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Abstract—The biased distribution of cryptocurrency nodes
across Autonomous Systems (ASes) increases the risk of spatial
partitioning attacks, allowing an adversary to isolate nodes
by hijacking AS prefixes. Prior works on spatial partitioning
attacks have mainly focused on the Bitcoin network, showing
that the prominent cryptocurrency network can be paralyzed
by disrupting the physical topology through BGP hijacks.

Despite the persisting threat of BGP hijacks, Bitcoin and
other cryptocurrencies have not been frequently targeted, likely
due to their shielded overlay topology, which limits the expo-
sure of physical network anomalies. In this paper, we present
a new perspective by examining the security of cryptocurrency
networks, considering shared network resources (network in-
terdependence). We conduct measurements extending beyond
the Bitcoin network and analyze commonalities in Bitcoin,
Ethereum, and Ripple node hosting patterns. We observe
that all three networks are highly centralized, predominantly
sharing the common ASes. We also note that among the three
cryptocurrencies, Ripple does not shield its overlay topology,
which can be exploited to learn about the physical network
anomalies. The observed network anomalies present practical
attack strategies that can be launched to target all three
cryptocurrencies simultaneously.! We supplement our analysis
by surveying recent BGP attacks on high-profile ASes and
recognizing a need for application-level countermeasures. We
propose attack countermeasures that reduce the risk of spatial
partitioning, notwithstanding the increasing centralization of
nodes and network interdependence.

Index Terms—Partitioning Attacks, Distributed Systems, Cryp-
tocurrencies

1. Introduction

The cryptocurrency market is currently dominated by
Bitcoin and Ethereum, with a combined market capitaliza-
tion of over $500 Billion at the time of writing this paper [9].
A significant market value makes these cryptocurrencies a
lucrative target for attacks, including the spatial partitioning
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attack in which the adversary exploits the biased distribution
of nodes across Autonomous Systems (ASes) to isolate
them by launching BGP attacks [2], [18], [35].2 Spatial
partitioning attacks are more profitable and effective if the
cryptocurrency network resources (i.e., nodes) are clustered
across ASes, allowing the adversary to partition them by
hijacking fewer prefixes [2]. Such attacks are subversive for
a cryptocurrency since they can result in (1) transaction con-
firmation delay [37], (2) block propagation delay [15], (3)
blockchain forks [30], and (4) decreased mining power [2].

The size of a cryptocurrency network is typically deter-
mined by the number of reachable full nodes that maintain
a blockchain ledger [8]. In the last nine years, the Bitcoin
network size has increased from ~3.5K nodes in 2012 to
over ~9K nodes in 2021. Running a full node in a home
network can be costly, often requiring more than 350 GB of
storage for the blockchain and a persistent Internet connec-
tion to exchange transactions. To alleviate such costs, users
nowadays prefer to host their full nodes on cloud services.
Despite being cost-effective, cloud hosting invariably con-
tributes to the increasing centralization of nodes across ASes
that host the cloud infrastructure [23]. The recent growth
of the cryptocurrency market has also led to the expansion
of cryptocurrency networks, with more full nodes joining
Bitcoin and Ethereum [8]. Assuming that those new nodes
also follow the cloud hosting pattern of the existing nodes,
it is reasonable to expect that Bitcoin and Ethereum are now
more vulnerable to the spatial partitioning attacks, requiring
a re-evaluation of their current network distribution.

Prior works on Bitcoin and Ethereum network distribu-
tion and security assumed an adversary that targets each
network independently [37], [27], [23], [32], [29]. These
works did not consider that Bitcoin and Ethereum nodes
can exhibit network interdependence by sharing the cloud
infrastructure hosted within the same set of ASes. Net-
work interdependence can amplify the effect of the spa-
tial partitioning attack by allowing an adversary to target
multiple cryptocurrency networks simultaneously [28]. Con-
sidering the recent growth of cryptocurrency networks [8]
and realistically assuming network interdependence among

2. In prior works [2], [37], BGP attacks on the Bitcoin network are also
called “routing attacks™ or “spatial partitioning attacks.” For simplicity, in
this paper, we use the term ‘spatial partitioning attack”



the cryptocurrency nodes, three research questions can be
formulated around the spatial partitioning attacks. (1) What
is the current distribution of cryptocurrency nodes across
the physical network of ASes? (2) To what extent do major
cryptocurrencies exhibit network interdependence? (3) How
network interdependence changes the spatial partitioning
attack model? In this study, we comprehensively answer
these questions in §5.

It can be argued that despite being a well-known threat
to cryptocurrencies, spatial partitioning attacks are not fre-
quently observed in the wild. As a result, the best outcome
of network interdependence analysis is a theoretical postu-
lation of a wide attack surface jointly formed by multiple
cryptocurrency networks. Therefore, despite being a persis-
tent threat to cryptocurrency networks, the classical model
for spatial partitioning attacks may not provide practical
opportunities for an adversary. In this paper, we present a
new perspective by studying practical attacks that can be
launched on high-profile ASes hosting Bitcoin and Ethereum
nodes. For the practical attack construction, we first discuss
the key challenges in the existing attack models that limit
the practicality of the spatial partitioning attacks.

Prior works [37], [35], [18] show that Bitcoin and
Ethereum nodes are hosted in high-profile ASes that may
have strong relationships with other ASes on the Internet
(also called AS dependency [11]). A strong dependency
makes spatial partitioning attacks prohibitively costly and,
therefore, impractical. To launch a practical attack, the
adversary needs to know: (1) the overlay topology of the
cryptocurrency network (i.e., logical connections among
nodes), (2) the physical topology of ASes (i.e., the routing
paths), and (3) on-path adversarial ASes with a weak depen-
dency on other on-path high profile ASes. We note that this
approach cannot be applied to either Bitcoin or Ethereum,
since both networks shield their overlay topologies [31],
[16]. Therefore, in launching an attack that disrupts con-
nections among the cryptocurrency nodes, an adversary is
expected to approximate the overlay topology, map it onto
the ASes to learn the physical topology, enumerate the prob-
able routing paths, and uncover the routing path anomalies.
A shielded overlay topology in Bitcoin and Ethereum com-
pounds this effort, thereby preventing the adversary from
launching practical partitioning attacks.

Unique to this work, we show that the adversary can
launch a practical attack if it can identify a third cryp-
tocurrency that exhibits network interdependence with both
Bitcoin and Ethereum while publicly disclosing the overlay
topology. Towards that end, we identified Ripple as a suit-
able candidate with a notable network size and nodes hosted
alongside Bitcoin and Ethereum nodes in the same set of
ASes. Moreover, Ripple nodes publicly disclose their Peer-
to-Peer (P2P) connections, which form the overlay topology.
The overlay topology can reduce the adversarial effort since
the adversary can conveniently map the overlay topology
to the physical topology of ASes, and launch attacks upon

observing the routing path anomalies.> As such, given the
network interdependence among the three cryptocurrencies,
if ASes with Ripple nodes are hijacked, the effect cascades
across Bitcoin and Ethereum nodes resulting in practical
attacks that affect all three cryptocurrencies simultaneously.

Our contributions extend beyond uncovering novel and
practical attack strategies. Realizing the risk of practical
partitioning attacks and their impact on notable cryptocur-
rencies, we develop and evaluate robust countermeasures to
counter practical partitioning attacks. Our proposed coun-
termeasures reduce the risk of attacks, notwithstanding the
increasing centralization of cryptocurrency nodes and net-
work interdependence.

Contributions and Roadmap. In summary, we make the
following key contributions in this work.

1) Network Distribution Analysis. We deploy crawlers
in Bitcoin, Ethereum, and Ripple networks to analyze
their distribution across ASes (§3). Compared to the
reports in prior works [37], [35], we observe an in-
creasing centralization of nodes across ASes.

2) Network Interdependence Measurement. We mea-
sure and characterize the interdependence among the
cryptocurrency networks and find a strong similarity in
the node hosting pattern across high-profile ASes. We
observe that five of the top ten ASes in one cryptocur-
rency are also among the top ten ASes across the other
two cryptocurrencies (§5.1).

3) Attack Construction. Based on the node distribution
and network interdependence, we propose two types of
spatial partitioning attacks, namely the classical attack
(§5) and the practical attack (§6). In the classical attack,
we consider a myopic adversary (as in prior works [2],
[37]) that indiscriminately targets the high-profile ASes
irrespective of the AS dependency. In the practical at-
tack, we assume a sophisticated adversary that launches
an attack if it has a low dependency on other ASes. We
find that an adversary can isolate ~9.4K and ~4.3K
nodes from all cryptocurrency networks in the classical
and practical attacks, respectively.

4) Attack Simulation and Countermeasures We simu-
late the spatial partitioning attacks in a controlled setup
to demonstrate their impact on cryptocurrency systems.
Accordingly, we propose attack countermeasures and
thoroughly investigate their efficacy in real-world de-
ployments (§7).

The rest of this paper includes background and related
work in §2, and concluding remarks in §8.

2. Background and Related Work

In this section, we provide a brief background on the
spatial partitioning attacks and the prior works that explored
partitioning attacks on cryptocurrency networks.

3. Note that the decrease in the attack effort is due to Ripple’s publicly
available overlay topology. In Bitcoin and Ethereum, the adversary is ex-
pected to estimate the possible overlay topologies. Although this approach
is possible, it can be costly and infeasible.



Internet traffic is managed by the Internet Service
Providers (ISPs) that own networks of routers called Au-
tonomous Systems (ASes) [25]. ASes own sets of IP prefixes
that are used to route traffic between end hosts within or
outside an AS. Traffic forwarding rules between ASes are
implemented through the Border Gateway Protocol (BGP),
and the routing path between ASes is called the AS path.
The BGP protocol follows a weak trust model where prefix
announcements are not validated by ASes [2]. This weak-
ness creates an opportunity for adversaries to hijack the BGP
prefixes of a target AS.

In 2016, Apostolaki et al. [2] highlighted the biased
distribution of Bitcoin nodes across ASes, with 50 ASes
hosting ~50% of the Bitcoin nodes. They showed that
an adversary can exploit the biased distribution of Bitcoin
nodes across a few ASes, and the weak trust model of the
BGP protocol, to partition the Bitcoin network by hijacking
a few BGP prefixes. In 2018, Saad et al. [37] reported
an increasing centralization of Bitcoin nodes across ASes,
highlighting the growing risk of partitioning attacks.

The biased distribution of nodes has also been observed
in the Ethereum network [34], [18], and the partitioning
effects are found to be similar to the Bitcoin network (i.e.,
blockchain forks). To counter the spatial partitioning attacks,
Apostolaki et al. [1] proposed a network called SABER that
routes the cryptocurrency traffic through secure and scalable
relay networks across the Internet.

In 2015, Heilman ef al. [27] showed that an adversary
could partition Bitcoin nodes by occupying their incoming
and outgoing connection slots. In 2020, Tran et al. [39]
presented a stealthier version of the attack proposed in [27],
whereby an adversarial AS floods the IP tables of a victim
node to occupy the incoming and outgoing connections of
the node. To counter such attacks in the wild, the Bitcoin
community adopted Asmap [33], in which a node establishes
each outgoing connection to a different AS. In 2021, Fan et
al. improved upon [39] by presenting the ConMan attack
that partitions a victim node by occupying its connection
slots. In contrast to [39], where the adversary patiently waits
for several weeks to succeed, ConMan showed that the
adversary could partition the victim within a few minutes.

As discussed in §1, despite the risk of partitioning
attacks highlighted in the prior works, such attacks have not
been observed in the wild due to a shielded overlay topology
and strong dependency among on-path ASes. Moreover,
prior works on Bitcoin and Ethereum partitioning attacks
assumed that the adversary targets each network indepen-
dently [27], [34], [19]. These works did not consider that
Bitcoin and Ethereum nodes could exhibit network interde-
pendence by sharing the same set of ASes. We note that
network interdependence amplifies the effect of spatial par-
titioning attacks, whereby an adversary can target multiple
cryptocurrencies simultaneously. Finally, the proposed coun-
termeasures like SABER [1], while effective in preventing
attacks, may introduce a notion of network centralization by
mandating the deployment of relay networks in designated
locations. In this work, we bridge these gaps by presenting
an up-to-date distribution of three prominent cryptocurrency

networks across ASes while acknowledging network inter-
dependence. We also uncover novel attack vectors which
enable practical attacks in the wild and propose effective
countermeasures that reduce the risk of partitioning attacks.

3. Data Collection and Methodology

In this section, we present our data collection and ex-
periment methodology. For data collection, we used publicly
available repositories, including Bitnodes, Ethernodes, and
XRP Ledger [8], [10], [12] that provide data from Bitcoin,
Ethereum, and Ripple networks, respectively. We deployed
crawlers for over one month to collect the IP addresses
of nodes from each repository. Our crawlers obtained two
snapshots of each network every day. Through the Ripple
peer crawling method, we also obtained the Ripple overlay
topology [40].*

IP to AS Mapping. After collecting the IP addresses of the
cryptocurrency nodes, we used the RouteViews dataset [13]
to perform IP to AS mapping. The RouteViews dataset is
available on CAIDA data server [5], aggregating BGP prefix
announcements by ASes and the Autonomous System Num-
bers. Through IP to AS mapping, we obtained the ASes and
the corresponding prefixes that host Bitcoin, Ethereum, and
Ripple nodes. Furthermore, by grouping ASes, we measured
(1) the distribution of cryptocurrency nodes across them, and
(2) the network interdependence, characterized by the ASes
shared by the three cryptocurrency node types.

Routing Path Extraction. We applied the IP to AS map-
ping on the Ripple overlay topology to identify connections
among ASes that host Ripple nodes. We then used CAIDA’s
BGPStream tool [4] to obtain the routing paths taken by the
messages exchanged between Ripple nodes. BGPStream is
an open-source software stack that provides historical BGP
announcements and lists on-path ASes. By examining the
BGP announcement at the time of data collection, we iden-
tified the on-path ASes that can intercept the communication
between Ripple nodes.

AS Dependency. Practical partitioning attacks require an
adversary to identify on-path ASes with weak relationships
with high-profile ASes hosting cryptocurrency nodes. The
relationships between ASes are based on their capability of
forwarding data to other ASes on the Internet [17]. Such
relationships create a dependency among ASes, and in the
practical attack, we assume that the adversarial AS has a low
dependency on ASes that host the cryptocurrency nodes. To
measure the dependency of on-path ASes, we used the AS
hegemony metric recently introduced by the Internet Health
Report IHR) [11], [21] (details provided in §6). IHR scales
the AS hegemony between 0-1, with 1 indicating a high
dependency and O indicating a low dependency.

4. Our analysis is based on the reachable nodes since they form the
backbone of a cryptocurrency network. We do not cover the unreachable
nodes behind NAT since they are inevitably partitioned when the reachable
nodes are isolated. We analyze nodes with a public IP address among the
reachable nodes.
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Figure 1. An illustration of the classical partitioning attack. The AS
dependency is shown as the global hegemony score (0—1). Despite a high
AS dependency, AS-D launches an attack on AS-A which may eventually
affect its relationships with other ASes.

To summarize our data collection and methodology, we
(1) collected data from the three cryptocurrency networks,
(2) performed IP to AS mapping to extract BGP prefixes and
characterize network centralization and interdependence, (3)
mapped the Ripple overlay topology onto the physical net-
work topology to identify the routing paths, and (5) mea-
sured the AS dependency using the AS hegemony scores.

4. Threat Model

We now present the threat model for the spatial parti-
tioning attack. Taking into account various network entities
and adversary types, we present a formal characterization of
spatial partitioning attacks.

4.1. Analysis Notations

Network Anatomy. For our analyses, we define A as the set
of ASes that host the cryptocurrency nodes, with each a; €
A hosting N?, N¢, and NI Bitcoin, Ethereum, and Ripple
nodes hosted across Pb Pe, and P} prefixes, respectively.
We also assign R, RS, and R? ranks to each a; € A based
on the percentage of nodes it hosts from each network. >

Network Interdependence. To characterize network inter-
dependence, we define N¢ = N? +N¢ +N as the cumulative
number of cryptocurrency nodes hosted by an AS. Based on
the NY value, we assign R{ rank to an AS, and define P{ as
the number of prefixes that host all N nodes.

4.2. Attack Types and Adversaries

We classify the spatial partitioning attacks into two
types, namely the classical attack and the practical attack.

4.2.1. Classical Attack. In the classical attack, we assume
a myopic adversary that does not acknowledge the AS de-
pendency and indiscriminately targets the high-profile ASes
that host a large number of cryptocurrency nodes. To launch
the attack, the adversary selects an AS and identifies BGP
prefixes that host the cryptocurrency nodes. The adversary
then announces more specific BGP prefixes to hijack the
traffic of the victim AS.

Figure 1 provides an illustration of the classical parti-
tioning attack, where two among the four ASes (AS-A and

5. Superscripts denote the first letter of the cryptocurrency name. For
instance, in Ni?, N is the number of nodes and b is for the Bitcoin network.
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Figure 2. Illustration of practical partitioning attack. The AS dependency is
shown as the global hegemony score (0-1). AS-B announces more specific
prefixes of AS-A to hijack its traffic. AS-B launches the attack due to
a low AS dependency in the AS path. The relationship between low AS
dependency and BGP attacks has been observed in the wild [6].

AS-C) are shown to host cryptocurrency nodes. Each AS
announces a set of prefixes which helps in determining the
AS paths for traffic forwarding. Moreover, ASes are anno-
tated by their respective global hegemony scores reported by
the BGP viewpoints [6], and computed using paths to all IP
prefixes [11]. In Figure 1, AS-A, AS-C, and AS-D have high
hegemony scores, meaning that they are commonly used to
reach other hosts on the Internet. In contrast, AS-B has a low
hegemony score, which shows a low dependency of other
ASes on AS-B to reach the destination IP addresses [6].

Figure 1 also shows a direct link between AS-A and AS-
C, indicating that if nodes in AS-A have logical connections
with nodes in AS-C, their traffic is directly forwarded by the
respective ASes. In the hijack event, AS-D announces more
specific prefixes of the victim AS-A. By design, the BGP
protocol prefers the shortest and more specific path to the
destination IP address. As a result, AS-C forwards the traffic
destined for AS-A to AS-D. The change in the traffic flow
breaks the logical connections between the cryptocurrency
nodes in AS-A and AS-C. Moreover, traffic destined towards
AS-A from all other ASes is also forwarded to AS-D, which
isolates the cryptocurrency nodes in AS-A.

Note that AS-D launches the attack on AS-A despite a
high AS dependency, which is likely to affect their business
relationships. We categorize this attack as the classical attack
whereby a myopic adversary indiscriminately targets another
AS while risking the AS relationships.

4.2.2. Practical Attack. In the practical attack, we assume
an adversary that acknowledges the AS relationships and
does not indiscriminately target the high profile ASes.%. The
adversary obtains the routing paths taken by the cryptocur-
rency traffic and calculates the global hegemony scores of
the on-path ASes. If the adversary finds itself on the routing
path and has a low global hegemony score, it launches the
attack on the ASes that host the cryptocurrency nodes. ’
Figure 2 provides an illustration of a practical partition-
ing attack where all the initial conditions are similar to the
ones shown previously in Figure 1. In this case, however,

6. High profile ASes (i.e., AS7018) typically own thousands of IP
prefixes and route a high volume of upstream or downstream traffic for
their neighboring ASes.

7. If the victim node IP address already exists in the /24 prefix, ISPs
may filter the adversary’s longer prefix announcement [2]. In such a case,
the on-path adversary can announce a /24 prefix and a shorter path to the
victim AS to launch the partitioning attack and hijack the AS traffic.



TABLE 1. TOP TEN ASES THAT HOST BITCOIN, ETHEREUM, AND RIPPLE NODES, RANKED BASED ON THE TOTAL NUMBER OF NODES HOSTED FROM
THE THREE NETWORKS (N¥). FOR EACH AS, WE ALSO SHOW THE TOTAL PERCENTAGE OF NODES WITH RESPECT TO EACH CRYPTOCURRENCY.
AS-701 AND AS-7018 HOST A LARGE NUMBER OF BITCOIN AND ETHEREUM NODES, BUT NO RIPPLE NODE. THEREFORE, WHILE THEIR GLOBAL
RANKINGS (RY) ARE 8 AND 10, THE CORRESPONDING R, N7, AND P} VALUES ARE MARKED AS NA.

ASN R RS R R¢ N? N¢ NT Ne PP Pe PT PS¢
AS-16509 2 2 1 1 495 (7.5%) 1377 (19.9%) 249 (33.1%) 2121 131 119 80 149
AS-14618 10 1 3 2 87 (1.3%) 1391 (20.1%) 65 (8.7%) 1543 32 50 26 51
AS-24940 1 3 2 3 908 (13.8%) 427 (6.2%) 159 (21.1%) 1494 34 32 29 34
AS-16276 4 6 5 4 353 (5.4%) 155 (2.3%) 36 (4.9%) 544 60 47 22 67
AS-7922 5 4 17 5 237 (3.6%) 231 (3.3%) 3 (0.5%) 471 65 65 6 80
AS-14061 3 18 6 6 413 (6.3%) 40 (0.6%) 12 (1.6%) 465 84 42 13 84
AS-396982 8 5 4 7 120 (1.8%) 181 (2.6%) 37 (5.0%) 338 60 56 28 79
AS-701 7 8 NA 8 120 (1.8%) 117 (1.7%) NA 241 108 113 NA 155
AS-51167 6 12 27 9 146 (2.2%) 62 (0.9%) 2 (0.3%) 210 39 37 3 53
AS-7018 9 10 NA 10 109 (1.7%) 82 (1.2%) NA 193 95 82 NA 139
AS-B announces more specific prefixes of AS-A, which 3 LU
results in traffic destined for AS-A being routed to AS- RS - -~ .
B. Unlike AS-D in the classical attack, AS-B has a low @f 6 i ===
AS dependency, indicated by a low global hegemony score. z
Note that on a given routing path, the presence of an AS ; s —
with a low global hegemony score between two or more - Bitcoin
ASes with high global hegemony scores is considered an Z ol T the"e“m
anomaly [6]. AS-B exploits this anomaly to target AS-A - Rlpple_
feasibly. Our practical attack construction is based on such 2 7 12 17 22 27
routing path anomalies, whereby the adversary with a low Days

hegemony score launches the attack if it finds itself on a
path between ASes with high hegemony scores. For more
details on the correlation between AS hegemony and BGP
hijacks, we refer to [6].

4.2.3. Adversary Types. In both attack types, the adversary
isolates the cryptocurrency nodes from the rest of the net-
work. The adversary can target a specific cryptocurrency or
all three cryptocurrency networks. To model the network-
specific choices, we specify four types of adversaries in the
classical attack and the practical attack.

Bitcoin Adversary. For the Bitcoin network, we define
an adversary, Ay, that only targets ASes that host Bitcoin
nodes. To do so, A, ranks all ASes based on the number
of Bitcoin nodes they host (Rf), and selects T number
of target nodes to isolate. Without the overlay topology
knowledge, A, can only launch the classical attack.

Ethereum Adversary. For the Ethereum network, we
define an adversary, A, that only targets ASes that host
Ethereum nodes. Similar to A, A, ranks all ASes based on
the number of Ethereum nodes they host, and selects T
number of nodes to isolate by hijacking their prefixes. With-
out the overlay topology knowledge, .A. can only launch the
classical partitioning attack.

Ripple Adversary. For the Ripple network, we define an
adversary, A,., capable of launching both the classical attack
and the practical attack. For the classical attack, 4, ranks
the high-profile ASes and hijacks their prefixes to isolate
T number of nodes. For the practical attack, A, maps the
Ripple overlay topology onto the physical network topology
to discover the routing paths. If 4, is on the routing path
with a significantly low hegemony score compared to the
other on-path ASes, A, announces BGP prefixes of the
target ASes to hijack their traffic.

Figure 3. Number of IP addresses collected from the three networks during
the measurement duration. On average, Bitcoin, Ethereum, and Ripple had
6,577, 6,923, and 755 nodes with public IP addresses.

Global Adversary. Finally, we define a global adversary,
A, that exploits the network interdependence to target all
three networks simultaneously. For the classical attack, A,
ranks all ASes based on the cumulative number of nodes
they host from all three networks. A, then isolates Tn
nodes by announcing more specific BGP prefixes of their
ASes. For the practical attack, A, simply follows the attack
procedure of A,. and observes if it is on the routing path be-
tween ASes that host a large number of Bitcoin, Ethereum,
and Ripple nodes. Unlike A,., which targets ASes based on
their ranking in the Ripple network, A, ranks ASes based
on the total number of nodes from all cryptocurrencies and
targets the vulnerable ASes based on the AS dependency.

4.2.4. Attack Cost. We determine the attack cost by calcu-
lating the number of prefixes required to isolate T number
of nodes. The adversary can identify the top-ranked ASes
and sort their prefixes based on the number of hosted nodes.
Subsequently, the adversary can target each prefix by an-
nouncing a more specific prefix and isolating nodes in each
announcement. For instance, assume P? is a set of prefixes,
where each P? hosts N? Bitcoin nodes. Moreover, each
Pb € PP is sorted in descending order based on N’. If A,
aims to isolate a total of T nodes, where Ty = ZW Ni?,
the total attack cost Cj, becomes C, = Y, P.8

5. Classical Partitioning Attack

In this section, we analyze the classical partitioning
attack. We first present the preliminary results, followed by

8. Equations can be extended for cost computation of Ae, A, and Ag.



a standalone analysis of each cryptocurrency network and
the joint analysis based on network interdependence.

5.1. Preliminary Results

In Figure 3, we report the number of nodes observed
in each network between November 2022 and December
2022.° On average, each day, we found ~6,577, 6,923, and
755 nodes in Bitcoin, Ethereum, and Ripple, respectively.
In Table 1, we elaborate on the characteristics of each
network by reporting their distribution in the top ten ASes,
highlighting (1) AS ranking (Rf, R¢, RY, and RY), (2) the
number of nodes hosted by an AS (N?, N¢, N7, and NY),
and (3) the prefix-wise node distribution in an AS (Pf, s,
P¢, and P). The values reported in Table 1 are averages of
all data samples obtained during the measurement duration.
Across all samples, we observed a generally consistent node
distribution, indicating that an attack model formulated on
one sample can be generalized across the dataset.

A few notable observations in Table 1 include: (1) a
strong network interdependence, since five out of the top
ten ASes in one cryptocurrency network are also among the
top ten ASes across all three networks, (2) variations in AS
rankings despite interdependence (i.e., for AS-14618, R? =
10, Rf =1, R} = 3, and R{ = 2), and (3) variations in the
prefix-wise distribution of nodes across ASes (i.e., for AS-
24940, P} = 34, and for AS-16509, P$ = 119). From these
observations, we concluded that there is a general similarity
in the hosting pattern of cryptocurrency nodes across ASes.
Moreover, the attack cost can vary across ASes due to the
varying prefix-wise node distribution.

5.2. The Bitcoin Network

In this section, we analyze the classical partitioning
attack on the Bitcoin network. Given that a BGP hijack
duration is usually between a few minutes to one day [41],
[36], we, therefore, use one snapshot from our dataset for
an accurate evaluation of all attacks presented below.

The Bitcoin network analysis revealed that all nodes
were hosted in 996 unique ASes, with only 14 ASes hosting
50% of the nodes. In Figure 4(a), we show the distribution
of the Bitcoin nodes across the top ten ASes. In terms of the
prefix-wise distribution, all Bitcoin nodes were hosted across
3,003 unique prefixes, with 50% of the nodes hosted in 347
prefixes. Compared to the study conducted in 2017 [2], our
analysis shows an increasing centralization of Bitcoin nodes.

To launch a classical partitioning attack on the Bitcoin
network, A, sorts all prefixes based on their node distribu-
tion and iteratively announces more specific prefixes. As a
result, A, hijacks the set of prefixes from each AS that
hosts the Bitcoin nodes. The prefix-wise sorting reduces
the attack cost since A can isolate the targeted number of
nodes while announcing the minimum number of prefixes.
For instance, if A; aims to isolate 1,000 Bitcoin nodes in
Table 1, it can select various prefix combinations where
the total sum of hosted nodes is 1,000. However, if those

9. Our extended paper in [38] provides a longer timeline for the node
distribution shown in Table 1 and Figure 3.
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Figure 4. 4(a) shows the distribution of Bitcoin nodes across ASes. The
outer plot shows the percentage of nodes hosted by the top ten ASes while
the inner plot shows the CDF of the Bitcoin nodes across all ASes. The
Bitcoin nodes were hosted across 996 unique ASes with 14 ASes hosting
50% of the nodes. 4(b) plots the sorted prefix-wise node distribution which
is exploited by A in the classical attack. The number of prefixes on the
x-axis can also be considered as the attack cost Cp,.
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(a) Nodes Distribution (b) Classical Attack
Figure 5. 5(a) shows the distribution of Ethereum nodes. Ethereum nodes
are more centralized than Bitcoin, with five ASes hosting 50% of the

nodes. 4(b) plots the prefix-wise distribution of nodes which is exploited
by A. in the classical attack.

- a

nodes are hosted in a wide range of prefixes, the attack
cost will increase accordingly. Alternatively, A, can sort
prefixes based on the maximum number of hosted nodes
and target them to reduce the attack cost. In Figure 4(b), we
show how A; can exploit the prefix-wise node distribution
to launch the classical partitioning attack. Figures 4(a) and
4(b) demonstrate that the biased distribution of nodes makes
them highly vulnerable to the classical partitioning attack.

5.3. The Ethereum Network

In the Ethereum network, we observed that all nodes
were hosted across 734 unique ASes, with only five ASes
hosting 50% of the nodes. Compared to the Bitcoin network,
we found that Ethereum nodes were more centralized across
ASes with AS-16509, AS-24940, and AS-14618 jointly
hosting more than 40% of the nodes. A high centralization
of nodes across a few ASes indicates that Ethereum is
more vulnerable to spatial partitioning attacks than Bitcoin.
Figure 5(a) shows the distribution of Ethereum nodes across
the top ten ASes. In terms of the prefix-wise distribution,
we found that Ethereum nodes were hosted in 2,238 unique
IP prefixes, with 122 prefixes hosting 50% of the nodes.

In Figure 5(b), we plot the sorted prefix-wise node distri-
bution, which can be exploited by .4, to launch the classical
attack on the Ethereum network. Figure 5(b) confirms the
centralization of nodes across prefixes, primarily caused
by AS-16509, AS-24940, and AS-14618. An interesting
observation in our analysis was the prefix-wise distribu-
tion of the Bitcoin and Ethereum nodes in AS-16509. As
shown in Table 1, on average, AS-16509 hosts 495 Bitcoin
nodes across 131 prefixes and 1377 Ethereum nodes across
119 prefixes. Although the Ethereum nodes outnumber the
Bitcoin nodes, their centralized distribution across prefixes
makes them more vulnerable to the classical attack.
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(a) Nodes Distribution (b) Classical Attack

Figure 6. 6(a) shows the distribution of the Ripple nodes across ASes.
All Ripple nodes were hosted across 131 unique ASes with only two
ASes hosting more than 50% of the nodes. 6(b) plots the prefix-wise node
distribution, which is exploited by A, in the classical attack.
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(a) Nodes Distribution (b) Classical Attack

Figure 7. 7(a) shows the distribution of the nodes that jointly host Bitcoin,
Ethereum, and Ripple nodes. All nodes are hosted across 53 ASes with
AS-16509 hosting more than 20% of the nodes. 7(b) plots the prefix-wise
node distribution which is exploited by A4 in the classical attack.

5.4. The Ripple Network

Consistent with our prior observations in Bitcoin and
Ethereum, we continued to observe a biased distribution of
the Ripple nodes across ASes. We found that all Ripple
nodes were hosted across 131 unique ASes, where only two
ASes hosted 50% of the nodes. In particular, AS-16509
hosted ~33% of all Ripple nodes, which is the largest
percentage of nodes hosted by any AS among all three
networks. In Figure 6(a), we show the distribution of Ripple
nodes across the top ten ASes. In terms of the prefix-wise
distribution, we found that the Ripple nodes were hosted
across 336 unique prefixes, with only 57 prefixes hosting
50% of the nodes.

Figure 6(b) presents the prefix-wise node distribution
which can be exploited by A, to launch the classical parti-
tioning attack. We observed that Ripple is the most vulnera-
ble cryptocurrency network to classical partitioning attacks
due to two main factors. First, A, can target fewer nodes
in Ripple, since the network size is considerably smaller
than both Bitcoin and Ethereum. Second, in addition to
the smaller network size, Ripple nodes are also centralized
across a few ASes and their prefixes. Both factors allow A4,
to hijack fewer prefixes in order to isolate all Ripple nodes.

5.5. Joint Network Analysis

For the joint network analysis, we selected all ASes
that hosted at least one node from each cryptocurrency
and analyzed the distribution of the nodes across those
ASes. Our results revealed that 9,427 Bitcoin, Ethereum,
and Ripple nodes were hosted by 53 ASes, with only three
ASes hosting ~50% of the nodes. In terms of the prefix-wise
distribution, we found that all 9,427 nodes were hosted in
1,224 unique prefixes, and 4, can isolate 50% of the nodes
by hijacking only 80 prefixes.

In Figure Figure 7, we plot the prefix-wise distribu-
tion of nodes that share the same prefixes across all three
cryptocurrencies. Consistent with the prior observations, we
found a biased distribution of nodes across ASes which
can be exploited by A, to launch the classical partitioning
attack. Moreover, due to the strong network interdependence
(9,427 nodes sharing the same ASes) the classical attack can
simultaneously impact all three cryptocurrency networks.

5.6. Key Takeaways

From the classical partitioning attack analysis, we made
the following key conclusions. (1) All three cryptocurrency
networks are clustered across a few ASes, making them
highly vulnerable to the spatial partitioning attack. (2) The
centralization of cryptocurrency nodes has increased over
the last five years [2]. (3) There is a strong network inter-
dependence among all three networks, which demonstrates
that targeting any high-profile AS affects all three networks
simultaneously. (4) The prefix-wise node distribution can be
exploited to isolate the maximum number of targeted nodes
while minimizing the number of prefix announcements.

6. Practical Partitioning Attacks

As discussed in §1, Bitcoin’s vulnerability to the classi-
cal partitioning attack is well-known and documented. How-
ever, despite the persistent threat and lucrative outcomes for
an adversary, classical attacks are not frequently observed
in the wild. A probable reason for the attacks’ rarity is
the shielded nature of the Bitcoin overlay topology, which
prevents an on-path adversary from identifying potential
victims to target. However, if an AS hosts a significant
number of cryptocurrency nodes, its neighboring ASes in-
variably learn that, as they intercept the cryptocurrency
traffic, and can possibly hijack it. Since neighboring ASes
may have a dependency on each other (i.e., routing upstream
or downstream traffic), it prevents them from launching such
an attack without affecting the AS relationships [21].

On the other hand, if the adversary learns the overlay
topology of a cryptocurrency network and finds itself on the
AS path in the physical topology with a low dependency
on high-profile ASes, the adversary can afford to target
the high-profile ASes. Therefore, the ability to launch an
attack due to a low dependency leads to practical attacks
that are also observed in the wild [6]. The state-of-the-art
partitioning attack models have not concretely evaluated the
possibility of practical attacks on Bitcoin and Ethereum due
to their shielded overlay topologies. As discussed in §1,
in a shielded overlay topology, the adversary estimates
the possible connections between nodes, followed by the
probable routing paths for the traffic exchanged between
those connections. Since the possible number of overlay
topologies can be significant, this process increases the effort
of launching a successful attack. In contrast, if the adversary
identifies a third cryptocurrency whose nodes (1) share the
same set of ASes with Bitcoin and Ethereum nodes (network
interdependence), and (2) publicly disclose their overlay
topology, the adversary can effectively reduce the effort.



250

200

150

100

50

Figure 8. Ripple overlay topology consisting of 781 nodes and 18,335
edges. The graph key color codes the number of connections per node.

With the overlay topology knowledge, the adversary can
easily identify the number of AS paths between the source
node and the destination node. If the adversary is on one
of those paths with a low dependency on victim ASes, the
adversary can launch a practical attack.

In order to formulate the practical partitioning attack,
we explored the cryptocurrency ecosystem to find a suitable
candidate that shares ASes with both Bitcoin and Ethereum
while disclosing its overlay topology. We found Ripple as
the most suitable candidate since it satisfied the requirements
for the practical attack. Additionally, Ripple can also be
lucrative for an adversary due to a market capitalization of
over $9 billion. At the time of writing this paper, Ripple
ranked seventh among the top cryptocurrencies in terms of
market capitalization [9]. Therefore, by launching a practical
attack, the adversary can target three of the top seven
valuable cryptocurrencies.

Attack Construction. For the practical attack analysis,
we mapped the Ripple overlay topology onto the physical
topology to identify links between ASes. We then used the
BGPStream API [4] to extract the routing paths, followed
by AS dependency measurements using the “Internet Health
Report” (IHR) API [11]. We studied irregularities in the
routing paths by discovering on-path ASes that can intercept
cryptocurrency traffic while enjoying a low dependency on
ASes that hosted Ripple nodes. Finally, we developed case
studies to show how practical attacks can be launched by
exploiting the observed routing path irregularities.

It is plausible to assume that high-profile ASes take
strong security measures for their routing paths, and that
the practical attack adversary may only find irregularities
in the routing paths of ASes that do not host a significant
number of cryptocurrency nodes. Therefore, the efficacy of
the practical attacks relies on discovering irregularities in
the routing paths of high-profile ASes that host a significant
number of cryptocurrency nodes. Our analysis in the subse-
quent sections reveals that practical partitioning attacks can
be launched on high-profile ASes that host a large number
of cryptocurrency nodes.
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Figure 9. Physical topology of ASes that host Ripple nodes. The graph
consists of 175 vertices and 771 edges.

Algorithm 1: Physical Topology Construction

1 Input: Overlay topology G = (V, E)

!
2 Initialize: Physical topology ¢ = % ,E,)
3 foreach ip; € V do

4 send ip; to RouteViews dataset

5 receive AS; for ip;

6 if AS; ¢ V' then

7 | v« as,

8 foreach (ip;, ip;) € E do

9 send (ip;, ip;) to RouteViews dataset
10 receive (AS;, AS;) for (ip;, ip;)

1 if (AS;, AS;) ¢ E then

2 | B « (as,, As))

3 return G = (Vl7 E/)

6.1. Ripple Network Topology

The first step towards constructing the practical attacks
is to map the Ripple overlay topology onto the physical
topology of ASes, which we show in the following.

Overlay Topology. We specify G = (V, E) as the overlay
topology formed by the Ripple nodes and G = (V', E)
as the physical topology formed by ASes that host those
nodes. Figure 8 presents the overlay topology consisting of
781 nodes and 18,335 edges. We found the average node
degree to be 46.95, with a maximum value of 293.

Physical Topology. From the overlay topology, we then
constructed the physical network topology to identify the
logical connections among ASes that host Ripple nodes. For
the physical topology construction, we took all vertices V'
in the overlay topology G and performed IP to AS mapping
using the RouteViews dataset [13]. The AS values returned
by the RouteViews dataset were inserted in V' Similarly,
for all logical connections between IP address pairs in F,
we obtained the corresponding logical connections between
ASes using the RouteViews dataset. The logical connections
between ASes were inserted in E . In summary, using the
RouteViews dataset, we mapped all IP addresses in G to
their corresponding ASes in the RouteViews dataset to obtain
G Algorithm 1 presents the formal procedure of obtaining
the physical topology from the overlay topology.

Due to the biased distribution of nodes across ASes
(Table 1), the number of vertices in the physical topology



Algorithm 2: AS Path Collection

1 Input: ASes in v’

2 Initialize: ASPaths = [], counter = 0

3 while counter < 50,000 do

4 foreach Path from RIB do

s if set(Path) N V' > 2 then
6 ASPaths < list(Path)
7 counter += 1

8 return ASPaths
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Figure 10. Hegemony scores of ASes on a routing path. The valley in
the path shows that AS-209042, with a low global hegemony score, is
located between two transit ASes (AS-174 and AS-13030) with high global
hegemony scores. A valley in the AS path is considered an anomaly, and
such anomalies have been linked to BGP hijacks [6].

was less than the overlay topology (|V'| << [V]). In Fig-
ure 9, we plot the physical topology obtained from IP to
AS mapping (Algorithm 1). In the physical topology, we
observed 175 vertices and 771 edges. AS-16509 had the
highest node degree of 118.

Routing Paths. After obtaining the logical connections
between ASes that host Ripple nodes, we used the BG-
PStream API [4] to identify the on-path ASes that may
intercept the communication among the Ripple nodes. For
that purpose, we used the Routing Information Base (RIB)
dataset in BGPStream API to collect up to S0K AS paths,
where at least two ASes in V'’ were present on the path.
As a result, we collected a total of 50K possible paths
between any two ASes in V’. For measurement accuracy,
we ensured that the RIB dataset date matched the date
of Ripple network snapshot in our dataset. Due to time
constraints, we restricted our analysis to S0K AS paths, as
it provided sufficient data for subsequent analysis of routing
path anomalies. In Algorithm 2, we provide the procedure
for obtaining AS paths from the physical topology.

6.2. Measuring AS Dependency

Recent works on network security [6], [20] show that
ASes (including Tier-1 ASes) can be hijacked if another on-
path AS has a weak dependency on them. For the purpose of
measuring the AS dependency, we used the AS hegemony
score, which is a recent metric that determines the signifi-
cance of an on-path AS based on its location in the path. The
AS hegemony concept was introduced by the Internet Health
Report (IHR), which also provides an API to calculate the
hegemony scores of ASes [11]. The hegemony scores are
scaled between 0-1, with O indicating a low dependency,
and 1 indicating a high dependency.
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Figure 11. Top five ASes vulnerable to the practical attack, along with the
nodes they host from each cryptocurrency network. Among all ASes, three
high-profile ASes are AS-16509, AS-7922, and AS-14061.

In [6], Cho et al. applied the concept of AS hegemony
score and discovered a correlation between BGP attacks and
the hegemony score of on-path ASes. Their analysis showed
that in an ideal configuration, the global AS hegemony score
values must have only one local maximum in the middle
of the path, indicating that transit ASes are located in the
middle. However, if there is a local minimum between two
local maxima (also called a valley in [6]), the path has an
anomaly, and the AS corresponding to the local minimum
can potentially hijack the prefixes of other on-path ASes.

To elaborate on the concept of AS hegemony and
the practical attacks, consider the routing path shown
in Figure 10. The path consists of six ASes (AS-47787—
AS-174—AS-209042—AS-13030—AS-20473—AS-
212201), obtained from BGPStream along with their global
hegemony scores obtained from IHR [11]. The plot presents
a local minimum between two local maxima, showing that
an ASes with a low global hegemony score is present in
the middle of two ASes with high global hegemony scores.
Cho et al. [6] classified such valleys as anomalies in the
routing paths and also linked those anomalies to the BGP
attacks in the wild.

Following the approach in [6], we used the routing paths
obtained in Algorithm 2 and measured the dependency of
on-path ASes on the ASes that host cryptocurrency nodes.
We marked vulnerable paths upon observing (1) a local
minimum between two local maxima, (2) a change of more
than 90% in the hegemony score, and (3) no cryptocurrency
node being hosted in the AS causing the local minimum.
The last condition alleviates the attack’s impact on the
adversary. If the adversary is hosting cryptocurrency nodes,
the practical attack will inevitably isolate them from the rest
of the network. Since the adversary may want to avoid being
a victim of its own attack, we assume that the adversary
does not host any cryptocurrency node. In summary, the
practical attack adversary is an on-path AS that does not
host a cryptocurrency node and enjoys a low dependency
on the victim ASes that host cryptocurrency nodes.

Our results revealed that a practical attack can be
launched on 64 ASes that host cryptocurrency nodes from
all three networks. Among the vulnerable ASes, we found
high-profile ASes including AS-16509, AS-7922, and AS-
14061. In Figure 11, we plot the top five ASes vulnerable
to the practical attack. Figure 11 also shows the number



""" 3Bitcoin === Ethereum —-= Ripple Joint
0

Nodes (Ty)

0 100 200 300 400 500
Prefixes (C,)

Figure 12. Sorted prefix-wise distribution of the cryptocurrency networks,
which can be exploited to launch the practical attack. Adversaries can
isolate 1,756, 2,258, and 308 Bitcoin, Ethereum, and Ripple nodes by
hijacking up to 519, 395, and 116 prefixes, respectively. The joint network
analysis of all three cryptocurrencies is shown in the green line. For ease of
understanding, we extend the plot line on the x-axis after the total number
of nodes in each network is isolated.

of Bitcoin, Ethereum, and Ripple nodes hosted by those
ASes at the time of conducting the experiment. We found
that a total of 4,322 cryptocurrency nodes could be isolated
through the practical attack, including 1,756, 2,258, and 308
Bitcoin, Ethereum, and Ripple nodes, respectively.

Taking into account the number of nodes that can be
isolated, it is important to understand the key differences
between classical and practical attacks. In the classical
attack, the adversary can target all ASes and isolate their
cryptocurrency nodes. However, as discussed in §4, the
classical attack adversary may face the attack consequences
due to its dependency on the victim ASes. The risk of
launching an attack may outweigh the benefit. In contrast,
the practical attack adversary only targets the ASes on
which it has a low dependency. As a result, the number of
potential victims is a subset of ASes among all ASes, and
the number of vulnerable nodes is less than the total number
of cryptocurrency nodes. From an adversarial standpoint, if
the vulnerable ASes are high-profile ASes hosting a large
number of nodes, the attack can be widespread. Our results
demonstrate that three out of the top ten ASes in Table 1
are vulnerable to practical attack, thereby creating favorable
outcomes for the adversary. In the following section, we
provide more details regarding the practical attacks on the
cryptocurrency networks.

6.3. The Bitcoin Network

For the Bitcoin network analysis, we assume that A4,
follows the attack procedure from the previous section and
identifies all vulnerable ASes. Among them, A, selects the
ASes that host at least one Bitcoin node. A; then announces
more specific prefixes than the victim AS to hijack its traffic
and isolate the Bitcoin nodes. A low dependency on the
victim AS allows A4, to feasibly target them.

Among the 64 vulnerable ASes identified in our exper-
iment, we found 48 ASes that hosted at least one Bitcoin
node and a total of 1,756 nodes. Among those ASes, AS-
16509 hosted more than 30% of those nodes. In terms of
the prefix-wise distribution, all 1,756 nodes were hosted

across 519 unique prefixes, with 76 prefixes hosting 50%
of the nodes. In Figure 12, we plot the sorted prefix-wise
distribution of the Bitcoin nodes across prefixes which can
be exploited by 4, to launch the practical attack.

6.4. The Ethereum Network

For the Ethereum network analysis, we assume that A,
identifies all vulnerable ASes in the practical attack and
selects ASes that host at least one Ethereum node. In our
experiments, we found 42 ASes that hosted at least one
Ethereum node and a total of 2,258 Ethereum nodes. Among
those ASes, AS-16509 hosted more than 60% of those
nodes. In terms of prefix-wise distribution, all 2,258 nodes
were hosted across 395 unique prefixes, with 27 prefixes
hosting 50% of the nodes.

In Figure 12, we provide the sorted prefix-wise distri-
bution of the Ethereum nodes, which can be exploited by
A, to launch a practical attack. Figure 12 also shows that
the Bitcoin nodes are more distributed across prefixes than
the Ethereum nodes. Therefore, for the same number of
nodes to be isolated, the attack cost in Bitcoin is higher
than in Ethereum. The key factor for the cost difference
is the prefix-wise distribution of the Bitcoin and Ethereum
nodes in AS-16509. As shown in Table 1, AS-16509 hosts
more Ethereum nodes than Bitcoin nodes. Moreover, the
prefix-wise node distribution of Ethereum nodes is more
centralized in AS-16509 than the Bitcoin nodes.

6.5. The Ripple Network

Among the 64 vulnerable ASes identified in §6.2, we
found 20 ASes that hosted at least one Ripple node. Com-
bined, all 20 ASes hosted 308 Ripple nodes, with AS-16509
hosting more than 80% of those nodes. In terms of the
prefix-wise distribution, all 308 nodes were hosted across
116 prefixes, with 20 prefixes hosting 50% of the nodes.

In Figure 12, we provide the sorted prefix-wise distri-
bution of the Ripple nodes which can be exploited by A,
to launch the practical attack. Note that 308 nodes make
~38% of the Ripple network. Therefore, by hijacking only
116 prefixes, A, can partition ~238% of the Ripple network.
The scale of vulnerability shows that Ripple is the most
vulnerable of all cryptocurrencies to practical attacks.

6.6. Joint Network Analysis

After the standalone analysis of each network, we con-
ducted a joint analysis based on network interdependence.
We found 9 ASes that hosted at least one node from each
cryptocurrency network and a total of 3,810 nodes (1,486
Bitcoin, 2,022 Ethereum, and 302 Ripple nodes). AS-16509
hosted more than 60% of those nodes. All nodes were hosted
across 497 unique prefixes, with 42 prefixes hosting 50% of
the nodes. In Figure 12, we plot the prefix-wise distribution
for the joint network analysis.



In our experiments, we also observed that nodes from
different cryptocurrencies also share the same set of AS pre-
fixes. More precisely, among the total 497 unique prefixes,
79 prefixes hosted nodes from all three networks. Prefix
sharing by nodes from different cryptocurrency networks
allows A, to isolate the targeted number of nodes by
announcing fewer prefixes.

6.7. BGP Attacks in the Wild

Our practical attack analysis exposed anomalies in the
routing paths of high-profile ASes. It is therefore pertinent
to study if adversaries are already exploiting the routing
path anomalies to target them. Empirical evidence for BGP
attacks in the wild is necessary for the following two rea-
sons. First, as discussed in §1, it is commonly argued that
AS dependency provides inherent protection to high-profile
ASes against BGP hijacks. After observing anomalies in AS
dependency (§6.2), an empirical evaluation can support our
evaluation methodology. Second, it is also considered that
RPKI adoption by ASes protects them from BGP hijacks.
Recently, notable ASes that host cryptocurrency nodes in-
cluding AS-701, AS-7018, AS-16509, and AS-7922 have
adopted RPKI. As such, if ASes hosting cryptocurrency
nodes are targeted despite strong security measures, it cre-
ates a need for an additional set of countermeasures against
practical partitioning attacks.

For the real-world attack analysis, we collected a dataset
of BGP outages and hijacks from April 07, 2022, to Novem-
ber 01, 2022. The dataset was obtained from Cisco’s BGP
monitors that record anomalous BGP activities [3]. From
Cisco’s BGP monitors, we collected 8,639 events, including
4,171 outages and 4,468 hijacks. Note that an outage could
be due to misconfigurations, and it does not involve any
prefix announcement. In a hijack, however, another AS an-
nounces the prefixes of a target AS to re-route the traffic. In
our analysis, we only focused on the hijacks and found 246
hijack events that targeted 106 ASes hosting cryptocurrency
nodes. Moreover, 17 hijack events targeted seven out of the
top ten ASes that hosted cryptocurrency nodes. The targeted
ASes included AS-701, AS-16509, AS-14061, AS7922, and
AS-16276. Despite RPKI adoption, AS-701 and AS-16509
were targeted 5 and 3 times, respectively. Our analysis
confirms that routing path anomalies can be exploited in
the real world to target the high-profile ASes.

6.8. Key Takeaways

The practical attack analysis significantly advanced our
knowledge and understanding of the risks poised by spatial
partitioning attacks on cryptocurrency networks. From our
analysis in §6, we made the following key conclusions.
(1) Routing paths exposed by the Ripple topology reveal
anomalies in the physical network that can be exploited
to launch practical attacks against ASes that host nodes
from the three cryptocurrency networks. (2) There exist
anomalies in the routing paths of high-profile ASes that
host a large number of cryptocurrency nodes. (3) With the
growth of existing cryptocurrencies and the deployment of
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Figure 13. An illustration of blockchain fork due to spatial partitioning
attack. Nodes in AS-A and AS-B are connected to each other and maintain
a common ledger. During the attack, nodes in each AS are isolated from
the rest of the network. Blockchain is forked in both ASes as nodes mine
new blocks. Eventually, the fork resolves after the attack, and connections
are re-established. Since nodes in AS-A have a longer chain, all nodes
adopt the longer chain while discarding the block mined in AS-B.

new cryptocurrencies, routing path anomalies and network
interdependence must be carefully considered as an impor-
tant security risk. (4) Our real-world analysis of BGP hijacks
confirms that high-profile ASes can be targeted despite the
adoption of new security policies. '°

7. Attack Implications and Countermeasures

In this section, we evaluate the spatial partitioning attack
implications using discrete-event simulations, followed by
attack countermeasures. As an example, we use the Bitcoin
network for our analysis and evaluation.

Bitcoin nodes establish outgoing connections to other
Bitcoin nodes and receive incoming connections from them.
The logical connections between nodes form an overlay
topology, allowing nodes to exchange blocks and maintain a
consistent blockchain ledger as long as a cycle exists in the
overlay. Bitcoin nodes establish ten outgoing connections,
and if the connection count drops, they attempt new con-
nections to IP addresses stored in their IP tables [27]. When
a spatial partitioning attack is launched, nodes in the victim
AS lose their outgoing connections to the nodes outside
their AS. Eventually, they may complete their outgoing
connection slots by connecting to the nodes within their AS.
As a result, all newly mined blocks by nodes in the victim
AS are only shared with other nodes in the same AS.

If an adversary hijacks ten ASes and the partitioned
nodes start mining blocks, the blockchain is forked into ten
branches, with each branch being extended in the hijacked
AS. When the ASes recover from the hijack, nodes can start
establishing connections outside their ASes to share newly
mined blocks, including forked branches. After receiving
the forked branches, nodes apply the longest chain rule to
resolve forks [22]. The longest chain rule is a fundamental
principle applied in Bitcoin to resolve forks by adopting a

10. Our attack evaluations are based on a single-day snapshot of each
network. Since cryptocurrency networks are permissionless, their node
distribution may change over time which might show varying results de-
pending on the data collection and analysis timeline. Nevertheless, the key
aspects of node centralization, network interdependence, and routing path
anomalies are generalizable and likely to be found across all observations.
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Figure 14. Simulation results for the spatial partitioning attack. The x-axis
shows the time from the first mined block, and the y-axis shows the number
of blocks mined. The attack was executed at the third block, after which
the blockchain forked. The forked branches are shown in black and red
colors. As one branch became longer than the other branch, we removed
the partitioning after ten blocks to resolve the fork.

chain that represents the maximum effort in the form of
proof-of-work. Therefore, if a branch in one AS is longer
than the branches mined in the other nine ASes, the longest
branch will be adopted by all nodes and the shorter branches
will be discarded. In Figure 13, we illustrate blockchain
forks and fork resolution during and after the spatial parti-
tioning attack. Note that forks allow the adversary to split the
mining power among nodes, thereby allowing the adversary
to increase the transaction confirmation delay, invalidate
legitimate transactions, or double-spend transactions [27],
[37], [14], [24].

7.1. Attack Simulation

In this section, we present experiments that demonstrate
how spatial partitioning attacks lead to forks. In following
the ethical standards, we did not conduct our experiment on
the real-world Bitcoin network and instead created a small-
scale simulation for an attack demonstration.

Our simulation environment consisted of 16 nodes run-
ning as processes in a virtual machine. Each process was
assigned a port number through which it communicated
messages. We closely modeled the Bitcoin mining protocol
by allowing nodes to compute random hashes that matched
the predefined target requirement. The matching hash value
is considered a valid proof-of-work solution [22], [26].
When a node found a valid solution, it relayed the solution
to other nodes in the network. After receiving the solution,
all nodes included it in their local blockchain.

At the start of the simulation, we allowed all nodes to
mine blocks, relay those blocks to the other nodes, and
maintain a consistent blockchain ledger. After three blocks
were mined, we launched the attack and partitioned the
nodes into two groups, each consisting of eight nodes.
Our attack procedure was similar to the illustration shown
in Figure 13, where nodes were divided into two groups in
AS-A and AS-B, respectively. As a result of the partitioning,
the blockchain forked into two branches in both groups. We
continued the attack until one branch became longer than
the other branch and mined ten blocks. We then removed
the partitioning to allow communication between the two

Algorithm 3: Practical Attacks Countermeasures

1 Input: Bitcoin Node B running RPC

2 Initialize: Hegemony List Hy,

3 B executes getpeerinfo and receives a set of P peers.
4 foreach p; € P do

5 B executes traceroute command and obtains a routing path
consisting of ASes A
6 foreach a; € A do

B calculates AS hegemony score h;using IHR dataset, and
appends h; to Hp,
8 foreach h; and hy, € Hp do
B finds h; between h; and hj where h; < h; and
hj < hy // Traverse Hp and find smaller
values between two larger values
10 B calculates Ay = h; — hj; and Ay = hy, — hj.
1 lf(%+?—f) /2 > 0.9 then
B removes connection with p;
B automatically attempts a new outbound connection to
complete outgoing slots

14 else
15 |

B maintains connection with p;

groups. When the longer branch was released, the fork was
resolved and the longer branch was adopted by all nodes.
We plot our simulation results in Figure 14. The x-
axis shows the time from the first mined block, and the
y-axis shows the number of blocks mined by the nodes. For
the first three blocks, all nodes had a consistent blockchain
ledger with no forks. After the third block, a partitioning was
created between the two groups, which resulted in a fork. We
observed that one of the branches extended faster than the
other branch due to the proof-of-work randomness. When
the branch mined a total of ten blocks, we removed the
partitioning to resolve the fork. After the fork was resolved,
the longest branch was adopted by all nodes in the network.

7.2. Attack Countermeasures

Our analysis so far shows that the spatial partitioning
attacks pose a major threat to interdependent cryptocurrency
networks. Among the classical and practical attacks de-
scribed in this paper, the practical attacks are of significance,
since they expose routing path anomalies in high-profile
ASes, which cannot be ignored despite existing countermea-
sures in place. In this section, we propose new countermea-
sures to the spatial partitioning attacks and evaluate them in
the Bitcoin network.

In essence, the practical attack can be countered if ASes
avoid insecure paths for traffic routing, or the cryptocur-
rency users migrate their nodes to other ASes in order to
minimize network interdependence. However, both of these
approaches are infeasible in practice due to the following
reasons. First, we do not know why vulnerable ASes are fol-
lowing the current routing policies, despite being vulnerable
to attacks. Therefore, we cannot expect them to change those
policies simply to provide extra protection to cryptocurrency
nodes. Second, due to the underlying incentive for node
hosting, it is difficult to expect users to migrate their nodes
to other (and possibly more expensive) cloud operators.
Finally, based on our analysis in §6.7, relying simply on
ASes to upgrade their security standards using RPKI may
be insufficient to prevent partitioning attacks.



Acknowledging these challenges, we developed appli-
cation layer defenses to protect users from practical attacks
without requiring ASes to change their routing policies. No-
tice that in the practical attack, the adversary maps the over-
lay topology onto the physical topology, and only launches
an attack if it exists on an insecure routing path with a low
AS dependency characterized by the global hegemony score.
As such, if the overlay topology is structured in such a way
that the number of insecure paths is reduced, we can limit
the attack options available to the adversary.

For instance, the vulnerable path shown in Fig-
ure 10 (AS-47787—AS-174—AS-209042—AS-13030—
AS-20473—AS-212201) is revealed due to a connection
between two Ripple nodes. The adversary exploits this
knowledge because it can map the overlay topology onto
the physical topology and compute the AS dependency.
To construct our countermeasures, we suggest that such
computations can also be performed by the cryptocurrency
nodes. For instance, when two Bitcoin nodes establish a
connection, they can launch a traceroute to discover all the
on-path ASes that intercept the traffic and also compute their
AS dependency by using IHR’s API or the corresponding
data dumps [11]. If they discover a routing path anomaly,
they can disconnect and establish a new connection with
other nodes while repeating the process. Eventually, they
can complete their outbound connection slots by connecting
to only those nodes that exist on secure routing paths with
no anomalies. As a result of these overlay topology changes,
users can reduce the number of paths that can be exploited
by the adversary to launch the attack. More importantly,
if the adversary exists on the insecure path, the proposed
technique will prevent the adversary from learning that it
intercepts traffic between cryptocurrency nodes on that path.
This approach can enhance the security of cryptocurrency
networks by limiting the knowledge required for launching
the practical attack.

In Algorithm 3, we provide the countermeasure method-
ology which allows a node to determine the security of the
routing path with each of its connections. The node first
determines the AS path using traceroute, followed by the
hegemony score calculation. If the change in the hegemony
score is greater than 90%, the connection is removed, and a
new connection is established. As a result, all connections
on insecure routing paths are replaced by connections on
relatively secure routing paths. Note that the proposed tech-
nique does not require ASes to change their routing policies
or users to migrate their nodes to other cloud operators.

Experiment Evaluation. We evaluated the effectiveness of
our proposed countermeasures by deploying Algorithm 3 on
a Bitcoin node and analyzing its performance in the Bitcoin
network. To test our methodology at a large scale, we made
some modifications at our node. We changed the Bitcoin
source code to enable more than 10 outgoing connections.
We then collected 5,488 IP addresses of Bitcoin nodes from
Bitnodes [8], and connected to them using our node. We
then applied procedures outlined in Algorithm 3 to examine
the security of AS paths between our node and each of
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Figure 15. CDF of the computation time taken by our node to calculate
the routing path security for 5,070 connections. Our node evaluated ~92%
of the paths in less than 20 seconds.

its connections. For benchmark evaluation, we recorded the
time it took for our node to determine the security of a
routing path. For instance, if a connection was established
at time ¢; and the decision to disconnect (or stay connected)
was made at time to, then to — ¢; is the time taken by the
node to determine the routing path security.

Among the 5,488 IP addresses obtained from Bitnodes,
we successfully connected with 5,070 nodes and evaluated
the routing path security. We found 105 connected nodes on
potentially insecure routing paths and initiated a disconnect
request using the disconnectnode RPC API [7]. For all 5,070
connections, our node took an average of 10.19 seconds to
compute the routing path security, with a standard deviation
of 7.2 seconds. Figure 15 plots the CDF of the computation
time taken by our node to calculate the routing path security
of 5,070 connections. We found that our node evaluated
~92% of the paths in less than 20 seconds.'’ Our coun-
termeasures evaluation confirms that routing path anomalies
exist in real-world cryptocurrency networks. Moreover, our
proposed approach can be deployed by nodes to efficiently
determine the routing path security and disconnect from
nodes on potentially insecure routing paths.

8. Conclusion

In this paper, we comprehensively analyze the spa-
tial partitioning attacks on three popular cryptocurrency
networks; Bitcoin, Ethereum, and Ripple. We uncover an
increasingly biased distribution of cryptocurrency nodes
across ASes, which puts them at a high risk of BGP attacks.
We also show that cryptocurrency networks exhibit a strong
network interdependence by sharing the same ASes, which
amplifies the effect of the spatial partitioning attacks.

An essential contribution of this work is the practical at-
tack discovery made by mapping the overlay topology to the
physical cryptocurrency network’s topology and identifying
insecure routing paths. We also discover irregularities in the
routing paths of high-profile ASes, which can be exploited to
paralyze all three cryptocurrency networks. Acknowledging
this threat, we develop countermeasures for practical attacks
that cryptocurrency users can effectively deploy.

11. The routing path evaluation time may vary depending upon the
location of connected nodes and their network bandwidth.
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