29] K. Kanakogi, H. Washizaki, Y. Fukazawa, S. Ogata, T. Okubo et al.,
“Tracing cve vulnerability information to capec attack patterns us-
ing natural language processing techniques,” Information, vol. 12,
no. 8, p. 298, 2021.

[30] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Im-
proving language understanding by generative pre-training,”
OpenAl, 2018.

[31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
in NeurIPS, 2017, pp. 5998-6008.

[32] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” in NAACL-HLT, 2019, pp. 4171-4186.

[33] Z.Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Sori-
cut, “Albert: A lite bert for self-supervised learning of language
representations,” in ICLR, 2020.

[34] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed,
O. Levy, V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising
sequence-to-sequence pre-training for natural language genera-
tion, translation, and comprehension,” in ACL, 2020, pp. 7871-
7880.

[35] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly
optimized bert pretraining approach,” CoRR, 2019.

[36] A.Radford,]J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAl,
2019

[37] T. B. Brown, B. Mann, N. Ryder, M. Subbiah,]. Kaplan et al.,
“Language models are few-shot learners,” in NeurIPS, 2020.

[38] A.Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in NeurIPS, 2012,
pp- 1106-1114.

[39] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in ICLR, 2015.

[40] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in IEEE CVPR, 2015, pp. 1-9.

[41] J. Howard and S. Ruder, “Universal language model fine-tuning
for text classification,” in ACL, 2018, pp. 328-339.

[42] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” Journal of Machine
Learning Research, vol. 21, pp. 140:1-140:67, 2020.

[43] OpenAl, “Chatgpt,” Online, 2023. [Online]. Available: https:
/ /openai.com/blog/chatgpt

[44] R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, J. Yu et al., “Gemini:
A family of highly capable multimodal models,” arXiv preprint
arXiv:2312.11805, 2023.

[45] A.Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle et al., “The
llama 3 herd of models,” arXiv preprint arXiv:2407.12345, 2024.

[46] P. F. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and
D. Amodei, “Deep reinforcement learning from human prefer-
ences,” in NeurIPS, 2017, pp. 4299-4307.

[47] OpenAl, “Chatgpt 40,” Online, 2024.
https:/ /openai.com/index/hello-gpt-40/

[48] L Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in NeurIPS, 2014, pp. 3104-3112.

[49] R. Sennrich, B. Haddow, and A. Birch, “Neural machine transla-
tion of rare words with subword units,” in ACL, 2016.

[50] T. Kudo, “Subword regularization: Improving neural network
translation models with multiple subword candidates,” in ACL,
2018, pp. 66-75.

[51] T.Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” in ICLR, 2013.

[Online]. Available:

[52] T. Mikolov, 1. Sutskever, K. Chen, G. S. Corrado, and]J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in NIPS, 2013, pp. 3111-3119.

[53]]J. Pennington, R. Socher, and C. D. Manning, “Glove: Global
vectors for word representation,” in EMNLP, 2014, pp. 1532-1543.

[54] R.]. Williams and D. Zipser, “A learning algorithm for continually
running fully recurrent neural networks,” Neural Computation,
vol. 1, no. 2, pp. 270-280, 1989.

[55] A.Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious
case of neural text degeneration,” in ICLR, 2020.

[56] Hugging Face, “Hugging face,” Online, 2022. [Online]. Available:
https:/ /huggingtace.co/

[57] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico et al.,
“Moses: Open source toolkit for statistical machine translation,” in
ACL, 2007.

[58] C.-Y. Lin, “Rouge: A package for automatic evaluation of sum-
maries,” in Text Summarization Branches Out, 2004, pp. 74-81.

[59] S. Ozkan, “Cve details,” Online, 2022. [Online]. Available:
https:/ /www.cvedetails.com/

[60] Y. Huang, T. Lv, L. Cui, Y. Lu, and F. Wei, “Layoutlmv3: Pre-
training for document ai with unified text and image masking,”
in ACM MM, 2022, pp. 4083-4091.

Hattan Althebeiti is an Assistant Professor at Taif University. He re-
ceived the Ph.D. degree in Computer Engineering from the University of
Central Florida in 2023. His research interests include machine learning,
natural language processing, vulnerability analysis, and generative Al.
He has published in venues such as WISA, WISE, and ACM CCS.

William Chen received the B.S. degree in Computer Science from the
University of Central Florida in 2021 and is currently pursuing the Ph.D.
degree at Carnegie Mellon University. His research focuses on spoken
language processing, speech recognition, speech translation, and ma-
chine translation. He has co-authored publications in INTERSPEECH,
ICASSP, ASRU, EMNLP, and SLT.

Brett Fazio received the B.S. degree in Computer Science from the
University of Central Florida in 2021. He is a Software Engineer at Two
Sigma Securities. His research background includes natural language
processing, machine translation, vulnerability description summariza-
tion, and parallel search algorithms, with work appearing in LoResMT
and ACM CCS.

Jeman Park received the Ph.D. degree in Computer Science from the
University of Central Florida in 2020. He was a Postdoctoral Researcher
at the Georgia Institute of Technology and is currently an Assistant Pro-
fessor at Kyung Hee University. His research interests include computer
security, malware analysis, and adversarial learning. He has published
widely in top venues such as USENIX Security, ACM CCS, and NDSS.

David Mohaisen is a Professor of Computer Science at the University
of Central Florida, where he directs the Security and Analytics Lab. He
received the Ph.D. degree in Computer Science from the University of
Minnesota in 2012. His research interests include computer security,
privacy, systems, and machine learning, with applications to malware
analysis, software vulnerabilities, loT, and large-scale measurement. He
has published extensively in premier venues including USENIX Security,
NDSS, CCS, and IEEE/ACM Transactions on Networking.

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/index/hello-gpt-4o/
https://huggingface.co/
https://www.cvedetails.com/

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 8, AUGUST 2015 13

APPENDIX

Hyperparameter Tuning. We conducted extensive experi-
mentation to learn the best set of hyperparameters for fine-
tuning. The tested hyperparameters were repetition penalty,
length penalty, and number of beams for beam search. We also
tested the two other decoding methods, top-£ sampling and
nucleus sampling. The experiments were conducted across
batch sizes of 4, 8, and 16. We chose the SUM task because
it is the simplest, using a single prefix for training and
prediction, and report patterns. For BART, we increased the
number of beams and the length penalty, which improved
the recall and F1 score but decreased the precision. A possi-
ble explanation is that as we increase the number of beam:s,
the model has more options to choose from, thus deviating
from the reference. We also found the repetition penalty has
a direct effect on the recall, although it does not carry the
same effect on T5.

Our results were consistent across different batch sizes,
although the highest F1 score of 0.81 was achieved with
batch size 16. TS exhibited similar patterns, although with
different hyperparameters. With a batch size of 4, a number
of beams of 5, and a repetition penalty of 1, T5 achieved an
F1 score of 0.83. Because some hyperparameters encourage
a longer summary, the compression ratio decreased as we
increased the batch size, as shown in
Decoding. Sampling methods consolidate top-k and nu-
cleus sampling, which achieved very low scores with T5.
Thus, we consider the sampling methods on BART. For the
top-k sampling, k is set to 5, 10, 20 because our vocabulary
size is small and p = 0.95 for nucleus sampling. The
repetition and length penalties were set to 2 based on our
initial results. The recall score was consistent with £ set to
5 for the top-k sampling, producing the best score across
all batch sizes. However, this was not the case for precision,
which fluctuated with different top-k values and batch sizes.

This unpredictability had an effect on the F1 score, which
fluctuated with the best score, achieving 0.82 with k set to 20
and batch size of 16; higher than the best F1 score for BART
with beam search. On the other hand, the best compression
ratio was 0.59 with £ set to 10, but it did not outperform the
beam search. A batch size of 16 achieved the highest score
for recall, precision, and F1 score.

Nucleus sampling considers a small subset of tokens
from the top-k tokens where the cumulative probability ex-
ceeds a predefined threshold per Eq. {#). However, due to its
stochastic behavior, the scores fluctuate for different metrics
and top-k values. We found that the F1 score and precision
increased with batch size for different top-k values, but the
recall fluctuated. The best recall and F1 were 0.81 and 0.82,
with %k equal 10, while the best precision was 0.83 with a
batch size of 16. We also observed that k = 5 and k£ = 10
did not have any positive effect on the recall or F1 score,
although affected the precision when the batch size was 4
or 16. The compression ratio score reached its lowest with
k = 5 across the different batches but with a slim margin.

The following results highlight the effect of hyperpa-
rameter tuning and its impact on summarization. The ex-
periments were conducted on the SUM-Task due to its
simplicity and abstract nature, considering a single feature
that includes most details of a CVE entry. Table [f] shows

the best hyperparameters for computational metrics on both
models.

ROUGE metrics achieved the best score with the batch
size of B = 4 and the number of beams b = 5. However, the
compression ratio reached its peak with different settings,
yet it did not reach the best compression in BART. We note
that the repetition penalty affected recall, scoring 0.81 with
r = 2 and 0.81 with r = 1, implying that its effect is min-
imal or none. In practice, a trained model cannot produce
the same results due to the stochastic nature of training.
Therefore, with this slim margin between » = 2 and r = 1,
it is infeasible to determine if the repetition penalty affected
the score. Thus, we consider the best hyperparameters for
T5tobeb=5,r=1,l=4,and B = 4.

In contrast, BART showed more fluctuating results. Con-
sidering the ROUGE metrics, we exclude batch size because
it is consistent across them. The precision with repetition
penalty r = 2 achieved 0.83, close to the reported score. On
the other hand, the F1 and recall scores with » = 1 were 0.79
and 0.77, respectively, indicating the precision influence on
other metrics. The perfect combination of ROUGE metrics
aims to find the optimal score between recall and precision
as they form the basis for computing the F1 score. In
contrast, recall achieved 0.81 with the following settings
b=2,r =2 and [= 2, which is almost the best score.
Therefore, we consider the best hyperparameters for T5 to
beb=2,r=2,1=2,and B = 4.

The batch size impacts each model as a larger size
requires more resources, which could be costly, especially
for T5. The compression ratio hyperparameters were con-
sistent for both models. However, that does not guarantee
the summary is conclusive. Unifying the compression ratio
hyperparameters to be consistent with others will produce
a compression ratio of 0.58 for BART and 0.60 for T5.

TABLE 6: Best hyperparameters for T5 and BART in terms of
recall, precision, F1 score, and compression ratio on the SUM
task. Parameters: b=beams, r=repetition penalty, /[=length
penalty, B=batch size.

Model Metric Score b r [B
Recall 081 5 2 4 4
TS Precision 08642 5 1 4 4
F1 score 08 5 1 4 4
Compression 05786 2 1 2 8
Recall 081 5 2 4 16
Precision 083 2 1 2 16
BART F1 score 081 2 2 2 16
Compression 053 2 1 2 8

Table [/shows the best results using Top-k sampling (the
top part) and Top-k with nucleus sampling (the bottom part)
as decoding methods. Top-k uses a parameter £, defining
the number of tokens to consider as the next token for
text generation. The k tokens are selected according to the
probability distribution over the entire vocabulary. We fix
the other hyperparameters based on our findings in Table
[6l We observe that precision and F1 score have the same
parameters for the best score. However, recall reached 0.81
for the same set of parameters. The margin is yet negligible
as the highest recall score is 0.81. In contrast, considering
the recall parameters k = 5, r = 2, and [= 2, the precision

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 8, AUGUST 2015 14

and F1 score reached 0.83 and 0.82, which is also very close.
This shows that the model produces its best results when
k=25ork = 20.

Top-k with nucleus sampling has very similar results but
with k& = 10. The precision score deviates from the other
metrics, with & = 20 achieving 0.83. However, with k£ = 10,
the precision score reaches 0.83. We conclude that the best
k value for Top-k with nucleus sampling is k = 10. The
compression ratio showed similar patterns as the batch size
was inconsistent with the parameters.

TABLE 7: Best hyperparameters for BART on the SUM task,
evaluated by recall, precision, F1, and compression ratio.
Parameters: k=top-k, r=repetition penalty, [=length penalty,
B=batch size. Top block: top-k decoding; bottom block:
nucleus sampling (p = 0.95).

Decoding Metric Score k r | B
Recall 081 5 2 2 16
Top-k Precision 08355 20 2 2 16
F1 score 082 20 2 2 16
Compression 060 10 2 2 4
Recall 081 10 2 2 16
Nudleus Precision 083 20 2 2 16
F1 score 082 10 2 2 16
Compression 059 5 2 2 8

Table 8| shows the result of an additional experiment
where we use to duplicate the training dataset and flip the
content of the two columns so that the input text will be the
SUM feature and the target is the CVE entry. We emphasize
that the test set has not been duplicated or modified. Our
intuition is that this could benefit the model as the input
text and the target content could be interchangeable. T5
exhibited improvement in the ROUGE metrics compared to
the same set of parameters on the SUM Task without aug-
mentation. However, this improvement could be attributed
to having more data for training. The compression ratio
achieved better results under this setting.

On the other hand, BART exhibited slight yet consis-
tent degradation across all ROUGE metrics. However, The
compression ratio has significantly improved, encouraging
further investigation and evaluation.

TABLE 8: Augmented dataset training. Both models were

fine-tuned using beam search. Metrics: recall (R), precision

(P), F1 score, and compression ratio (CR) on the SUM task.
Model R P FI CR b r | B

T5 08 08 08 059 5 1 4 8
T5 08 087 08 054 5 1 4 4
BART 079 082 080 046 2 2 2 16
BART 080 082 08 053 2 2 2 8
BART 081 078 079 050 2 2 2 4

Dataset and Vulnerability Distribution. The sampled
dataset in Table [9]is not exactly balanced because some
vulnerabilities are more common than others, according to
[59]. Therefore, we fluctuate the number of instances for a
few types to project them toward their existence in reality.
Moreover, this will ensure the robustness of the trained
model against all types of vulnerabilities, even if they do
not appear frequently. We believe the increased numbers do
not bias the dataset toward any particular type.

TABLE 9: Dataset distribution by vulnerability type and
number of instances

Type # Instances
DoS 192
Code Execution 100
Overflow 100
Memory Corruption 100
SQL Injection 100
XSS 100
Directory Traversal 98
HTTP Response Splitting 148
Bypass 100
Gain Information 169
Gain Privileges 170
CSRF 105
File Inclusion 100

We envision that Mujaz’s flexibility and parallel nature
could be deployed to any textual data that includes sepa-
rable and well-defined features. For example, Mujaz could
accommodate financial reports or hospital records if it is
possible to curate a dataset from these documents. For
example, a medical record typically includes patient history
(diseases or surgeries), medications, special conditions, and
possibly a summary of each visit. Each part of the record
resembles a feature that can be attended to independently
or jointly with other features. The number of features can
increase as long as it is feasible to derive them consis-
tently from the record/report, either manually or through
a predefined framework capable of separating them. Mu-
jaz paves the way to approach summarization through a
parallel corpus, making developing a separate pipeline for
feature extraction critical. Recent work [60] showed the
possibility of implementing a multi-modal transformer to
extract textual data from forms/documents through image
recognition. Such work complements and empowers Mujaz
to perform multi-task in various domains.

Mujaz Demonstrations. The following tables show exam-
ples generated by Mujaz, showcasing its effectiveness, how
the human evaluators graded each metric, and the LLM-
generated summaries. The main objective of Mujaz is to
generate consistent and uniform vulnerability descriptions,
regardless of the original structure. These demonstrations
highlight how Mujaz transforms complex and varied input
descriptions into a standardized and easy-to-understand
format using our curated dataset.

Sample Outputs. Sample outputs and original descriptions
for Mujaz are in Table 10, for ChatGPT in Table 11, and
for LLaMA 3.1 in Table 12. Success and failure cases with
reasoning of Mujaz are shown in Table 13.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.

14, NO. 8, AUGUST 2015

TABLE 10: Muyjaz Evaluation Examples

Original

Prediction

heap-based buffer overflow in w in sun solaris 8
through 10, and opensolaris before snv_124, allows
local users to gain privileges via unspecified vectors.

sun solaris 8 through 10 gaining privileges is possible via
unspecified vectors for the w in heap-based buffer overflow.
(3-Task Concatenation model)

in sun solaris 8 through 10, and opensolaris before snv_124,
gaining privileges is possible via unspecified vectors for the
w in the heap-based buffer overflow. (3-Task model)

in sun sun solaris 8 through 10, and opensolaris before
snv_124, gaining privileges is possible via unspecified vec-
tors for the w in heap-based buffer overflow in w in sun-based
buffer overflow. (SUM-Task model)

sun solaris 8-10 10 opensolaris before snv_124 gaining priv-
ileges is possible via unspecified vectors for w in w in w in w
in w. (SWV/BUG Concatenation model)

cross-site request forgery (csrf) vulnerability in the
cucreports page in cisco unity connection 11.0
(0.98000.225) and 11.0 (0.98000.332) allows remote at-
tackers to hijack the authentication of arbitrary users,
aka bug id cscut33659.

in cisco unity connection 11.0 (0.98000.225) and 11.0
(0.98000.332) a csrf vulnerability exists allowing remote at-
tackers to hijack the cucreports page in the cucsrf vulnera-
bility allows remote attackers to hijack the authentication of
arbitrary users. (SUM Task model)

memory corruption in gemalto hasp srm, sentinel hasp
and sentinel 1dk products prior to sentinel ldk rte
version 7.55 might cause remote code execution.

in sentinel hasp and sentinel 1dk products prior to sentinel
ldk rte version 7.55, executing arbitrary commands is possible
via a srm, sentinel hasp and sentinel ldk products prior to
sentinel Idk rte version 7.55. (3-Task model)

multiple cross-site scripting (xss) vulnerabilities in
oauth_callback.php on accellion kiteworks appliances
before kw2016.03.00 allow remote attackers to inject
arbitrary web script or html via the (1) code, (2) error,
or (3) error_description parameter.

accellion kiteworks appliances before kw2016.03.00 xss is
possible via the code, error, error_description parameter.
(SWV/BUG Concatenation model)

cross-site scripting (xss) vulnerability in search.php in
myre business directory allows remote attackers to in-
ject arbitrary web script or html via the look parameter.

myre business directory xss is possible via the look parameter
of search.php. (3-Task Concatenation model)

TABLE 11: Cha

GPT Demonstrations

Original

Prediction

unspecified vulnerability in the dynamic tracing frame-
work (dtrace) in sun solaris 10 allows local users
with priv_dtrace_user or priv_dtrace_proc privileges
to obtain sensitive kernel information via unspecified
vectors, a different vulnerability than cve-2007-4126.

in sun solaris 10, gaining information is possible via unspeci-
fied vectors for the dynamic tracing framework (dtrace).

an issue was discovered in certain apple products. ios
before 11.1 is affected. safari before 11.0.1 is affected.
icloud before 7.1 on windows is affected. itunes be-
fore 12.7.1 on windows is affected. tvos before 11.1 is
affected. the issue involves the “webkit” component.
it allows remote attackers to execute arbitrary code
or cause a denial of service (memory corruption and
application crash) via a crafted web site.

in ios before 11.1, safari before 11.0.1, icloud before 7.1 for
windows, itunes before 12.7.1 for windows, tvos before 11.1,
memory corruption is possible in the webkit component via
a crafted web site.

pioctls in openafs 1.6.x before 1.6.13 allows local users
to read kernel memory via crafted commands.

in openafs 1.6.x before 1.6.13, gaining information is possible
via crafted commands for the pioctls.

15

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 8, AUGUST 2015 16

TABLE 12: LLAMA 3.1 Demonstrations

Original

Prediction

unspecified vulnerability in the dynamic tracing
framework (dtrace) in sun solaris 10 allows local
users with priv_dtrace_user or priv_dtrace_proc
privileges to obtain sensitive kernel information
via unspecified vectors, a different vulnerability
than cve-2007-4126.

(Here is a normalized and consistent summary:

Vulnerability: Unspecified vulnerability in Dynamic Tracing
Framework (DTrace) in Sun Solaris 10

Affected System: Sun Solaris 10

Privileges Required: Local users with priv_dtrace_user or
priv_dtrace_proc privileges

Impact: Allows local users to obtain sensitive kernel information
Vector: Unspecified vectors

CVE: Not specified (different from CVE-2007-4126))

an issue was discovered in certain apple prod-
ucts. ios before 11.1 is affected. safari before
11.0.1 is affected. icloud before 7.1 on windows
is affected. itunes before 12.7.1 on windows is
affected. tvos before 11.1 is affected. the issue
involves the “webkit” component. it allows re-
mote attackers to execute arbitrary code or cause
a denial of service (memory corruption and ap-
plication crash) via a crafted web site.

Here is a normalized and consistent summary of the issue:
Vulnerability Summary

* Affected Products: Apple iOS (before 11.1), Safari (before 11.0.1),
iCloud (before 7.1 on Windows), iTunes (before 12.7.1 on Windows),
and tvOS (before 11.1)

* Component: WebKit

* Vulnerability Type: Remote Code Execution and Denial of Service
(Memory Corruption and Application Crash)

* Attack Vector: Visiting a crafted website

* Impact: Allows remote attackers to execute arbitrary code or cause
a denial of service (memory corruption and application crash)

pioctls in openafs 1.6.x before 1.6.13 allows local
users to read kernel memory via crafted com-
mands.

Here is a normalized and consistent summary:

Vulnerability: PIOCTL in OpenAFS 1.6.x (before 1.6.13)

Impact: Local users can read kernel memory

Attack Vector: Crafted commands

Affected Version: OpenAFS 1.6.x (before 1.6.13)

Severity: Medium to High

Note: PIOCTL is a control function in OpenAFS that allows users to
perform various operations. The vulnerability allows local users to
craft malicious commands that can read kernel memory, potentially
leading to information disclosure or other security issues.

TABLE 13: Mujaz Success and Failure Cases with reasons

Original

Prediction

buffer overflow in libpng 1.2.34 allows remote
attackers to cause a denial of service via a crafted
PNG file.

in libpng 1.2.34 a buffer overflow allows remote attackers to cause
a denial of service via a crafted PNG file. (3-Task model)

Reason: succeeds because SWV and BUG are explicit and short, matching
common training patterns.

cross-site scripting (xss) in admin.php in
webapp-cms 3.1 and 3.2 allows remote attackers
to inject script via the q parameter.

webapp-cms 3.1 and 3.2 xss is possible via the q parameter in
admin.php. (SWV/BUG Concatenation model)

Reason: succeeds because multiple versions are simple to enumerate, and
BUG tokens are concise.

vulnerability in app-suite 1.0.0, 1.0.1, 1.0.12,
1.1 and 2.0-beta; improper input validation in
parser.c may allow remote code execution.

in app-suite 1.0.0, 1.0.1, 1.1 and 2.0-beta remote code execution is
possible via input validation in parser.c. (3-Task model)

Reason: fails by omitting version 1.0.12, showing Mujaz struggles with
long/irreqular version lists.

multiple heap overflows triggered by malformed
headers in the custom protocol handler of net-
proxy prior to 5.0; exploitation requires authenti-
cation and may result in privilege escalation via
race condition combined with session reuse.

in netproxy prior to 5.0 heap overflow in protocol handler allows
remote attackers to execute arbitrary code. (SUM Task model)

Reason: fails by dropping conditions (authentication required) and over-
generalizing consequence (privilege escalation — arbitrary code execu-
tion).

	Introduction
	Related Work
	Background
	Pre-trained Models
	Large Language Models

	Mujaz: Design and Technical Details
	Design Challenges
	Pipeline: High-level Overview
	Pipeline: Technical Details
	Multi-task Model

	Evaluation
	Experimental Setup
	Dataset and Data Curation
	Evaluation Metrics
	Results

	Discussion
	The BART Models
	The T5 Models
	Large Language Models

	User study
	Conclusion
	References
	Biographies
	Hattan Althebeiti
	William Chen
	Brett Fazio
	Jeman Park
	David Mohaisen

	Appendix

