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Attributing ChatGPT-generated Source Codes
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Abstract—Al assistants such as ChatGPT have remarkable human-like capabilities, producing natural language and programming
language utterances. Despite that, ChatGPT could facilitate academic misconduct by easily generating codes and text as solutions for
assignments. More alarmingly, ChatGPT can be used to write polymorphic malware. Moreover, ChatGPT-generated codes are shown
to be less secure. While the detection of text generated by ChatGPT has been addressed, ChatGPT code authorship attribution is
largely unexplored. In this paper, we examine attributing ChatGPT codes using off-the-shelf code authorship attribution techniques. We
demonstrate that the answer to the question is negative, necessitating a new approach, which we also deliver by scrutinizing the
outcomes of the off-the-shelf attribution technique. We found that grouping ChatGPT codes using the inference step of a pretrained
model on non-ChatGPT codes can be used as an accurate attribution model. Compared with the 8.3%—29.2% accuracy of the naive
approach, our approach delivers 81.3%—91.7% while costing a small trade-off in the accuracy of detecting target (non-ChatGPT)
authors. Moreover, the straightforward authorship attribution model trained for the binary classification (ChatGPT versus Human)
achieved a classification accuracy of 87% with 6K code samples. Our comprehensive analysis sheds light on the limitations of the
styles generated by ChatGPT, making detecting codes generated by ChatGPT feasible.

Index Terms—Code Authorship Identification, Program Stylistic Features, Machine Learning, ChatGPT, Measurement

1 INTRODUCTION

OpenAl recently released “ChatGPT”, a large language
model (LLM) built on top of the generative pretrained
transformer 3.5 (GPT-3.5) [1]. GPT-3.5 is an improve-
ment of its predecessor, GPT-3, a set of models that can
understand and generate natural language instances [2].
While GPT-3 is trained only for natural languages, GPT-
3.5 is trained on natural and programming language gen-
eration tasks by including four models: “code-davinchi-
0027, “text-davinchi-002”, “text-davinchi-003”, and “gpt-
3.5-turbo-0301" [3]. Through this combination of models
and the training with over 750 gigabytes of plain text [3],
ChatGPT has shown remarkable results interacting in con-
versational dialogue form with users and has human-level
writing skills [4], [5], [6]. Thus, ChatGPT is used for writing
essays or even books, and has been shown to provide
remarkable capabilities in paraphrasing English texts and
source codes (e.g., C++, Java, etc.) by millions of users.

Due to its excellent skills, ChatGPT can be a source of
significant abuse. Recent reports have shown that ChatGPT
can be used to write malware [7], [8], [9], [10], [11]. Also,
ChatGPT is used by students for doing their programming
assignments, constituting an academic misconduct [12], [13],
[14], [15]. Moreover, although that may not generalize to
other Al assistants such as GitHub Copilot [16], ChatGPT-
generated codes constitute multiple issues [17], [18], [19],
including lower security levels and more security vulner-
abilities across multiple questions [18]. For encryption and
decryption, the resulting codes are significantly more likely
to utilize basic ciphers [20], [21], [22] and disregard basic
authenticity checks on the final returned value. Moreover,
Al assistants use unsafe randomness more frequently than
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humans when generating codes for certain tasks. In the case
of structured query language (SQL) queries, Al assistants
frequently use the string concatenation function, which can
potentially lead to SQL injection attacks [23].

Due to these concerns, authorship attribution techniques
are needed to distinguish Al-generated content from source
codes. We note that there are various solutions in the
context of natural languages, such as “GPTZero” [24] and
“ZeroGPT” [25], which were trained on paired human-
written text and Al-generated text and achieved higher
than 98% of accuracy on human-written text classification.
Methods that do the same task in the context of program-
ming languages are yet to materialize. Fortunately, code
authorship attribution is heavily utilized for programming
languages to identify source code’s author(s) [26], [27],
[28]. Code authorship attribution involves identifying the
individual or group responsible for creating a particular
source code based on unique stylistic features present within
the code [29], [30], [31], [32], [33], [34]. Research studies
have shown that programmers have distinct programming
styles, which can be accurately identified using various
lexical, layout, and syntactic features [29], [30]. Moreover,
machine learning techniques are employed to achieve code
authorship attribution automation [35], [36].

For instance, Caliskan Islam ef al. [29] de-anonymized
programmers using random forests (RFs) over abstract
syntax tree-based features. They extracted lexical, layout,
and syntactic features of code, built an RF classifier with
the selected features, and achieved 93% in accuracy with
1,600 C++ authors. Similarly, Abuhamad et al. [30] utilized
deep learning-based techniques, such as recurrent neural
networks (RNN) and term frequency-inverse document fre-
quency (TF-IDF) to extract stylistic features of code, with
92% of accuracy in identifying over 8,900 C++ authors.

Issues with Code Authorship Attribution. Despite their
usefulness, code authorship methods can be easily circum-
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vented through code transformations that change the stylistic
patterns of source codes, which are shown highly effective,
producing higher than 99% of evasion success rates [31],
[37]. In the same line, recent work on understanding Chat-
GPT’s capabilities for code generation have also alluded to
its code transformation capabilities [38], with ChatGPT im-
proving code quality, refactoring, requirements elicitation,
and design as a result. Moreover, given that ChatGPT is an
agglomeration of models, it is unclear whether its author-
ship stylistic characteristics could be narrowed down into a
fixed author. A natural research question is the following:

e RQ 1: is it possible to detect codes generated by Chat-
GPT using off-the-shelf attribution techniques?

To address this question, we build a code authorship
attribution model from the literature to evaluate the effec-
tiveness of attributing codes generated by ChatGPT. The
straightforward method performs poorly, even when relax-
ing the attribution settings. This negative answer, presented
in detail in section 3.5, motivates the following question:

e RQ 2: Can we use the stylistic authorship features of
codes generated by ChatGPT to attribute such codes?

We scrutinize the outcomes of the authorship attribution
to understand the misclassifications of ChatGPT codes and
to investigate how ChatGPT produces styles. To identify
patterns in ChatGPT code, we start with a pretrained code
attribution model trained explicitly on non-ChatGPT code
as a proxy for regrouping codes generated by ChatGPT
through the predicted labels. Our evaluation highlights the
possibility of detecting ChatGPT codes with high accuracy
(81.3% to 91.7%). While there were some limitations to
the scope of styles that ChatGPT can produce, it can still
generate source code in various styles.

Contributions. 1) We ask whether it is feasible to identify
the authorship of ChatGPT codes using an existing code au-
thorship attribution, and show that to be challenging. 2) We
develop a new highly-accurate feature-based approach for
ChatGPT code attribution. 3) We designed and trained
an accurate code authorship model using ChatGPT codes
and non-ChatGPT codes attribution technique in binary
classification settings. 4) We provide a comprehensive and
comparative analysis of the proposed approaches.

Organization. The prior work is reviewed in . The
technical methods, including an overview of ChatGPT, mo-
tivation, threat model, naive approach, and our technique,
are presented in . In , we present our
evaluation and discussion. We conclude in

2 RELATED WORK

Code authorship attribution, in general, has been covered by
various studies [30], [31], [32], [35], [37], which we highlight
in , as we customize some of them and explain
in more detail. Moreover, to the best of our knowledge, no
prior work in the literature explores the code authorship
attribution task of source codes generated by chatbots or Al
assistants, not ChatGPT or any other.

Since Al assistants, such as GitHub Copilot [39], OpenAl
Codex [40], [41], ChatGPT [1], [3], and DeepMind Alpha-
Code [42], [43], are becoming proficient in programming,
they are increasingly being used for various tasks, both

positive and negative. Moreover, researchers studied the
behavior and potential uses of these assistants [44], [45], [46].

Malware Authoring. Malware is a prominent (mis)use that
makes a strong case for attribution [47], [48]. Pa et al. [10]
demonstrated that ChatGPT can produce a functional mal-
ware of up to about 400 lines of code in about 90 minutes.
Beckerich et al. [49] demonstrated the use of ChatGPT in
producing a fully functional payload distribution, using
ChatGPT as a command and control channel for malware
distribution. Chatzoglou et al. [11] used ChatGPT to by-
pass several antivirus scanners by exploiting its power
to produce ready-to-use malware. Several recent reports
highlighted that ChatGPT can be used to produce general
malware [9], polymorphic malware [7], and ransomware [8].
These studies highlight a need to attribute Al-generated
codes.

Security of Produced Codes. Although advantageous, con-
cerns regarding Al assistants’ security have also been raised.
For instance, Perry et al. [18] and Asare et al. [16] com-
pared the security features of Al assistant-generated code
with human-generated code. Perry et al. analyzed security-
related questions, such as encryption & decryption, signing
a message, SQL, etc, and answers from an Al assistant, Ope-
nAl Codex [40], [41]. Asked to generate code for encryption
and decryption using a specified symmetric key, code for
signing a given message using a specified algorithm, and
code related to SQL, the results indicated that the generated
code often produced insecure solutions. Moreover, the Al-
generated codes did not check for authenticity on the final
returned value and often used unsafe randomness. Asare et
al. [16] demonstrated that, while GitHub Copilot performed
differently across different types of vulnerability reproduc-
tion, it did not perform as poorly as human in producing
those vulnerabilities in general. Although positive, the re-
sults of Asare et al. [16] do not deny the need for attributing
codes generated by Al assistants for further testing.

Additionally, Jess et al. [50] and Vasconcelos et al. [51]
argued that LLMs could inherit bugs and vulnerabilities
due to inherent limitations. In [50], the authors investigated
how prone Codex is to generate simple and stupid bugs.
They found that while Codex can aid in bug prevention, it
is also up to twice as likely to generate simple and stupid
bugs compared to generating accurate code snippets. Al
models might struggle to understand the complex interac-
tions between different code components. This could lead
to suggestions that introduce security vulnerabilities when
integrated into the larger codebase [51].

3 TECHNICAL METHODS

We utilized ChatGPT as our Al assistant to generate source
codes and applied code authorship attribution techniques to
analyze the stylistic patterns of ChatGPT code and achieve
authorship of them. This section summarizes this back-
ground in addition to our threat and attribution models.

3.1 Code Authorship Attribution

A central component in our pursuit of ChatGPT’s author-
ship attribution is the attribution technique itself, where
there have been multiple competitive approaches in the
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Table 1: Code authorship attribution models” accuracy.

Method Dataset ~ Accuracy
Caliskan-Islam et al. [29] GCJ 2017 90.4%
GCJ 2018 80.5%
GCJ 2019 85.8%
Average 85.6%
Abuhamad et al. [30] G(CJ 2017 84.9%
GCJ 2018 72.9%
GCJ 2019 84.6%
Average 80.8%

literature [29], [30], [31], [32], [35], [36]. Given the richness
of this space and retrospective sufficiency, we use existing
works in the literature for this part. Most remarkable is
the work of Caliskan-Islam et al. [29], where they were
able to accurately distinguish the programming styles and
patterns of 1.6K programmers in C/C++ codes, allowing
them to identify each individual with an impressive degree
of accuracy (over 92%). To justify the choice of a code
authorship attribution technique over others, we performed
experiments with our datasets (more details are in
), employing Caliskan-Islam et al.’s approach [29] and

AbuHamad et al.’s approach [30]. As shown in ,
Caliskan-Islam et al.’s method is shown to be superior by
achieving an average accuracy of more than 85%, compared
to an average accuracy of 80.8% by Abuhamad et al.’s. We
explain details of this method in the following.

Caliskan-Islam et al. [29] introduced a machine learning-
based method for code authorship attribution by analyzing
stylistic patterns in C/C++ code, using features like lexical,
layout, and syntactic elements to identify unique author
characteristics. Thus, their model has two main phases: the
feature extraction phase and the learning phase, and we
explain those steps in the following.

Feature Extraction. To train machine learning techniques to
perform well for a given task, it is a prerequisite to provide
a suitable representation of data. For code authorship attri-
bution, the representation should contain each source code’s
stylistic patterns. Therefore, Caliskan-Islam et al. used three
types of features, lexical, layout, and syntactic features, for
this purpose. They obtained the lexical and layout features
from the source code and the syntactic features from the
abstract syntax tree (AST) of each code.

Lexical Features. The lexical features include the choice of
variable and function names by the programmer. Each pro-
grammer may have a unique preference for the selection of
words used in naming variables and functions. For instance,
an author may choose to name their functions and variables
based on their functionality, such as naming a function
that calculates the maximum value of elements in an array
as “CalculateMax”, naming the array as “values”, and the
maximum value as “max_value”. However another author
may opt for shorter forms, such as “c_Max”, “v”, and “m
as shown in the example in . Those stylistic features
may serve as a strong indicator (cue) for attribution.

Layout Features. The layout features contain various aspects
of the formatting and presentation of the code, such as
indentation, comment format, and the use of brackets. In-
dentation refers to the placement of tabs or spaces at the
beginning of a line to indicate the level of nesting within
the code. The form of comments, such as whether they are
single- or multi-line, and how they are formatted, can also
be indicative of an author’s style. Finally, the use of brackets,

int main() {
int a = 5;
int b = 3;
// Calculate the sum of a and b
int sum = a + b;
if (sum > 10) {
cout <<
} else {
cout <<

<< endl;

<< endl;

}

return 0;

int main()
{
int a = 5;
int b = 3;
/* calculate
the sum of a and b */
int sum = a + b;
if (sum > 10)
{
cout <<
}
else
{
cout <<
}
return 0;

}

<< endl;

<< endl;

Figure 1: Examples of layout features with different styles of
indentation, comment format, and the use of brackets. (top)
Single-line comment, four spaces indentation, and same line
opening bracket. (bottom) Multi-line comment, two spaces
indentation, and separate line opening bracket.

including their placement and how they are aligned, can
provide further clues as to the authorship of a code.

As an example, one author may have a preference for
single-line comments marked by “//”, four spaces of in-
dentations, and opening brackets on the same line as the
function. On the other hands, another author may prefer to
use multi-line comment marked by “/* */”, two spaces of
indentation, and opening brackets on a separate line. This
can be seen in the examples provided in
Syntactic Features. The coding style adopted by program-
mers can be distinguished by their usage of syntax and
control flow, which can be examined through the fundamen-
tal data structures of compiler design, known as AST [52].
The AST enables the analysis of stylistic patterns related
to syntax and control flow and forms an important part
of the syntactic feature set that encompasses properties of
language-dependent AST and keywords.

Machine Learning Component. Caliskan-Islam et al. uti-
lized the three sets of features extracted from the feature ex-
traction phase to train a random forest classifier [53] for the
code authorship attribution task. To accomplish that, they
first selected certain features among those they extracted
and converted the code into a vector space using the selected
features to allow the machine learning algorithm to access
them. They then utilized a random forest ensemble classifier
to identify the authorship of the codes.

Feature Selection. Due to this method’s extensive reliance
on unigram term frequency and TF-IDF calculations and a
wide range of individual terms in the code, this method
produced sparse feature vectors with high dimensionality.
Sparse feature vectors can negatively impact the accuracy of
random forest classifiers by limiting useful splits with zero-
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valued features, leading to poorer fits and larger trees. As
a solution, the authors utilized a feature selection technique
using the information gain criterion [54]. Choosing a smaller
set of more informative features significantly reduces the
sparsity in the feature vector, enabling the classifier to
generate more accurate results. This method evaluates the
difference between the entropy of a class distribution and
the entropy of the conditional class distribution given a
specific feature as follows:

IG (A, M;) = H(A) — H (A | M;),

where A represents the category of an author, H represents
the Shannon entropy, and M; represents the i — th feature
of the dataset. In simpler terms, the information gain (IG)
measures how much information is gained by knowing the
value of a feature in relation to the corresponding class
label, for example. The authors utilized feature selection by
selecting only the features with a non-zero IG and IG is
always non-negative due to H (A | M;) < H(A). This was
done to reduce the size and sparsity of the feature vector,
resulting in a more manageable set of features.

Random Forest Classification. The authors trained a random
forest ensemble classifier using the selected features. To
balance accuracy and processing time well, they constructed
a random forest consisting of 300 trees (the same setting
followed in Abuhamad et al. [30]). The classification process
involved applying each decision tree in the random forest
to the given code and its features by following the binary
decisions at each node until reaching a leaf and then com-
bining the results to produce the outcome. The output was
determined by selecting the most frequent label, making the
classification process straightforward.

3.2 ChatGPT: An Overview

ChatGPT (GPT 3.5) is a large-scale language model devel-
oped by OpenAl [1], [3], based on GPT architecture. GPT
is a type of neural network architecture that achieved state-
of-the-art performance on a wide range of natural language
processing (NLP) tasks, including language modeling, text
generation, text translation, and text classification [55].

The architecture of GPT is based on the transformer
model and was introduced by Vaswani et al. [56]. The trans-
former model uses self-attention mechanisms to process
input sequences of tokens and produce output sequences.
The self-attention mechanism allows the model to attend
to different parts of the input sequence when generating
each output token, making it well-suited for generating
long sequences of text. The GPT architecture is specifically
designed for language modeling [57], which is the task
of predicting the probability distribution of the next word
in a sequence given the previous words. To achieve this,
GPT is pretrained on large amounts of text data using an
unsupervised learning algorithm called masked language
modeling [58]. This involves randomly masking out some
of the input tokens and training the model to predict the
masked tokens based on the context of the surrounding
tokens. Once trained, the model can be fine-tuned on spe-
cific downstream NLP tasks, such as text classification, text
translation, question answering, or dialogue generation.

ChatGPT has been further trained with the reinforce-
ment learning from human feedback (RLHF) technique [59],
[60]. In this technique, a human Al trainer engages in
conversations while playing both the user’s and an Al
assistant’s roles to achieve supervised fine-tuning. During
this process, the trainer can access the model’s suggested
responses to assist them in creating their own. As a result,
the model has been fine-tuned on a vast dataset of conver-
sational data types, allowing it to generate responses that
resemble human-like reactions to various input prompts.

To generate a response, ChatGPT takes the input prompt
and uses its learned knowledge about the language and
conversation to generate a new sequence of text that con-
tinues the conversation in a meaningful way. The generated
response is not simply pre-programmed, but rather a novel
combination of words and phrases that the model has
learned from the training data. Our experiments revealed
that ChatGPT is able to generate diverse responses to a
single question, which we elaborated on in section

ChatGPT is also trained using programming languages
data by exposing it to a vast amount of code snippets
and examples from various programming languages, such
as Python, JavaScript, Java, C++, etc. This exposure helps
ChatGPT learn programming concepts, syntax, structure,
and problem-solving approaches to some extent.

In general, ChatGPT is a significant advance in the field
of natural language processing as well as programming
language processing and has the potential of enabling new
forms of human-machine interaction and communication,
making it an important innovation in many areas.

3.3 Motivation: Concerns with ChatGPT

A central motivation of our work is the questionable use
of Al assistants, e.g., producing malware, potentially less
secure code, or code for an assignment (in a classroom
setting) that could be considered misconduct. All those uses,
with varying degrees, make a strong case for ChatGPT-
generated source code attribution.

Addressing Malware Authorship. Authorship attribution
in the context of malware analysis is a first step towards
defending against it. For instance, knowing the source of a
piece of malware to be ChatGPT would allow a collaborative
effort in patching ChatGPT to prevent the production of
such malicious codes or their variants.

Addressing Code Security by Attribution. It is essen-
tial to consider the security implications of Al assistants’
code generation capabilities and ensure the security of the
generated code. As discussed in , several works
explore the security features of Al-generated codes (e.g.,
using OpenAl Codex [40], [41]) and compared them with
human-generated code, showing that the security level of
the code produced by the Al assistant might be substandard.
Consequently, there is a need to distinguish between AI-
generated and human-written codes to prevent those issues
in the security domain. For instance, if a code is identified
as written by Al assistants (e.g.,ChatGPT), we need to assess
its security features—often using customized tools.

Addressing Plagiarism. Due to the lack of explicit policies

surrounding using ChatGPT for text generation, there is a
growing concern that this generation could be considered
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int CalculateMax (int values[], int size) {
int max_value = max_element (values, values+size);
return max_value;

}

int main () {

int size = 3;

int values([size] = {5, 10, 7};

int max_value = CalculateMax (values, size);

cout << << max_value <<endl;
return 0;

}

(a) Functionality naming
int c_Max(int v[], int size) {
int m = max_element (v, v+size);

return m;
}

int main () {

int size = 3;

int v[size] = {5, 10, 7};

int m = c_Max(values, size);

cout << << m <<endl;
return 0;

}

(b) Short form naming
Figure 2: Examples of lexical features with functionality
naming and short form naming. The names of functions
(line 1 (Calculate max)) <+ line 1 (c_Max)), arrays (line
7 (values) < line 7 (v)), and variables (line 8 (max_value)
> line 8 (m)) have different naming styles.

plagiarism [61]. Consequently, there has been considerable
research addressing these issues through investigation and
quantification [12], [13], [14] as well as providing actual
solutions [24], [25]. In [12], Susnjak conducted a study to
explore the potential use of ChatGPT as a tool for academic
misconduct in online exams and suggested that ChatGPT
could be a significant threat to the integrity, especially in
education where such exams are increasingly common.

Tools like GPTZero [24], which detect text or writing gen-
erated by ChatGPT, exist. However, these tools are specific
for text and do not address the detection of codes generated
by ChatGPT. This is mainly due to the various styles and
formats that ChatGPT is capable of generating code in,
which poses a significant challenge when using traditional
methods of code authorship attribution, as we show later.

Technical Challenges. Code authorship attribution can be
approached by extracting stylistic features from each source
code and utilizing them to determine their authorship.
However, this approach often fails when it encounters
multi-authored codes or authors who can implement var-
ious styles in their code. Moreover, this approach is easily
circumvented by code stylistic transformation methods as
previous research has demonstrated in [31], [37]. Al assis-
tants are usually trained with numerous data to obtain high-
quality performance. Therefore, Al-generated codes often
present diverse styles even generated from the same model
and same question which makes the authorship attribu-
tion of Al-generated code is challenging for the current
approach. Therefore, we examined stylistic patterns of Al-
generated codes to create dataset by re-grouping for train-
ing authorship model. As such, the authorship attribution
model can classify Al-generated code accurately.

Challenge 1 Challenge 2 Challenge 3 Challenge 4 Challenge 5 Challenge 6 Challenge 7 Challenge 8

B —a@ @@ a8 & —a @ —
Code 1 Code 1 Code | Code | Code | Code | Code 1 Code 1
Label: Al Label: A9 Label: Label: Label: Label: Al Label: A9 Label: Al
B @ & @ 8 @ @ @ o
Code2 Code2 Code2 Code2 Code 2 Code 2 Code 2 Code2
Label: A9 Label: Label: A9 Label: A9 Label: Al Label: Label: Al Label: A9
@@ @ @B & & @ @ o

Code 3
Label: A1

Code 3
Label: A1

Code 3
Label: A9

Code 3 Code 3
Label: Label: A1

@ 8 @ B & 8 & @
Figure 3: An illustration of naive approach that highlights
the mental model used for attributing codes authored by

ChatGPT: responses (codes) to challenges are assumed to be
generated by the same model in the order of the run.

3.4 Use and Threat Model

Our main goal of this study is to accurately distinguish
source codes generated by Al assistants, particularly Chat-
GPT [1], from non-Al generated source codes using existing
code authorship attribution methods to address the unethi-
cal and security-associated issues.

For our use and threat models, we assume an adversary
has access to the ChatGPT model and instances of code
samples generated by the model. The adversary (ChatGPT;
e.g., could be a student using ChatGPT for generating code
as an assignment, engaging in academic misconduct) is
interested in generating programming language codes with
high quality that satisfy certain constraints.

We note that ChatGPT model has been trained with
the same pretraining dataset as GPT-3, its predecessor, and
this dataset comprises over 750 gigabytes of plain text and
contains approximately 500 billion tokens. In addition, the
model underwent a fine-tuning process to attain human-
level capabilities in both natural language and program-
ming language [1], [2]. Thus, we use this setting to spell out
two constraints. First, given the large number of human-
generated tokens used for training ChatGPT, we naturally
assume that the source code generated by ChatGPT will
likely exhibit diverse styles and patterns, rendering code au-
thorship attribution techniques ineffective (which we verify
in our experimental evaluation against the naive setting).
Second, given the effort required for training the ChatGPT
model, it is also fair to assume that the adversary does
not have adaptive capabilities: we test ChatGPT’s generated
codes as-is, and ChatGPT is not aware of the effort to detect
the codes generated by it and attributing them to it. This
adversary, while theoretically possible, is unlikely to be
realized due to the amount of effort of modifying ChatGPT.

Code 3 Code 3 Code 3
Label: A9 Label: Label:

chatgpty

3.5 Synchronized Attribution and Limitations

Naive Approach. For a plausible operation of ChatGPT, a
user would interact with ChatGPT by posing questions and
obtaining responses (answers). As such, the user is assumed
to utilize the first answer of ChatGPT unless this answer
is wrong. Moreover, it is natural to assume—in the same
session—that the user will not repeat the same question.
We denote this scenario as the “naive” use of ChatGPT for
obtaining code samples that we use for code authorship
attribution. The naive approach is to be associated with code
generation, reflecting the natural prompting of ChatGPT.
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Table 2: The accuracy (with average accuracy) of the naive
approach using Caliskan-Islam et al.’s method [29] over GC]
2017, 2018, and 2019. The challenge-level accuracy (fold
accuracy), the granular (G) accuracy (average of per-fold
accuracy), and the holistic (H) accuracy (as percentage).

Table 3: The accuracy (with average accuracy) of the naive
approach using Abuhamad et al.’s [30] over GCJ 2017, 2018,
and 2019. The challenge-level accuracy (fold accuracy), the
granular (G) accuracy (average of per-fold accuracy), and
the holistic (H) accuracy (as percentage).

GCJ 2017 G(CJ 2018 GCJ 2019 G(CJ 2017 G(CJ 2018 GCJ 2019
c | 210 (G ()] 210 (G) D] 206 ©) @ T | 210 (G (@) | 210 (G @@ | 206G @)
1|87 00 167 | 643 00 00 | 908 00 500 1|82 167 167 | 51.0 00 00 | 854 00 500
2|87 167 333|781 00 00| 8.8 500 100 2786 00 167|738 00 00 | 903 500 100
3082 00 333(8.7 00 00| 777 500 500 3083 00 333|805 00 167|777 00 00
4|87 333 667 |86 00 00]|09.7 500 100 489 333 83|80 00 00|84 500 100
508.2 00 167|710 00 00| 927 500 500 5]88 00 333|695 00 00|98 500 500
6|85 167 167 |85 00 00|89 00 500 6|88 167 333|748 00 00| 806 00 500
786 00 333|681 00 00 |80.6 500 100 7177 00 00|63 00 00|72 00 00
8195 00 167|814 00 00| 782 500 100 8|82 00 333|738 167 333|801 500 100
a | 874 83 1292 | 773 00 00 | 860 375 750 a | 828 83 313 | 708 21 63 | 833 250 563

Let ¢;; denote the code generated by user u; for challenge
cj. We generate k codes for that user and denote the set
as chatgpt,. We repeat this process for k users, obtain-
ing chatgpt,,...,chatgpt,. For instance, when fixing the
number of sessions of prompting ChatGPT to six—which
corresponds to the number of users of ChatGPT—to solve
eight challenges, we will end up with 48 ChatGPT codes.

Given sets of code samples generated by ChatGPT and
others by actual users (non-ChatGPT), the task then be-
comes to attribute the codes to their original authors (Chat-
GPT vs. non-ChatGPT). Given the naive use scenario of
ChatGPT we highlighted earlier, we end up with two eval-
uation cases: granular and holistic authorship attribution.
Granular Attribution. In the granular attribution, and given
the above scenario, a code would be considered correctly
attributed if labeled in the inference phase with the cor-
responding ChatGPT label (e.g., chatgpt;). Let’s denote the
inference function by inf, which takes a code ¢ and outputs
an author label (e.g., u;). Then, the granular code author-
ship attribution success rate is computed as the probability
(normalized by all inferences) of the inference matching the
exact author of the code, which is formulated as:

P, [(u; < inf(c))|(c = ¢;;)] for some j

Holistic Attribution. Given that the general purpose of this
work is to attribute codes to ChatGPT as a model rather than
to a user who has used ChatGPT in a synchronized way,
the above assumption can be further relaxed to consider all
inference results among the chatgpt users (i.e., chatgpt, for
any %) to be correct inferences. For instance, an inference
of chatgpt, for a code in chatgpt; would be considered a
correct inference. We formulate that as:

P,[(u; + inf(c))|(c = ¢r;)] for any valid r

To conduct code authorship attribution experiments
with this scenario and the ChatGPT codes, we created six
sets (for GCJ 2017 and 2018) and two sets (for GCJ 2019)
of ChatGPT codes (assigned the labels chatgpt; through
chatgpty). We then combined the sets with a dataset that
contains 204 non-ChatGPT authors obtained from Google
code jam (CG]J) [62]. In total, we have 210 authors (for GCJ
2017 and 2018) and 206 authors (for GCJ 2019). To train an
authorship attribution model and examine the performance
of detecting ChatGPT using the above scenarios.

Results. The results with Caliskan-Islam et al.’s [29] method
are shown for CGJ 2017 through 2019. The results
show the accuracy per challenge (where each challenge cor-
responds to a fold), and the granular and holistic accuracy
for the two evaluation settings highlighted above. We notice
that the granular accuracy corresponds to the average per-
challenge accuracy in the k-fold-cross validation setting.
From these tables, we observe that the overall accuracies
of the code authorship attribution experiments, notwith-
standing the slight decline due to introducing the ChatGPT
codes, are still high, and are around 85%. Moreover, we
notice that the code authorship attribution accuracies with a
more strict attribution setting (the granular attribution) are
only 8.3%, 0%, and 37.5%. Moreover, even when relaxing
the authorship attribution to be inclusive with the holistic
notion of attribution, the accuracies are still under 30% for
GCJ 2017 and 2018 and 75% for GCJ 2019. Both results com-
bined highlight conclusively the insufficiency of the existing
approaches for detecting codes authored by ChatGPT.

We also conducted experiments with Abuhamad et
al.’s [30] method and the outcomes are presented in
for CGJ 2017 through 2019. These results exhibit similar
trends to those observed in the Caliskan-Islam’s work. The
overall accuracies have decreased by as much as 2% due
to the inclusion of ChatGPT codes, although they remain
consistently high at an average of 78%. Both the granular
and holistic analysis settings underscore the inadequacy of
existing methods in detecting code produced by ChatGPT.

Results Interpretation. To further understand the output
of the code authorship attribution technique in the pursuit
of devising a mechanism to successfully attribute ChatGPT
codes, we inspect the codes’ labels manually to understand
any patterns associated with the misclassification. As high-
lighted in the partial results depicted in , we found
that ChatGPT codes from the naive approach may have
mixed styles and patterns, causing them to be identified
inaccurately as belonging to multiple authors by the code
authorship model, rendering the attribution impractical. For
example, the non-ChatGPT code authorship model identi-
fies the first code of the first challenge as belonging to author
“A1” (non-ChatGPT author). However, for the second and
third challenges, it recognizes the first code of each chal-
lenge as belonging to authors “A9” and “A3” (non-ChatGPT
authors), respectively, as shown in the same figure.
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Figure 4: The feature-based approach we used for attribut-
ing codes authored by ChatGPT.

chatgpty

Takeaway. As a result, we conclude that even if we create
a set with those codes from this synchronized code gen-
eration and train a code authorship attribution model, the
authorship model cannot reorganize them as belonging to a
single author since the model could not capture the common
features among those codes, as they seem to resemble the
collective features in the non-ChatGPT codes.

3.6 Distilling ChatGPT Labels

To address issues with current methods of identifying
the authorship of ChatGPT codes, we propose a “feature-
based” approach that exploits the insights we highlighted
in understanding the misclassification cases. Our approach
extracts stylistic patterns from ChatGPT codes, grouped by
their predicted labels from a pretrained code authorship
model trained exclusively on nonChatGPT authors— While
a jointly trained model can achieve similar results, it would
leave some ChatGPT codes out (8.3% in our previous re-
sults) by correctly classifying them into the ChatGPT label.
This approach allows us to gather ChatGPT codes with
similar stylistic features (labels) to group code sets for train-
ing a new authorship attribution model. Thus, the model
can learn common features from them to accurately classify
them once those features are included in the training of the
common ChatGPT vs non-ChatGPT code samples.

Justification. The key insight we use as a guiding principle
in this design is that it might be easier (computational within
the convergence limits or the training epoch time) to train
a model to distinguish between two labels that have slight
differences to produce accurate inferences of them rather
than distinguishing a mixed label from a large number of
other labels (e.g., 204 other labels). This insight, indeed, is
validated through our experimental work. To evaluate the
effectiveness of our approach, we compare it to the naive
approach that assumes users will behave in a predictable
way (e.g., choosing the first response from Al assistants).

Feature-based Approach (FBA). Rather than naively train-
ing a model on both ChatGPT and non-ChatGPT codes
together, our feature-based approach begins by training a
model solely on non-ChatGPT codes (e.g., 204 authors in the
case of the preliminary results). We then use this model to
infer labels for the ChatGPT codes, associating them with
the original non-ChatGPT labels (e.g., “A1” through “A9”
in ). Upon obtaining those (predicted labels), we
group codes that have the same label into the same group

—_— —_— —_—
Trainin, |E§§ Testing |%

Non-ChatGPT codes ChatGPT codes Non-ChatGPT codes

= = ol |_Training
- - 0 —- — | E—
|—: |—: e ™ Testing —

Authorship model Pre-trained lem& Sets of ChatGPT codes ChatGPT
Non-ChatGPT model Authorship model

Predicted labels

Figure 5: An overview of ChatGPT’s code authorship.

and give it a unique identifier (e.g., where codes predicted in
the inference step as “Al” are labeled as chatgpt;, those pre-
dicted as “A9” are given the label chatgpt,). In this group-
ing, we use the pretrained model with non-ChatGPT codes
as a similarity oracle. This similarity oracle will consolidate
labels in the generated ChatGPT codes to a smaller set of
codes that exhibit the same stylistic characteristics. Given
our understanding (based on the failure of the synchronized
attribution approach) that ChatGPT is an asynchronous sys-
tem, the consolidation of codes and reduction are justified.

3.7 ChatGPT’s Code Attribution

Now that we have ChatGPT codes grouped into stylistically
similar codes using the model pretrained using exclusively
non-ChatGPT codes, as shown in , we retrain
the model to include those grouped ChatGPT codes with
their corresponding labels. For clarity, we refer to the non-
ChatGPT code labels that were used to group the ChatGPT
codes as the target labels. The resulting jointly trained model
on ChatGPT and non-ChatGPT codes will be capable of
ChatGPT code authorship attribution. In the next section,
we evaluate this expectation through granular and holistic
attribution, as well as attribution against the target labels.

4 EVALUATION AND DISCUSSION

To evaluate our feature-based approach in attributing codes
generated we start with challenges from GCJ 2017, 2018,
and 2019 [62]. We selected eight (8) challenges from each
GCJ competition and obtained their respective problem
statements, sample inputs, and outputs, as well as any lim-
itations associated with them. The following is an example
of one of the challenges from GCJ 2017.

ChatGPT allows the users to input the problem state-
ment and constraints as a prompt and produces codes that
solve the problem as deserved. Upon obtaining the solu-
tions, we used the GCJ interface to validate the correctness
of the produced solution to that problems—We note that not
all codes generated by ChatGPT were successfully validated
by GCJ, and we queried ChatGPT a sufficient number of
times to produce the required number of solutions to the
given challenge using the approach in section

Overall, we generated a total of 4,000 codes for GCJ 2017
and 1,600 codes for GCJ 2018 and 2019 by asking questions
to ChatGPT (i.e., Write C++ code with this statement and
requirements). In the following, we analyzed the stylistic
patterns (labels) of ChatGPT codes using a pretrained au-
thorship model trained with non-ChatGPT codes. Then, we
made sets of ChatGPT code based on their styles using our
feature-based approach to train a new authorship model



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 8, AUGUST 2015 8

Table 4: Datasets. non-ChatGPT is used to train non-
ChatGPT code authorship models while vs. human is used
for the binary classification (ChatGPT vs. Human). A stands
for authors, C for challenges, and T for total.

Dataset Lang. non-ChatGPT ChatGPT vs. human

A C T A C T A C T
GCJ2017| C++ 204 8 1,632 8 500 4,000 8 200 3,200
GCJ2018| C++ 204 8 1,632 8 200 1,600 8 200 3,200
GCJ2019| C++ 204 8 1,632 8 200 1,600 8 200 3,200

and examine its accuracy. The accuracy is the percentage
of the correctly attributed codes out of the total number of
codes in the given labels. We also made sets of ChatGPT
code using the naive approach for comparison.

4.1 Experimental Setup and Goal

Experiment Setup. Our experiments were carried out on a
workstation running Ubuntu 20.04.5 LTS and using Nvidia
RTX A6000 48GB GPU and an Intel Core i7-8700K CPU.

Model Setup. We utilized GPT-3.5 as the GPT model for our
experiment, which was the latest freely available version
as of May 2023 ' and two distinct classification models as
proposed by Caliskan-Islam et al. [29] and Abuhamad et
al. [30]. For implementation, we used the code provided
by Quiring et al. [37], [63] and adhered to their setup and
hyperparameters to ensure fair results.

Non-ChatGPT Dataset. In this work, we made use of chal-
lenge statements from the GCJ 2017, 2018, and 2019. Thus,
we created three different non-ChatGPT datasets, one for
each GCJ competition, to train the code authorship models
for ChatGPT code feature extraction. As we utilized the
implemented codes for classification models from [37], we
adhered to their dataset configurations, adding two extra
datasets as confirmation purposes. Specifically, we obtained
the GCJ 2017 as same with [37] and 2018 and 2019 datasets
for extra experiments from Github of GC] dataset [64]
and selected 204 authors for each competition, with C++
codes of eight challenges per author. Therefore, each dataset
contained a total of 1,632 codes, with each author having
eight codes, as shown in . Given that the goal is to
only perform code authorship attribution of ChatGPT codes,
we did not see the value in conducting experiments with
additional languages besides C++.

ChatGPT Dataset. We used a total of 24 challenges, eight
from each year of GCJ 2017, 2018, and 2019. For the chal-
lenges from GCJ 2017, we created 500 codes per challenge
to examine the diversity of the stylistic patterns of ChatGPT.
Moreover, for confirmation purposes, we generated 200
additional codes for each challenge from GCJ 2018 and
2019. Consequently, our dataset for ChatGPT codes includes
a total of 4,000 (=8 x 500) codes for GCJ 2017 and 1,600
(=8 x 200) codes for GCJ 2018 and 2019, as presented
in . Prompts are crucial when using LLMs, and
different prompts may alter the model’s response even with
the same input. When generating code with ChatGPT, we
designed our prompts to reflect the typical users unfamiliar

1. It is worth noting that while a higher version, GPT-4o, exists as of
August 2024, the service automatically reverts to a lower model (GPT-
3.5) once access to GPT-4o is exhausted.

with prompt engineering. We kept the prompts simple, fo-
cusing on problem statements, to explore the diverse styles
that emerge from straightforward prompts that might be
commonly used by users, as following: “Can you write a
C++ code with the given problem statement, constraints,
and sample input/output?”. Moreover, we opted for the
web client of ChatGPT instead of the API since typical users
are less likely to use the API or adjust parameters.

Binary-classification dataset. We conducted binary classifi-
cation experiments using the GCJ datasets from 2017, 2018,
and 2019 and the ChatGPT codes we generated using GCJ
challenges. Each dataset consisted of two distinct classes
(labels): ChatGPT and human. Both classes contained 1,600
code samples, spread across 8 challenges with 200 code sam-
ples per challenge, resulting in a total of 3,200 code samples.
Moreover, we combined these datasets from the three years
and carried out an experiment using the combined dataset.
However, in this combined dataset, we reduced the number
of challenges per year from 8 to 5, resulting in a total of 6,000
code samples. We made this decision in order to achieve
a balance in the number of codes within each dataset. If
we had retained 8 challenges, the combined dataset would
have had a total of 9,600 codes, causing an imbalance when
compared to the other datasets. The datasets are in

Experiments. Initially, we trained the code authorship
model using the non-ChatGPT datasets of GCJ 2017, 2018,
and 2019, respectively, to obtain pretrained models. Using
these pretrained models, we extracted the features (based
on the predicted labels) from each ChatGPT code. We then
analyzed the patterns and styles of the ChatGPT codes to
observe ChatGPT’s stylistic patterns. Next, we created six
sets of ChatGPT codes from GCJ 2017 and 2018 and two
sets of ChatGPT codes from GCJ 2019 that exhibited similar
features (having the same predicted labels) across all eight
challenges by utilizing our feature-based approach. For
evaluation, we examined the accuracy of code authorship at-
tribution over the combined dataset, the six target authors—
those who were used to group the ChatGPT codes—, and
our approach. Those results are in addition to the naive
approach results shown in section

Binary Classification Experiments. We employed the
challenge-level accuracy for our feature-based experiments.
Initially, we excluded one challenge and train the code
authorship attribution model using the remaining chal-
lenges. We subsequently tested the trained model using
the challenge that had been omitted. Using this approach,
we carried out a total of four distinct experiments. The
initial three experiments focused on individual GCJ datasets
containing ChatGPT codes. The final experiment had the
combined dataset and its corresponding ChatGPT codes.

4.2 Results and Discussion

Baseline Attribution. As part of the baseline analysis, we
trained and tested Caliskan-Islam et al.’s method [29] as
a code authorship attribution model with 1,632 codes ob-
tained from 204 non-ChatGPT authors from the GCJ 2017,
2018, and 2019 dataset. Using Caliskan-Islam et al.’s method,
we attained accuracies rate of 90.43%, 80.5%, and 85.8%, as
demonstrated in as baselines for the 204 authors.
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Table 5: Base: GCJ 2017-2019’s accuracy results of the 204 au-
thors (A; baseline) and 6 target authors (T; used to group the
ChatGPT codes) from GCJ 2017-2019 non-ChatGPT dataset.
2019 had two target authors. The accuracy is expressed as a
percentage. The comparison is for two schemes.

Caliskan-Islam ef al. Abuhamad ef al.

GCJ 2017 GCJj2018 GCJ2019 GCJ2017 GCJ2018 GCJ 2019
c | A T AT A T A T A T A T
1 | 8.2 100 66.7 333 91.7 100 | 853 100 52.0 16.7 882 50.0
2 | 89.2 100 799 833 887 100 | 794 833 76.0 33.3 89.2 50.0
3 | 877 833 89.7 833 789 0.0 87.7 100  84.8 833 804 50.0
4 1902 100 912 100 89.7 50.0 | 84.8 833 833 66.7 863 0.0
5 | 8.2 100 77.0 50.0 917 100 | 89.2 100 71.6 16.7 90.7 100
6 | 93.1 100 819 66.7 863 100 | 86.8 66.7 745 333 814 50.0
7 | 91.7 100 79.0 66.7 789 50.0 | 81.4 833 66.7 333 794 50.0
8 | 941 833 84.8 66.7 809 50.0 | 853 66.7 750 16.7 819 50.0
a | 904 958 80.5 688 858 68.8 | 85.0 8.4 73.0 375 84.7 50.0

Table 6: FBA: Caliskan-Islam ef al.’s method [29] with GCJ
2017-2019’s accuracy results. For CGJ 2017 and 2018, 210
authors and 6 target authors, whereas 206 authors and 2
target authors are used for GCJ 2019.

GCJ 2017 GCJ 2018 GCJ 2019
AT (G A T (G A T (G &
886 100 833 100 66.7 100] 917 100 100 100
88.1 100 83.3 100 83.3 50.0 100 100
88.1 100 66.7 83.3 66.7| 786 0.0 100 100
66.7 100 100 66.7 100| 90.3 0.0 100 100
66.7 667 66.7 66.7 50.0 100 100
66.7 833 833 50.0 87.9 100 100 100
83.3 833 100 66.7 50.0 100 100
83.3 83.3 100 66.7| 786 0.0 100 100
833 813 917 75.0 438 100 100

D[ IO Ul W NN
(e
N
o)}

78.9

Moreover, we evaluated the accuracy of the model on the
six target authors (for GCJ 2017 and 2018) and two target
authors (for GCJ 2019) who were employed in the ChatGPT
code grouping process. Ideally, we would want the code
authorship attribution method to distinguish those target
labels from the ChatGPT labels.

We also calculated the baseline accuracy using
Abuhamad et al.’s approach [30] for the 204 authors, and the
results are displayed in . These findings showcased
similar accuracy levels when compared to the results ob-
tained in the Caliskan-Islam et al. [29] case, with accuracies
of 85%, 73%, and 84.7% for GCJ 2017, 2018, and 2019,
respectively. Moreover, we assessed the model’s accuracy
on six target authors (for GCJ 2017 and 2018) and two target
authors (for GCJ 2019) using Abuhamad et al.’s method,
producing accuracies of 85.4%, 37.5%, and 50%.

ChatGPT Attribution. We first conducted experiments to
evaluate the classification accuracy of the jointly trained au-
thorship attribution model on ChatGPT and non-ChatGPT
codes by employing Caliskan-Islam et al.’s method [29].
In total, the used datasets for this model pertain to 210
authors (six ChatGPT sets and 204 non-ChatGPT authors)
for the GCJ 2017 and 2018, and 206 authors (two ChatGPT
sets and 204 non-ChatGPT authors) for the GCJ 2019, re-
spectively. The average accuracy rates of these 210-author
and 206-author datasets were 89.3%, 78.9%, and 86.5% as
shown in . For the target authors with the GCJ
2017 dataset, the accuracy rate was 83.3%, which is 12.5%
lower than the baseline accuracy. In contrast, our feature-
based approach yielded an accuracy rate of 81.3%, while
the naive approach’s accuracy rate was only 8.3% for the

Table 7: FBA: Abuhamad et al.’s method [30] with GCJ 2017-
2019’s accuracy results. For CGJ 2017 and 2018, 210 authors
and 6 target authors, whereas 206 authors and 2 target
authors are used for GCJ 2019.

GCJ 2017 GCJ 2018 GCJ 2019
A T © @A T © @A T _© @
33.3] 50.0
83.3 50.0 100 100
33.3 50.0 100 100
33.3] 84.5 0.0
16.7| 90.3 100 100 100
66.7| 50.0 0.0
50.0] 50.0
33.3 80.6 0.0 0.0 100
43.8] 43.8

|00 J O Ul W N RN
(o)
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granular attribution as explained in section 3.5. Moreover,
for holistic accuracy, our evaluation yields 91.7% accuracy,
in comparison to 29.2% in the naive case.

We noticed a similar trend when examining the GCJ 2018
dataset. The authors’ target accuracy was 47.9%, marking
a 20.9% decrease compared to the baseline. Nevertheless,
our feature-based method produced higher accuracy rates of
58.3% and 75% for granular and holistic attributions, respec-
tively. In contrast, the naive approach resulted in accuracies
of 0% for both granular and holistic attributions. Thus, these
improved accuracies represent a substantial enhancement.
In the GCJ 2019 dataset experiment, we achieved a perfect
accuracy of 100% for both granular and holistic attributions
with a 25% target author accuracy decrease. These accu-
racies represent a substantial improvement, with a 62.5%
increase for granular attributions and a 25% increase for
holistic attributions compared to the results of the naive
experiment, which yielded accuracies of 37.5% and 75%.

We also conducted experiments using Abuhamad et al.’s
method [30] under identical settings. Overall, their tech-
nique yielded lower accuracy rates compared to Caliskan-
Islam et al.’s, although it outperformed the naive approach.
The average accuracy rates across these experiments were
82.9%, 71.8%, and 83.8%, as depicted in . For the
target author using the GCJ] 2017 dataset, the accuracy
rate stood at 77.1%, which is 8.3% below the baseline. In
contrast, our feature-based approach achieved higher scores
of 29.2% and 43.8% for granular and holistic attributions,
respectively, while the naive approach only produced 8.3%
and 31.3%. For the GCJ 2018 dataset, the target author’s ac-
curacy reached 35.4%, which is 2.1% lower than the baseline.
Our feature-based approach, however, delivered remarkable
accuracy rates of 41.7% and 60.4% for granular and holistic
attributions, whereas the naive approach only yielded 2.1%
and 6.3%. This demonstrates a substantial improvement
of 39.6% and 54.1% in accuracy. In the GCJ 2019 dataset
experiment, the target author’s accuracy rate was 43.8%,
which is 6.2% lower than the baseline. In contrast, our
feature-based approach achieved impressive accuracies of
56.3% and 81.3% for the granular and holistic attributions,
respectively. These figures represent a significant improve-
ment of 31.3% and 25% over the naive approach.

Based on these results, we observe that our method
delivers high accuracy in both settings for ChatGPT author-
ship attribution, outperforming the naive approach. While
this comes with a minor degradation in target authors’ attri-
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#include<bits/stdc++.h>
using namespace std;
long long t, n, cnt;
string str;
bool flag;
int main() {
cin >> t;
for(int i = 1; 1 <= t; i++) {
cin >> n;
str = to_string(n);
flag = false;
for(int j = str.length() - 1; J > 0; j-—-) {

if (str[j] < str[j - 11) {
flag = true;
str(j - 11-=;
for(int k = j; k < str.length(); k++) str
[k] = i
}
}
if (str[0] == ) |
str = str.substr(l, str.length() - 1);
}
cout << << 1 << << str << endl;

}

return O;

(a) Source code generated by ChatGPT in the first time.

#include <iostream>
using namespace std;
bool isTidy(long long n) {
int prev = n % 10;
n /= 10;
while (n > 0) {
int digit = n % 10;
if (digit > prev) {
return false;
}
prev = digit;
n /= 10;
}
return true;
}
long long findTidy(long long n) {
while (!isTidy(n)) {
n--;
}
return n;
}
int main() {
int t;
cin >> t;
for (int i = 1; 1 <= t; 1i++) {
long long n;
cin >> n;
cout <<
endl;

<< 1 << << findTidy (n) <<

}

return O;

(b) Source code generated by ChatGPT in the second time.

Figure 6: Examples of ChatGPT codes under the same
problem statement, inputs and outputs, and limitations
generated in the first and second time.

bution accuracy, the trade-off is justified by the substantial
improvement in ChatGPT attribution.

The Number of Styles. One of the initial observations we
made in section 3.5 is that ChatGPT is an agglomeration of
styles, causing the limited code authorship success. Given
that our ability to detect ChatGPT would be limited by the
number of styles it is capable of exhibiting, it is essential to
examine this number with rigorous evaluation. To this end,
we utilized a dataset consisting of 204 non-ChatGPT authors

Table 8: The number of styles of GCJ 2017 ChatGPT code
dataset under different numbers of maximum ChatGPT
codes. A total of 8 challenges are used with 500 generated
ChatGPT codes per challenge. — highlights the number of
styles mapped in the specific challenge, and a stands for the
average number of styles.

= 100 200 300 400 500
T 14(+13) 14(+0) 15(+1) 15(x0) 15 (+0)
2 20(+19) 23(+3) 24(+1) 25(+1) 25 (+0)
3 12(+11) 16(+4) 16(+0) 16(+0) 16 (+0)
4 13(+12) 15(+2) 16(+1) 16(+0) 16 (+0)
5 18(+17) 19(+1) 22(+3) 22(+0) 22 (+0)
6 17(+16) 22(+5) 24(+2) 25(+1) 25 (+0)
7 18(+17) 20(+2) 22(+2) 23(+1) 23 (+0)
8  19(+18) 24 (+5) 27(+3) 27(+0) 27 (+0)
a 15.37 275 1.62 0.37 0

Table 9: The number of styles of GCJ 2018 ChatGPT code
dataset under different numbers of maximum ChatGPT
codes. A total of 8 challenges is used with 200 generated
ChatGPT codes per challenge.

GCJ 2018 GCJ 2019

= 00 200 = 100 200

T 1413 @5 1 1B 14HD)
2 35(+34) 43(+8) 2 8(+7)  9(+1)
3 16(+15) 20(+4) 3 10(+9) 15 (+5)
4 18(+17) 22(+4) 4 4(+3)  6(+2)
5  29(+28) 36(+7) 5 2(+1)  2(+0)
6 27(+26) 36(+9) 6 5(+4)  6(+1)
7 10(+9) 10(+0) 7 1(+0) 2 (+1)
8 16(+15) 23(+7) 8 4(+3) 6(+2)
a 19.62 55 a 137 1.62

to train an authorship attribution model, thereby enabling it
to identify 204 distinct styles (labels). Using this pretrained
authorship model, we evaluated ChatGPT codes to assess
their stylistic patterns across each challenge, using the same
oracle model used in our feature extraction. We then report
the total number of styles (labels) and the discovery of
new styles as we increase the number of ChatGPT codes.
The latter indicates whether the number of styles reaches a
stationary state as we grow the number of codes.

For the initial experiment, we used the 4,000 C++ codes
dataset. From , the maximum number of predicted
labels was 27 for challenge 8, while the minimum was 15
for challenge 1, indicating that although there is a limitation,
ChatGPT can generate source codes in up to 27 styles. More-
over, the mean number of predicted labels has the highest
growth rate at 100 codes, with 15.37 styles on average.

Confirmation. The insight in this experiment is interesting,
although it requires confirmation. We used the GCJ 2018 and
2019 ChatGPT dataset comprising 1,600 C++ codes, with 200
codes per challenge, respectively. We used the same method
for counting the styles in the initial experiment and found
that the maximum number of predicted labels with GCJ
2018 was 43 for challenge 2, while the minimum was 10 for
challenge 7, as shown in .Furthermore, in the context
of GCJ 2019, the highest number of predicted labels reached
15 for challenge 3, while the lowest was 2 for challenges
5 and 7, as illustrated in . Compared to GCJ 2017,
ChatGPT produced source codes with more varying styles
for GCJ 2018 problems but still fewer than the total number
of styles (i.e., 204 styles in the non-ChatGPT codes; i.e.,



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 8, AUGUST 2015 11

the maximum possible labels). We found that the average
number of predicted labels is slightly more than that in the
2017 dataset. However, both datasets show slowing growth,
highlighting the stationary nature of the number of styles
as the number of codes grows. In the context of GCJ 2019,
compared to GCJ 2017, it is worth noting that ChatGPT
generated fewer styles, with the exception of almost one
additional style observed for challenges 5 and 7. As a result,
these experiments highlight ChatGPT’s limited style range.

Stylistic Differences and ChatGPT’s Transformations.
shows examples of ChatGPT codes for the same
question generated in two consecutive times. In the first
code ( ), ChatGPT implemented the program in a
single “main” function, while in the second ( ), the
code was divided into three functions: “isTidy”, “findTidy”,
and “main”. Due to these stylistic differences, the code
authorship attribution methods label the codes differently.

Diversity of ChatGPT Styles. We analyzed how often
each label was utilized to examine the variety of coding
styles in ChatGPT codes. Our investigation of the GCJ 2017
ChatGPT dataset, as presented in , indicates that
out of 500 codes, up to four labels (styles) are prevalent.
For example, in challenge 1 (shown in ), the label
“A58” appeared 244 times, while the average number of
ChatGPT codes per style is 33.33 (=500/15). Moreover, in
challenge 8 ( ), four labels—"“A57”, “A77”, “A148”,
and “A202”—appeared 63, 79, 60, and 61 times, respectively,
while the average number of codes per style was 18.51
(=500/27). We confirm the same pattern with the GCJ 2018
ChatGPT dataset, as illustrated in , revealing that up
to three labels are dominant in most cases. For instance, in
challenge 3 ( ), the label “A113” appeared 88 times,
while the mean number of codes per label (style) is 10 times
(=200/20). Moreover, in challenge 5 ( ), the labels
“A23”, “A124”, and “A133” appeared 27, 18, and 22 times,
respectively, while the average number of ChatGPT codes
per style was only 5.55 (=200/36).

In the case of GCJ 2019, more pronounced results are
evident, as depicted in . For most challenges (2-8),
a single label dominates. For instance, in Challenge 2, the
label “A39” appeared 120 times, while the average number
of codes per style stands at 22 (=200/9). In Challenge 1, four
labels, namely “A9”, “A39”, “A106”, and “A196”, exhibit
similar frequencies, with occurrences of 28, 53, 28, and 50
times, respectively. This is notable given that the mean
number of codes per style for Challenge 1 is 14 (=200/14).
Thus, we confirmed the same pattern with the GCJ 2017 and
2018 with the GCJ 2019 experiments.

Takeaway. These findings suggest that although ChatGPT
has the potential to generate source codes with as many as
27, 43, and 15 different styles, it tends to use only a small
number of styles very frequently, making it feasible to clas-
sify ChatGPT codes based on their predominant styles with
very high accuracy, even when the authorship attribution
does not work well for less dominant styles.

Binary Classification. Given the conventional approach for
classifying text snippets, which distinguishes between those
that belong to the ChatGPT and those that do not (e.g.,
“GPTZero” [24] and “ZeroGPT” [25]), our classification task
naturally can take on a binary form, specifically, ChatGPT

versus non-ChatGPT (human) codes, rather than classifying
individual authors. Generally, the binary classification ac-
curacy experiments yielded notably high levels of accuracy
as shown in and . The lowest accuracy
was observed from the individual experiment with GCJ
2018, which is 79.1%. The highest accuracy was achieved
in the individual experiment with GCJ 2017, which is 90.1%.
In the combined dataset experiment, we obtained average
challenge-level and average accuracy metrics, which are
listed under "All” Additionally, we calculated challenge-
level and average accuracy for each dataset separately and
provided them under their respective dataset names. Utiliz-
ing only five challenges to construct the combined dataset
to achieve balance led to a slight deviation in the outcomes.
However, these results fell within a similar range as those
obtained from the individual experiments, resulting in an
average accuracy of 87% when using the combined dataset.

Limitation. Our experiment had some notable limitations
that should be taken into consideration. One such limi-
tation was the relatively small number of ChatGPT sets
used in the experiment. Specifically, we only observed six
labels for GCJ 2017 and 2018 and two labels for GCJ 2019
that appeared across the eight challenges, which led us
to create six sets and two sets of ChatGPT codes for the
accuracy experiment. Consequently, the experiment results
may have been impacted by this small sample size, and
further research may be required to validate the findings
with a larger number of ChatGPT sets. Another limitation
of our experiment was that it was conducted solely on C++
code format, which may not represent other programming
languages. Therefore, the results may vary when applied
to other programming languages. Future research should
consider exploring the effectiveness of our approach in other
programming languages to gain a more comprehensive
understanding of its applicability.

Future Works. In this work, we conducted experiments to
attribute ChatGPT-generated code by employing machine
learning- and deep learning-based models. Given that Chat-
GPT can produce code in various styles and also under-
stand codes, it is essential to consider ChatGPT as well as
other LLMs as tools for attribution. LLMs are extensively
employed across various tasks, including understanding,
explaining, generating, and troubleshooting code, as evi-
denced by their remarkable performance in programming
assignments [65], [66]. Therefore, we need to investigate the
potential of LLMs as attribution tools.

5 CONCLUSION

Despite the many possible good uses of ChatGPT, it poses
many risks. Given those risks, there is an apparent need to
detect contents generated by ChatGPT. The literature has
demonstrated various methods for detecting natural lan-
guage contents generated by ChatGPT, although ChatGPT
code authorship attribution is vastly unexplored. This paper
demonstrated that the straightforward, naive approach to
utilizing off-the-shelf code authorship attribution is limited
and produces poor attribution accuracy. We found that the
poor accuracy is a result of the agglomeration of styles
exhibited in the codes generated by ChatGPT, and introduce
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Table 10: Binary classifi- Table 11: Binary classification
cation accuracy results for regults for GCJ 2017-2019. The
GCJ 2017-2019. A model is model is built using the com-
built and tested for each pined years, and the results

year individually. reported are for individual
2017 2018 2019 year’s testing accuracy results
T 924 600 985 (c stands for challenge).
2 91.6 63.5 99.3
3 96.0 97.0 55.8 c 2017 2018 2019 All
4 96.0 76.0 98.0 1 95.5 76.5 97.0 89.7
5 803 665 975 2 918 568 923 80.3
6 89.7 89.5 77.0 3 92.8 96.0 855 914
7 8.9 930 500 4 903 953 975 943
8 85.5 87.5 91.0 5 62.0 83.3 93.0 794
a 90.1 /9.1 834 a 865 816 931 870

a novel approach for code authorship attribution by group-
ing ChatGPT-generated code while capitalizing on their

common characteristics using a pretrained authorship attri-
bution model as a similarity oracle. Initially, we analyzed
the stylistic features (predicted labels) of ChatGPT code
by utilizing a pretrained authorship model that had been
trained using non-ChatGPT author dataset. This analysis
revealed that ChatGPT tends to generate source codes with
various styles but a limited number of styles, with certain
styles being more frequently used than others. Following
this observation, the ChatGPT codes were grouped into
sets based on their labels or features. Using these sets of
ChatGPT code, a new code authorship attribution model
was developed, which was trained on a dataset including
ChatGPT code. The resulting model, specially trained with
GCJ 2017, was able to achieve a classification accuracy of
81.3% (granular attribution) and 91.7% (holistic accuracy),
which is significantly higher than the accuracy achieved by
the naive approach (8.3% and 29.2%, respectively). Further-
more, the authorship model, which was trained for binary
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Figure 9: The diversity of ChatGPT styles of eight challenges (9a-9h) from CGJ 2019 ChatGPT dataset (a total of 1,600
codes, 200 generated codes per challenge). The x-axis signifies the styles (coded), and the y-axis is the number of codes.

classification (ChatGPT vs. Human), attained an accuracy of
87% when evaluated using a dataset consisting of 6K code
samples. Our findings open a new direction in detecting
chatbot-generated codes and can aid in applications where
such a feature is desired, including academic misconduct
and security analysis.
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