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Abstract—In this paper, we investigated ChatGPT’s code
transformation capability and the effectiveness of the code
authorship attribution technique specially designed for Chat-
GPT code. Through our experiments, we made several key
observations. Firstly, ChatGPT demonstrated the capability to
transform code in ways that can mislead existing authorship
attribution techniques by generating various styles, while it has
some constraints, such as the maximum of 12 styles, with certain
styles being more commonly employed than others. We also found
that the feature-based code authorship attribution proved to
be effective when even applied to ChatGPT-transformed code,
while the naive approach encountered challenges with accurate
classification. In addition, an authorship model trained for binary
classification is still effective for ChatGPT-transformed code by
achieving up to 93% accuracy. These findings provide insights
into the code transformation ability of ChatGPT and shed light
on the effectiveness of code authorship attribution techniques for
ChatGPT-transformed code.

Index Terms— Code Authorship Identification, Program Stylis-
tic Features, Machine Learning, ChatGPT, Measurement, Code
Transformation

I. INTRODUCTION

Large language models (LLMs) are expanding from simple
tasks, such as setting reminders or providing basic information
(Google Assistant [21], Amazon’s Alexa [4], Apple’s Siri [7],
etc.) to sophisticated programming tasks (OpenAI Codex [42],
DeepMind AlphaCode [15], etc.) or complex problem-solving
(ChatGPT [40], [41], Google Gemini [6], [22], etc.) revolu-
tionizing the way we interact with technology and reshaping
various industries. LLMs have significantly advanced their
understanding and processing of programming languages [17],
[31], [38]. They can now interpret code, identify errors, and
provide suggestions for optimization, making them invaluable
tools for programmers. Additionally, they can offer tailored
recommendations based on a user’s coding style, preferences,
and previous projects, enhancing productivity and fostering
skill development [33], [55]. Therefore, the use of LLMs
as tools for programming language processing, e.g., code
generation, code repair, and code completion, has been steadily
gaining momentum in recent years [16], [24], [39], [44]. This
trend highlights the increasing reliance on LLMs to enhance
and streamline various aspects of programming workflows.

ChatGPT, an LLM by OpenAI [40], [41], has been trained
on a vast amount of text, including code snippets and examples
in various programming languages such as Python, C/C++, and
more. The extensive training data allows the model to generate
programming code at a level of proficiency comparable to
humans [28], [56]. However, these remarkable features also
bring potential risks of misuse. For instance, users may exploit
ChatGPT to generate solutions for programming assignments,
leading to concerns about cheating and plagiarism in academic
contexts [5], [25], [35], [36], [57].

Ma et al. [36] studied the legal implications of LLMs and
the code they generate and highlighted that LLMs rely on both
licensed and open-source codes for their training, which could
lead to copyright infringement or even negative outcomes
resulting from the unregulated utilization of these models.
Codes generated by LLMs often exhibit lower security levels
or are susceptible to vulnerabilities [37], [46], [50] compared
to those generated by humans. Perry et al. [46] showed that
AI-generated codes often implement lower security features or
functions, using basic cipher or short key.

To cope with these issues, codes generated by LLMs need
to be identified for further remedies, e.g., to avoid legal
and security consequences through proper human vetting,
detect plagiarized codes in academic settings, or even attribute
malicious codes generated by LLMs. While there has been
several studies on code authorship attribution in the context
of human-generated codes, employing stylistic and linguistic
patterns [1], [2], [11], [12], [26], [30], [32], [53], the problem
remains underexplored for LLM-generated code. For instance,
among the limited works, Ye et al. [59] used code rewriting
to identify synthetic (LLM-generated) codes. They conjecture
that the rewriting of code generated by LLMs would be
minimal in nature. By leveraging the minimal differences
between synthetic and rewritten code, compared to the more
significant distinctions seen with genuine human-generated
code, it may be possible to attribute code to its origin.

Choi et al. [12] conducted a study on LLM-generated
code produced by ChatGPT and found that ChatGPT can
generate code that is highly diverse in terms of style, which
presents significant challenges for code authorship attribution.
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To address these challenges, they developed a feature-based
approach to extract stylistic patterns from ChatGPT-generated
code. By grouping the ChatGPT-generated code into sets based
on similarities in these extracted features, they trained an
authorship attribution model using these sets. This approach
successfully attributed authorship to the ChatGPT-generated
code with an accuracy of up to 91.7%.

Despite these efforts, these methods remain vulnerable to
manipulation through code transformation techniques, which
involve modifying the stylistic patterns within code to in-
tentionally deceive the process of identifying its original
author [32], [34], [47]. Quiring et al. [47] utilized code trans-
formations and leveraged Monte-Carlo Tree Search (MCTS)
to evade attribution. Their transformations included control
flow, declaration, API transformation, etc., and were applied
to the code optimally using the MCTS algorithm. Their code
transformations achieved up to 99% evasion attack success
rate. Inspired by Quiring et al. and Choi et al., our research
question centers around the following question:

• RQ 1: Is ChatGPT capable of transforming code by
incorporating diverse stylistic patterns?

To answer this question, we utilize ChatGPT to trans-
form LLM-generated and human-generated code with two
approaches: non-chaining and chaining. Subsequently, we at-
tribute authorship to the ChatGPT-transformed code using a
pre-trained code authorship model. Our findings indicate that
while there are some limitations, ChatGPT can manipulate
stylistic patterns in code effectively, thereby altering the orig-
inal authorship to that of a different author, contradicting the
minimal changes in rewriting conjectured by Ye et al. [59].
Since ChatGPT successfully performs such code transforma-
tions, it raises another important question:

• RQ 2: Can code authorship attribution methods success-
fully be applied to the ChatGPT-transformed codes?

Due to the diverse styles exhibited by ChatGPT, the con-
ventional code authorship attribution methods are not suitable.
As such, we devise a ChatGPT code authorship attribution ap-
proach to address the research question. In our initial step, we
extracted the stylistic features of ChatGPT-transformed code
using a pre-trained code authorship model. Subsequently, we
formed sets containing codes that exhibited similar features to
evaluate the classification accuracy. Our experiment revealed
that, in a standard circumstance, the ChatGPT code author-
ship approach remained effective for ChatGPT-transformed
code, achieving an accuracy of up to 87.5%. Moreover, we
developed binary classification models to distinguish between
ChatGPT and human-generated code using our dataset. Our
model attained an accuracy of up to 93% when applied to the
combined dataset and around 91% on three individual datasets.
Contributions. 1) We examined the code transformation of
ChatGPT and evaluated the effectiveness of code authorship
attribution for ChatGPT-generated code. 2) We introduced two
code transformation approaches, non-chaining and chaining, to
thoroughly explore ChatGPT’s code transformation capabili-
ties. 3) We provided an extensive analysis of code authorship

attribution for ChatGPT-transformed code and its capacity to
achieve a notably high level of classification accuracy. 4) We
conducted binary classification with ChatGPT-transformed and
non-ChatGPT codes, and the model remains effective on even
classifying ChatGPT-transformed codes.

Organization. We review prior work in section II and provide
essential background information in section III. Our methodol-
ogy is detailed in section IV, followed by the experiment setup
and goals in section V. Results and discussions are presented
in section VI, with the conclusion summarized in section VII.

II. RELATED WORKS

In this section, we provide a detailed overview of the chal-
lenges associated with code generated by LLMs. We also delve
into the discussion surrounding various code transformation
techniques, which are purposefully employed to modify or
obscure code in an attempt to mislead or confuse systems
designed for code authorship attribution.

A. LLM-generated Code

There has been notable progress in the performance of
LLM-powered programming tools in tasks such as synthetic
code generation, suggestion, and completion [15], [19], [40],
[42], causing various security and ethical issues with LLM use.
For example, one ethical concern is that LLMs are trained on
a large code base, often “stealing” the coding style of other
programmers [36], raising the concern that such use qualifies
as plagiarism [5], [25], [35]. More concretely, in an academic
context, the use of LLMs to produce programming assignment
solutions (or other solutions) is strictly prohibited [29], [57].

LLM-generated code typically demonstrates lower security
levels and is more susceptible to vulnerabilities compared
with human-generated codes [37], [46]. Perry et al. [46]
compared LLM-generated codes with human-generated codes
to evaluate their security features. They found that the LLM-
generated codes rely on basic ciphers, notably substitution
ciphers, without performing a fundamental authenticity check
on the resulting output [45], [49], [52]. Moreover, LLM-
generated codes often employ unsafe randomness when gen-
erating codes for specific tasks. In the case of structured
query language (SQL) queries, LLMs frequently employed
the string concatenation function, which poses a risk of SQL
injection attacks [8], [9], [48]. In another study, Botacin [37]
demonstrated that LLMs, such as OpenAI’s GPT-3, can be
employed to generate a wide variety of functional malware
variants that exhibit low detection rates when tested against
VirusTotal [13]. While GPT-3 lacks the ability to replicate the
complete programs of recent malware attacks, it is nonetheless
capable of generating functional versions of older or well-
known malware, thereby posing a potential threat [23], [43].

B. Evasion with Code Transformation

Code transformations modify code stylistic features, such
as lexical, layout, and syntactic features, with the goal of
misattributing its authorship [32], [34], [47].



Quiring et al. [47] exploited MCTS to select optimal code
transformation to maximize the misattribution. MCTS is a
heuristic search determining the best possible moves from
diverse options by evaluating the potential value of each
individual node in a tree and choosing the next move based
on the highest potential value [10], [18]. To use MCTS, the
authors introduced multiple code transformations encompass-
ing control flow, declaration, API, template, and miscellaneous
transformations. These transformations were sequentially ap-
plied to the code to modify its stylistic features. The optimal
transformed code is selected using MCTS while adhering to
certain constraints, such as minimizing the number of trans-
formations applied or maximizing the score strand deviation.
Through this approach, MCTS demonstrated an impressive
success rate of up to 99.2% in evading detection during attacks,
all while maintaining the original functionality of the code
sample.

Li et al. [32] concealed code stylistic patterns by extracting
coding style attributes such as keyword usage, indentation, and
variable naming conventions for each author. These attributes
are then used to select a specific style, which is applied to the
code using a multi-language parsing tool called srcML [51].
The outcome is a modified code that closely resembles the
coding style of the desired author.

III. BACKGROUND

Human-generated code authorship has been addressed in
numerous studies, while synthetic (LLM-generated) codes are
less so. In the following, we review the background such as
code authorship attribution, ChatGPT, and our motivation.

A. Code Authorship Attribution

There has been a significant focus on researching and creat-
ing practical tools for accurately attributing code authorship in
the academic literature [1]–[3], [26], [27], [32]. For instance,
Caliskan-Islam et al. [26] used the random forests (RF)
techniques along with distinctive linguistic stylistic aspects
of code to determine the authorship of code. They started by
extracting different types of stylistic features from a given code
and used them to obtain stylometry data, which is treated as a
distinct attribute associated with each author. The features they
extracted include lexical, layout, and syntactic. The lexical and
layout features can be derived from the code, whereas syntactic
are obtained from an abstract syntax tree (AST).

Lexical features are identified by analyzing naming conven-
tions, such as variable and function names. The length of these
names can offer insights into a developer’s coding style—
short names may indicate a focus on brevity, while longer
names suggest clarity and maintainability. Certain keywords
or patterns in names may also reveal the use of specific
programming paradigms or design patterns, with prefixes in
names reflecting developer preferences.

Layout features involve formatting and stylistic choices
made by authors, including aspects such as indentation style
and comment usage. For instance, some authors may prefer
two spaces for indentation, while others opt for four spaces.

Additionally, their preference for single-line versus multi-line
comments, as well as the specific way they format brackets
and other structural elements, serves as a distinctive reflection
of their individual coding style.

Syntactic features pertain to the syntax of the code, includ-
ing language-specific properties e.g., the AST structure and
the usage patterns of keywords. These features are typically
identified through an analysis of the code’s structural elements,
such as the maximum depth of the AST, the frequency of
specific language constructs, and other syntax-related metrics
that provide insights into the code’s composition.

The extracted features are converted into a vector format
and subsequently utilized to train an RF classifier designed to
identify and distinguish between code authors based on their
unique coding characteristics. This approach proved highly
effective, achieving an accuracy of over 90% when tested on a
dataset comprising code samples from 1,600 distinct authors.

Since then, numerous efforts have been made in this domain
to enhance and scale authorship attribution by leveraging
a variety of machine learning methods and representation
techniques [1]–[3], [27], [32]. In this study, we focus on the
work of Caliskan-Islam et al., as it forms the foundation for
the experiments conducted in the remainder of this work.

B. ChatGPT
ChatGPT, powered by the GPT-4.0 architecture developed

by OpenAI [40], [41], stands out as an exceptional interactive
large language model with advanced writing capabilities in
both natural and programming language. ChatGPT generates
responses closely resembling human responses, making it an
invaluable tool in various domains. Through extensive training
on an enormous corpus of over 750 gigabytes, ChatGPT has
an extensive knowledge base that allows it to provide detailed
responses to a wide range of prompts.

A key strength of ChatGPT lies in its exposure to numerous
code snippets during training [58]. This exposure has equipped
the model with the ability to comprehend and produce human-
like responses to programming-related queries, including trou-
bleshooting code, exploring programming concepts, or seeking
guidance on software development. To refine and optimize its
performance, ChatGPT undergoes training and fine-tuning us-
ing the reinforcement learning from human feedback (RLHF)
technique [14], [54]. This approach involves an AI trainer
who takes on the roles of both the user and the LLM in
simulated interactive conversations. Using this methodology,
the model undergoes supervised fine-tuning based on detailed,
human-guided feedback provided during these interactions.
Through RLHF, ChatGPT benefits from an iterative training
process, enabling it to progressively refine its capabilities and
deliver responses that are more accurate, contextually relevant,
and coherent. By leveraging feedback from human trainers,
ChatGPT becomes increasingly proficient with responses that
align more closely with user expectations.

C. Motivation
The use of LLMs such as ChatGPT as a programming

assistant may raise potential ethical and security concerns [5],



[25], [35], [37], [46]. Consequently, it becomes crucial to
accurately attribute ChatGPT-generated codes to effectively
address these concerns. However, the training of LLMs in-
volves exposure to multiple authors’ styles [58], which can
result in the generation of code in various styles, thereby
making it challenging to attribute authorship to a specific style.
Moreover, the ability of LLMs to generate programming codes
in diverse styles can lead to code transformations that may
deceive or misrepresent the true authorship of the code. This
introduces additional challenges in accurately identifying the
origin of the code, complicating efforts to address issues such
as intellectual property rights, the detection and prevention of
plagiarism and the code integrity.

To tackle these challenges, we analyzed ChatGPT’s code
transformation capability by examining the stylistic features of
codes transformed by ChatGPT. We applied a code authorship
attribution method specifically tailored for ChatGPT-generated
code to assess the effectiveness of the model in accurately
attributing authorship to such ChatGPT transformed code
samples. By investigating these aspects, we aimed to gain
insights into ChatGPT’s ability to transform code and its
suitability for code authorship attribution.

D. Threat Model

The objective of this work is to assess ChatGPT’s capacity
to perform code transformations on both codes generated by
ChatGPT and written by humans (in the rest of this paper,
we will refer to them by non-ChatGPT), while also evaluating
its ability to produce different coding styles to address issues
of ChatGPT. Therefore, in our experiment, we assume that
an adversary can utilize the ChatGPT model and modify the
stylistic patterns of code. The adversary’s objective is to alter
the code using ChatGPT to misattribute its original author.
We utilized ChatGPT’s API as the publisher provided [40]
without any modification. This allows the adversary the full
capabilities of ChatGPT, providing them with the necessary
tools and capabilities to carry out their intended objective.

IV. OUR METHODOLOGY

We employed ChatGPT [40] as our main LLM for code
transformation purposes and the code authorship attribution
model developed by Caliskan-Islam et al. [26] as our baseline
authorship method. Building upon Caliskan-Islam et al.’s
work, we build an improved approach designed explicitly
for ChatGPT code authorship attribution. This approach was
developed to address the challenges of applying existing code
authorship models to AI-generated codes addressing code
diversity, which we employed.

A. ChatGPT Code Authorship

Due to LLMs’ ability to generate codes with various styles
based on what they are trained on, Choi et al. [12] raised
a question regarding the effectiveness of off-the-shelf code
authorship attribution methods in identifying the authorship
of code generated by ChatGPT. This concern comes from the
fact that ChatGPT was trained using a vast collection of code

written by multiple authors, thus, it can generate codes in
multiple styles, which poses a significant challenge for the
current attribution methods.

To address this question we conduct experiments by ini-
tially generating source codes in C++ format with ChatGPT
by utilizing challenges from Google Code Jam (GCJ) [20],
especially in the years 2017, 2018, and 2019. GCJ is an annual
programming competition organized by Google. The goal of
GCJ is to solve a series of challenging algorithmic problems
within a specified time limit and participants compete in
multiple online rounds, with each round consisting of several
problems. Thus, we obtained challenge statements, constraints,
and sample input and output—eight challenges per year—, and
utilized them to generate codes by ChatGPT. Additionally, we
collected code samples from participants, a total of 204 authors
per year, that corresponded to each year’s challenges and used
them as non-ChatGPT codes.

With the ChatGPT-generated code, we analyzed codes’
unique stylistic patterns by utilizing an authorship model,
which was trained using non-ChatGPT code. This attribution
model was trained with code samples from 204 different
authors, enabling it to differentiate between 204 distinct styles.
Consequently, this model can serve as an oracle to identify
and narrow down the stylistic patterns present in the code
generated by ChatGPT.

From this experiment, it is observed that ChatGPT can
generate source code in various styles from the same question
(challenge statement) while there is a limited range of styles.
For instance, ChatGPT generated a total of 500 codes from
one challenge statement, but only up to 27 different styles
were observed. This finding suggests that although ChatGPT
is able to generate code in various styles, it would be feasible
to identify ChatGPT-generated code’s authorship if the model
learns common features of them.

1) Feature-based Approach: The feature-based approach
to ChatGPT code authorship consists of three main stages:
analyzing the stylistic features, grouping the codes, and train-
ing a new model. Initially, the stylistic features of ChatGPT-
generated code are examined using a non-ChatGPT authorship
model. Based on the results of this initial analysis, we created
sets of ChatGPT-generated code that exhibit similar stylistic
features. These sets were then combined with non-ChatGPT
code samples. Finally, a new authorship model was trained
using the combined dataset, enabling it to learn the distinctive
features of ChatGPT-generated code.

2) Naive Approach: We carried out experiments using a
naive approach, which involves using only the initial response
from ChatGPT without considering its stylistic patterns. This
approach is based on the assumption that when utilizing
ChatGPT, users typically exhibit a natural behavior to accept
the first response provided by the model, unless they identify
an error or find it to be incorrect.

The observations derived from these experiments indicated
that the model employing the feature-based method achieved
an impressive classification accuracy of over 93%, demonstrat-
ing its effectiveness. In contrast, the model that relied on the
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Figure 1: An overview of ChatGPT code transformation.

naive approach struggled significantly with classification tasks,
achieving a much lower accuracy of only 29.2%.

B. ChatGPT Code Transformation

Inspired by the code transformation technique and the
ChatGPT code authorship attribution approach highlighted
earlier, this study focused on a comprehensive examination
of ChatGPT’s ability to transform code. It also evaluates
the effectiveness of ChatGPT’s authorship attribution method
when applied to code that has undergone transformation using
ChatGPT, with a focus on how well the model can still identify
the original author of the transformed code.

The pipeline of the transformation is shown in Figure 1. We
employed the same challenge sets from GCJ 2017, 2018, and
2019 used earlier. With the sets of challenges, we generated
one code per each challenge statement and utilized them as
“ChatGPT-generated code”. Also, we selected one author from
each year of the GCJ participant dataset and used them as
“non-ChatGPT codes” (❶). We then applied transformations
on both the ChatGPT-generated code and the non-ChatGPT
code using ChatGPT itself. We presented each piece of code
to ChatGPT and requested it to alter its stylistic features, such
as variable and function names, code structures, and so on (❷).
With ChatGPT-transformed code, we analyzed the stylistic
features (predicted labels) of them by exploiting pre-traiend
non-ChatGPT authorship model to create sets of ChatGPT-
transformed code that exhibit similar features by utilizing the
feature-based approach. We also created sets of ChatGPT-
transformed code using the naive approach for comparison.
We then combined the sets with the non-ChatGPT dataset,
respectively, to train a new authorship model for ChatGPT
code authorship for transformed codes (❸).

For the code transformation process, we developed and im-
plemented two distinct approaches: non-chaining transforma-
tion (NCT) and chaining transformation (CT). These methods
were designed to explore different ways of altering code while
preserving its functionality, allowing for a comprehensive
analysis of their effects on authorship attribution.
Non-chaining Transformation (NCT). NCT applies multiple
transformations to the code repeatedly as shown in Figure 2
in blue. Given an initial ChatGPT code CGc0 and ChatGPT

int main(){
int i;
for (i = 1…){

 int j = 1; 
 … 

cout << j;
}

}
C++
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Figure 2: Non-chaining (NCT) vs. chaining transformation (CT).

int main(){
int nCase;
cin >> nCase;
for (int iCase = 1; iCase <= nCase; ++iCase){
int d, n, double t = 0;
cin >> d >> n;
for (int i = 0; i < n; ++i){
int x, y;
cin >> x >> y;
x = d - x;
t = max(t, (double)x / (double)y);

}
cout << iCase <<(double)d / (double)t);
}

}

Figure 3: Example of original code for transformation by ChatGPT.

transformation function GPT , NCT with ChatGPT code can
be denoted as follows: CGci = GPT (CGc0);∀i(1≤i≤50).
Given an initial non-ChatGPT code NCGc0 and ChatGPT
transformation function GPT , non-chaining transformation
with non-ChatGPT code can be defined as: NCGci =
GPT (NCGc0);∀i(1≤i≤50).

For instance, when prompted to transform the original code
(Figure 3), ChatGPT generates a transformed version of the
code (Figure 4a). Then, when provided with a new prompt
to modify the same original code (Figure 3), it produces a
different transformed code (Figure 4b). This demonstrates the
model’s ability to create multiple variations of code based on
the same initial prompt.
Chaining Transformation. Chaining transformation involves
the sequential process of transforming different codes each
time. In this approach, the output of one code transformation
becomes the input for the next transformation. This process
is visually illustrated in Figure 2, with the transformations
highlighted in red to indicate the flow from one to the next.

Given an initial ChatGPT code, denoted as CGc0, and
its transformed code, called CGc1, along with a transfor-
mation function GPT , CGc1 will be an input of the next
transformation. We represent the process of applying chain-
ing transformations to the ChatGPT code as: CGci+1 =
GPT (CGci);∀i(0≤i≤49). Moreover, if we have an initial non-
ChatGPT code, referred to as NCGc0, and its transformed
code NCGc1, along with a transformation function GPT .
Then NCGc1 will be an input of the next transformation. We
can describe the process of applying individual transformations



double solveTestCase(int d, int n){
double maxTime = 0;
for (int i = 0; i < n; ++i){
int x, y;
cin >> x >> y;
x = d - x;
maxTime = max(maxTime, (double)x / (double)y);

}
return (double)d / maxTime;

}
int main(){
int numCase;
cin >> numCase;
for (int iCase = 1; iCase <= numCase; ++iCase){
int distance, numHorses;
cin >> distance >> numHorses;
double result = solveTestCase(distance,

NumHorses);
printf("Case #%d: %.6lf\n", iCase, result);

}
}

(a) The first transformed code of the original code in Figure 3 with NCT.

double solveTestCase(int caseNumber) {
int maxDistance, numHorses;
cin >> maxDistance >> numHorses;
double maxTime = 0.0;
for (int i = 0; i < numHorses; ++i) {
int horsePosition, horseSpeed;
cin >> horsePosition >> horseSpeed;
int position = maxDistance - horsePosition
double timeToFinish = (double)(position/

horseSpeed);
maxTime = max(maxTime, timeToFinish);

}
double maxSpeed = (double)maxDistance / maxTime;
printf("Case #%d: %.6lf\n", caseNumber, maxSpeed

);
}
int main() {
int numTestCases;
cin >> numTestCases;
for (int i = 1; i <= numTestCases; ++i) {
solveTestCase(i);

}
}

(b) The second transformed code of the original code in Figure 3 with
NCT.

Figure 4: Examples of ChatGPT-transformed codes using Non-
Chaining Transformation (NCT).

Table I: Non-ChatGPT code datasets that are used to train non-
ChatGPT code authorship models.

Dataset Authors Challenges Language Total
GCJ 2017 204 8 C++ 1,632
GCJ 2018 204 8 C++ 1,632
GCJ 2019 204 8 C++ 1,632

to the non-ChatGPT code in the following: NCGci+1 =
GPT (NCGci);∀i(0≤i≤49). When given a prompt to modify
the original code (3), CT generates a transformed code (5a).
Subsequently, the initial transformed code (5a) is used as an
input, and ChatGPT produces a new transformed code (5b).

double solveTestCase(int caseNumber) {
int d, n;
cin >> d >> n;
double maxTime = 0;
for (int i = 0; i < n; ++i) {
int x, y;
cin >> x >> y;
x = d - x;
maxTime = max(maxTime, (double)x / (double)y);

}
return (double)d / maxTime;

}
int main() {
int nCases;
cin >> nCases;
for (int iCase = 1; iCase <= nCases; ++iCase) {
double result = solveTestCase(iCase);
printf("Case #%d: %.6lf\n", iCase, result);

}
}

(a) The first transformed code of the original code in Figure 3 with CT.

double solve_test_case(int case_number) {
int d, n;
cin >> d >> n;
double max_time = 0;
for (int i = 0; i < n; ++i) {
int x, y;
cin >> x >> y;
x = d - x;
max_time = max(max_time, (double)x / (double)y

);
}
return (double)d / max_time;

}
int main() {

int num_cases;
cin >> num_cases;
for (int case_num = 1; case_num <= num_cases; ++

case_num) {
double result = solve_test_case(case_num);
cout << "Case #" << case_num << ": " << result

;
}

}

(b) The second transformed code of the first transformed code in Figure 5a
with CT.

Figure 5: Examples of ChatGPT-transformed codes using Chaining
Transformation (CT).

Table II: ChatGPT code datasets that are transformed by ChatGPT
with ChatGPT-generated and non-ChatGPT code using the non-
chaining and chaining approach per each challenge (a total of 8
challenges per year). +N stands for ChatGPT +NCT, +C for ChatGPT
+CT, ±N for Non-ChatGPT +NCT, ±C for Non-ChatGPT +CT.

Dataset +N +C ±N ±C Total
GCJ 2017 50 50 50 50 1,600 (200x8)
GCJ 2018 50 50 50 50 1,600 (200x8)
GCJ 2019 50 50 50 50 1,600 (200x8)

V. EXPERIMENT SETUP AND GOAL

For code transformation tasks with ChatGPT, we applied the
NCT and CT to both the ChatGPT code and non-ChatGPT
code. Moreover, we used an authorship attribution method
proposed by Caliskan-Islam [26] with the feature-based ap-
proach and naive approach mentioned earlier. Finally, we



Table III: List of datasets used for the binary classification (ChatGPT
vs. Human) experiments.

Dataset # of challenges # of codes Language Total
GCJ 2017 8 200 C++ 3,200
GCJ 2018 8 200 C++ 3,200
GCJ 2019 8 200 C++ 3,200
Combined 15 200 C++ 6,000

conducted the binary classification which involved only two
labels (ChatGPT vs. Human) with the transformed codes by
ChatGPT and the GCJ datasets.

A. Experiment Setup

We conducted our experiments on a workstation running
Ubuntu 20.04.5 LTS. The hardware setup included an Nvidia
RTX A6000 48GB GPU and an Intel Core i7-8700K CPU.

B. Datasets

Non-ChatGPT Dataset. To create the non-ChatGPT dataset,
we gathered eight codes representing eight different challenges
(problem statements). These codes were written by 204 authors
from each year, specifically GCJ 2017, 2018, and 2019.
Consequently, our non-ChatGPT dataset for the GCJ 2017,
2018, and 2019 years comprises a total of 1,632 code samples,
respectively as indicated in Table I.
ChatGPT Dataset. For the ChatGPT dataset, we began by
generating a single code for each challenge (a total of eight
challenges). These initial codes were then transformed using
ChatGPT, employing both the NCT and CT approaches. More-
over, we selected a single author along with their eight codes
from each year of the non-ChatGPT dataset and transformed
their codes with ChatGPT as well. This resulted in a com-
pilation of 50 codes for each setting—ChatGPT code with
NCT and CT, non-ChatGPT code with NCT and CT—, totaling
200 codes per year. Thus, we compiled a total of 1,600 code
samples per year (i.e., 200 code samples for each of the eight
challenges) as shown in Table II.
Binary Classification Dataset. For binary classification ex-
periments, we utilized the GCJ datasets from the years 2017,
2018, and 2019, in addition to the code samples transformed
using ChatGPT. Each of these datasets consisted of two
distinct classes: ChatGPT and human, and each class contained
1,600 code samples. These samples were evenly distributed
across eight challenges, comprising 200 code samples per
challenge. Consequently, each year’s dataset totaled 3,200
code samples. Moreover, we combined these datasets from the
three years into a single dataset and performed an experiment.
However, in this combined dataset, we reduced the number of
challenges per year from eight to five, resulting in a total of
6,000 code samples to maintain a balanced number of code
samples within each dataset. Keeping eight challenges would
have resulted in an imbalance compared to the other datasets.
You can find detailed information about these datasets in III.

C. Experiments

To conduct the experiment, we initially obtained pre-trained
non-ChatGPT authorship attribution models. These models

Table IV: The number of styles refers to the total number of predicted
labels that are assigned to ChatGPT-transformed code by pretrained
non-ChatGPT authorship model. +N stands for ChatGPT +NCT,
+C for ChatGPT +CT, ±N for Non-ChatGPT +NCT, ±C for Non-
ChatGPT +CT, and A for average.

GCJ 2017
+N +C ±N ±C

C1 4 3 2 1
C2 1 1 1 1
C3 5 2 1 1
C4 4 1 4 1
C5 3 2 5 4
C6 2 1 3 4
C7 3 1 2 1
C8 3 3 2 3
A 3.1 1.8 2.5 2

GCJ 2018
+N +C ±N ±C
3 2 6 4
7 3 12 2
3 2 11 6
6 2 12 4
1 1 7 3
5 1 11 2
2 2 7 2
4 1 11 7

3.9 1.8 9.6 3.8

GCJ 2019
+N +C ±N ±C
3 3 7 3
2 1 10 1
4 2 7 4
4 1 11 3
5 2 5 1
2 1 5 3
3 1 6 2
3 1 6 2

3.3 1.5 7.1 2.4

were trained using non-ChatGPT datasets from GCJ 2017,
2018, and 2019, respectively. Next, we extracted stylistic
features from the ChatGPT-transformed codes by exploiting
the non-ChatGPT authorship models. This allowed us to create
sets of the ChatGPT-transformed codes that exhibited similar
features using the feature-based approach. In addition, we
made sets of ChatGPT-transformed codes using the naive
approach for comparison with the feature-based approach. In
the final step, we categorized all ChatGPT-generated codes
under a single label, denoted as “ChatGPT” and categorized all
non-ChatGPT codes under the label “human”. This categoriza-
tion was done to facilitate a binary classification experiment,
allowing for a clear distinction between machine-generated
and human-written code.

For evaluation, we analyzed the ChatGPT-transformed
codes’ stylistic patterns by examining the number of styles and
the diversity of styles that ChatGPT generated. Additionally,
we combined the sets of ChatGPT-transformed codes with the
non-ChatGPT code dataset. This combined dataset was then
used to train a new authorship model, enabling us to evaluate
the effectiveness of the ChatGPT code authorship attribution
model for the ChatGPT-transformed code. In the context
of binary classification, we assessed classification accuracy,
which measures how effectively the trained model correctly
identifies the label for each code.

VI. RESULTS AND DISCUSSION

We examined the number of styles that ChatGPT generated
to understand their diversity. Then, we examined the styles
within ChatGPT-transformed code to gain more comprehen-
sive insights into the range of coding styles generated (trans-
formed) by ChatGPT. Finally, we tested the classification accu-
racy of the ChatGPT code authorship attribution method using
both ChatGPT-transformed and non-ChatGPT code samples.

A. The Number of Styles

The term “number of style” refers to the count of dis-
tinct predicted labels assigned to ChatGPT-transformed code
samples by the non-ChatGPT model. We first trained models
using non-ChatGPT datasets specific to GCJ 2017 and 2018.
Subsequently, we used these models to predict labels for the
ChatGPT-transformed code samples.



Through these experiments, we made an observation that
ChatGPT possesses the capability to transform code. How-
ever, it is important to note that there are certain limitations
associated with this ability. In the experiment involving the
ChatGPT-transformed code of GCJ 2017, the results indicated
that the maximum number of styles observed was limited
to 5. On average, across different settings, the number of
styles per setting was found to be 3.1, 1.8, 2.5, and 2 for
ChatGPT with NCT, ChatGPT with CT, Non-ChatGPT with
NCT, and Non-ChatGPT with CT, respectively. These findings
are summarized in Table IV. With the ChatGPT-transformed
code of GCJ 2018, our observation revealed that the maximum
number of styles identified was 12. Furthermore, the average
number of styles for each setting was found to be 3.9, 1.8, 9.6,
and 3.8 for ChatGPT with NCT and CT, and Non-ChatGPT
with NCT and CT, respectively as presented in Table IV.

B. Confirmation of The Number of Styles

The analysis revealed that the maximum number of styles
and average number of styles for the GCJ 2018 dataset
were higher compared to the GCJ 2017. Additionally, it was
observed that the setting with the highest average number of
styles for the GCJ 2017 was ChatGPT with NCT, whereas, for
the GCJ 2018, the highest number of styles was observed in the
non-ChatGPT with NCT setting. Based on the obtained results,
it is evident that ChatGPT possesses the ability to transform
code. However, these findings also revealed a lack of con-
sistency. To further validate and confirm these observations,
an additional experiment was conducted using the ChatGPT-
transformed code from the GCJ 2019 dataset.

The findings from the GCJ 2019 experiment demonstrated
that the maximum number of styles was 11. Additionally, the
average number of styles for each setting was 3.3, 1.5, 7.1,
and 2.4 for ChatGPT with NCT and CT, and non-ChatGPT
with NCT and CT, respectively as presented in Table IV. The
patterns observed in the results of the GCJ 2019 experiment
were similar to those of the GCJ 2018 experiment. Specifically,
the maximum number of styles and the highest average number
of styles were both found in the non-ChatGPT with NCT
setting. This consistency in patterns further reinforces the
observations made in the previous experiments.

C. Diversity of Styles

Based on ChatGPT’s code transformation capability ob-
served from the previous experiments, we examined the diver-
sity of styles that ChatGPT produced. The diversity of styles
refers to how frequently each label was utilized, providing
insights into the variety of coding styles generated. For the
GCJ 2017 experiment, one specific label (Author49) accounted
for a substantial portion of 77.1%, indicating that this label
appeared 1,234 times out of 1,600 code samples as presented
in Table V. In the case of the GCJ 2018 experiment, three
labels (Author64, Author135, and Author19) held proportions
of 24.8% (397), 23.4% (375), and 18.3% (293), respectively,
which collectively amounted to 66.5% of the total. These re-
sults can be found in Table VI. With the GCJ 2019 experiment,

Table V: The diversity of styles – GCJ 2017. The result filters all
labels with less than two occurrences (which was a total of 8).

Label Occurrences Percentage Label Occurrences Percentage
A49 1234 77.1 A67 23 1.4
A98 62 3.8 A202 15 0.9
A197 48 3.0 A115 11 0.6
A80 42 2.6 A18 6 0.3
A139 41 2.5 A57 6 0.3
A23 35 2.1 A92 5 0.3
A58 32 2.0 A157 4 0.2
A16 25 1.5 A198 3 0.1

Table VI: The diversity of styles – GCJ 2018. The result filters all
labels with less than two occurrences (which was a total of 19).

Label Occurrences Percentage Label Occurrences Percentage
A64 397 24.8 A6 12 0.7
A135 375 23.4 A196 8 0.5
A19 293 18.3 A12 7 0.4
A1 98 6.1 A145 6 0.3
A121 93 5.8 A51 6 0.3
A166 46 2.8 A141 6 0.3
A84 39 2.4 A160 6 0.3
A154 28 1.7 A53 5 0.3
A18 28 1.7 A59 5 0.3
A128 28 1.7 A47 5 0.3
A133 24 1.5 A139 5 0.3
A120 19 1.1 A4 5 0.3
A183 16 1.0 A29 3 0.1
A114 15 0.9 A190 3 0.1

two labels (Author9 and Author31) accounted for 39.9% (639)
and 18.7% (300) of the total instances, respectively, summing
up to 58.6% of the total. Furthermore, there are following three
labels (Author27, Author106, and Author118) appeared 8.3%
(134), 8.3% (134), and 8.2% (132), respectively in Table VII.

The patterns observed in the GCJ 2018 and 2019 experi-
ments were similar, suggesting consistency in the distribution
of coding styles between these two datasets. This similarity
further strengthens the observed patterns across multiple ex-
periments. Additionally, the results of the GCJ 2017 experi-
ment stood out as being different from the others. It was noted
that a single label, “Author49”, accounted for over 77% of the
total instances. This significant imbalance in label distribution
could be a contributing factor to the divergent results observed
in the GCJ 2017 at the previous experiment. The dominance
of a single label limited the overall diversity of coding styles
in that dataset, leading to distinct outcomes compared to the
other experiments such as the GCJ 2018 and 2019.

D. Authorship Attribution Accuracy

To facilitate our analysis, we employed the feature-based
approach and utilized the stylistic features (predicted labels)
extracted from our experiments. This allowed us to create a
set of ChatGPT-transformed code samples that shared similar
stylistic characteristics for each of the datasets (GCJ 2017,
2018, and 2019). These transformed code samples were then
combined with non-ChatGPT datasets which include 204 au-
thors’ code samples, thus a total of 205 (204 non-ChatGPT au-
thors plus one ChatGPT set) specific to each respective dataset
(GCJ 2017, 2018, and 2019). Subsequently, we utilized these
combined datasets to train new authorship attribution models,
aiming to assess their classification accuracy in attributing



Table VII: The diversity of styles – GCJ 2019. The result filters all
labels with less than two occurrences (which was a total of 9).

Label Occurrences Percentage Label Occurrences Percentage
A9 639 39.9 A33 13 0.8
A31 300 18.7 A95 12 0.7
A27 134 8.3 A86 11 0.6
A106 134 8.3 A183 10 0.6
A118 132 8.2 A54 9 0.5
A1 63 3.9 A152 7 0.4
A45 43 2.6 A128 4 0.2
A14 30 1.8 A120 4 0.2
A196 24 1.5 A107 3 0.1
A145 19 1.1

Table VIII: The accuracy (naive) for 205 authors, i.e., the accuracy
for each fold in the k-fold cross-validation (Challenge, Average, and
Naive). All numbers are percentages.

GCJ 2017
C 205 N
C1 89.2 ✔
C2 87.8 ✔
C3 88.2 ✔
C4 90.2 ✔
C5 88.7 ✔
C6 93.6 ✔
C7 91.7 ✔
C8 90.2 ✔

A 90.2 100

GCJ 2018
C 205 N
C1 70.2 ✔
C2 79.0 ✗
C3 87.3 ✔
C4 89.2 ✗
C5 79.0 ✔
C6 81.4 ✗
C7 70.2 ✗
C8 85.3 ✔

A 80.2 50

GCJ 2019
C 205 N
C1 89.7 ✗
C2 88.7 ✔
C3 79.2 ✗
C4 88.7 ✗
C5 91.7 ✗
C6 86.3 ✗
C7 80.0 ✔
C8 79.5 ✔

A 85.4 37.5

authorship to the code samples. To evaluate the impact of the
feature-based approach on classification accuracy, we focused
on assessing the accuracy of the target label as well. The
target label refers to the specific label used to generate the
set of ChatGPT-transformed code samples. By evaluating the
accuracy of this target label, we were able to gain valuable
insights into the effectiveness of the feature-based approach
in improving the classification accuracy for both the ChatGPT
and the non-ChatGPT codes.

We first obtained the baseline accuracies of the combined
dataset, consisting of 205 authors, for each experiment. In the
case of GCJ 2017, both the naive setting and the feature-based
setting achieved the baseline accuracy of 90.2%, as presented
in Table VIII and Table IX. As for GCJ 2018, the naive setting
achieved the baseline accuracy of 80.2%, while the feature-
based setting achieved 79.6%, as indicated in Table VIII
and Table IX. For GCJ 2019, the naive setting reached an
accuracy of 85.4%, while the feature-based setting achieved
85.2% as presented in Table VIII and Table IX. Building on
these baselines, we can assess the models’ effectiveness in the
context of code authorship attribution.

The initial experiment was performed using the GCJ 2017
dataset. When applying the naive approach, the classifica-
tion accuracy reached 100%. Similarly, when utilizing the
feature-based approach, both the target code and ChatGPT-
transformed code achieved 100% accuracy as shown in Ta-
ble VIII and Table IX. The reason behind this outcome can be
attributed to the imbalanced usage of labels, where a single
label was utilized in over 77% of the instances as we discussed
in section VI-C. Consequently, even when employing the naive
approach, it yielded the same result as the feature-based.

Subsequently, we proceeded with an experiment using the

Table IX: The accuracy (feature-based) for 205 authors, i.e., achieved
for each fold in the k-fold cross-validation process (Challenge,
Average, Target, and Feature-based). All numbers are percentages.

GCJ 2017
C 205 T F
C1 90.2 ✔ ✔
C2 88.7 ✔ ✔
C3 86.8 ✔ ✔
C4 90.2 ✔ ✔
C5 89.2 ✔ ✔
C6 91.2 ✔ ✔
C7 91.7 ✔ ✔
C8 93.6 ✔ ✔

A 90.2 100 100

GCJ 2018
205 T F
67.3 ✔ ✔
78.5 ✔ ✔
86.8 ✔ ✔
89.7 ✔ ✔
77.0 ✔ ✔
82.9 ✔ ✔
71.7 ✔ ✗
83.4 ✔ ✔

79.6 100 87.5

GCJ 2019
205 T F
89.7 ✔ ✔
88.2 ✔ ✗
78.5 ✗ ✔
89.7 ✔ ✔
92.1 ✔ ✗
86.8 ✗ ✔
77.5 ✗ ✗
90.2 ✔ ✔

85.2 62.5 62.5

Table X: Binary classification accuracy results for GCJ 2017, GCJ
2018, and GCJ 2019 for individual and combined training (Challenge
and Average). All numbers are percentages.

Individual Combined
C 2017 2018 2019 2017 2018 2019 All
C1 96.3 74.5 96.8 97.5 86.0 91.8 91.8
C2 99.8 82.8 98.3 99.8 88.8 95.5 94.7
C3 93.8 97.3 93.0 94.8 96.3 85.8 92.3
C4 92.5 77.0 88.0 96.5 91.5 88.3 92.1
C5 87.5 97.8 99.0 94.0 91.5 98.3 94.6
C6 98.3 97.3 84.0
C7 81.3 99.3 93.3
C8 77.8 91.8 98.5
A 90.9 89.7 93.8 95.5 90.8 91.9 93.1

GCJ 2018 dataset. In this case, we observed contrasting results
between the naive and feature-based approaches. Due to the
presence of multiple labels being used, the naive approach
achieved a mere 50% accuracy as presented in Table VIII.
However, the feature-based approach displayed a significantly
higher accuracy of 87.5%, while still maintaining 100% accu-
racy of the target label as shown in Table IX. These findings
suggest that the ChatGPT code authorship approach remains
effective even when applied to ChatGPT-transformed code.

Lastly, we performed an experiment using the GCJ 2019
dataset, which yielded results similar to those of the GCJ
2018 experiment, with some minor differences. The naive
approach encountered challenges in accurately classifying the
authorship, achieving a classification accuracy of only 37.5%
as shown in Table VIII. In contrast, the feature-based approach
demonstrated improved accuracy compared to the naive ap-
proach, achieving a classification accuracy of 62.5%. However,
it is worth noting that the accuracy of the target label decreased
to 62.5% as presented in Table IX.

These findings confirm the effectiveness of the feature-based
approach in attributing authorship to ChatGPT-transformed
code. However, it is important to acknowledge that there may
be a trade-off between achieving higher classification accuracy
and maintaining accuracy of the target label.

E. Binary Classification

We conduct a binary classification experiment to compare
the outputs of ChatGPT and human, focusing on these two
classes. In the process, we created a combined dataset that
includes data from three years dataset (GCJ 2017, 2018,
and 2019). Subsequently, we tested this combined dataset
alongside each individual year’s dataset. The results of the



binary classification for each individual year can be found in
Table X, while the results for the combined dataset are pre-
sented in Table X. During the experiment with the combined
dataset, we acquired both average challenge-level and average
accuracy metrics, which can be found under the category
labeled “All”. Furthermore, we computed challenge-level and
average accuracy values for each individual dataset separately
and presented them alongside their respective dataset names.

Overall, when we examine the outcomes of our experiments
focused on binary classification accuracy, it becomes evident
that the results consistently demonstrated impressively high
levels of accuracy across various datasets. Specifically, the
individual experiment involving the GCJ 2019 dataset yielded
the most remarkable accuracy rate, standing at an impressive
93.8%. On the contrary, the lowest recorded accuracy, although
still quite commendable, was 89.7%, which was observed in
the context of the GCJ 2018 dataset. Moreover, the combined
dataset exhibited an outstanding 93.1% accuracy, underscoring
the robustness and reliability of our classification models
across a wide range of challenges and styles.

F. Take Away

To explore ChatGPT’s code transformation capability and
the effectiveness of the code authorship method, we conducted
a series of experiments. Initially, we conducted experiments
using the datasets of GCJ 2017 and 2018. However, we
encountered inconsistencies in the results obtained from these
experiments. Consequently, to further validate our findings and
ensure consistency across different datasets, we conducted an
additional experiment specifically focused on the GCJ 2019
dataset. This experiment was designed as a confirmation study
to reinforce the reliability of our results and provide further
evidence supporting our conclusions.

The observations derived from these experiments provided
confirmation regarding the effectiveness of the ChatGPT code
authorship approach when applied to ChatGPT-transformed
code, specifically demonstrated through the GCJ 2018 and
2019 datasets. Additionally, the experiments revealed limita-
tions in ChatGPT’s ability to produce a wide range of coding
styles, with a maximum of 12 styles observed. Moreover,
certain circumstances highlighted an imbalance in the usage
of coding styles, such as the instance where a single label was
employed in over 77% within the GCJ 2017 dataset.

G. Future Works

This study has primarily focused on evaluating ChatGPT’s
capabilities in code transformation and authorship attribution.
Thus it can be expanded on this foundation by exploring a
broader range of LLMs, including state-of-the-art models such
as Gemini-1.5-pro, GPT-4o, and Claude, as tools for code
authorship attribution. These models, which have been trained
on vast and diverse datasets including code, present promising
potential for zero- and few-shot learning tasks. By analyzing
their ability to attribute authorship accurately across multiple
programming languages and coding styles, researchers can
identify patterns and limitations in each model.

Additionally, further research could explore the impact
of cross-language authorship attribution, where authorship is
identified across code samples written in different program-
ming languages. This is particularly relevant in understanding
the robustness and generalization capabilities of LLMs in mul-
tilingual coding environments. Incorporating larger and more
diverse datasets, such as those from open-source repositories
or industry projects, could also provide deeper insights into
the practical applicability of these methods.

VII. CONCLUSION

In this paper, we explored the transformative capabilities
of ChatGPT and assessed the effectiveness of ChatGPT-based
code authorship attribution. Our findings reveal that ChatGPT
can effectively modify the stylistic features of code, presenting
challenges for traditional authorship attribution methods that
rely heavily on such features. Despite these transformations,
ChatGPT demonstrates a limited capacity to produce only
12 distinct coding styles, with some styles being more fre-
quently used than others. This limitation suggests that its
transformations, while diverse, are not exhaustive. The results
of our experiments highlight the resilience of ChatGPT-based
authorship attribution methods, which maintained high effec-
tiveness even when applied to ChatGPT-transformed code.
In contrast, naive approaches struggled to achieve accurate
attribution under the same conditions. Furthermore, a binary
classification model trained on a combination of ChatGPT-
transformed and non-ChatGPT code achieved an accuracy of
up to 93%, underscoring its potential to reliably distinguish
between these code types. These insights demonstrate both the
capabilities and limitations of ChatGPT in code transformation
and underscore the importance of robust attribution techniques
to address the challenges posed by AI-generated code.

REFERENCES

[1] M. Abuhamad, T. AbuHmed, A. Mohaisen, and D. Nyang. Large-scale
and language-oblivious code authorship identification. In CCS. ACM,
2018.

[2] M. Abuhamad, T. AbuHmed, D. Nyang, and D. Mohaisen. Multi-
χ: Identifying multiple authors from source code files. PoPETs,
2020(3):25–41, 2020.

[3] M. Abuhamad, J. Rhim, T. AbuHmed, S. Ullah, S. Kang, and D. Nyang.
Code authorship identification using convolutional neural networks.
Future Gener. Comput. Syst., 95:104–115, 2019.

[4] Amazon. Alexa - amazon. https://alexa.amazon.com/, 2023. Accessed:
2023-06.

[5] B. A. Anders. Is using chatgpt cheating, plagiarism, both, neither, or
forward thinking? Patterns, 4(3):100694, 2023.

[6] R. Anil, S. Borgeaud, Y. Wu, J. Alayrac, J. Yu, R. Soricut, J. Schalkwyk,
A. M. Dai, A. Hauth, K. Millican, D. Silver, S. Petrov, M. Johnson,
I. Antonoglou, J. Schrittwieser, A. Glaese, J. Chen, E. Pitler, T. P.
Lillicrap, A. Lazaridou, and et al. Gemini: A family of highly capable
multimodal models. CoRR, abs/2312.11805, 2023.

[7] Apple. Siri. https://www.apple.com/siri/, 2023. Accessed: 2023-06.
[8] S. Bandhakavi, P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan.

CANDID: preventing sql injection attacks using dynamic candidate
evaluations. In CCS, pages 12–24. ACM, 2007.

[9] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan. CANDID: dynamic
candidate evaluations for automatic prevention of SQL injection attacks.
ACM Trans. Inf. Syst. Secur., 13(2):14:1–14:39, 2010.

[10] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck. Monte-carlo tree search:
A new framework for game AI. In AIIDE. The AAAI Press, 2008.

https://alexa.amazon.com/
https://www.apple.com/siri/


[11] S. Choi, R. Jang, D. Nyang, and D. Mohaisen. Untargeted code
authorship evasion with seq2seq transformation. In Computational Data
and Social Networks - 12th International Conference, CSoNet 2023,
Hanoi, Vietnam, December 11-13, 2023, Proceedings, volume 14479 of
Lecture Notes in Computer Science, pages 83–92. Springer, 2023.

[12] S. Choi and D. Mohaisen. Attributing chatgpt-generated source codes.
IEEE Transactions on Dependable and Secure Computing, 2025.

[13] E. Choo, M. Nabeel, R. D. Silva, T. Yu, and I. Khalil. A large scale
study and classification of virustotal reports on phishing and malware
urls. CoRR, abs/2205.13155, 2022.

[14] P. F. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and
D. Amodei. Deep reinforcement learning from human preferences. In
NeuRIPs, 2017.

[15] DeepMind. Deepmindalphacode. https://alphacode.deepmind.com,
2023. Accessed: 2023-06.

[16] J. Finnie-Ansley, P. Denny, B. A. Becker, A. Luxton-Reilly, and
J. Prather. The robots are coming: Exploring the implications of openai
codex on introductory programming. In ACE, pages 10–19. ACM, 2022.

[17] L. Gao, A. Madaan, S. Zhou, U. Alon, P. Liu, Y. Yang, J. Callan,
and G. Neubig. PAL: program-aided language models. In A. Krause,
E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors,
International Conference on Machine Learning, ICML 2023, 23-29 July
2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pages 10764–10799. PMLR, 2023.

[18] S. Gelly and D. Silver. Monte-carlo tree search and rapid action value
estimation in computer go. Artif. Intell., 175(11):1856–1875, 2011.

[19] GitHubCopilot. Githubcopilot. https://github.com/features/copilot, 2023.
Accessed: 2023-06.

[20] Google. Google code jam. https://codingcompetitions.withgoogle.com/
codejam/archive, 2023. Accessed: 2023-06.

[21] Google Assistant. Google assistant, your own personal google default.
https://assistant.google.com/, 2023. Accessed: 2023-06.

[22] Google Bemini. Gemini - chat to supercharge your ideas - google.
https://gemini.google.com/, 2023. Accessed: 2023-10.

[23] M. Gupta, C. Akiri, K. Aryal, E. Parker, and L. Praharaj. From chatgpt
to threatgpt: Impact of generative AI in cybersecurity and privacy. IEEE
Access, 11:80218–80245, 2023.

[24] S. Hobert. Say hello to ’coding tutor’! design and evaluation of a
chatbot-based learning system supporting students to learn to program.
In ICIS. AIS, 2019.

[25] M. Hoq, Y. Shi, J. Leinonen, D. Babalola, C. F. Lynch, T. W. Price,
and B. Akram. Detecting chatgpt-generated code submissions in a CS1
course using machine learning models. In B. Stephenson, J. A. Stone,
L. Battestilli, S. A. Rebelsky, and L. Shoop, editors, Proceedings of
the 55th ACM Technical Symposium on Computer Science Education,
SIGCSE 2024, Volume 1, Portland, OR, USA, March 20-23, 2024, pages
526–532. ACM, 2024.

[26] A. C. Islam, R. E. Harang, A. Liu, A. Narayanan, C. R. Voss, F. Ya-
maguchi, and R. Greenstadt. De-anonymizing programmers via code
stylometry. In USENIX Security Symposium, pages 255–270, 2015.

[27] V. Kalgutkar, R. Kaur, H. Gonzalez, N. Stakhanova, and A. Matyukhina.
Code authorship attribution: Methods and challenges. ACM Comput.
Surv., 52(1):3:1–3:36, 2019.

[28] A. Kashefi and T. Mukerji. Chatgpt for programming numerical
methods. CoRR, abs/2303.12093, 2023.

[29] M. Kazemitabaar, R. Ye, X. Wang, A. Z. Henley, P. Denny, M. Craig,
and T. Grossman. Codeaid: Evaluating a classroom deployment of an
llm-based programming assistant that balances student and educator
needs. In F. F. Mueller, P. Kyburz, J. R. Williamson, C. Sas, M. L.
Wilson, P. O. T. Dugas, and I. Shklovski, editors, Proceedings of the
CHI Conference on Human Factors in Computing Systems, CHI 2024,
Honolulu, HI, USA, May 11-16, 2024, pages 650:1–650:20. ACM, 2024.

[30] J. Kothari, M. Shevertalov, E. Stehle, and S. Mancoridis. A probabilistic
approach to source code authorship identification. In (ITNG), pages 243–
248. IEEE, 2007.
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