IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2020

Cleaning the NVD: Comprehensive Quality
Assessment, Improvements, and Analyses

Afsah Anwar, Ahmed Abusnaina, Songging Chen, Frank Li, and David Mohaisen Senior Member, IEEE.

Abstract—Vulnerability databases are vital sources of information on emergent software security concerns. Security professionals,
from system administrators to developers to researchers, heavily depend on these databases to track vulnerabilities and analyze
security trends. However, are these databases reliable and accurate?

In this paper, we explore this question with the National Vulnerability Database (NVD), the U.S. government’s repository of vulnerability
information that arguably serves as the industry standard. Through a systematic investigation, we uncover inconsistent or incomplete
data in the NVD that can impact its practical uses, affecting information such as the vulnerability publication dates, applications affected
by the vulnerability, their severity scores, and their high level type categorization. We explore the extent of these discrepancies and
identify methods for their automated corrections. Finally, we demonstrate the impact that these data issues can pose by comparing
analyses using the original and our rectified versions of the NVD. Ultimately, our investigation of the NVD not only produces an
improved source of vulnerability information, but also provides important insights and guidance for the security community on the

curation and use of such data sources.

Index Terms—Vulnerability Analysis; CVSS; NVD

1 INTRODUCTION

Securing computer systems in practice entails identifying,
understanding, and remediating the stream of software
security concerns that are continuously uncovered. To effec-
tively do so, security professionals and researchers depend
on various sources of information to acquaint themselves of
the new security issues. One vital source is vulnerability
databases, which operate as a repository of vulnerability
information. However, is the information in these vulner-
ability databases reliable?

In this work, we explore this question by identify-
ing limitations of existing vulnerability datasets and their
implications on the real-world security operation. While
several vulnerability databases exist, we focus on the one
that is (arguably) the most widely used: the National Vul-
nerability Database (NVD). The NVD, maintained by the
US government, strives to accurately document all pub-
licly known vulnerabilities, and effectively serves as the
industry’s standard. Both commercial security services (e.g.,
Hakiri [1], Snyk [2], and SourceClear [3]), and open-source
security tools (e.g., Bundler-audit [4], OWASP OSSIndex [5],
and Dependency-check [6]) depend on the NVD’s vul-
nerability information to function effectively. Furthermore,
researchers [7], [8], [9] have used the NVD as a core data
source to shed light on aspects of the vulnerability discovery
and remediation process. Given the importance of the NVD,
it is crucial that we understand the quality of its data,
lest some incorrect information leads to a critical security

lapse [10].

A. Anwar is with the Northeastern University. A. Abusnaina and D.
Mohaisen are with the Department of Computer Science at the University
of Central Florida (UCF). S. Chen is with the Department of Computer
Science at George Mason University. F. Li is with the School of Electrical
& Computer Engineering (ECE) at Georgia Institute of Technology. This work
was conducted by A. Anwar during his association with the UCF.

The prior work [11], [12], [13], [9] have investigated
certain types of data quality concerns in the NVD. How-
ever, to the best of our knowledge, there has not been a
systematic and comprehensive analysis of inconsistencies
and incompleteness of the data in the NVD, to date. To
close this gap, in this paper, we perform an in-depth large-
scale analysis of the NVD, systematically evaluating each
data field it contains. In particular, we identify significant
data issues with the vulnerability publication date, vendor
and products affected by the vulnerability, their severity
scores, and their type. We quantify the scope of each issue
within the NVD, providing an understanding of each issue’s
ramifications. Then, we develop accurate and automated
methods of correcting the information, thus producing an
improved and more reliable NVD dataset for the security
community to use. We have open-sourced the tools cre-
ated for correcting the NVD data quality concerns, as well
as the rectified dataset itself. Finally, we perform several
analysis case studies using our improved NVD. Beyond
providing more reliable analysis results for core questions
on vulnerability discovery, disclosure, and remediation, our
case studies demonstrate how analysis conclusions and
their practical implications can greatly differ due to data
quality issues. Ultimately, this work will not only directly
impact real-world security by an improved dataset used in
practice, but highlight common pitfalls that can affect other
sources of vulnerability information, providing lessons for
improving them as well as their effective usages.

Applications and Implications. We show the pitfalls of
using NVD by highlighting NVD’s various inconsistencies
and propose methods to fix them. Overall, the study can
be utilized by the NVD towards the following end goals:
1) The estimated disclosure date identification can enrich
the vulnerability report for the end-user’s perusal. 2) The



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2020

vendor and product inconsistency finding tool can be lever-
aged during the vulnerability reporting process to suggest
suitable vendor and product names to analysts. Moreover,
the observations from our analyses and measurements can
used as a best practice when adding new vendors and
product names in NVD. 3) The deep learning-based CVSS
v3 prediction engine can be leveraged by NVD and security
analysts alike for uniform severity metric generation across
the vulnerabilities in the database.

Contributions. This work studies the incompleteness and
inconsistencies in NVD, making the following contributions.
(1) Through an extensive data-driven approach backed by
web scraping, manual investigation, and machine learning-
based automation, we assess the quality of NVD, identi-
fying concerns affecting each vulnerability data field. (2)
We identify methods to automatically remedy the data
quality issues in NVD, providing a more reliable source of
vulnerability information. (3) As case studies, we conduct
several large-scale analyses of vulnerabilities, providing the
most accurate findings to several basic but core questions
on vulnerability discovery, disclosure, and remediation. (4)
We shared the results of this work with the US National
Institute of Standards and Technology, which maintains the
NVD. Following that, NVD’s schemas have been updated
to remove the free-form vendor and product names that we
identify as oft problematic [14].

We note that a significant contribution this paper is the
introduction of various “case studies” in the form of mea-
surements obtained from the refined NVD. In conducting
those measurements, we frame the pursuit of each analysis
as a research question, and answer the research questions
through an extended analysis with rationale, procedure,
findings, and takeaways. While some of this work is indeed
customary of various security vendors through their annual
reports, such reports are oftentimes limited in scope and na-
ture, justifying the measurement contribution in this paper.
For example, our measurements expand over a number of
verticals that—to the best of our knowledge-is not covered in
any single report that we could find online. Moreover, our
analysis is unique in providing a longitudinal study from
which those analyses are obtained, providing insights into
long-term trends.

Organization. We provide a review of the literature

in section 2, followed by an overview of the dataset in
section 3. In section 4, we analyze, identify, and fix the
inconsistencies, followed by studying the impact of their im-
provement. We then conduct case studies on the improved
dataset in section 5. We then discuss the implications and
analysis outcomes in section 6. We conclude our work in
section 7.

The reader of this work should be mindful of the justifi-
cation for this organization: in order to provide up-to-date
and faithful (accurate) measurements of the various aspects
of interest from the NVD, one has to start by addressing
various shortcomings of the vulnerability database, which
we pursue in section 4, followed by the analyses in section
5, and discussion in section 6.

2 RELATED WORK
Reliability of NVD. Quality issues in vulnerability

2

databases have been previously noted and studied. Nguyen
and Massaci [13] pointed out that the affected product
versions in NVD are often incorrect, where 25% of Google
Chrome CVEs had an incorrect Chrome version string.
Christey and Martin [15] similarly explored issues in the
NVD data and suggested reporting biases as a root cause.
Attila et al. [7] showed that CVSS metrics are more suitable
for enterprise software products than personal ones. Dong
et al. [12] analyzed the inconsistencies in public security vul-
nerability reports, including the NVD, and found overclaims
and underclaims in the affected software product versions.

While these studies call attention to certain inconsis-
tencies, our study stands out by providing a comprehen-
sive and systematic investigation of incompleteness and
inconsistencies across the NVD data fields. In addition to
identifying and quantifying the data quality issues therein,
we also develop methods for correcting them.

Vulnerability Analysis. Our work provides vulnerability
analyses using more consistent vulnerability information,
thus expanding on the literature on vulnerability dynamics.
Previously, Shahzad et al. [16] analyzed the vulnerability
life cycle, and pointed out that remotely exploitable vul-
nerabilities represent 80% of all of them. Earlier, Clark et
al. [17] outlined a relation between a product’s familiarity
and its first vulnerability disclosure: a shorter time between
product release and first vulnerability discovery is shown
for familiar products. Ozment and Schechter [18] observed
that 62% of vulnerabilities in the OpenBSD system were
foundational and took 2.5 years for them to be reported.
Stock et al. [19] and Li et al. [20] studied the vulnerability
notification channels and their significance. Zhao et al. [21]
empirically studied data from two web vulnerability dis-
covery ecosystems for trend analyses. Trinh et al. [22] stud-
ied vulnerabilities in web applications. Saha [23] extended
an attack graph-based vulnerability analysis framework to
include complex security policies for efficient vulnerability
analysis. Zhang et al. [24] used data from NVD to predict the
time to next vulnerability, and argued that NVD provides
poor predictions while pointing out inconsistencies, e.g.,
missing version information, release time, and other obvi-
ous errors. Votipka et al. [25] suggested integrating hackers
and improved security training for testers in vulnerability
discovery. Xiao et al. [26] detected vulnerability exploitation
at a 90% rate. Sabottke et al. [27] proposed a Twitter-based
detector to identify vulnerabilities likely to be exploited.
Homaei and Shahriari [28] analyzed vulnerability reports
between 2008 and 2014 and observed that security profes-
sionals can prevent 60% of them using only seven vulner-
ability categories. William et al. [29] proposed a framework
to discover evolutionary patterns in the vulnerabilities.
Differences with Zhang et al. [30]. Zhang et al. [30]

analyze the NVD to study the features that are reflective of
the number of vulnerabilities an application contains. While
the work did not appear during the conduction of this work,
but given its publication prior to our work, we contrast
the two works. Conducting a study on the vulnerabilities
in open-source applications in the NVD, they identify the
unique CVE in their dataset. They identify that CVEs may
not include the references to GitHub repositories leading
them to analyze the products affected by the vulnerabilities.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2020
TABLE 1: Score thresholds of v2 & v3 CVSS severity levels.

Label Abbreviation  v2 v3
None - - 0.0

Low (L) 0.0-3.9 0.1-39
Medium M) 4.0-69 4.0-69
High (H) 7.0-10.0 7.0-8.9
Critical ©) - 9.0-10.0

To account for that, they use series of heuristics to map
the products to their GitHub. Overall, while Zhang et al.
analyze the open source projects, the analyzed vulnerabili-
ties account for less than 5,800 vulnerabilities which is far
less than the actual size of the NVD. While the previous
work inspect the products affected in a CVE, we take a
two-step process. First, we identify the inconsistencies in the
vendor names throughout the NVD. Second, we cluster the
products of the vendors under a consistent name and then
analyze the inconsistencies in the product name. With our
efforts, we analyze all the occurrences and re-occurrences
of open-source and closed-source vulnerabilities alike, and
propose methods to limit their re-occurrence in the future
(see section 6).

3 DATASET

We study the National Vulnerability Database (NVD) [31],
the U.S. government’s repository of public vulnerability
information, actively maintained by the National Institute
of Standards and Technology (NIST). While there are other
databases, we focused on the NVD because it is widely used
(in part because it is public and free), and arguably serves
as the industry standard for tracking vulnerabilities. Nev-
ertheless, our exploration of the NVD can provide insights
into using other vulnerability databases.

NVD Studied Attributes. For the NVD, reported vul-
nerabilities are analyzed and added in a standardized
format. Specifically, NVD entries contain the following.
(1) A Common Vulnerability Exposure (CVE) ID num-
ber [32] that uniquely identifies the vulnerability. (2) The
vulnerability entry’s publication date. (3) The vulnerabil-
ity type/category, as classified by the Common Weakness
Enumeration (CWE) [33]. (4) The severity, as rated by the
Common Vulnerability Severity Score (CVSS) [34]. Note that
there are two CVSS versions, the historical CVSS v2 (v2)
and the modern CVSS v3 (v3) [35], both on a scale from
0 to 10. Table 1 shows the CVSS severity level thresholds.
Note that the v3 introduces a critical level of severity.
(5) A list of vendors and products affected, as classified
under the Common Platform Enumeration (CPE) [36]. (6)
Free-form vulnerability descriptions. There can be multiple
descriptions, although the typical one explains the security
concern. Another common description is a comment by
the CVE entry evaluator. (7) Optionally, reference URLs
(e.g., security advisories) are sometimes listed, providing
vulnerability details.

NVD Scale and Longitude. We use a snapshot of NVD
captured on May 21, 2018. This snapshot includes 107.2K
CVEs added to NVD over two decades (1998-2018). These
vulnerabilities are categorized into 453 CWE types, affecting
18.9K vendors and 46.6K products. We observe that 37.5K

3

recent CVEs have the modern v3 severity label, in addition
to v2 labels, while the remaining CVEs only have v2 labels.

4 INCONSISTENCIES AND IMPROVEMENTS

The quality of data in a vulnerability database can heavily
impact vulnerability tracking and trend analyses. Prior work
by Mu et al. [11] already identified that crowd-sourcing
vulnerability information has limitations. In this section,
we analyzed the NVD CVE entries for inconsistencies and
explored methods for rectifying them.

We assess the standardized non-free-form fields, i.e.,
publication date, CWE class, CVSS rating, and the affected
CPE. The remaining NVD fields (the vulnerability descrip-
tion and reference URLs) are free-form without a standard-
ized structure, making it challenging to conceptually define
and identify inconsistencies. Since the description is not
guided by standardized rules, the extracted features are not
predictable and may not be meaningful.

Note that we focused on data consistency issues, not data
error problems. We assumed that the data in the NVD is
correct but perhaps represented inconsistently, such that one
could identify the correct information without resorting to
investigation beyond what is provided through the NVD.

4.1 Publication Dates

Incompleteness. Vulnerability analysis often depends on
tracking when vulnerabilities became public. For example,
security analysts must consider how long a vulnerability
has been public when prioritizing patching, calculating win-
dows of exposure, or investigating incidents (such as in log
analysis). NVD records have a publication date, but this date
only indicates when the entry was added to the database.
We observed cases where the NVD publication date does
not give a clear picture of vulnerability. For example, CVE-
2011-0700 is a WordPress XSS vulnerability with an NVD
publication date of March 14, 2011. However, the CVE entry
includes a reference URL for a public advisory disclosing
the vulnerability over a month earlier.

Identification and Improvement. We identify the disclosure
dates leveraging the reference URLs. Li and Paxson [9] and
Anwar et al. [8] previously suggested approximating the
disclosure date by mining these references, as many are web
pages about the vulnerability and its publication date.

We first extracted the domains from the URL references,
finding that the 591.4K URLs in our data corresponded to
5,997 domains. We focused on the top 50 domains, cover-
ing more than 85% of all URLs (we observed diminishing
returns from considering additional domains).

These top domains fall into three high-level categories:
(1) other vulnerability databases (e.g., SecurtiyFocus), (2) bug
reports or email archives threads (e.g., Bugzilla), and (3)
security advisories (e.g., cisco.com). Note that some domains
are not in English (e.g., jun.jp is in Japanese). Each of the
webpages may have a different structure. Thus, we built
a separate crawler for each domain to extract the relevant
publication date for the vulnerability information (if any).
We note that 14 domains are no longer responsive (e.g.,
osvdb.org shut down in 2016). For a given CVE, we approxi-
mated its public disclosure date as the minimum of the dates
extracted from the reference URLs or publication date.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2020

TABLE 2: Common inconsistency patterns in vendor naming.

Length(Longest Substring Match)> 3

Length(Longest Substring Match) <3

Category | Tokens om0 b1 #MP>1  Dref PavV | #AMP =0 #MP—=1 #MP >1 Dref PaV
Possible | 260 (524) | 78 (155) 319 (608) 6(11) 293 (566) 5(10) | 223 (381) 658 (1151) 18(33) 2(d) 2@
Confirmed | 260 (524) | 52 (103) 295 (561) 4(7) 266(513) 3(6) | 53(76) 201(341)  11(20) 2(4) 2(4)

! The numbers outside the parentheses are unique vendor pairs, while the numbers inside are the names associated with them.

2 Considered inconsistency patterns: (1) identical names except for special characters (labeled as Tokens); (2) vendor names associated
with identical product names (labeled as #MP=X, where X is the number of matching product names), (3) one vendor name is a
product of the other vendor name in the pair (labeled as PaV), and (4) one name is a string prefix of the other name (labeled as Pref).
3 For cases (2)—(4), the longest common substring (LCS) between names is used as a signifier (|[LCS|> 3 v. [LCS|< 3).

4 Pairs with (#MP=0 A |LCS|= 0 A not Pref) are not included in this table, as they do not meet our vendor matching heuristics.

0.6
0.4
0.2

CDF

66
132
198
264
330
396
462
531
608
687
763
836
921

1025
1198
1391
1882

Lag Time (days)

Fig. 1: CDF of vulnerability lag times. Lag time is the
number of days after our estimated disclosure date when
a vulnerability enters into the NVD. Note, ~38% of the
vulnerabilities have no lag.

Improvement Impact. We evaluated how many days the
CVE published date preceded our estimated disclosure date,
which we call the lag time. Figure 1 plots the percentage of
CVEs within a lag time. Notice that ~38% of the vulnerabili-
ties have a lag of zero days. The growth of vulnerabilities by
lag time slows after accounting for the vulnerabilities with
a lag of < 6 days (=70%). We observed that =~ 28% of the
vulnerabilities have a lag of more than a week. Moreover,
we distributed the lag among the v2 labels and observed
that we improved on the publication date for only 37% of
low severity vulnerabilities, in comparison to 41% medium
and 65% high severity vulnerabilities. This observation is
particularly interesting as vulnerability tracking and analy-
sis of high severity vulnerabilities are likely most valuable
and can be most affected by this inconsistency.

Limitations. We crawled 50 top level domains to estimate
the vulnerability disclosure date cover 85% of all URLs. We
note that including additional domain names may lead to
an earlier disclosure date, although it would entail more
engineering effort and time.

4.2 Vendor and Product Names

Inconsistencies. Practitioners depend on lists of vendors
and products affected by a CVE to identify vulnerabilities
affecting software they use [37], or to monitor the security
trends of various software systems. We observed inconsis-
tencies in these vendor and product names. For example,
BEA Systems (vendor) is labeled as both bea (171 associated
CVEs) and bea_systems (14 associated CVEs). We observed
AVG’s anti-virus product has multiple names, including

TABLE 3: Vendor and product name inconsistencies in NVD,
SecurityFocus (SF), and SecurityTracker (ST).

Vendor Product
Database | — o #C | # Y
NVD 18,991 1,835 871 | 46,685 3,01 700
SF 24760 2,094 878 i -
ST 4151 110 53 ; -

! For both vendors and products, we list the number (#) of
distinct names and # impacted by a discrepancy (#I). * For
vendors, we list the number of consistent vendor names that
map to inconsistent vendor names (#C). * For products, we list
the number of vendors (#V) affected by inconsistent product
names. We only investigated produce names for the NVD.

antivirus and anti-virus. Thus, those monitoring for vulner-
abilities by vendor or product names will obtain incorrect
results unless carefully accounting for these inconsistencies.

Product Version Inconsistency. The NVD is also subject to
inconsistent product versions, as demonstrated by Nguyen
and Massaci [13]. Dong et al. [12] leveraged NLP methods to
find and correct inconsistencies in product versions through
mining the NVD reference URLs. Thus, we did not investi-
gate product versions further.

Identification and Improvement. Initially, we lack a general
understanding of the nature of the vendor and product
name inconsistencies. Thus, we resorted to manually ana-
lyzing name pairs to determine if both names represent the
same entity (which we will call matching pairs). However,
the manual analysis does not scale to the number of unique
name pairs. We used heuristics to filter pairs down to those
that are likely matching (i.e., related to the same entity yet
with inconsistent names). We recognize these heuristics pro-
vide a broad coverage but may not be truly comprehensive.

Vendor Names. Informed by manual exploration, we de-
veloped three heuristics to identify probable inconsistent
vendor name pairs as follows. (1) Vendor name pairs share
characters in common. This accounts for various scenarios
such as where one name is misspelled (e.g., microsoft and
microsft), represented in a different format (e.g., avast and
avast!), abbreviated (e.g., lan_management_system and Ims),
or a strict substring of another (e.g., Iynx and Iynx_project).
(2) A product name is used as a vendor name (e.g., microsoft
and windows both appearing as vendors). (3) Vendor pairs
share the same product name.

We filtered out vendor name pairs that do not satisfy
any of these heuristics, and manually investigated each



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2020

remaining pair by checking their products, developers, and
associated organizations. For each group of matching name
pairs for the same vendor, we created a mapping of vendor
names to consolidate those representing the same vendor
under a consistent name. Note that there may be multiple
matching pairs associated with the same vendor, indicating
multiple inconsistent names. For the names associated with
a vendor, we considered the one with the most associated
CVEs as the consistent name, and remapped inconsistent
vendor names in the NVD using our mapping. Techni-
cally, while we provide simple examples to understand the
heuristics, those that are reasonably easy to identify by the
human eye, we also identify inconsistent vendor names,
such as kingsoft (CVE-2018-7546') and ksoffice (CVE-2010-
5208%). The identification of such inconspicuous inconsis-
tencies demonstrate the usefulness of our tool.

To shed light on common patterns in inconsistent vendor
naming, in Table 2, we listed those common patterns, as
well as how likely those patterns signals a matching pair.
We observed that 260 name pairs were identical except for
the inclusion of special characters (e.g., ! or _), and all were
matching vendor name pairs. For other name pairs, when
the longest substring match was at least 3 characters, the
majority (at least 60%) of name pairs were matching under
the other patterns. Notably, when the two vendor names
in the pair were both associated with the same product
name, or when one vendor name was a string prefix of the
other, the pair were matched in over 90% of cases. When
the longest substring match was less than 3 characters, only
a minority of name pairs were still matching under the
different patterns.

Product Names. After consolidating vendor names (above),
we identified likely matching product names under the
same (consolidated) vendor using two heuristics, and then
manually evaluated the pairs. For the first heuristic, we
tokenized product names by splitting by white spaces and
special characters, and considered a product name pair as
likely matching if the two tokenized names are identical.
This captures cases such as internet-explorer, internet_explorer,
and internet explorer.

For the second heuristic, if one product name in the
pair is tokenized into multiple components and the other
is a single component, we concatenated the first character
of the multi-component name, and compared the concate-
nated string with the other product name. This captures
abbreviations, such as with internet-explorer and ie. Next, we
investigated replacing, adding, and swapping of characters.
We did so by determining the edit distance between product
pairs. This is followed by manual verification of the pairs.
The product names varying by characters can be different
products altogether, e.g., cisco’s ucs-e160dp-m1_firmware and
ucs-e140dp-m1_firmware have an edit distance of one, but
are different products. With our analysis, we focused on
pairs that can be a result of human error, e.g., natives-
olutions’s tbe_banner_engine and the banner engine. As with
vendor names, we mapped inconsistent product names to a
consistent name based on the name associated with the most
CVEs, and remapped product names in the NVD based

1. https:/ /nvd.nist.gov/vuln/detail/CVE-2018-7546
2. https:/ /nvd.nist.gov/vuln/detail /CVE-2010-5208

5

on this mapping. Table 3 depicts that we found over 3K
products inconsistently named affecting 700 vendors.

We note these two heuristics are more limited than those
considered for vendor names, as we found that product
names are often quite similar without representing the
same product. For example, we explored using substring
matching heuristics (as with vendor names), but found the
number of pairs flagged for analysis to be too large and with
many false positives (i.e., non-matching pairs).

Improvement Impact. Table 3 lists the extent of the vendor
and product naming inconsistencies we identified. The NVD
includes ~19K distinct vendors, and about 10% of them
were impacted by vendor naming inconsistencies. These
~1.8K vendor names could be consolidated under 871 ven-
dor names, thus removing ~5% of distinct vendors. Incon-
sistencies similarly affected 6% of distinct NVD product
names, and consolidating names would reduce the number
of product names also by about 5%. Thus, inconsistencies
affect a non-trivial fraction of vendors and products. These
numbers are lower bounds on the extent of vendor and
product name inconsistencies in the NVD, since our identi-
fication and correction method relied on heuristics that may
not be all-encompassing.

We also explored vendor naming inconsistencies in two
other vulnerability databases with this information, Se-
curityTracker [38], and SecurityFocus [39]. We used the
same vendor name mapping that we generated (above)
for correcting to consistent names, and applied it to the
vendor strings in these two databases. As a result, we found
as shown in Table 3 that 3% and 8% of vendor names
were inconsistent for SecurityTracker and SecurityFocus,
respectively. Exploration of these databases specifically will
likely yield further inconsistencies, highlighting that this
data quality issue is prominent in vulnerability database
generally, and our approach for rectifying the NVD could
be used for our datasets as well.

We now delve deeper into the vulnerabilities to under-
stand what type of vulnerabilities are impacted by such
inconsistencies? Are they unimportant so that they can be
considered as those that may not have much impact on
host systems and can thus be ignored? To answer these
questions, we consider the vulnerabilities that have incon-
sistent vendor or product names. Among those that are
corresponding to well-known vendors, we select 10 CVEs
randomly, shown in Table 4. To evaluate their impact, we
focus on their severity and vulnerability type. Notice that all
except one (CVE-2006-6601) are of High severity (v2). This
CVE-2006-6601 vulnerability is in windows media player
though of Medium severity, which can be exploited by a
crafted header of .MID (MIDI) file to and cause a DoS attack.
Among the other nine vulnerabilities, four can be exploited
remotely. Additionally, CVE-2018-16983, a vulnerability in
tor browser, and can be exploited by an attacker to bypass
by using text/html;/json Content-Type, which can pose to
be a privacy risk.

These analyses show that the vulnerabilities correspond-
ing to the inconsistent vendor names are impacting, severe,
and thus cannot be ignored. Additionally, it exhibits the
importance of having a consistent vendor/product name.

We note that Dong et al. [12] also investigated prod-



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2020

TABLE 4: Case study: A sample of vulnerabilities corre-
sponding to known vendors. These vendors were misla-
belled, meaning that they have another instance of its own.
For example, the dominant instance of microsft is microsoft.
We uniform the dominant instance as the consistent vendor
name. Most of these vulnerabilities give remote access to the
adversary.

CVEs Vendor Severity (v2) Description
CVE-2017-7689  schneider_electric High Command injection
CVE-2006-6601 windows Medium Malformed header (DoS)
CVE-2008-4019  microsft High Remote code execution
CVE-2008-3471  microsft High Remote code execution
CVE-2014-0754  chneider_electric =~ High Directory traversal
CVE-2009-1185  kernel High Privilege escalation
CVE-2018-16983  torproject High Bypass script blocking
CVE-2008-0166  openssl_project High Crypto keys-based attack
CVE-2017-5005  quick_heal High Remote code execution
CVE-2017-8774 quick_heal High Memory corruption

TABLE 5: Transformation from v2 to v3 in numbers.

v3 L M H C
v2 # %o # %o # % # Y%
L 363 9.53 | 3,211  84.30 235  6.17 0 0.00
M 242 1.07 | 10,589 46.88 | 11,136 49.30 621 275
H 0 0.00 549 496 | 5293 47.80 | 5232 4724

uct names specifically, where their heuristic was to split
product names by white spaces into words, and label two
products as matching if they shared words. In comparison,
their method does not account for abbreviations or special
character separators, and yield false positives when differ-
ent products share similar words (e.g., Microsoft’s Internet
Explorer and Internet Information Services products).

Limitations. The vendor and product inconsistency num-
bers present a lower bound on the inconsistencies that NVD
may have. During our experimentation, we do not group the
vendors if another vendor acquired a probable inconsistent
vendor. For example, CVE-2021-2161 is a vulnerability in
the Java SE. Although Java was previously owned by Sun,
the recent vulnerabilities in it have been associated with
Oracle and not Sun, or both Sun and Oracle. An approach
to improve the bounds would require determining the date
of acquisition of the probable inconsistent vendor and then
correlating it with their estimated disclosure date. Moreover,
we take into account the project forks during our inconsis-
tency analysis, i.e., open-source applications being utilized
by other applications. However, we argue that forks cannot
be considered as inconsistencies.

4.3 Severity Scores

Inconsistencies. NVD uses the CVSS standard for rating
severity [34]. However, CVSS has had multiple versions,
with the modern v3 addressing limitations of prior versions.
As v3 was only released in 2015, only a third of the CVEs
in our NVD dataset have v3 scores. Security analysts mon-
itoring vulnerabilities over time must either rely on v2 and
its limitations (e.g., inaccurate security ratings), or evaluate
a subset of the NVD data. Vulnerabilities pre-dating the
release of v3 are still relevant, as age-old vulnerabilities are
often still used in active attacks. For example, CVE-2011-
0997 (a DHCP client vulnerability) was disclosed in 2011
yet could be used to target Avaya desk and IP conference

6

phones in 2019 [40]. Similarly, CVE-2004-0113 is a medium
severity vulnerability under v2 that was actively exploited
in 2018 (over 14 years after disclosure) to exploit hosts and
install crypto-mining malware [41]. Thus, we would ideally
be able to backport v3 scores throughout the NVD, provid-
ing a more modern security rating for all vulnerabilities.

Motivation. Vulnerabilities that have occurred in the past
have been shown to re-appear as new attack vectors. This
has been attributed to the inability of security teams to
generate a prioritized list of patches for the operations
team [42]. With the increasing vulnerability disclosures over
the years, it is essential to re-assess the priority of the
vulnerabilities given the current threat landscape. With v3,
CVSS attains this objective. However, the vulnerabilities in
the NVD that do not have the v3 scores are left behind and
cannot be assigned an updated priority. Therefore, with our
efforts, we estimate the v3 score of such vulnerabilities that
do not have a v2 score.

Identification and Improvement. Identifying CVEs with
only v2 is straightforward, as NVD entries list the CVSS
version associated with a score. The challenge is then im-
proving the NVD by automatically assigning v3 scores to
all CVEs that only have the v2 scores. Both CVSS versions
are calculated from a weighted aggregation of an input
set of feature values, with v3 providing additional features
and refined weightings. Thus, our approach is to develop
a machine learning model that inputs v2 features, as well
as other CVE entry information, and output approximate
and meaningful v3 scores (despite lacking explicit features
that normally are input into the v3 calculations). To evaluate
the accuracy, we aimed not to necessarily produce identical
severity scores as v3 would output, but predict the correct
severity category (low, medium, high, critical) as the v3
score, which is commonly used for vulnerability prioritiza-
tion [34]. We specifically applied machine and deep learning
approaches to model the potentially complex weighting and
interactions between different features despite lacking the
explicit v3 features.

Features. While most parameters required for the severity
scores remain the same in v3 as in v2, the parameters
in v3 capture a fine-grained impact of the vulnerability.
For example, “access vector” in v2 was transformed into
“attack vector” in v3 with the specific effect of vulnerability
into Physical (P), Network (N), Adjacent (A), and Local (L)
impacts. Where v2 considered P attacks as L, v3 divides the
scores and introduces a new scope parameter for vulnera-
bilities impacts beyond the exploitable system. The access
complexity in v2 was divided into attack complexity and
user interaction in v3, and the temporal metric influence
is decreased in v3. To this end, we used the following
v2 parameters as features to extrapolate v3 scores: access
vector and complexity, authentication, integrity, availability,
all privilege, user privilege, and other privilege flags.

Acknowledging the study by Holm and Afridi [43] on
CVSS reliability by surveying 384 experts and 3,000 vul-
nerabilities that concluded that the reliability depends on
the vulnerability type, we also include CWE-ID as an input
feature towards v3 approximation.

Ground Truth Dataset. A ground truth dataset with a map-
ping between v2 and v3 scores (or categories) is required



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2020

for building our system. For that, we used the recent CVEs
(=37K CVEs) in the NVD that have both v2 and v3 CVSS
versions. The v3 score emphasizes a better expressiveness
for vulnerabilities” impact. The effect of these changes on the
vulnerabilities is summarized in Table 5, and we notice that
there is no significant change in label across severity levels,
i.e., no vulnerability moves from Low in v2 to Critical in v3.
Similarly, no vulnerability moves from High in v2 to Low in
v3.

Model’s Training. Using the aforementioned features, we
predicted the v3 base scores for vulnerabilities that do not
have the v3 metrics. We began by splitting the ground truth
data into 80% training and 20% testing datasets evenly
distributed among classes. Additionally, we observe non-
linear patterns among the v2 and v3 °. We then applied a
range of machine and deep learning prediction algorithms
to predict the v3 scores: (1) Linear Regression (LR), (2)
Support Vector Regression (SVR), (3) Convolutional Neural
Networks (CNN), and (4) Deep Neural Networks (DNN).
Linear regression finds the linear relationship between a tar-
get and one or more features. In addition, we used Support
Vector Machine (SVM) as a regression method to predict
v3 base score; we conducted the prediction using various
combinations of parameters and report the best performing
model on the training dataset (kernel type = rbf (radial basis
function), kernel coefficient = 0.1, and penalty parameter =
2). We leveraged different deep learning techniques to ex-
tract deep feature representations for the vulnerabilities. We
implemented a CNN model consisting of four consecutive
convolutional layers. The first two layers consist of 64 filters
and the remaining layers consist of 128 filters with a filter
size of 3 x 3. The convolutional layers are followed by a
flattening operation and a fully connected layer with 512
neurons. Next, a single neuron with a sigmoid activation
function is used to output the prediction of the model. The
sigmoid activation function is defined as f(x) = 1-&-%
Similarly, we implemented a DNN model consisting of
four fully connected layers with size of 128, 128, 256, and
256, respectively. The fully connected layers are followed
by a single neuron with a sigmoid activation function to
output the prediction of the model. We trained the deep
learning models over 100 epochs using mean squared error
loss function, 37 Ef\io (y(z;) — f(x;))?, and Adam optimizer
with a learning rate of 0.001. For evaluation, we defined the
average error (AE) as [ZZN:O Abs(y(z;) — f(x;))]/N, where
z; is the i'h sample of the testing dataset, y(x) is the v3
severity score of the sample, f(x) is the predicted value of
v3 severity score of the sample, and N is the size of the
testing dataset. Similarly, we defined the average error rate

(AER) as [322 Abs(y(z:) = f(z:))/y(@i)}/ N
Model Learning Results. Table 6 shows the average error

3. Given that v2 and v3 capture behavioral aspects of vulnerabilities,
we investigated if the added parameters in v3 depend on the v2
metrics. To enrich the investigation for this extrapolation, we also
used the vulnerability type information of every vulnerability. Then,
we explored the patterns within a v2 label that lead to a change in
severity. To visualize the patterns, we began by applying the Principal
Component Analysis (PCA) as a feature reduction technique. PCA is
a linear dimensionality reduction technique using the Singular Value
Decomposition (SVD) of the data to project it to a lower-dimensional
space [44]. The representations did not exhibit any visible pattern.

7

TABLE 6: Prediction results: Average error (AE) and AE Rate
(AER).

Algorithm LR SVR CNN | DNN
AER (%) 12.16% | 12.63% | 9.62% | 11.61%
AE 0.73 0.82 0.54 0.65

TABLE 7: The v2 and v3, where v3 labels are predicted by
our model.

v3 L M H C
v2 # % # % # % # %
L 183 3.42 | 5160 96.43 8 015 0 0.00
M 1 0.00 | 15272 39.79 | 23,107 60.21 0 0.00
H 0 0.00 490 1.64 | 10,135 33.89 | 19,281 64.47

and error deviation for different machine learning algo-
rithms. The table shows that CNN has the lowest error rate
and average error. Moreover, we translated the predicted v3
base scores to their respective severity labels according to
the ranges in Table 1. Table 8 lists the accuracy per input
class, and we found that the model performs best for the
input class High, i.e., with 93.55% accuracy, and performs
worst for target class Low, ie., with 82.84% of accuracy.
The overall accuracy of 86.29% means that our model could not
predict the correct v3 label for 13.71% of the vulnerabilities in
our dataset. We also observed that DNN performs slightly
better than CNN for the input class Low. Furthermore, we
also tried other machine learning algorithms, and found
that deep learning-based models (CNN and DNN) outper-
formed those alternatives. Given that the CNN-based model
outperforms DNN-based model by ~2%, overall, we chose
the CNN-based model for prediction.

Improvement Impact. With our model, we can assign v3
scores and severity levels to all vulnerabilities in the NVD
that only have the v2 scores. For over 74K CVEs with only
v2 scores, Table 7 depicts their severity categories under v2
and our predicted v3. We observed that 48K CVEs change
severity levels under v3, with 29K CVEs changing severity
categories if we consider v2 High and v3 Critical to be
equivalent (as v2 lacks a Critical level). Thus, nearly 40%
of CVEs have different severity once the severity score
is updated with the predicted v3. Overall, the change is
skewed towards high severity ratings. We hypothesize that
this characteristic is because v3 was designed in part to
account for the scope of software affected, which can elevate
the severity of a vulnerability when other sensitive systems
are involved beyond the immediate vulnerable system. As
a result, users of the NVD can better prioritize the vulnera-
bilities that they analyze and address.

The most impacted vulnerabilities by v3 do not adhere
to any patterns, as confirmed from the prediction results,
highlighting the power of our learning techniques in captur-
ing complex mappings.Note that both the old vulnerabilities
mentioned earlier, that are still exploited (i.e., CVE-2011-
0997 and CVE-2004-0113), are more properly categorized as
critical severity under our model—whereas one was labeled
as medium severity, the other was high severity with the v2
labels.

In conducting our v3 extrapolation, we also argue that
the predicted labels will help users prioritize vulnerabilities



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2020

TABLE 8: Prediction accuracy. The overall accuracy of our
prediction engine, and its accuracy by input class.

Accuracy Overall | By input (v2) class (%)
(%) L M H
LR 83.14 | 8258 79.31 91.14
SVR 66.46 | 8297 71.15 51.21
CNN 86.29 | 82.84 83.31 93.55
DNN 84.41 | 83.10 80.67 92.48

better. In particular, we found that the confidentiality, base
score, and integrity are important features that impact the
performance of our prediction model, i.e., the degree of
information disclosure, the cumulative score of the vulnera-
bility, and the degree of impact on the integrity of the victim.
Allodi et al. [45] evaluated information affecting severity
assessment. Our work extends their findings by showing
which features determine the v3 score of a vulnerability.

Limitations. For the vulnerabilities that do not have their
v3 scores, we utilize ML algorithms to approximate their v3
scores from their v2 metrics. However, we acknowledge that
the v3 score does not solely dependent on the v2 metrics, as
v3 introduces additional parameters for measurement. The
overall accuracy of 86.29% in extrapolating v3 score from v2
metrics is credited to the power of the added parameters to
the v3 metric, which we do not consider.

4.4 \Vulnerability Types

Inconsistencies. In the NVD, a CVE should be assigned
a vulnerability type under the CWE classification [33] to
provide users with an overview of the vulnerability nature
and risk. Security analysts and developers leverage the vul-
nerability type to understand attack vectors that may impact
their software, types of defenses to deploy, and track shifts
in security concerns over time [46]. However, we identified
that the CWE field for CVEs is not consistently populated
correctly with a CWE-ID value.

We found CVEs without CWE values, as well as those
with CWE entry as NVD-CWE-Other. By itself, this is miss-
ing data—rather than inconsistent, and out of the scope of
our investigation (although worth noting for those analyz-
ing NVD vulnerability types). However, we observed that
the free-form CVE description (particularly the description
provided by one of the vulnerability’s evaluators) often con-
tains the CWE-ID. For example, CVE-2007-0838 lists NVD-
CWE-Other as its CWE-ID, while its evaluator description
includes “CWE-835: Loop with Unreachable Exit Condition
('Infinite Loop”)”. We also observed CVEs that list addition-
ally relevant CWE-IDs in the description beyond those listed
in the CWE field. In these cases, the CWE information is
accessible in the CVE entry, but inconsistently provided.

Identification and Improvement. The CWE-ID follows a
standard and distinct format that allows us to easily identify
IDs in description strings through a regular expression
(i.e., CWE-[0-9]%). For all CVEs, we applied this regular
expression to the description strings to extract any CWE-
IDs and add them to the set of CWE-IDs listed in the
CWE field, if any. From this set of CWE-IDs, we filtered
any CWE-ID values that indicate missing or non-specific

8

CWEs (e.g., NVD-CWE-Other). In theory, descriptions could
list CWE-IDs that are not relevant to the CVE (e.g., if
discussing another vulnerability). However, through man-
ually inspecting a random sample, we did not observe any
erroneous cases where the CWE-ID in the description is not
correct. Evidently, the CVE description outlines the traces
of a vulnerability, which can be used to determine the type
of vulnerability. We, therefore, investigated the capability
of the CVE descriptions to extrapolate their corresponding
types. We did so by utilizing different Natural Language
Processing, machine learning, and deep learning techniques.

The crowd-sourced nature of the vulnerabilities devoid
the descriptions of a standard descriptive pattern. Therefore,
we began by preprocessing the data. Particularly, we unified
the cases (convert text to lower case), removed the stop
words and special characters (commonly used words that
do not affect the meaning of the sentence, e.g., This capabil-
ity can be accessed is changed to capability access), replaced
contractions (e.g., identifier’s is changed to identifier), and
tense (past tense is changed to present tense, e.g., used is
changed to use). Then, Universal Sentence Encoder [47],
a pre-trained transformer that is used to transform the
text into high dimensional vector representation depending
upon the semantic similarities and clustering, is utilized to
represent the descriptions as vectors of size 1 x 512. The
encoded vectors are then used to train and evaluate several
machine learning and deep learning techniques, namely, k-
Nearest Neighbor (k-NN), CNN, and DNN. We observed
that k-NN (k = 1) provides the best results, predicting 151
different types with 65.60% accuracy. While the results seem
high considering the number of target classes, they cannot
be reliably used given the criticality of the application.

Improvement Impact. By applying our CWE-ID extraction
from CVE descriptions and matching CWE-ID name from
the CWE list from their website [48], we correct the CWE
field for 2,456 vulnerabilities that do not have their types
labeled. These vulnerabilities also include those that already
have types assigned. Statistically, the existing database in-
cludes 26,312 vulnerabilities with NVD-CWE-Other label,
7,566 with NVD-CWE-noinfo label, and 1,293 with no as-
signed label, aggregating to ~31% of all the vulnerabilities.
Additionally, we observed that most of the affected CVEs
after our inconsistency fixes are those of type NVD-CWE-
Others. Our analysis finds appropriate labels for 1,732 of the
NVD-CWE-Other vulnerabilities and 14 of both the NVD-
CWE-noinfo and unassigned vulnerabilities, making up for
~5% of those vulnerabilities.

Limitations. We analyze the description field to obtain
information about the weakness of the vulnerability, finding
a CWE-ID for 2,456 vulnerabilities. To improve the coverage
of the vulnerabilities with inconsistent CWE-ID, it would
be essential to employ program analysis techniques, e.g.,
analyze the code segments before and after the patch.

5 CASE STUDIES

With an improved and more consistent NVD, we conduct
several vulnerability analyses as case studies on the impact
of our NVD corrections. For each analysis, we describe
what questions are being asked, how the answers might be
valuable in practice, the results from the analysis using both



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2020
TABLE 9: Top 10 dates with the most vulnerabilities by CVE
publication and our estimated disclosure dates (EDD). Day
of week (DoW) and percent of that year’s vulnerabilities
reported on date are used.

CVE Date | DoW #V“I“So/ EDD | DoW ;’ ulns /
12/31/04 F 1,098 | 448 | 09/09/14 T 384 5.1
05/02/05 M 816 16.6 | 07/09/18 M 359 24
12/31/02 T 441 20.5 | 04/02/18 M 344 23
12/31/03 W 407 26.7 | 07/05/17 W 313 24
07/09/18 M 423 2.8 | 01/19/16 T 295 4.6
12/31/05 Sa 384 7.8 | 07/18/17 T 275 2.2
02/15/18 Th 340 2.3 | 07/14/15 T 268 3.7
09/09/14 T 326 41 | 05/02/05 M 256 54
08/08/17 T 316 22 | 01/17/17 T 251 2.0
04/18/18 W 281 19 | 07/17/18 T 245 1.7
30000
m Disclosure date m NVD date

- 25000

S 20000

@

% 15000

£

g 10000 l '

* 5000

, I b
Sun Mon Tue Wed Thu Fri Sat

Day of week

Fig. 2: The number of CVEs disclosed per week day (using
our estimated disclosure dates) and published to NVD.

the original and rectified NVD data, and the impact of our
improvements on the analysis outcome.

We recognize that there are a variety of potential analysis
directions. This subset is by no means comprehensive, but
rather involves informative questions one might reasonably
ask when using the CVE fields we investigated from the
NVD. We note that security reports are a common prac-
tice, and especially in the security industry, where various
companies release summaries to highlight the state of the
vulnerability reporting, the way we conducted them in this
paper. To this end, the ultimate goal of these case studies
is to demonstrate how analysis results can be affected by
the NVD data issues that we correct, which may impact
the state of the eventual produced reports. We also believe
that the findings of the study can be leveraged directly by
the vulnerability databases to limit the issues therein by
programmatically implementing the heuristics developed
and pursued in this study to address the underlying sources
of inconsistencies.

5.1 Vulnerability Disclosures

RQ1. When are vulnerabilities most frequently disclosed?
Analysis Value and Rationale: Understanding the times
associated with high levels of vulnerability disclosures
could shed light on underlying decisions in the disclo-
sure process, as well as the impact of those decisions.
The published date from the NVD has been utilized to
draw conclusion on vulnerability reporting trends [49], [50].
Additionally, hypothetically, vendors could opt to disclose
vulnerabilities at the end of the week or near holidays.
As many people (including those working for media or-
ganizations) are off of work during subsequent periods,
the vulnerabilities may draw less negative attention. As

9

a consequence though, vulnerability remediation may be
substantially delayed. It is important to understand if this
indeed happens frequently.

Analysis Results: Table 9 shows the top 10 dates in terms
of the number of vulnerability disclosures (based on our
estimated disclosure date), as well as the day of the week for
each date. When considering US holidays, we do not notice
any particular pattern of pre-holiday disclosures. Rather,
several of these top dates are within a couple of weeks after
a US holiday, such as Independence Day (7/9/18, 7/5/17,
7/18/17,7/14/15, and 7/17/18), Labor Day (9/9/14), and
New Year’s Day (1/17/17 and 1/19/16). Additionally, we
note that these dates are primarily on Mondays and Tues-
days. To investigate this observation more broadly, Figure 2
shows the number of vulnerabilities disclosed on each day
of the week. We find that beyond the top 10 dates, vul-
nerabilities are most frequently disclosed in the first half
of a week (with fewer disclosures on Friday or over the
weekend). In this analysis, we consider US holidays as most
vendors in the NVD are US-based companies. However,
we recognize that other nations celebrate many other hol-
idays, and leave a more detailed global analysis for future
work. We note that most vulnerabilities are disclosed during
reasonable periods, where security professionals can obtain
and act on information promptly.

Impact of NVD Data Issues: For top CVE publication
dates from Table 9, we observe New Year’s Eve as four of
the top 10 most active days, whereas it does not appear any-
where among the top 10 dates by our estimated disclosure
dates. Most notably, on 12/31/2004, over 1K CVEs were
added to the NVD, accounting for over 44% of CVEs for
that year. Yet according to our estimated disclosure date,
only 175 were publicly disclosed that day. This discrepancy
suggests an NVD artifact where a large number of CVEs
may be added to the database before a new year arrives, or
backdated to the last day of a prior year, rather than a more
fundamental aspect of vulnerability reporting. Using the
raw NVD data for vulnerability frequency analysis could
produce inaccurate conclusions such as high vulnerability
reporting during holidays. Similarly, Figure 2 indicates a
more equal distribution of CVE publication dates through-
out the week, which would incorrectly suggest many CVEs
are indeed disclosed near weekends.

Takeaway and Answer to RQ1: While the earlier days
of the week show higher vulnerability disclosure trends,
the latter days show higher publication trends.

5.2 Vulnerability Severity

RQ2. What is the severity distribution of vulnerabilities?

Analysis Value: As thousands of vulnerabilities are iden-
tified annually, it is vital that security practitioners can prior-
itize the most severe ones first. Furthermore, understanding
what fraction of vulnerabilities receive each severity label
allows them to identify how many vulnerabilities they may
need to contend with. For the security community, it is also
valuable to understand whether disclosed vulnerabilities
skew towards low or high severity ones, shedding light on
the nature of vulnerabilities being uncovered.

Analysis Results: Recall that in Section 4.3, we aug-
mented the NVD by automatically applying accurate v3



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2020

100%
80%
60%
40%
20%
0% [
z >

10

o m n o ®m » o o I Q I IQ IQ o
> > >z>> > > > > > > > > >
'88 '89 '90 '91 '92 '93 '94 '95 '96 '97 '98 '99 '00 '01 '02
100%
80%
60%
40%
20%
0%
DO AN AN A DDA AN NN AN AN NN AN ANOD NN ANDO NN O
P A A A A A A A A dP A A i S il A A A A A A A A A A A d
o o o o o o o o o o o o o o
'03 '04 '05 '06 '07 '08 '09 '10 11 '12 '13 '14 '15 '16

Hlow MEMedium QOHigh OCritical

Fig. 3: CVEs Distribution across severity categories over the years with different severity scoring methods; v2, v3, and pv3
(our predicted v3 scores applied to all CVEs in the NVD; §4.3). Recall that v3 was only released in 2015, and all CVEs after
2017 were labeled with v3 scores. However, a subset of CVEs before 2017 was retroactively labeled with v3 scores.

severity ratings to all CVEs, rather than just relying on
the most recent CVEs reported since v3 became standard.
In Table 10, we present the distribution of CVE severity
(across all CVEs in the NVD) for both v2 and our predicted
v3. In total, 8.25% of all CVEs are low severity under v2,
with the majority as medium severity. In contrast, under
our predicted v3, less than 2% are low severity, and the
severity distribution is skewed towards the higher end, with
the majority of vulnerabilities as high or critical severity.
From both the v2 and v3 distributions, the small proportion
of low severity vulnerabilities suggests some bias against
discovering, reporting, or disclosing less urgent security
concerns. However, v3’s skew towards high severity ratings
could spur different vulnerability remediation behavior, as
many vulnerabilities rated as medium under v2 but higher
under v3 might have been ignored by security practitioners
earlier.

Figure 3 further breaks down the yearly distribution of
CVEs across different severity categories, for v2, v3, and our
predicted v3. Using our predicted v3 severity scores, we ob-
serve a decreasing trend in the proportion of critical severity
CVEs over the years. For example, from 2011 onwards, less
than 20% of each year’s CVEs were critical, compared to the
early 2000s where nearly 30-40% were likewise. This change
indicates that the severity distribution of vulnerabilities is
shifting over time. While we are uncertain of the cause
of this shift, one hypothesis is that the increasing use of
program analysis and fuzzing tools may be producing larger
vulnerability populations than before, but the number of
critical ones remains similar, thus resulting in a smaller
proportion. Future work could investigate this phenomenon
in more depth.

Impact of NVD Data Issues: In NVD, all CVEs since
2017 are assigned v3 scores. However, no CVE before 1999
has an assigned v3 score, and before 2013, no more than
35 CVEs each year have a v3 score retroactively labeled
(as v3 was officially released at the end of 2015 [51]). This
minority of CVEs with assigned v3 scores is too limited for

TABLE 10: CVSS severity score distributions over all CVEs.

Label v2 (%) Predicted v3 (%)
Low 8.25 1.62
Medium 54.83 38.30
High 36.92 44.48
Critical N.A. 15.60

TABLE 11: Top 10 vulnerability types by the number of crit-
ical or high severity CVEs using v2, v3, and our predicted
v3 (pv3) scores.

v2 v3 pv3
High Critical High Critical High
Type # | Type # | Type # | Type # | Type #
BOT 6935 | BO! 1221 | BO! 3025 | SQLI> 3420 | BO! 4078
SQLI> 4115 | SQLI? 673 | PM? 1497 | BO! 1783 | PM? 2096
PM3 2581 | V4 323 | IvV* 1291 | CI° 766 | CR'® 1802
vt 2070 | UaF" 271 | AC'? 955 | PM? 601 | TV* 1749
cr 1463 | AC!! 247 | 1IEM 683 | TV* 447 | RM® 1426
RMS 1416 | PM? 232 | IO"® 680 | PT? 364 | IEM 1180
UaF’ 712 | 1A% 190 | CSRF!6 671 | AC!? 362 | PTY 1173
NE® 702 | CD'? 125 | UaF" 443 | RM° 341 | CI° 1168
PT? 672 | CMD'® 114 | BoR'7 414 | NE® 295 | CSRF' 984
1A10 666 | CI° 108 | PT? 360 | UaF” 224 | NE® 777

1 Buffer Overflow, 2SQL Injection, 3Permission Management, 4Input Validation,
5Code Injection, SResource Management, "Use-after-Free, ®Numerical Error,
9Path Traversal, 10Improper Authorization, ' Access Control, '?Credentials,
13Command, '*Information Exposure, 15Integer Overflow, 1°Cross-Site Request
Forgery, * "Buffer Over Read. *®Cryptographic Issues.

many analyses. For example, as seen in Figure 3, CVEs with
assigned v3 scores in certain years are unrepresentative of
the likely real severity distribution. In 2000-2002, 2004-2006,
and 2009, only one severity level appears for all CVEs with
assigned v3 scores. While security analysts could rely on
v2 instead, v3 was explicitly designed to overcome limita-
tions of v2. Thus, our predicted v3 affords comprehensive
severity analysis across the entire NVD dataset. This histor-
ical perspective is particularly important as vulnerabilities
remain viable for years after disclosure [41].

Takeaway and Answer to RQ2: While the number of
critical vulnerabilities remain similar temporally, their
proportion has reduced over time.




IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2020
5.3 Vulnerability Types

RQ3. Which vulnerability type has the most critical vulner-
abilities?

Analysis Value: Understanding which vulnerabilities
are associated with the most critical CVEs is useful for
both security practitioners and researchers, in the sense that
our findings would allow them to prioritize which tools or
defense systems to invest in or investigate based on such
knowledge.

Analysis Results: Our analysis involves the CWE and
CVSS severity fields. In table 11 we list the top 10 CWE
categories by the number of high/critical severity CWEs,
using v2, v3, and pv3 severity scores. By both correcting
CWE labels and using our predicted v3 scores, we identify
that SQL injection has the most critical CVEs, with almost
twice as many as the next vulnerability type (buffer over-
flows). Meanwhile, for high-but-not-critical CVEs, buffer
overflows are most common, and SQL injection does not
appear within the top 10. This suggests that when SQL
injection vulnerabilities are identified, they are typically of
the utmost severity.

Impact of NVD Data Issues: Buffer overflow and SQL
injection are consistently the most frequent types under v2,
v3, and our PV3. However, we note that overall, the top
10 CWE types for our PV3 more closely resembles that of
v2, compared to v3. For example, access control, command
injection, and hard-coded credentials are in the top 10 v3
critical CVEs, but not in v2 or our PV3. Thus, our corrected
NVD results appear more consistent than using the original
CWE and v3 NVD labels.

Takeaway and Answer to RQ3: The 10 most frequent vul-
nerability types among the severe vulnerabilities remain
the same across CVSS versions.

5.4 Vendor and Product Names

RQ4. Which vendors have most CVEs or vulnerable prod-
ucts?

Analysis Value: Analysts may inform their operation
using the vulnerability impact information across vendors,
e.g., which vendors to track for new vulnerabilities, or
which products to analyze.

Analysis Results: Table 12 shows the top 10 vendors per
the associated CVEs and affected products, as a count and
a fraction of all CVEs and affected products associated with
each vendor. The statistics are presented for before and after
our NVD corrections, but we will use the post-correction
values for our analysis. We observe that the top vendors
represent a significant fraction of all CVEs and products.
The top 10 vendors account for about 36% of all CVEs and
22% of all products. Thus, the impact of vulnerabilities is
concentrated on a small set of vendors, with a long-tail of the
remaining less-impact ones. It is also interesting to note that
the top vendors by CVE count are quite different than those
by the product count, with only 4 common vendors. This
difference suggests that the concentration of CVEs among
top vendors is not simply due to these vendors supporting
a wide number of products.

Impact of NVD Data Issues: The impact of product
and vendor name inconsistencies is less dramatic for this

11

TABLE 12: Top 10 vendors per the number of associated
CVEs and affected products, after and before name correc-
tions (# is a count and % as a percent of CVEs or products
associated with that vendor).

# of CVEs # of Products

Vendor After Before Vendor After Before

# % # % # % # %
Microsoft | 6,602 6.16 6597 6.15 HP 3,067 6.73 3,083 6.60
Oracle 5,650 5.27 5526 5.15 Cisco 1,821 4.00 1,839 3.94
Apple 4574 426 4574 426 IBM 926 2.03 926 198
IBM 4,160 3.88 4,160 3.88 Axis 808 1.77 808 1.73
Google 3934 3.67 3933 3.67 Intel 721 1.58 723 155
Cisco 3,674 343 3,674 343 Huawei 701 1.54 707 151
Adobe 2,869 268 2869 268 Lenovo 579 1.27 579 124
Linux 2,275 212 2254 210 Oracle 553 1.21 546 1.17
Debian 2,275 212 2,180 2.03 Siemens 510 1.12 534 1.14
Redhat 2,161 2.01 2,144 2.00 Microsoft 489 1.07 486 1.04

TABLE 13: CVEs with mislabeled vendors/products by
severity levels using v2 and our predicted v3 (pv3) labels.

Mislabeled Vendor | Mislabeled Product

v2 pv3 | V2 pv3

Low 275 10 27 4
Medium | 2,033 1,101 | 196 105
High 1,206 1,484 | 159 205
Critical NA 919 | NA 68

analysis, as ultimately the order of top vendors remains
the same before and after corrections. However, the changes
in vulnerability counts can be notable. For example, Oracle
had over 100 more associated CVEs after our naming fixes,
and Debian had 95 more CVEs. Even when the number
of CVEs with a mislabeled vendor or product is small,
the security risk can be high. In Table 13, we consider all
CVEs with the corrected vendor or product label, and break
down their severity levels using v2 and our predicted v3.
While only several thousand CVEs were mislabeled and
subsequently corrected, over a third are high severity under
v2 and a quarter are critical under our predicted v3. In total,
nearly 1000 mislabeled CVEs are critically severe. A security
analyst tracking a particular product or vendor could easily
miss relevant severe vulnerabilities, putting their systems
at risk. (After all, it only takes one missed vulnerability to
permit a security situation, such as with Equifax [52].)

Takeaway and Answer to RQ4: More than two-thirds of
the vulnerabilities with vendor name inconsistency have
high/critical severity in the uniform severity scores.

6 DiscussiON

The Need for a Reliable Vulnerability Database. Given the wide
range of applications of vulnerability databases, in both the
industry and the research community, the reliability of the
information present in them is of the utmost importance.
However, some of the key takeaways of this work show that
the information in NVD is inconsistent, as demonstrated
by the associated quantification, thereby raising questions
on NVD’s reliability. The inconsistencies are shown to vary,
including the delay between a vulnerability’s disclosure and
its publish date in the NVD, to its vendor and product name,
to its severity metrics, to the vulnerability type. With this
work, by identifying the inconsistencies, we highlight the
pitfalls of using NVD. Given the non-uniform state of the
vulnerable systems, inconsistencies in them require manual



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2020 12
TABLE 14: Ground truth - prediction results TABLE 15: Test dataset - ground truth data
v3 L M H C v3 L M H C
v2 # 0/0 # o/o # o/o # 0/0 v2 # % # % # % # %
L 3 0.08 | 3823 98.76 45 1.16 0 0.00 L 104 13.42 644 83.10 27 348 0 0.00
M 0 0.00 | 9724 42.77 | 13010 57.23 0 0.00 M 84 1.85 | 2,368 52.08 | 1,974 43.41 121 2.66
H 0 000 | 320 287 | 5438 48.70 | 5409 48.43 H 0 000 85 380 | 950 4252|1199 53.67
TABLE 16: Test dataset - prediction results
effort. We conducted a manual investigation and then uti- v3 L M H C
lized the efforts to build an automated system to identify v2 # % # %o # % # %o
inconsistencies. For others, we built automated tools that L 6 077 | 765 98.71 4 052 0 0.00
can be used to recover consistency. M 0 0.00 | 2128 46.80 | 2419 53.20 0 0.00
H 0 0.00 58 2.60 933 47.76 | 1243 55.64

While the estimated disclosure date in this study funda-
mentally questions the completeness of the NVD, other fixes
address NVD’s inconsistency. It is argued that the reports
listed in the reference links in NVD might not be public or
known at the time of their insertion into the NVD. In addi-
tion, the vulnerability information can be modified multiple
times, as it is the practice with incremental vulnerability
reporting. The proposed approach can therefore be utilized
to change the estimated disclosure date of the vulnerability
during a modification, given such practices and operational
caveats. Moreover, recall the presence of inconsistencies
identified in the NVD in other vulnerability databases as
well, indicating the spread of the inconsistencies, possibly
due to information sharing.

6.1 Prediction Performance

In Table 5, we observed that the movement of v2 vulnerabil-
ities with High severity level is ~equally split between High
and Critical severity levels when transformed to v3. How-
ever, the prediction results of the vulnerabilities with no v3
severity in Table 7 shows that the split of v2 vulnerabilities
with High severity that transform to critical severity level is
~twice the number of vulnerabilities that transform to High
severity in v3. To ensure the performance of our prediction,
we check the behavior of the model for the ground truth
dataset. We begin by using our model to predict for the
vulnerabilities that have v3 labeled. Table 14 shows the
results of this experiment. Recall from Table 5 that only 1%
of v2-medium and 9.5% v2-low vulnerabilities transformed
to low severity level in v3. We, therefore, see less number of
vulnerabilities in the v3 low severity level. Considering that
this experiment includes the training dataset, which makes
80% of our overall dataset, we now look into only the testing
dataset, removing possible biases.

Table 15 shows the actual representation of the ground
truth-testing dataset, while Table 16 shows the movements
of the same vulnerabilities by our prediction model. Notice
that low severity vulnerabilities in v2 are only 10% of
the total testing dataset, out of which only 1.38% of the
samples remain in low in v3 leading to most of the low
vulnerabilities in v2 moving to medium severity level in v3.
In tables 14 and 16, we see that the v2-high vulnerabilities
have proportionally transformed to v3-high and v3-critical.
Considering these the only explanation for the presence of
~stwice the number of transformed v3-critical vulnerabilities
than v3-high (from v2-high) is the nature of their feature
space than possible aberration in our model.

6.2 Root Cause of Inconsistencies

Understanding the root causes of the inconsistencies in
NVD can help eliminating them. Our analyses provide
various plausible explanations for the root causes of incon-
sistencies. For vendor/product inconsistencies, we noticed
that they were clearly due to the incorrect naming conven-
tions, using developers as vendors, due to vendor acqui-
sitions, and typos by analysts. Among those root causes,
the acquisitions are a dynamic root cause, and therefore are
difficult to mitigate, while other causes can be addressed by
standardizing a nomenclature.

The reason behind the inconsistencies in the v3 severity
is the adoption of a new severity scoring system, which
was not in existence at the time of scoring the severity of
older vulnerabilities. Given the absence of the parameters
that differentiate between v3 and v2, v3 was not generalized
for those vulnerabilities. However, such generalization was
done by the NVD when adopting v2 throughout with a
considerable accuracy*. Similarly, by leveraging the deep
learning-based algorithms, we determined the v3 labels
from the v2 labels. We investigated the severity of the vul-
nerabilities with a lag between the estimated disclosure date
and the NVD date. Figure 4 shows the average lag, in days,
by the different severity levels in the v3, and we observe
that the average among the various severity levels ranges
between 47.6 days to 66.8 days, thereby demonstrating that
the delay in the insertion of vulnerability into the NVD has
no relationship with the severity of the vulnerability.

6.3 Observations: Inconsistent Vendor and Product

From our analysis, we observed several interesting naming
patterns that reflect the complex software ecosystem and
highlight difficulties that can arise in managing vendor
and product names. For example: @ In the NVD, various
entities may be deemed the vendor. Interestingly, a primary
software developer is sometimes listed as a vendor, and
different maintainers over time may list the same product.
For example, Igor Sysoev was the original author of nginx,
which is now maintained by nginx.inc, and both of them
are listed as vendors with nginx as a product. Additionally,
developers can be referenced with variations of their real
name, leading to inconsistency (e.g., provos and neilsprovos).
Acquired companies can also be listed as products under

4. https:/ /nvd.nist.gov/vuln-metrics/cvss



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2020

Low

MEDIUM HIGH CRITICAL
Fig. 4: Average lag time by v3 severity level.

70

Average Lag (days)
= N w B w (o))
o o o o o o

o

Severity (v3)

the acquiring vendor (e.g., ICQ and AOL). Note that our
vendor heuristics allow us to select these vendor pairs for
manual analysis. @ A vendor could be a parent company
while the product is the subsidiary. Here, the subsidiary
can be both a vendor (listing its own software) as well as
a product, which is also detected by our vendor heuristics.
© A vendor could change name (e.g., cat became quickheal).
We note that our vendor heuristics may catch this if the old
and new vendor names share characters or product names,
but may miss cases otherwise.

Thus, the NVD would benefit from defining consistent
rules for vendor and product naming, such as on the use
of white spaces, special characters, and abbreviations. One
path forward would be to require vulnerability reporters to
check their name submissions against a tool or online inter-
face that searches existing names that likely match, perhaps
using an approach such as our identification method.

6.4 Applications

This work highlights inconsistencies in the NVD data fields,
and proposes methods to fix them. The diversified inconsis-
tencies warrant multiple tools, dealing with one at a time.
As a result, this study can be utilized by the analysts at NVD
towards the following goals:

1) The estimated disclosure date identification can enrich
the vulnerability report for the end-user’s perusal. The
tool enables the analysts to scrape through the different
vulnerability reports and disclosures from the reference
links of the recently added vulnerabilities and notify
them of the disclosure date.

2) While we do not present a fully automated tool to
automatically pinpoint inconsistencies in product and
vendor names, however, our heuristics to find inconsis-
tent vendor and product names can be leveraged during
the vulnerability reporting. We believe that engineering
this tool, while interesting in itself, falls well within the
contribution of this paper: inconsistency identification,
heuristics for remediation, and measurements based on
an improved vulnerability database. With such a tool,
we envision that the individual reporters (analysts) can
enter the vendor and product name according to their
perception, and the tool will suggest the appropriate
vendor and product name from the generated consistent
database. The reporter will then choose the consistent
vendor and product name if available. Additionally, the
NVD analysts can use the tool to re-assess the vendor and
product names towards the generation of CPE URI (both
2.2 and 2.3). Moreover, for new vendor and/or product

13

names, our observed inconsistencies and the root causes
can help control the inconsistencies in the future.

3) Our tool to determine the CVSS v3 metrics can be lever-
aged for approximating a uniform severity metric and
score across vulnerabilities in the database. Moreover, it
can be used by the users (analysts) of NVD to prioritize
their patching. For example, although the v3 scoring
system update affects vulnerabilities that have occurred
at least before 2015, the continuous exploitation of older
vulnerabilities ascertain the necessity of an updated
severity based on the current threats that it poses on the
systems.

The last point can be made even stronger with some
recent evidence suggesting that older vulnerabilities are
exploited by the adversaries, where sometimes as old as
14 years (e.g., CVE-2004-0113) are being utilized. While it
is true that they should have been patched it earlier, that
is not the case, and a reassignment of a lower security
vulnerability to critical security to emphasize this scenario
would catch the eye of the security analysts.

Leveraging the improved NVD, we formulate analysis
questions as case studies to understand the impact of our
corrective measures. Although there were numerous analy-
ses that we came up with, we present the questions that a
user might have when using the corrected fields. We observe
that while public disclosures happen in the early days of
the week, the inclusion of them in the NVD happens on the
latter days. Additionally, the high reportage of CVEs on the
last day of a year can be due to their retroactive inclusion
when only the year was known.

The temporal analysis of software weakness can help
understand the trends to understand the up and the coming
vulnerabilities. These emerging software weaknesses may
be a result of a recently found attack vector. These can be
utilized during the software product development and can
help prioritize patching processes, and to emphasize upon,
during the various phases of the software development life
cycle. A consistent database would give a better picture of
the trends, including their exploitation window (depending
upon the disclosure date of a vulnerability and the date it is
discovered on a host computer).

Limitations. To estimate the disclosure date, we consider the
domain names representing 85% of the URLs. The reduction
of coverage by 15% may lead to an imprecise estimation of
the disclosure date. Moreover, vendor and product incon-
sistency numbers present a lower bound on inconsistencies
that NVD may have. During our experimentation, we would
not group the vendors if another vendor acquired a probable
inconsistent vendor. An approach to improve the bounds
would require determining the date of acquisition of the
probable inconsistent vendor and then correlating it with
their estimated disclosure date.

7 CONCLUSION

Given the importance of such a database as NVD for se-
curity operations, identifying, measuring, and fixing the in-
consistencies is essential, which we pursue through various
tools, including multi-sourced web scraping, manual vet-
ting, and deep learning algorithms for the publication date,



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2020

vendor names, product names, severity categories, and vul-
nerability types inconsistency remedies. The inconsistency
fixed database revealed exciting insights about the NVD
and vulnerability reporting in general, and how basing the
analysis on the current NVD leads to different conclusions
than on the fixed one. The frequent days in estimated public
disclosure and published date shows the prevalence of early
days in the week (Monday and Tuesday) among disclosure
dates and the latter days among publication date in the
NVD. The fixed vendor names show decreasing inconsis-
tencies over time, while product names need more attention
for better resolution. The v3 fix reveals a better distribution
of the v3 metric and the vulnerability type fix identifies
additional types, other than the ones listed in the NVD.

Acknowledgement. This work was supported by the Global
Research Lab. (GRL) Program of the National Research
Foundation (NRF) funded by Ministry of Science, ICT
(Information and Communication Technologies) and Fu-
ture Planning (NRF-2016K1A1A2912757). S. Chen was sup-
ported in part by the NSF grant CNS-2007153 and a Com-
monwealth Cyber Initiative grant.

REFERENCES

[1] “Hakiri: Ships secure ruby apps,” Available at [Online]: https://
hakiri.io/, 2019.

[2] (2019) Synk: Develop fast: Stay secure. Available at [Online]: https:
//snyk.io/.

[3] (2019) SourceClear: Software composition analysis for devsecops.
Available at [Online]: https://www.sourceclear.com/.

[4] (2019) Bundler-audit. Available at [Online]: https://github.com/
rubysec/bundler-audit.

[5] (2019) Sonatype — oss index. Available at [Online]: https://
ossindex.sonatype.org/.

[6] (2019) OWASP dependency check. Available at [Online]: https://
www.owasp.org/index.php/OWASP_Dependency_Check.

[7] H. Attila, P. M. Erdési, and E. Kiss, “The common vulnerability
scoring system (cvss) generations—usefulness and deficiencies,”
Informdcids Tdrsadalomért Alapitviny, 2016.

[8] A. Anwar, A. Khormali, D. Nyang, and A. Mohaisen, “Under-
standing the hidden cost of software vulnerabilities: Measure-
ments and predictions,” in Proceedings of the 14th EAI International
Conference on Security and Privacy in Communication Networks, Se-
cureComm, 2018.

[9] E Li and V. Paxson, “A large-scale empirical study of security
patches,” in Proceedings of the 24th ACM Conference on Computer
and Communications Security (CCS), Dallas, TX, Oct.—Nov. 2017, pp.
2201-2215.

[10] J. Berr, ““WannaCry” ransomware attack losses could reach $4
billion,” 2019, http:/ /cbsn.ws/2yYjif2.

[11] D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao, and G. Wang,
“Understanding the reproducibility of crowd-reported security
vulnerabilities,” in 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018., 2018, pp.
919-936.

[12] Y. Dong, W. Guo, Y. Chen, X. Xing, Y. Zhang, and G. Wang,
“Towards the detection of inconsistencies in public security vul-
nerability reports,” in 28th USENIX Security Symposium (USENIX),
2019, pp. 869-885.

[13] V. H. Nguyen and F. Massacci, “The (un)reliability of NVD vul-
nerable versions data: an empirical experiment on google chrome
vulnerabilities,” in Proceedings of the 8th ACM Symposium on Infor-
mation, Computer and Communications Security (ASIACCS), Sydney,
Australia, Mar. 2013, pp. 493-498.

[14] NVD, “Json data feed changelog,” 2019, https://nvd.nist.gov/
vuln/Data-Feeds/JSON-feed-changelog.

[15] S. Christey and B. Martin, “Buying into the bias: Why vulnerability
statistics suck,” BlackHat, vol. 1, 2013.

[16] M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A large scale exploratory
analysis of software vulnerability life cycles,” in Proceedings of the
34th International Conference on Software Engineering (ICSE), Zurich,
Switzerland, Jun. 2012, pp. 771-781.

14

[17] S. Clark, S. Frei, M. Blaze, and J. M. Smith, “Familiarity breeds
contempt: the honeymoon effect and the role of legacy code in
zero-day vulnerabilities,” in Proceedings of the Annual Computer
Security Applications Conference (ACSAC), 2010, pp. 251-260.

[18] A. Ozment and S. E. Schechter, “Milk or wine: Does software
security improve with age?” in Proceedings of the 15th USENIX
Security Symposium, Vancouver, Canada, Jul. 2006, pp. 93-104.

[19] B. Stock, G. Pellegrino, F. Li, M. Backes, and C. Rossow, “Didn’t
you hear me? - towards more successful web vulnerability noti-
fications,” in 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February 18-21,
San Diego, CA, Feb. 2018.

[20] E Li, Z. Durumeric, J. Czyz, M. Karami, M. Bailey, D. McCoy,
S. Savage, and V. Paxson, “You've got vulnerability: Exploring
effective vulnerability notifications,” in 25th USENIX Security Sym-
posium, USENIX, 2016, pp. 1033-1050.

[21] M. Zhao, J. Grossklags, and P. Liu, “An empirical study of web
vulnerability discovery ecosystems,” in Proceedings of the 22nd
ACM Conference on Computer and Communications Security (CCS),
Denver, Colorado, Oct. 2015, pp. 1105-1117.

[22] M. Trinh, D. Chu, and ]. Jaffar, “S3: A symbolic string solver
for vulnerability detection in web applications,” in Proceedings of
the 21st ACM Conference on Computer and Communications Security
(CCS), Scottsdale, Arizona, Nov. 2014, pp. 1232-1243.

[23] D. Saha, “Extending logical attack graphs for efficient vulnerabil-
ity analysis,” in Proceedings of the 15th ACM Conference on Computer
and Communications Security (CCS), Oct.—Nov. 2008, pp. 63-74.

[24] S. Zhang, D. Caragea, and X. Ou, “An empirical study on using
the national vulnerability database to predict software vulnerabil-
ities,” in Proceedings of the 22nd International Conference on Database
and Expert Systems Applications (DEXA), 2011, pp. 217-231.

[25] D. Votipka, R. Stevens, E. M. Redmiles, J. Hu, and M. L. Mazurek,
“Hackers vs. testers: A comparison of software vulnerability dis-
covery processes,” in 2018 IEEE Symposium on Security and Privacy,
SP 2018, Proceedings, 21-23 May 2018, San Francisco, California, USA,
San Francisco, CA, May 2018, pp. 374-391.

[26] C. Xiao, A. Sarabi, Y. Liu, B. Li, M. Liu, and T. Dumitras, “From
patching delays to infection symptoms: Using risk profiles for
an early discovery of vulnerabilities exploited in the wild,” in
27th USENIX Security Symposium, USENIX Security 2018, Baltimore,
MD, USA, August 15-17, 2018., Baltimore, MD, Aug. 2018, pp. 903
918.

[27] C. Sabottke, O. Suciu, and T. Dumitras, “Vulnerability disclosure
in the age of social media: Exploiting twitter for predicting real-
world exploits,” in Proceedings of the 24th USENIX Security Sympo-
sium, Washington, DC, 2015, pp. 1041-1056.

[28] H. Homaei and H. R. Shahriari, “Seven years of software vulner-
abilities: The ebb and flow,” IEEE Security & Privacy, S&P, vol. 15,
no. 1, pp. 58-65, 2017.

[29] M. A. Williams, S. Dey, R. C. Barranco, S. M. Naim, M. S. Hossain,
and M. Akbar, “Analyzing evolving trends of vulnerabilities in
national vulnerability database,” in IEEE International Conference
on Big Data, 2018, pp. 3011-3020.

[30] M. Zhang, X. d. C. de Carnavalet, L. Wang, and A. Ragab,
“Large-scale empirical study of important features indicative of
discovered vulnerabilities to assess application security,” IEEE
Transactions on Information Forensics and Security, 2019.

[31] NVD, “NVD,” 2019, https:/ /nvd.nist.gov/.

[32] CVE, “CVE,” 2019, https:/ /cve.mitre.org/.

[33] National Institute of Standards and Technology (NIST), “Cwe,”
2019, https:/ /cwe.mitre.org.

[34] NVD, “Vulnerability metrics,”
vuln-metrics/cvss.

[35] First, “Common vulnerability scoring system v3.0: User guide,”
2019, https:/ /www.first.org/cvss/cvss-v30-user_guide_v1.1.pdf.

[36] N.LI of Standards and T. (NIST), “Common platform enumeration
(cpe),” 2019, https:/ /nvd.nist.gov/products/cpe.

[37] P. Shirani, L. Collard, B. L. Agba, B. Lebel, M. Debbabi, L. Wang,
and A. Hanna, “BINARM: scalable and efficient detection of vul-
nerabilities in firmware images of intelligent electronic devices,”
in Detection of Intrusions and Malware, and Vulnerability Assessment
- 15th International Conference, DIMVA 2018, Saclay, France, June 28-
29, Proceedings, 2018, pp. 114-138.

[38] Developers, “Security tracker,” 2019, https://securitytracker.
com/.

[39] ——, “Securityfocus,” 2019, https:/ /www.securityfocus.com/.

2021, https://nvd.nist.gov/


https://hakiri.io/
https://hakiri.io/
https://snyk.io/
https://snyk.io/
https://www.sourceclear.com/
https://github.com/rubysec/bundler-audit
https://github.com/rubysec/bundler-audit
https://ossindex.sonatype.org/
https://ossindex.sonatype.org/
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
http://cbsn.ws/2yYjif2
https://nvd.nist.gov/vuln/Data-Feeds/JSON-feed-changelog
https://nvd.nist.gov/vuln/Data-Feeds/JSON-feed-changelog
https://nvd.nist.gov/
https://cve.mitre.org/
https://cwe.mitre.org
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://www.first.org/cvss/cvss-v30-user_guide_v1.1.pdf
https://nvd.nist.gov/products/cpe
https://securitytracker.com/
https://securitytracker.com/
https://www.securityfocus.com/

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2020

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

(50]

[51]
[52]

Avaya, “H.323.Deskphone and IP Conference Phone DHCP se-

curity update (CVE-2011-0997 and CVE-2009-0692),” 2019, https:

//downloads.avaya.com/css/P8/documents/101059945.

Recorded Future, “Threat actors remember the vulnerabilities we

forget,” 2019, https:/ /bit.ly /3jhUpVm.

D. Palmer, “Ransomware: Cyber criminals are still exploiting these

old vulnerabilities, so patch now,” 2021, https:/ /zd.net/3vsSaDh.

H. Holm and K. K. Afridi, “An expert-based investigation of

the common vulnerability scoring system,” Computers & Security,

vol. 53, 2015.

M. E. Tipping and C. M. Bishop, “Mixtures of probabilistic princi-

pal component analysers,” Neural Computation, vol. 11, no. 2, pp.

443-482, 1999.

L. Allodi, S. Banescu, H. Femmer, and K. Beckers, “Identifying rel-

evant information cues for vulnerability assessment using CVSS,”

in Proceedings of the Eighth ACM Conference on Data and Application

Security and Privacy, CODASPY, 2018, pp. 119-126.

CWE, “CWE - Frequently Asked Questions (FAQ),” 2019, https:

//cwe.mitre.org/about/faq.html#A.5.

Google, “Universal-sentence-encoder,” 2019, https://tthub.dev/
oogle/universal-sentence-encoder/3.

CWE, “CWE list version 3.4,” 2019, https:/ /cwe.mitre.org/data/

downloads.html.

T. R. Team, “Redscan analysis of nist nvd reveals record number

of critical and high severity vulnerabilities in 2020,” 2021, https:

/ /www.redscan.com/news/nist-nvd-analysis/.

J.  Emmitt, “The national vulnerability database (nvd)

explained,” 2021, https://www.kaseya.com/blog/2020/10/

22 /national-vulnerability-database-nvd/.

NVD, “News,” 2019, https:/ /nvd.nist.gov/general /news.

Synopsys, “Equifax, apache struts, and cve-2017-5638 vulnerabil-

ity,” 2020, https:/ /tinyurl.com/qtmws23.

Afsah Anwar is a postdoctoral research as-
sociate at the Khoury College at Northeastern
University. He completed his Ph.D. student from
the Department of Computer Science at the Uni-
versity of Central Florida. He obtained his B.Sc.
in Electronics and Communications Engineering
from Jamia Millia Islamia University, New Delhi,
India. His research interests include software
security; particularly, malware analysis and vul-
nerability analysis. His work has appeared in
reputable venues including SecureComm 2018,

ICICS 2020, IEEE TDSC, loT Journal, ICDCS 2019, and ICDCS 2020.

Ahmed Abusnaina is a Ph.D. student in the
Department of Computer Science at the Univer-
sity of Central Florida. He obtained his B.Sc. in
Computer Engineering from An-Najah National
University, Palestine, in 2018. His research in-
terests include software security, machine learn-
ing, natural language processing, and adversar-
ial machine learning.

Songqing Chen is currently a professor of com-
puter science at George Mason University. His
research interests mainly focus on design, anal-
ysis, and implementation of algorithms and ex-
perimental systems in the distributed and net-
working environment, particularly in the areas
of Internet content delivery systems, Internet
measurement and modeling, mobile and cloud
computing, network and system security, and
distributed system. Currently, he serves as the
chair of IEEE Technical Committee on the Inter-

net (TCI), and on the editorial boards of IEEE TPDS, IEEE IC, IEEE
loT-J, ACM TOIT. He also serves in various capacities in conference
organization committees, most recently as the General Chair of IEEE
ICDCS 2021. He is a senior member of IEEE and ACM.

15

Frank Li is an Assistant Professor in Georgia
Tech’s School of Electrical & Computer Engi-
neering (ECE). He obtained his PhD from the
University of California at Berkeley in 2019. He
does research on computer security and privacy,
particularly focused on Internet, network, and
web security and privacy.

David Mohaisen earned his M.Sc. and Ph.D.
degrees from the University of Minnesota in
2011 and 2012, respectively. He is currently an
Associate Professor at the University of Cen-
tral Florida, where he directs the Security and
Analytics Lab (SEAL). Before joining UCF, he
held several posts, in academia and industry,
including as an Assistant Professor at the Uni-
versity at Buffalo, (Senior) Research Scientist at
Verisign Labs, and a Member of the Engineering
Staff at the Electronics and Telecommunication
Research Institute (ETRI). His research interests fall in the broad areas
of networked systems and their security, machine learning systems, on-
line privacy, and measurements. Among other services, he is currently
an Associate Editor of IEEE Transactions on Mobile Computing and
IEEE Transactions on Parallel and Distributed Systems. He is a senior
member of ACM (2018) and IEEE (2015).



https://downloads.avaya.com/css/P8/documents/101059945
https://downloads.avaya.com/css/P8/documents/101059945
https://bit.ly/3jhUpVm
https://zd.net/3vsSaDh
https://cwe.mitre.org/about/faq.html#A.5
https://cwe.mitre.org/about/faq.html#A.5
https://tfhub.dev/google/universal-sentence-encoder/3
https://tfhub.dev/google/universal-sentence-encoder/3
https://cwe.mitre.org/data/downloads.html
https://cwe.mitre.org/data/downloads.html
https://www.redscan.com/news/nist-nvd-analysis/
https://www.redscan.com/news/nist-nvd-analysis/
https://www.kaseya.com/blog/2020/10/22/national-vulnerability-database-nvd/
https://www.kaseya.com/blog/2020/10/22/national-vulnerability-database-nvd/
https://nvd.nist.gov/general/news
https://tinyurl.com/qtmws23

	1 Introduction
	2 Related work
	3 Dataset
	4 Inconsistencies and Improvements
	4.1 Publication Dates
	4.2 Vendor and Product Names
	4.3 Severity Scores
	4.4 Vulnerability Types

	5 Case Studies
	5.1 Vulnerability Disclosures
	5.2 Vulnerability Severity
	5.3 Vulnerability Types
	5.4 Vendor and Product Names

	6 Discussion
	6.1 Prediction Performance
	6.2 Root Cause of Inconsistencies
	6.3 Observations: Inconsistent Vendor and Product
	6.4 Applications

	7 Conclusion
	References
	Biographies
	Afsah Anwar
	Ahmed Abusnaina
	Songqing Chen
	Frank Li
	David Mohaisen


