
SyncAttack: Double-spending in Bitcoin Without Mining Power
Muhammad Saad

University of Central Florida

Orlando, USA

saad.ucf@knights.ucf.edu

Songqing Chen

George Mason University

Virginia, USA

sqchen@gmu.edu

David Mohaisen

University of Central Florida

Orlando, USA

mohaisen@ucf.edu

ABSTRACT
The existing Bitcoin security research has mainly followed the se-

curity models in [22, 35], which stipulate that an adversary controls

some mining power in order to violate the blockchain consistency
property (i.e., through a double-spend attack). These models, how-

ever, largely overlooked the impact of the realistic network syn-

chronization, which can be manipulated given the permissionless
nature of the network. In this paper, we revisit the security of Bit-

coin blockchain by incorporating the network synchronization into

the security model and evaluating that in practice. Towards this

goal, we propose the ideal functionality for the Bitcoin network

synchronization and specify bounds on the network outdegree and

the block propagation delay in order to preserve the consistency
property. By contrasting the ideal functionality against measure-

ments, we find deteriorating network synchronization reported by

Bitnodes and a notable churn rate with ≈10% of the nodes arriving

and departing from the network daily.

Motivated by these findings, we propose SyncAttack, an attack

that allows an adversary to violate the Bitcoin blockchain consis-
tency property and double-spend without using any mining power.
Moreover, during our measurements, we discover weaknesses in

Bitcoin that can be exploited to reduce the cost of SyncAttack,

deanonymize Bitcoin transactions, and reduce the effective network
hash rate. We also observe events that suggest malicious nodes are

exploiting those weaknesses in the network. Finally, we patch those

weaknesses to mitigate SyncAttack and associated risks.

CCS CONCEPTS
• Security and Privacy→ Distributed systems security.

KEYWORDS
Distributed Systems, Nakamoto Consensus, Security and Privacy

ACM Reference Format:
Muhammad Saad, Songqing Chen, and David Mohaisen. 2021. SyncAttack:

Double-spending in Bitcoin Without Mining Power. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’21), November 15–19, 2021, Virtual Event, Republic of Korea. ACM, New

York, NY, USA, 18 pages. https://doi.org/10.1145/3460120.3484568

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00

https://doi.org/10.1145/3460120.3484568

1 INTRODUCTION
The double-spend attack is a classical example of violating the

Bitcoin blockchain consistency [22, 29, 34], whereby an adversary

who controls some mining power forks the public chain with a

longer private chain [24, 31]. The double-spend attack succeeds

with a high probability if the adversary controls 51% of the net-

work’s hash rate [19, 27]. Since acquiring 51% hash rate in Bitcoin

is prohibitively costly [3], various attack optimizations have been

proposed to reduce this requirement by exploiting the physical

network characteristics, including the biased distribution of the

mining nodes [6, 38] and the block propagation delay [19, 34].

Despite leveraging the physical network characteristics to the

adversary’s advantage, the optimized double-spend attacks [19]

still use the Nakamoto’s attack construction [31] as a blue print to

model a block race between the adversary and the honest miners.

Therefore, their threat models inherit two specifications from [31]:

(1) the adversary controls at least some mining power, and (2) there

is a stable hash rate distribution during the attack (i.e., miners do

not join or leave the network [24]). The probability of a successful

double-spend attack varies exponentially if the hash rate distribu-

tion changes during the attack [36].

In contrast, in this paper we find that an unstable hash rate

distribution can be used instead to the adversary’s advantage, irre-

spective of newminers joining the network. Moreover, variations in

the hash rate are exploited to exempt the adversary from using the

mining power altogether, while still double-spending successfully.

Our findings are based on the two characteristics of the real-

world Bitcoin network that have not been thoroughly explored in

the past. First, we note that the blockchain forks, antecedent to a

double-spend attack, do not solely rely on the hash rate distribu-

tion among the honest miners. In fact, forks can also occur due to

weak network synchronization that characterizes the blockchain

view of each node in the network [35]. We further observe that

the network synchronization depends on the overlay topology of

reachable nodes (e.g., using public IP addresses; see §2 for details)

in the network and the block propagation delay among those nodes.

If the overlay topology partitions or the block propagation delay

increases, the blockchain can fork even in the absence of an adver-

sary [35]. Therefore, the network synchronization plays a key role

in preserving the blockchain consistency. However, despite its signif-
icance, the network synchronization has not been comprehensively

characterized in the Bitcoin security model.

Second, we note that prior security models [22, 35] did not fully

incorporate the permissionless nature of Bitcoin, which is intrinsic in
its design. The permissionless network allows nodes to leave or join

the network at any time, thereby causing the network churn. Our

study reveals that the network churn can be exploited to deteriorate

https://doi.org/10.1145/3460120.3484568
https://doi.org/10.1145/3460120.3484568

the network synchronization and launch new forms of partitioning

attacks to disrupt the overlay topology.
1

Although partitioning attacks on the Bitcoin network have been

extensively studied [5, 6, 38, 42], they have not been examined in

the context of its permissionless nature and the associated churn. In

particular, the partitioning attacks that involve manipulating the

incoming and outgoing connections of a Bitcoin node assume (1)

the node persistently stays in the network for many days [42], and

(2) the adversary controls more than 100K IP addresses to poison

the IP tables of that node [26, 42]. In §4.2, we show that the ongoing

network churn might affect the first assumption, and in §4.2.1, we

show that the second assumption can be costly.

Although the network churn makes the existing partitioning

attacks infeasible, it also provides new partitioning opportunities

to split the network. We show that by setting up 10 reachable nodes
and 102 unreachable nodes, an adversary can launch SyncAttack to

split the network between the existing nodes and the newly arriving

nodes. By controlling the communication between the two parti-

tions, the adversary can deteriorate the network synchronization

and double-spend, without using any mining power.

Contributions and Roadmap. In short, our work examines the

network synchronization in the Bitcoin security model and ana-

lyzes its robustness in the permissionless settings. Additionally, by
measuring and characterizing the behavior of the real world Bit-

coin network, we propose SyncAttack, an attack that allows an

adversary to deteriorate the network synchronization and launch

double-spend attacks without mining power. The highlights of our

contributions are as follows.

(1) We present the first ideal functionality for the Bitcoin net-

work synchronization that characterizes the blockchain se-

curity in light of the overlay network topology and the block

propagation delay (§3).

(2) We conduct measurements to analyze the Bitcoin network

synchronization in the real world (§4). Our measurements

reveal a deteriorating network synchronization resulting in

an increasing number of forks.

(3) We characterize the permissionless nature of the Bitcoin net-

work by measuring the churn among the reachable nodes
(§4.2). Our measurements show a notable network churn rate

where 10% of the reachable nodes leave the network every

day, replaced by an almost equal number of new nodes.

(4) We incorporate the churn in the Bitcoin security model and

show that if mining nodes experience the churn, then an ad-

versary can launch SyncAttack to partition them and double-

spend without using any mining power (§5).

(5) A byproduct of our study is the discovery of Bitcoin weak-

nesses that can be exploited to (1) deanonymize transactions,

and (2) reduce the effective hash rate of the mining nodes.

Our experiments on the testnet reveal that Bitcoin trans-

actions can be deanonymized with ≈79.4% accuracy. In §6,

we propose SyncAttack countermeasures and strengthen

Bitcoin Core to resist transaction deanonymization.
2

1
Our characterization of the permissionless network acknowledges the possibility of a

change in the mining power distribution due to the arrival or departure of miners.

2Responsible Disclosure. We have notified the community about the discovered

weaknesses and shared our patch code. The experiments related to SyncAttack were

Additionally, the paper includes background in §2, related work

in §7, conclusion in §8, and appendices in §A–§E.

2 BACKGROUND
In this section, we succinctly review the core concepts related to the

Bitcoin network synchronization. We start by outlining the Bitcoin

network anatomy and different node types.

Network Structure. The Bitcoin network consists of nodes con-

nected in a Peer-to-Peer (P2P) model. Those nodes exchange trans-

actions, order transactions in a block, and execute the Nakamoto

consensus to mine a valid block. Once a node mines a block, the

block is relayed to the rest of the network.

Full Nodes and SPV Nodes. Broadly speaking, there are two

types of nodes in the Bitcoin network, the full nodes and the “Sim-

plified Payment Verification” (SPV) nodes [30]. The full nodes main-

tain a complete Bitcoin blockchain ledger while the SPV nodes only

maintain the block headers and request Merkle proofs from full

nodes to verify transactions.

Reachable and Unreachable Full Nodes. Full nodes can be fur-

ther categorized into reachable and unreachable nodes. The reach-
able nodes establish outgoing connections to other reachable nodes,
and accept incoming connections from both reachable and unreach-
able nodes. On the other hand, unreachable nodes (often behind

NATs [20]) only establish outgoing connections to the reachable
nodes and do not accept incoming connections. By default, reach-
able nodes establish 10 outgoing connections and accept up to 115

incoming connections, while unreachable nodes only establish 10

outgoing connections. Since unreachable nodes drop incoming con-

nections, no two unreachable nodes can directly connect to each

other. Information exchange (i.e., blocks) between two unreachable
nodes is enabled through the reachable nodes.
Mining and Non-mining Nodes. In the last few years, the min-

ing difficulty in Bitcoin has significantly increased, limiting the

mining capability to a few mining pools that use specialized hard-

ware (i.e., ASIC mining rigs [41]) to mine blocks. After mining a

block, the mining pools use either reachable or unreachable nodes
to relay it in the P2P network. The nodes used by the mining pools

for block relaying are also called the mining nodes [37] or the min-

ing pool gateways [20]. Prior studies show that at any time, there

are ≈6K-10K [6, 38] reachable nodes in the Bitcoin network, with

≈100–350 among which being the mining nodes [20, 37].

As noted in [20, 37], another key difference between the mining

and non-mining nodes is that the mining nodes have a long network

lifetime and do not experience significant churn. However, in 2021,

changes in the Bitcoin price have also caused behavior changes in

themining pools. For instance, newmining pools includingArkPool,

SBI Crypto, and Foundry USA joined the network between 2020 and

2021, while others including PHash.io, NovaBlock, and BytePool

left the network during that time period [17]
3
. Given the increase

in the number of mining pools joining and leaving the Bitcoin

network, it is fair to assume that compared to the previous years,

in 2021, churn among the mining nodes has increased [17, 20, 37].

only conducted on our own Bitcoin nodes. We did not manipulate connections of other

reachable nodes in the Bitcoin network.

3
A complete list of all the notable mining pools that joined or left the network in the

last few months can be found in [17].

Input: Reachable nodes 𝑁𝑟 , with each 𝑛𝑖 ∈ 𝑁𝑟 establishing 𝑂𝑖 outgoing connections and accepting 𝐼𝑖 incoming connections. The average

network outdegree deg
+
(𝑁𝑟) is greater than the minimum network outdegree deg

+

min
(𝑁𝑟) (see §A) to form a connected overlay topology [40].

The mining power 𝐻 is uniformly distributed among 𝑁𝑟 such that

∑
∀𝑖 ℎ𝑖 = 1, where ℎ𝑖 is the mining power of 𝑛𝑖 . Each 𝑛𝑖 ∈ 𝑁𝑟 maintains

a blockchain ledger C, and participates in the block mining race which proceeds for 𝑙 rounds. The mining race is arbitrated by a trusted

party Fsyn which knows 𝑁𝑟 , 𝐻 , deg
+
(𝑁𝑟), and deg

+

min
(𝑁𝑟). In each round, the trusted party Fsyn observes the following states.

Start: Each 𝑛𝑖 ∈ 𝑁𝑟 starts mining on C with 𝑏𝑟 as the latest block. The probability of mining the next block 𝑏𝑟+1 is ℎ𝑖/𝐻 . If 𝑛𝑖 successfully

mines 𝑏𝑟+1 ⪯ 𝑏𝑟 (⪯ is the prefix relationship [22, 34]), 𝑛𝑖 appends 𝑏𝑟+1 to C and relays 𝑏𝑟+1 to 𝑂𝑖 , 𝐼𝑖 , Fsyn, and moves to the next round.

Receive: Consistent with the current Bitcoin protocol [31], if a node 𝑛𝑖 receives two valid blocks 𝑏𝑟+1 ⪯ 𝑏𝑟 and 𝑏
′
𝑟+1
⪯ 𝑏𝑟 in any round, 𝑛𝑖

will stop its computation and start mining on the block that it receives the earliest. For instance, if 𝑏𝑟+1 ⪯ 𝑏𝑟 is received at 𝑡1 and 𝑏
′
𝑟+1
⪯ 𝑏𝑟

is received at 𝑡2, where (𝑡1 < 𝑡2), then 𝑛𝑖 mines on 𝑏𝑟+1 ⪯ 𝑏𝑟 . Additionally, 𝑛𝑖 forms two chains C1 ← 𝑏𝑟+1 ⪯ 𝑏𝑟 and C2 ← 𝑏
′
𝑟+1
⪯ 𝑏𝑟 , with

C1 as the dominant chain on which 𝑛𝑖 mines. Then, 𝑛𝑖 , relays 𝑏𝑟+1 ⪯ 𝑏𝑟 to 𝑂𝑖 and 𝐼𝑖 , and moves to the next round.

Propagate: A valid block 𝑏
′
𝑟+1
⪯ 𝑏𝑟 takes 𝑘 = log

deg
+
(𝑁𝑟)
|𝑁𝑟 | steps to reach all the reachable nodes. Each step adds a fixed delay 𝑡 , such

that 𝑘𝑡 is the end-to-end delay for 𝑏
′
𝑟+1
⪯ 𝑏𝑟 to end up in C of each 𝑛𝑖 . We enforce the end-to-end delay 𝑘𝑡 within a bound by threshold

parameter 𝑇 such that 𝑘𝑡 ≤ 𝑇 to prevent forks during block propagation.

Evaluate: Once Fsyn receives a valid block 𝑏𝑟+1 ⪯ 𝑏𝑟 , it checks if the network satisfies the synchronization property. For that purpose,

Fsyn first checks if the network outdegree is greater than the minimum outdegree (deg
+
(𝑁𝑟) > deg

+

min
(𝑁𝑟)). Fsyn then concludes that

𝑏𝑟+1 ⪯ 𝑏𝑟 will eventually reach all 𝑛𝑖 ∈ 𝑁𝑟 if the condition is satisfied. Next, Fsyn calculates the end-to-end delay 𝑘𝑡 as the upper bound

delay threshold that prevents forks during the block propagation delay. For that purpose, Fsyn queries each 𝑛𝑖 ∈ 𝑁𝑟 after 𝑘𝑡 . For the nodes

that report 𝑏𝑟+1 ⪯ 𝑏𝑟 as the latest block on C, Fsyn puts them in 𝑁𝑠 as the synchronized nodes; otherwise in 𝑁𝑢 as the non-synchronized

nodes, where 𝑁𝑟 = 𝑁𝑠 ∪ 𝑁𝑢 . Fsyn then computes Nsyn as the ratio |𝑁𝑠 |/|𝑁𝑟 |. If Nsyn > 0.5 (an honest majority is synchronized), Fsyn
notifies each 𝑛𝑖 ∈ 𝑁𝑟 that the network is synchronized.

Ideal Functionality Fsyn

Figure 1: Ideal functionality for the Bitcoin network synchronization. The two conditions specified in the ideal functionality
ensure that all reachable nodes in Bitcoin eventually receive a block and the maximum block propagation delay among the
reachable nodes is bounded by a delay threshold parameter to prevent forks with a high probability.

Network Synchronization. Mining nodes relay their blocks to

other mining and non-mining nodes to facilitate the network syn-

chronization. In Bitcoin, the network synchronization determines

how many nodes have a correct and up-to-date blockchain at any

time [22]. When a block is relayed in the network, it is desirable

for all nodes to receive the block at the same time to avoid mining

power waste and forks [22]. However, since the Bitcoin network

consists of ≈6-9K reachable nodes with an average outdegree of

10 [7], it is improbable for a block to be relayed to all the nodes

instantly. Therefore, non-uniform block propagation affects the

network synchronization, which can be exploited to create forks

and reduce the cost of a majority attack [19, 34].

It is essential to understand the role of reachable nodes in provi-

sioning the network synchronization. For instance, when a mining

node mines a block, it relays that block to all the reachable and
unreachable nodes connected to the mining node. When a reachable
node receives the block, it relays that block to other reachable and
unreachable nodes connected to it. However, when an unreachable
node receives the block, it can only relay that block to a reachable
node (since no two unreachable nodes can be directly connected).

As such, if all unreachable nodes are partitioned from the network,

blocks can still reach all the reachable nodes, allowing them to syn-

chronize over the blockchain. In contrast, if all reachable nodes are
partitioned from the network, blocks cannot propagate in the P2P

network, thus preventing the network synchronization. In other

words, the Bitcoin blockchain synchronization strongly relies on

the number of reachable nodes in the network and their network

topology. Mining pools own both reachable and unreachable nodes,
and use reachable nodes to propagate their blocks [37]. In Figure 18

(Appendix F), we illustrate the anatomy of the Bitcoin P2P network,

highlighting the unique roles different node types.

3 IDEAL FUNCTIONALITY FOR BITCOIN
NETWORK SYNCHRONIZATION

The attack proposed in this work is motivated by the discrepancies

between the Bitcoin’s ideal synchronization model and its real

world behavior. However, as mentioned in §1, the existing security

modes do not fully incorporate the network synchronization in the

Bitcoin security model, particularly based on the current Bitcoin

Core rules. Therefore, we first propose the ideal functionality for

Bitcoin network synchronization, which we then contrast with the

real world behavior to construct SyncAttack.

For the ideal functionality, we assume a set of reachable nodes
𝑁𝑟 as the “Interactive Turning Machine”s (ITM) that execute the

Nakamoto consensus for 𝑙 rounds, arbitrated by a trusted party

Fsyn. Each 𝑛𝑖 ∈ 𝑁𝑟 establishes ten outgoing connections, making

the average network outdegree deg
+
(𝑁𝑟), which then enables the

block propagation in 𝑘 = log
deg

+
(𝑁𝑟)
|𝑁𝑟 | steps. Each step adds a

fixed delay, 𝑡 , and the network synchronizes if no fork appears

in time 𝑘𝑡 while 𝑁𝑟 maintains a minimum outdegree deg
+

min
(𝑁𝑟).

Figure 1 provides the ideal functionality details, and Theorem 3.1

specifies bounds on deg
+
(𝑁𝑟) and block propagation delay that

preserve the network synchronization.

Theorem 3.1 (Ideal Functionality Fsyn). Bymaintaining both
(1) a minimum outdegree

(
deg+(𝑁𝑟) ≥ deg+min(𝑁𝑟)

)
and (2) an upper

bound block propagation delay threshold (𝑘𝑡 ≤ 𝑇), Fsyn guarantees
synchronization with a high probability.

In Appendix §A, we prove Theorem 3.1 and provide the lower

bound for deg
+
(𝑁𝑟) and the upper bound for 𝑘𝑡 based on the Bit-

coin protocol specifications. Compared to the existing theoretical

frameworks [22, 35], we make the following refinements in our

ideal functionality to correctly model the network synchronization

based on the rules encoded in Bitcoin Core.

(1)We acknowledge the default outgoing connection limits for a

reachable node in Bitcoin by setting deg
+
(𝑁𝑟) =10. In the prior theo-

retical models [22], the authors assume that the overlay is strongly

connected which leads to a synchronous communication. However,

the assumption of a strongly connected topology undermines the

deg
+

min
(𝑁𝑟) requirement that the real world network must satisfy.

Therefore, our ideal functionality captures the correct state of the

overlay topology. (2)We note that forks that violate the blockchain

consistency are not solely determined by the adversary’s mining

power. Instead, if any of the two conditions in Theorem 3.1 are

violated, forks will appear even in the absence of an adversary. (3)
Since the network synchronization depends on deg

+

min
(𝑁𝑟) and

𝑘𝑡 , we side-step the mining power distribution in our ideal func-

tionality. We assume a uniform hash rate distribution among the

reachable nodes, which enables us to analyze the fork probabil-

ity irrespective of the biased mining power distribution. In other

words, Figure 1 is a lower bound construction that incorporates

synchronization in the primordial Bitcoin design proposed in [31].
4

In summary, our ideal functionality embraces the reality of the

real world overlay topology by incorporating the network synchro-

nization in the Bitcoin security model. As such, by violating Theo-

rem 3.1, an adversary can deteriorate the network synchronization

to violate the blockchain consistency property through forks. In the

following section, we present measurements to analyze how closely

the real world network follows the ideal behavior.

Analysis Notations. In addition to the analysis notations defined

in §3, in the following we provide the notations that will be used

in the rest of the paper. We define 𝑓ℎ(𝑥) as the kernel density esti-

mation, 𝑁𝑟 as the reachable nodes, 𝑁𝑖 as the newly arriving nodes,

𝑁𝑒 as the departing nodes, R𝑝 as the persistent nodes, 𝑀𝑟 as the

reachable mining nodes, 𝑀𝑖 as the newly arriving mining nodes,

𝑀𝑒 as the existing mining nodes, A as an adversary, 𝐴𝑟 as the

adversary’s reachable nodes, and 𝐴𝑢 as the adversary’s unreachable
nodes. We also define O as the nodes to which we connect in the

testnet experiment (§5.3), and P as the connections established to

the source node 𝑆𝑁 in that experiment.

4 BITCOIN NETWORK MEASUREMENTS
In this section, we present measurements of the real world char-

acteristics of the Bitcoin network. We focus our study on (1) the

4
The lower bound construction in Figure 1 can be easily extended to accommodate for

the biased distribution of the mining power in the current Bitcoin network. However,

the resulting model must satisfy Theorem 3.1 in order to ensure that all the reachable
nodes eventually synchronize over the blockchain.

20 40 60 80 100

Percentage of Synchronized Nodes

K
er

n
el

D
en

si
ty

µX = 56

Figure 2: Network synchronization results obtained by ap-
plying Heuristic 1 on our dataset. On average, only 56%
reachable nodes have an up-to-date blockchain.

network synchronization in the real world, (2) blockchain forks

and the network outdegree due to variations in the network syn-

chronization, (3) the network churn caused by the permissionless
nature, and (4) partitioning possibilities due to the churn.

For measurements, we collected data from an online service

called Bitnodes that connects to all Bitcoin reachable nodes and
reports their latest blockchain view [8]. We collected Bitnodes data

from January 01, 2021 to March 01, 2021.
5

4.1 Bitcoin Network Synchronization
To measure and analyze the network synchronization, we compare

the latest block reported by Bitnodes with the latest block on the

blockchain tip of all the reachable nodes. Since Bitnodes crawlers
are connected to all the reachable nodes [8, 38], they instantly

receive a newly mined block from any reachable node. As such,
Bitnodes’ view of the Bitcoin network is similar to the view of Fsyn
in Figure 1. Taking that into account, we assume Bitnodes as Fsyn
and apply Heuristic 1 to analyze the network synchronization.

Heuristic 1. When Fsyn receives 𝑏𝑟+1 ⪯ 𝑏𝑟 from any 𝑛𝑖 ∈ 𝑁𝑟 ,
Fsyn invokes Evaluate in Figure 1 and counts the percentage of |𝑁𝑟 |
that report 𝑏𝑟+1 on C.

After applying Heuristic 1 on our dataset, we obtain the set of

synchronized nodes𝑁𝑠 ⊂ 𝑁𝑟 .We then sampleNsyn =100×|𝑁𝑠 |/|𝑁𝑟 |
as a list 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑧), where 𝑥𝑖 ∈ 𝑋 is the percentage value

of Nsyn for each block and 𝑧 is the total number of blocks. Next,

we calculate the kernel density estimation 𝑓ℎ(𝑥) of 𝑋 [43] using the

following formula.

𝑓ℎ(𝑥) =
1

𝑧

𝑧∑
𝑖=1

𝐾ℎ (𝑥 − 𝑥𝑖) =
1

𝑚ℎ

𝑧∑
𝑖=1

𝐾

(𝑥 − 𝑥𝑖
ℎ

)
(1)

In (1), 𝐾 is the Gaussian kernel and ℎ is the kernel bandwidth

applied using Scott’s rule [39]. In Figure 2, we plot 𝑓ℎ(𝑥) against 𝑋 ,

showing that the average network synchronization is 56%, which

is marginally above the threshold specified in the ideal function-

ality (Figure 1). In other words, on average, only 56% of the nodes

connected to Bitnodes report an up-to-date blockchain.

In ideal conditions, the network synchronization should be close

to 100% so that all nodes synchronize and share the same blockchain

5
Bitnodes provides an API through which network snapshots can be collected. Each

snapshot provides the latest Bitcoin block and the latest block reported by all the

reachable nodes connected to Bitnodes’ crawlers.

Aug-
17

N
ov

-1
7

Feb
-1

8

M
ay

-1
8

Aug-
18

N
ov

-1
8

Feb
-1

9

M
ay

-1
9

Sep
-1

9

D
ec

-1
9

M
ar

-2
0

Ju
n-2

0

Sep
t-

20

D
ec

-2
0

Mar
-21

Time (2017–2021)

0

1

2

3

4

5

N
u

m
b

er
o

f
F

or
k

s

Figure 3: Number of forks reported in the Bitcoin network
between 2017 and 2021. The number of forks is increasing
each year with up to 22 forks reported in 2020. Since January
2021, the Bitcoin blockchain has already forked 12 times.

view. In 2012, the Bitcoin network synchronization was strong and

90% of the reachable nodes received a block within 12 seconds [19].

However, in the last few years, the network synchronization ap-

pears to be deteriorating [33] per the data reported by Bitnodes.

Moreover, we did not find any value of 𝑥𝑖 ∈ 𝑋 , where Nsyn was

100%, and the maximum and minimum values forNsyn were 86.3%

and 15.7%, respectively.
6

4.1.1 Bitcoin Forks. Since the Bitcoin network synchronization

has been deteriorating in the last few years [33, 38?], it is logical to
assume that the network has a high orphaned block rate due to forks.

Although forks can be found at online block explorer services such

as Bitcoin.com [14], most explorer services have stopped reporting

recent forks. An alternative method of determining forks is to run

a full node, execute the getchaintips command, and count all the

branches forked from themain chain. Currently, two online services

(ChainQuery [10] and ForkMonitor [16]) report blockchain forks

using data from their full nodes.

We crawled data from ChainQuery [10] and observed that the

deteriorating synchronization has indeed led to an increase in the

number of blockchain forks. In Figure 3, we report the total number

of forks from 2017 to 2021. Based on the data available at Chain-
Query, in 2017, only one fork was reported in the network. In 2018,

the number of forks increased and the blockchain forked four times

during the year as the network synchronization becameweaker [38].

In 2019, the number of forks significantly increased to 14, with five

forks reported in August 2019. In 2020, the blockchain forked 22

times, with more than two forks reported each month (except May

2020). From January 2021 to March 2021, the blockchain forked

12 times, with five forks reported in March 2021. Since May 2020,

each fork results in a loss of more than 6.25 bitcoins to the miner

whose orphaned block is not included in the blockchain. Therefore,

in 2021 alone, miners have lost more than $4 million due to forks.

From results in Figure 3, it is fair to assume that the network syn-

chronization impacts the number of blockchain forks in the Bitcoin

network. The occurrence of forks also indicates that the mining

6
Among the open source tools available to monitor the network synchronization, we

report data obtained from Bitnodes, which is widely used in the existing research

for measuring and mapping the Bitcoin network. Assuming that the results reported

by Bitnodes can have discrepancies (i.e., due to protocol implementation or network

sampling time), it highlights that measuring the network synchronization remains

largely an open question. We note, however, that our proposed attack in §5 is largely

unaffected by the synchronization values reported by Bitnodes.

664000 664020 664040 664060 664080 664100

Block Height

0

1

S
y
n

ch
ro

n
iz

at
io

n
In

d
ic

at
or

157.175.x.x

Figure 4: Network synchronization pattern of a node ob-
tained from algorithm 2. When the node was synchronized,
the corresponding value in the list was marked 1 (synchro-
nization indicator). Therefore, the shaded region shows all
the blocks for which the node remained synchronized.

nodes do not form an exclusive community in the overlay topology

(i.e., all mining nodes are directly connected). Our conclusions are

supported by the prior work conducted by Miller et al. [20], who
observed that mining nodes do not have a high network outdegree

and they typically follow the standard node configurations (i.e.,
default incoming and outgoing connections). As a result, when the

network synchronization deteriorates, the mining nodes are also

likely to suffer from it, leading to an increase in forks [19].

4.1.2 Network Outdegree. Besides the overall synchronization of

56%, another key observation in Figure 2 is the non-uniform width

of 𝑓ℎ(𝑥) that indicates variations in deg
+
(𝑁𝑟) (i.e., the changing net-

work outdegree resulting in varying block propagation patterns). It

is therefore worth investigating if the network outdegree falls below

the minimum outdegree (deg
+
(𝑁𝑟) ≤deg+

min
(𝑁𝑟)), thus preventing

block delivery to a group of nodes for a long time. A test case

to determine this condition would be to find a non-synchronized

node at a particular blockchain height and observe the node’s syn-

chronization pattern for all subsequent blocks. If the node stays

behind the blockchain for all subsequent blocks, we can conclude

that deg
+
(𝑁𝑟) ≤deg+

min
(𝑁𝑟), and there is no path in the overlay

network that delivers blocks to that node.

In Algorithm 2, we present our technique to determine if deg
+
(𝑁𝑟)

is below deg
+

min
(𝑁𝑟) for a long time. We initialize an object 𝑂syn,

with 𝑛𝑖 ∈ 𝑁𝑟 as the object keys and an empty list as the value

for each key. We then iterate over each block 𝑐 𝑗 ∈ C and add 1

to the list if the latest block reported by 𝑛𝑖 is equal to 𝑐 𝑗 (i.e., the
node is synchronized), and 0 otherwise. Finally, we return 𝑂syn

from algorithm 2, and apply Heuristic 2 to determine if deg
+
(𝑁𝑟)

is below deg
+

min
(𝑁𝑟).

Heuristic 2. For all the list values corresponding to a key in O,
if there is a value 1, after any sequence of 0’s , then deg

+
(𝑁𝑟) is

eventually greater than deg
+

min
(𝑁𝑟).

Heuristic 2 specifies that if a node was behind the chain in

the past and eventually caught up, then there exists a path in the

overlay network that delivers blocks to that node. Therefore, the

average network outdegree is greater than the minimum outdegree.

After applying algorithm 2 on our dataset, we did not find any

reachable node that stayed behind the blockchain indefinitely. As

an example, in Figure 4, we plot the synchronization pattern of a

reachable node for 120 consecutive blocks. We mask the last two

1.610 1.611 1.612 1.613 1.614

Sampling Time ×109

1

2

3

4

N
u

m
b

er
o
f

N
o
d

es

×104

|Nri |, µ = 12, 457

Cumulative|Nr|

Figure 5: The cumulative and the average number of reach-
able nodes present in the Bitcoin network at any time. The
gap between the two lines indicates a notable network churn
caused by the permissionless network.

octets of the node’s IP address to preserve its privacy. Figure 4

shows that each time the node was behind the blockchain, it even-

tually caught up and synchronized on the latest block. The node’s

behavior in Figure 4 validates that there exists a path in the overlay

topology through which the node eventually receives the blocks.

Figure 4 also shows variations in the synchronization pattern,

indicating that the block reception depends on the node’s location in

the overlay network relative to the mining nodes. For instance, for

blocks 664060 and 664080, the node was found to be synchronized,

suggesting a close proximity with the mining nodes of those blocks.

On the other hand, for blocks 664020 and 664040, the node was

distant from the mining nodes of those blocks, and therefore did

not receive blocks even after a long time.

These observations lead to two possible characterizations of the

network outdegree. (1) The network outdegree is always greater

than the minimum outdegree and the lack of synchronization is

likely due to the node’s location in the overlay topology. (2) In the

worst case assumption, even if the network outdegree becomes

less than the minimum outdegree, it eventually recovers since the

non-synchronized nodes eventually catch up with the blockchain.

4.1.3 Key Takeaways. From the synchronization analysis of the

real world network, we make the following key conclusions. First,

the overall network synchronization is not ideal since only 56%

nodes report an up-to-date blockchain at any time. As a result, the

number of blockchain forks has increased in the last few months.

Second, despite imperfect synchronization, the network outdegree

is still greater than the minimum outdegree, which results in a

quick fork resolution and further enables the non-synchronized

nodes to catch up with the blockchain. Since the observed forks

resolve quickly, the blockchain consistency property is not violated.

In the following, we show that an adversary can prevent the fork

resolution by exploiting the Bitcoin network’s permissionless nature.

4.2 Bitcoin Network Churn
Since the Bitcoin network is permissionless, nodes can join or leave

the network at any time [31]. The arrival and departure of nodes

create the churn and changes the network outdegree, which subse-

quently affects the block propagation and the network synchroniza-

tion. In SyncAttack, the adversary exploits the churn to partition

1.610 1.611 1.612 1.613 1.614

Sampling Time ×109

1

2

3

4

N
u

m
b

er
o
f

N
o
d

es

×103

|Nei−1 −Nei |, µ = 1, 215

|Nei −Nei−1 |, µ = 1, 226

Figure 6: The number of arriving and departing nodes in the
Bitcoin network. On average, in 60 days, 1,226 nodes joined
and 1,215 nodes departed from the network every day.

the existing nodes and the arriving nodes, and uses that partition-

ing to create forks and violate the blockchain consistency. In this

section, we analyze the Bitcoin network churn to extract useful

insights for the SyncAttack construction.

4.2.1 Measurement Results. Network Size. In 60 days, we col-

lected 45,165 IP addresses of reachable nodes with ≈12,457 reach-
able nodes present in the network at any time. Figure 5 shows the

number of reachable nodes (|𝑁𝑟 |) present in the network at any

time, as well as the cumulative number of unique IP addresses of

the reachable nodes collected during the measurements. The gap

between the two lines in Figure 5 indicates a notable churn rate

since the number of unique IP addresses increased continuously

while the number of reachable nodes present in the network at any

time remained almost constant (≈12.5K).
Arriving and Departing Nodes. After observing the network

churn, we analyze the vulnerable network state created by the

churn. When a reachable node departs, all its connections are

dropped, including the incoming connections from its peers. Those

peers then try new outgoing connections to complete their default

outgoing slots (10 in Bitcoin including the two feeler connections).
If no other reachable node accepts their connection requests, their

average network outdegree decreases, affecting the network syn-

chronization (Figure 1 and §A).

Similarly, if a node joins the network and no reachable node
accepts its connections, the network outdegree remains low. Fur-

thermore, if an adversary occupies all the node’s incoming and

outgoing connections, the node can be partitioned from the rest of

the network (i.e., eclipse attack) [26]. Therefore, the node arrivals
and departures can create an imbalance in the overall network out-

degree, which can be exploited by an adversary to split the network

and control the communication model.

To analyze the number of arriving and departing nodes, we

denote 𝑁𝑒𝑖−1 − 𝑁𝑒𝑖 as the set of nodes present in the previous day

𝑖−1, but absent in the current day 𝑖 . The resulting value |𝑁𝑒𝑖−1−𝑁𝑒𝑖 |
gives the number of nodes that departed from the network on day

𝑖 . Conversely, |𝑁𝑒𝑖 −𝑁𝑒𝑖−1 | gives the number of arriving nodes that

were not found on the previous day. In Figure 6, we plot the number

of departing nodes |𝑁𝑒𝑖−1 − 𝑁𝑒𝑖 | and the number of arriving nodes

|𝑁𝑒𝑖 − 𝑁𝑒𝑖−1 | for 60 days. The result shows that, on average, 1,215

nodes departed from the network and 1,226 new nodes joined the

network every day. While overall the network size remained stable

1.610 1.611 1.612 1.613 1.614

Sampling Time ×109

0.00

0.25

0.50

0.75

1.00

P
er

si
st

en
t

N
o
d

es
C

o
u

n
t

×104

|Np|

Figure 7: The number of persistent nodes R𝑝 in the Bitcoin
network. Note that over time, the curve flattens and we find
2,984 nodes that stayed persistently in the network.

during this period, the network experienced a notable churn rate

and a high variation in the Bitcoin network outdegree, leading to a

varying network synchronization observed in Figure 2.

It is important to note that if an adversary strategically occu-

pies all the incoming connection slots of the existing nodes in the

network, a newly arriving node will not be able to establish an out-

going connection to the existing nodes. Moreover, if the adversary

occupies the incoming and outgoing connections of the arriving

nodes, then the network will be partitioned between arriving nodes

and existing nodes. Due to the churn, the number of existing nodes

will decrease and the number of arriving nodes will increase over

time, allowing an adversary to orchestrate a mining race between

the two groups. This form of network partitioning is at the core of

the SyncAttack, and in §5, we will show how the adversary achieves

this without mining power.

Persistent Nodes. Our measurements also revealed that despite

the network churn, 2,984 nodes did not leave the network during the

entire measurement study. For simplicity, we call them “persistent

nodes” (R𝑝), and plot them in Figure 7 by counting the common

elements in 𝑁𝑒𝑖 and 𝑁𝑒𝑖−1 . The key feature of the persistent nodes

is that, unlike the arriving nodes, the outgoing connections of

persistent nodes cannot be easily manipulated by the adversary [25,

26]. For instance, if a node 𝑛𝑖 ∈ R𝑝 establishes all its outgoing

connections to other nodes in R𝑝 , those connections will not drop

despite the departure of other nodes that experience the churn.

Mining Nodes. Our next step is to study the characteristics of

the mining nodes and analyze how they can be partitioned by

the adversary. Unfortunately, Bitnodes dataset does not reveal the

mining nodes. In practice, an adversary can simply connect to all the

reachable nodes and identify the ones that relay the blocks before

other reachable nodes in the network. Those nodes can be labeled as
the mining nodes, and the adversary can determine their network

lifetime and churn. Prior works [20, 37] that used this mining nodes

detection technique have reported that the mining nodes have a

long network lifetime. Naïvely extrapolating their findings to our

measurements conducted in 2021, we can assume that mining nodes

could be among the persistent nodes. As mentioned in the previous

section, attacking persistent nodes is harder than attacking nodes

that experience the churn.

Although the above-mentioned assumption seems logical, it may

not be entirely true based on the differences in the experiment

duration in our study and prior works. For mining nodes detection,

[20, 37] conducted measurements for a few weeks and found that

mining nodes do not experience significant churn. In contrast, our

measurements in Figure 7 span two months, which means that

mining nodes could have persistently stayed in the network for one

month andmay have departed later on. Based on these observations,

we canmake the following deductions about themining nodes, their

network communication model, and feasibility of SyncAttack in

each communication model.

(1) Mining nodes are among the persistent nodes and they only

establish outgoing connections to each other (i.e., form a commu-

nity). In such a case, SyncAttack will be infeasible since the adver-

sary cannot easily manipulate the outgoing connections among

the mining nodes. (2)Mining nodes are not among the persistent

nodes and they exhibit the churn. In such a case, SyncAttackwill be

highly feasible since the adversary can partition the mining nodes

and control their communication by exploiting the churn. (3) Some

mining nodes are among the persistent nodes while others experi-

ence the churn. Moreover, some mining nodes do not only establish

outgoing connections to the other mining nodes. In such a case,

SyncAttack will still be feasible since the adversary can partition

the network between the new and the existing mining nodes.

We now evaluate how closely the real world Bitcoin communica-

tion model maps onto each of the communication model described

above. In the first model, if mining nodes are among the persistent

nodes and make direct outgoing connections with each other then

they must instantly receive blocks from each other. As a result,

the blockchain should not fork as frequently as shown in Figure 3.

Therefore, we can rule out the possibility that if mining nodes are

among the persistent nodes then they only establish direct connec-

tions to each other. The prior work by Miller et al. [20] also showed
that the mining nodes follow a standard topology without forming

an exclusive community.

The second model is also less likely because a few mining pools

such as AntPool and SlushPool have been part of the Bitcoin net-

work for many years, and they have consistently mined blocks [9].

The churn among the nodes owned by AntPoolmeans that a mining

pool replaces an old nodewith a new node to perform block relaying.

Setting up a new node and synchronizing with the blockchain can

take a long time, which would be costly for the mining pool. There-

fore, some mining nodes are likely among the persistent nodes.

The third model appears to be the most plausible characteri-

zation of the mining nodes in the current Bitcoin network. As

mentioned in §1, between 2020 and 2021, several new mining pools

(i.e., ArkPool, SBI Crypto, and Foundry USA) joined the network,

while other mining pools (i.e., PHash.io, NovaBlock, and BytePool)

left the network. Therefore, despite a few mining nodes being per-

sistently present in the network, there is still some churn caused

by the newly arriving and departing mining nodes.

In order to empirically evaluate the third communication model

among the mining nodes, we conducted a follow-up experiment by

deploying a supernode in the Bitcoin network and connecting to

the reachable nodes. We then adopted the mining nodes detection

technique specified in [6, 20] and discovered the IP addresses of 790

mining nodes over a duration of ≈37 days (5439 blocks). Our results
confirmed that the mining nodes follow the third communication

model whereby some mining nodes persistently stay in the network

while others experience the churn. More precisely, we found that on

average, there were ≈384 mining nodes present in the network at

any time with at least six mining nodes persistently staying in the

0 1000 2000 3000 4000 5000

Number of Blocks

3

4

5

6

7

C
D

F

×102

|Mr|, µ = 384

Cumulative|Mr|

Figure 8: The number of mining nodes (|𝑀𝑟 |) present in the
network at any time, and the cumulative number of themin-
ing nodes discovered during the measurement study. The
gap between the two lines demonstrates the churn among
the mining nodes.

network while others experiencing churns. In Figure 8, we plot the

cumulative number of unique mining nodes and the total number of

mining nodes present in the network at any time. The gap between

the two lines shows the churn among the mining nodes.

4.2.2 Key Takeaways. From the churn analysis, we have the follow-

ing observations. The Bitcoin network has a notable churn rate and

≈10% reachable nodes depart from the network every day, replaced

by almost an equal number of arriving nodes.
7
The churn also pro-

vides clues about the synchronization pattern observed in Figure 2.

When nodes leave the network, the network outdegree decreases,

which is then improved by the arriving nodes. However, the arriv-

ing nodes are usually behind the blockchain and it takes time to

synchronize with the network. As a result, they are often behind the

blockchain when the Bitnodes service queries them. This indicates

that the churn is another key factor behind the synchronization

pattern observed in Figure 2.

5 THE SYNCATTACK
We now present the SyncAttack by colliding the network synchro-

nization with the permissionless nature of the Bitcoin network. At

a high level, in SyncAttack, an adversary occupies all the incoming

connections of the existing nodes, and the incoming and outgo-

ing connections of the arriving nodes. As a result, the arriving

nodes–including the mining nodes–cannot establish connections

with the existing nodes, creating a network partition controlled

by the adversary. As the number of the existing and arriving min-

ing nodes changes due to the network churn, the mining power

splits between the two partitions, breaking the synchronization

and creating forks. The adversary exploits those forks to violate

the blockchain consistency and double-spend without using any

mining power. In this section, we present the SyncAttack threat

model, followed by the attack procedure.

7
It is possible that nodes switch their IP addresses. However, that behavior is similar

to the departure and arrival of nodes since all the incoming and outgoing connections

may change after switching the IP address.

5.1 Threat Model
For the SyncAttack threat model, we use the formalism introduced

in §3 by specifying 𝑁𝑟 reachable nodes, with each 𝑛𝑖 ∈ 𝑁𝑟 estab-

lishing𝑂𝑖=10 outgoing connections and accepting 𝐼𝑖=115 incoming

connections. We further divide 𝑁𝑟 into 𝑁𝑖 arriving nodes and 𝑁𝑒 ex-

isting nodes. Prior to the attack, |𝑁𝑖 |=0 and |𝑁𝑒 |=12.5K (Figure 5).
8

Next, we assume an adversaryA who runs two sets of reachable
nodes (𝐴𝑟 and 𝐴𝑢). Each 𝑎𝑖 ∈ 𝐴𝑟 maintains a Bitcoin blockchain

with modified source code to allowmore than 115 incoming connec-

tions from 𝑁𝑟
9
. Furthermore, each 𝑎𝑖 ∈ 𝐴𝑟 establishes 1 outgoing

connection to every node in𝐴𝑢 . Similarly, each 𝑎𝑖 ∈ 𝐴𝑢 also accepts

more than 115 incoming connections and establishes more than

12.5K outgoing connections to 𝑛𝑖 ∈ 𝑁𝑟 . However, no 𝑎𝑖 ∈ 𝐴𝑢 main-

tains a blockchain, and instead executes a lightweight script with

the following functions. (1) Establishes an outgoing connection to

𝑛𝑖 ∈ 𝑁𝑟 by performing the TCP handshake and exchanging the

VER and VERACK messages [42]. (2) In response to GETADDR mes-

sage, only relays the IP addresses of 𝐴𝑟 or 𝐴𝑢 to 𝑛𝑖 ∈ 𝑁𝑟 in all the

ADDR messages. (3) Selectively relays new transactions and blocks

to 𝑛𝑖 ∈ 𝑁𝑟 , received from any 𝑎𝑖 ∈ 𝐴𝑟 or 𝑎𝑖 ∈ 𝐴𝑢 . (4) Optionally
requests old blocks from 𝑛𝑖 ∈ 𝑁𝑟 and discards them upon reception.

The above functions allow 𝑎𝑖 ∈ 𝐴𝑢 to mimic a reachable node’s
behavior without maintaining the ≈330GB blockchain. By only

relaying 𝐴𝑟 and 𝐴𝑢 in the ADDR messages, A ensures that the IP

addresses of its reachable nodes reach the new table of each 𝑛𝑖 ∈ 𝑁𝑟 .

Number of Nodes required for SyncAttack. As stated earlier,A
aims to occupy all the incoming and outgoing connections of 𝑁𝑖 ,

and all the incoming connections of𝑁𝑒 . Therefore, it is important to

estimate the number of the nodes required to achieve this objective

in order to determine the attack feasibility.

Since the nodes 𝐴𝑟 maintain the blockchain and allow incoming

connections, only |𝐴𝑟 |=10 will be sufficient to occupy 𝑂𝑖=10 slots

of all the reachable nodes. On the other hand, occupying 𝐼𝑖=115

incoming connection slots of any 𝑛𝑖 ∈ 𝑁𝑟 will require A to host

up to |𝐴𝑢 |=115 nodes. From each 𝑎𝑖 ∈ 𝐴𝑢 , A will establish 12.5K

outgoing connections in order to occupy all the incoming connec-

tion slots of 𝑁𝑟 . Given that there are 65K available ports per host,

A can easily establish 12.5K connections from a single machine.

5.2 Attack Procedure
At a high level, the attack procedure involves A carrying out the

following set of activities.

(1) A calculates the total number of reachable slots of the ex-
isting reachable nodes that are not occupied by the reachable and
unreachable nodes. (2) A strategically occupies those slots (using

𝑎𝑖 ∈ 𝐴𝑢) so that no reachable connection slot is available to support

any new connections between two reachable nodes. (3) A ensures

that all the connections established by 𝑎𝑖 ∈ 𝐴𝑢 are not evicted

when any reachable or unreachable node tries to replace them.

In summary, A occupies all the available slots of the existing

reachable nodes and prevents any new connection between two

reachable nodes. For that purpose, A also needs to account for the

node eviction logic [12] that can potentially replaceA’s connections

8 |𝑁𝑒 |=12.5K is an optimistic estimate based on Figure 5. The number of reachable
nodes can often vary (i.e., less than 7.6K in September, 2020 [8]).

9A modifies the net.h file [13] to increase the number of incoming connections.

Algorithm 1: Occupying All Incoming Connections

1 Input: 𝑁𝑟 ,𝐴𝑢

2 foreach 𝑛𝑖 ∈ 𝑁𝑟 do
3 Initialize: C𝑠= 0, E𝑠= 0

/* Occupy all incoming connections of 𝑛𝑖 using 1 IP

address and a unique port */

4 while 𝑛𝑖 accepts connections do
5 select one 𝑎 𝑗 and connect to 𝑛𝑖 using a different port

6 increment C𝑠

7 Allow 16 connections in𝐴𝑢 to relay blocks to 𝑛𝑖 and 4 connections in

𝐴𝑢 to relay transactions received from other 𝑎𝑖 in𝐴𝑟 or𝐴𝑢

/* Replace and evict up to 101 existing connections */

8 while 𝑛𝑖 accepts connections do
9 select 𝑎 𝑗 with a unique network group and connect to 𝑛𝑖

10 increment E𝑠
11 Return E𝑠 , and C𝑠

12 Return 𝑅𝑎=0

to the reachable nodes. The current eviction policy specifies that if

a node has all its incoming connection slots full and it receives a

new incoming connection request, then the node can potentially

evict one of the existing connections to allow the new incoming

connection. During the eviction process, the node first preserves

28 connections that it considers to be useful (i.e., connections that
relay new blocks).

10
Among the remaining 87 connections, half are

protected based on the longest uptime. The protected connections

can include up to 50% localhost connections that may not have the

longest up-time. Finally, among the remaining connections selected

for eviction, the network group (determined by prefixes) with the

most incoming connections is chosen and the node with the latest

connection time is evicted [12].

In order to not be evicted, A selects one node in 𝐴𝑢 and uses

it to establish 16 connections to each 𝑛𝑖 ∈ 𝑁𝑟
11
. Each connection

uses the same IP address and a different port. However, through

those 16 connections, A constantly relays new transactions and

blocks to each𝑛𝑖 ∈ 𝑁𝑟 , thus preventing the adversary’s connections

from being evicted. For the remaining 99 connections, A uses a

unique network group for each connection. In case any of the 99

connections has a lower ping time orwhere the existing connections

of 𝑛𝑖 ∈ 𝑁𝑟 belong to the same network group, the adversary’s

connections will evict the existing connections. By following this

procedure,A (1) occupies all the available connection slots of each

𝑛𝑖 ∈ 𝑁𝑟 , (2) possibly evicts the existing connections between the

reachable nodes, and (3) prevents from being evicted by the new

incoming connections.

To formally analyze the attack procedure, we define𝑅𝑐 = 𝑁𝑟×115
as the total number of slots available for the reachable and unreach-
able nodes to occupy. Among those slots, we assume that 𝑅𝑜 slots

are already occupied by those nodes prior to the attack. Accord-

ingly, we define 𝑅𝑎 = 𝑅𝑐 −𝑅𝑜 as the available slots thatA occupies

using lightweight scripts. When 𝑅𝑎=0, there is no available slot in

the network for any new reachable or unreachable node. This is the
focal point of the SyncAttack, since A causes a denial-of-service

10
Preserved connections include: 4 connections from random network groups (deter-

mined by their prefixes), 8 connections with a minimum ping time, 4 connections that

relayed new transaction, and up to 12 connections that relayed recent blocks [12].

11
Bitcoin Core allows multiple incoming connections from the same IP address.

by ensuring that no reachable node accepts any new incoming con-
nection from other nodes in the network. In algorithm 1, we describe

how A occupies all the available slots in the network.

Algorithm 1 shows that for each 𝑛𝑖 ∈ 𝑁𝑟 ,A first establishes mul-

tiple incoming connections from the same IP address and different

ports. For each successful connection, A counts the occupied con-

nection slots C𝑖 . Once 𝑛𝑖 stops accepting the incoming connections,

A selects 16 of its established connections to relay new transactions

and blocks to 𝑛𝑖
12
. Next, A replaces all its other connections by

using 99 IP addresses from 𝐴𝑢 . For each successful connection, A
counts the evicted connections E𝑖 . If the difference between E𝑖 and

C𝑖 is more than 16, thenA also evicts connections between honest

nodes (i.e., due to a low ping time or multiple honest connections

from the same network group)
13
. In [1], we show how an adversary

uses a lightweight script to occupy the incoming connection slots

of a node. We conducted the experiment on our own reachable node,
occupying only the available connection slots without affecting any

existing connections between our node and other honest nodes.

Due to ethical concerns, we did not conduct the second phase of the

experiment where the adversary evicts connections among honest

nodes (algorithm 1).

When algorithm 1 completes, A ensures that the available con-

nection slots 𝑅𝑎=0, and no 𝑛𝑖 ∈ 𝑁𝑟 can establish any outgoing

connection to any other 𝑛 𝑗 ∈ 𝑁𝑟 . However, 𝑛𝑖 ∈ 𝑁𝑟 can establish

an outgoing connection to any reachable node controlled by A,

since those nodes still accept incoming connections. Once 𝑅𝑎=0

and the churn occurs, A starts to control the links between nodes

in |𝑁𝑖 | and |𝑁𝑒 | to violate the ideal functionality specifications. In

the following, we show A’s strategies during the network churn.

5.2.1 Arriving Nodes. When a new node 𝑛𝑖 joins the network for

the first time, it queries a list of DNS seeds hardcoded in the chain-
params.cpp file [11]. The DNS query returns a list of reachable
addresses to which 𝑛𝑖 establishes outgoing connections. After suc-

cessfully connecting to a reachable node, 𝑛𝑖 sends the GETADDR
message to that node in order to receive an ADDR message contain-

ing up to 1000 IP addresses of other Bitcoin nodes.

Since 𝑅𝑎=0 after algorithm 1 is executed, 𝑛𝑖 can only establish an

outgoing connection if the DNS seeds return an IP address of any

node in𝐴𝑖 or𝐴𝑢 . Once 𝑛𝑖 connects to any node in𝐴𝑟 or𝐴𝑢 , 𝑛𝑖 only

receives the IP addresses of 𝐴𝑟 and 𝐴𝑢 in the ADDR message. As a

result 𝑛𝑖 establishes all 10 outgoing connections to the reachable
nodes controlled by the adversary.

When A learns the IP address of 𝑛𝑖 , A runs algorithm 1 to

occupy𝑎𝑖 ’s incoming connections through nodes in𝐴𝑢 . If𝑛𝑖 accepts

incoming connections, algorithm 1 will ensure that all its incoming

slots are occupied and no other node can connect to 𝑛𝑖 . As a result,

all 𝐼𝑖 and 𝑂𝑖 of 𝑛𝑖 are occupied by A.

A constraint in this attack procedure is that the DNS seeds must

relay at least one IP address in 𝐴𝑟 or 𝐴𝑢 to 𝑛𝑖 . To analyze how this

can be achieved, we explored the DNS seed specification provided

by a Bitcoin Core developer, which states that the DNS seeders

“return a good sample” of reachable nodes in their response [18]. This

12
Since A is connected to all reachable nodes through 𝐴𝑢 , A can instantly receive

new transactions and blocks from 𝑛𝑖 ∈ 𝑁𝑟 , which can be used to prevent the eviction

of 16 connections in𝐴𝑢 that use the same IP address and a different port.

13
This is a natural caveat of the node eviction policy. The connections among the

honest nodes can also be evicted by the adversary.

Figure 9: SyncAttack illustration showing how A occupies
all the connections of the arriving nodes𝑁𝑖 and the outgoing
slots of 𝑁𝑒 , left opened by the departure of an existing node.

Figure 10: Changes in 𝑁𝑒 and 𝑁𝑖 along the network churn.
Over time, the size of 𝑁𝑒 decreases, the size of 𝑁𝑖 increases.

means that the Bitcoin nodes owned by the DNS seed providers

know a few IP addresses of reachable nodes in the network. Since

A’s nodes are connected to all the reachable nodes, A can send

ADDR messages to its connections containing only the IP addresses

in 𝐴𝑟 and 𝐴𝑢 . This procedure will increase the probability of IP

addresses in 𝐴𝑟 and 𝐴𝑢 being relayed by the DNS seeders.

5.2.2 Departing Nodes. When a reachable node departs from the

network, its reachable connections will have one less outgoing

connection that they have established with the departing node.

When 𝑅𝑎=0, those nodes are unable to connect to any other node

in 𝑁𝑟 . However, if they have an IP address of any node in 𝐴𝑟 or 𝐴𝑢
in their new or tried tables, they eventually establish an outgoing

connection to complete their outgoing slots.

If the departing node rejoins the network at any time (with the

same IP address or a new IP address), the node skips the DNS query-

ing phase and attempts connections from its new and tried tables.

If 11 seconds elapse without a successful connection, the node

queries the DNS seeders [11]. Considering the attack procedure

described in Algorithm 1, A occupies the connection slots of the

reachable nodes to which the node was connected prior to its depar-

ture from the network. Therefore, upon rejoining the network, the

node cannot connect to its previously connected nodes or any other

reachable node due the unavailability of connection slots (𝑅𝑎=0).

As a result, the node eventually connects to the reachable nodes
(𝐴𝑟) controlled by the adversary since they accept the incoming

connection requests. Subsequently, all the incoming connection

slots of the node are occupied by 𝐴𝑢 , allowing A to control the

incoming and outgoing connection slots of the node. Therefore,

rejoining the network with same IP address or a new IP address

does not prevent the node from partitioning.

5.2.3 Network Partitioning. By maintaining 𝑅𝑎=0, A ensures that

all the incoming and outgoing connections of 𝑁𝑖 are established

with 𝐴𝑢 and 𝐴𝑟 , respectively. Moreover, when any 𝑛𝑖 ∈ 𝑁𝑒 departs

from the network, its reachable connections only connect with𝐴𝑟 or
𝐴𝑢 . Figure 9 illustrates the state of the network when a node departs

and a new node joins the network. Since no node in 𝑁𝑖 can connect

to any node in 𝑁𝑒 (𝑅𝑎=0), the network is partitioned between 𝑁𝑖

and 𝑁𝑒 . Moreover, the size of |𝑁𝑒 | decreases and the size of |𝑁𝑖 |
increases with the churn, as shown in Figure 10. From Figure 7,

we note that it takes ≈60 days to flatten the curve, from which we

obtained |R𝑝 |=2,984 nodes. Therefore, the size |𝑁𝑖 | will become

|𝑁𝑒 |−|R𝑝 | in 60 days.

5.2.4 Communication Model. We now examine the communica-

tion model of the network 𝑁𝑖 under the churn and evaluate its

compliance with the ideal functionality specifications in Figure 1.

Since A controls all the incoming and outgoing connections of

each 𝑛𝑖 ∈ 𝑁𝑖 , deg
+
(𝑁𝑖) becomes 0 (i.e., no edge between the honest

nodes). This allows A to violate the first condition in Theorem 3.1,

since deg
+
(𝑁𝑖) remains 0 despite the increasing network size. Ad-

ditionally, by controlling all the connections in 𝑁𝑖 , A can delay

the block propagation in 𝑁𝑖 by more than 𝑘𝑡 seconds, violating the

second condition in Theorem 3.1. This shows that when algorithm 1

is followed by the churn, the network is partitioned and A can

completely deteriorate the network synchronization in 𝑁𝑖 .

Given the fact that several new mining pools joined the network

in 2021 [17], their mining nodes therefore become part of 𝑁𝑖 with

the incoming and outgoing connections occupied by A. A can

then orchestrate a block race between mining nodes in 𝑁𝑖 and 𝑁𝑒

to fork the chain and successfully double-spend. In the following,

we show how A double-spends without using any mining power.

5.2.5 Double-spending in SyncAttack. We propose two construc-

tions for SyncAttack in whichA exploits the churn to double-spend

a transaction. The first construction is based on the primitive Bit-

coin model proposed by Nakamoto [31], and we show how the

permissionless settings can be exploited to violate the blockchain

consistency. Our generalized construction can be easily extended

to other PoW-based cryptocurrencies as long as they experience

network churn and A can feasibly deteriorate the network syn-

chronization. Our second construction is specifically tailored to the

current Bitcoin network settings (i.e., acknowledging the biased

distribution of the mining power). Due to the space limitations, we

present the generalized construction in Appendix §B and here we

present the Bitcoin-specific construction of the SyncAttack.

In Figure 11, we demonstrate how A launches the SyncAttack

to double-spend in the current Bitcoin network. We categorize the

mining nodes into two groups, namely 𝑀𝑖 ∈ 𝑁𝑖 and 𝑀𝑒 ∈ 𝑁𝑒 .

First, A identifies 𝑀𝑒 by annotating the nodes that produce new

blocks [20].A then waits for the churn to find some of the existing

mining nodes in𝑀𝑒 to be replaced by the new mining nodes in𝑀𝑖 .

Next,A generates a transaction tx and a conflicting transaction tx

′

using the same “Unspent Transaction Output” (UTXO). A relays

tx to𝑀𝑖 and a user 𝐴, and tx

′
to𝑀𝑒 and another user 𝐵.

A then stops relaying blocks between𝑀𝑖 and𝑀𝑒 , thereby forc-

ing them to mine two branches of the chain (C1 ← 𝑀𝑖 and C2 ←
𝑀𝑒). Moreover, A relays C1 to user 𝐴 and C2 to user 𝐵. Eventually,

when both C1 and C2 acquire a 𝑘−confirmations promised by A
to both 𝐴 and 𝐵, A receives products from both users and releases

the longest branch to diffuse the fork. In Figure 11, we assume that

𝛼 < 𝛽 , thus C2 is longer than C1 and tx is rejected. As a result, user

Input:Mining nodes𝑀𝑖 ∈ 𝑁𝑖 ,𝑀𝑒 ∈ 𝑁𝑒 , and adversaryA.A detects all the mining nodes in𝑀𝑒 by monitoring the nodes that release

a new block [20, 37]. Initially,𝑀𝑖=0 and each𝑚𝑖 ∈ 𝑀𝑒 mines on 𝐶 .

Churn: As the size of 𝑁𝑖 increases with the churn, A detects new mining nodes in𝑀𝑖 when they release blocks.

Attack Initiation:A starts the attack by preventing block exchanges between𝑀𝑒 and𝑀𝑖 . When any𝑚𝑖 ∈ 𝑀𝑖 produces a new block,

A only relays that block to other mining nodes in𝑀𝑖 . Similarly, when𝑚𝑖 ∈ 𝑀𝑒 mines a new block, the block is only relayed to other

mining nodes in𝑀𝑒 (either by A or other nodes in 𝑁𝑒 whose connections are not controlled by A). As a result, the hash rate splits

into𝑀𝑖 ← 𝛼 and𝑀𝑒 ← 𝛽 , where 𝛼 is the hash rate of new mining nodes and 𝛽 is the hash rate of existing mining nodes.

Issue Double-spent Transactions:A selects two users 𝐴 and 𝐵 with non-mining nodes 𝑛𝑎 ∈ 𝑁𝑖 and 𝑛𝑏 ∈ 𝑁𝑒 , respectively.A then

generates a transaction tx and a double-spent transaction tx

′
from the same UTXO [31]. For tx, A selects 𝐴 as the recipient, and for

tx

′
, A selects 𝐵 as the recipient. For each transaction, A sets a high mining fee and sends tx to𝑀𝑖 and tx

′
to𝑀𝑒 .

Block Race: Assuming 𝑏𝑟 as the latest block on C, when the block race starts, the mining nodes in 𝑀𝑖 mine 𝑏𝑟+1 ⪯ 𝑏𝑟 , while the
mining nodes in𝑀𝑗 mine 𝑏

′
𝑟+1
⪯ 𝑏𝑟 . The blockchain C splits into C1 ⪯ C and C2 ⪯ C. The block 𝑏𝑟+1 contains 𝑡𝑥 and the block 𝑏

′
𝑟+1

contains 𝑡𝑥
′
. Upon receiving 𝑏𝑟+1 and 𝑏

′
𝑟+1

, A relays 𝑏𝑟+1 to𝑀𝑖 and 𝑛𝑎 , and 𝑏
′
𝑟+1

to𝑀𝑗 and 𝑛𝑏 .

Receiving Product:When both branches (C1 and C2) become 𝑘 blocks (typically 𝑘 = 6 is the confirmation factor in Bitcoin [11]),

both 𝐴 and 𝐵 will deliver the product to A or further spend tx and tx

′
with other users.

Dissolving Fork: The rate at which C1 and C1 will grow depends on the distribution of 𝛼 and 𝛽 . For simplicity, we assume 𝛽 > 𝛼 ,

and C2 will extend faster than C1. Once A receives a product from both 𝐴 and 𝐵, A releases the longer chain C2 to all the reachable
nodes 𝑁𝑟 in the Bitcoin network. Complying with the longest chain rule [22, 31], all mining and non-mining nodes switch to C2 and
discard C1. A double-spends since tx is invalidated.

Double-spending in the SyncAttack

Figure 11: Double-spending in the SyncAttack where A orchestrates mining on two blockchain branches and generates con-
flicting transactions on each branch.WhenA receives the reward for each transaction,A releases the longest branch to diffuse
the fork. Note that despite diffusing the fork, A still controls 𝑁𝑖 and can always re-launch the attack.

𝐴 is tricked andA double-spends without using any mining power,

thereby violating the blockchain consistency.
It can be argued that miners can exchange blocks outside the Bit-

coin network via direct communication channels [15], in which case

they can detect an attack in the reachable network. However, even
in that case, the SyncAttack can succeed since not all mining nodes

communicate with each other over some external channels [20].A
can easily detect covert communication amongminers by observing

the difference in blocks relayed to them by A and the blocks that

they mine and relay back to A. If the two blocks are inconsistent,

A infers that the miners are covertly communicating outside the

Bitcoin P2P network. If A detects a covert communication among

the miners, it can simply discard their blocks and orchestrate a

block race only among the mining nodes that use the P2P network

to relay their blocks.

It is worth mentioning that the SyncAttack can work in any

distribution of the mining power. For instance, as long as only one

new mining node joins the network (𝑀𝑖 ̸= 0), A can isolate it from

the rest of the network to successfully double-spend. Therefore,

the minimum attack duration is subject to the arrival of a new

mining node and a block race of at least six blocks. Based on the

results shown in Figure 8, new mining nodes can be observed

in the network frequently (sometimes within a day), and a block

race of six blocks takes ≈ 60 minutes. Therefore, a double-spend

attack targeting a single mining node can be launched within a

day. However, if the adversary wants to double-spend as well as

waste the maximum hashing power of the Bitcoin network, the

adversary might have to wait for ≈60 days (§5.2.3) in order to

completely control the communication model among all major

mining nodes. The attack construction presented in Figure 11 is

modeled on an adversary that aims to double-spend and waste the

maximum hashing power. The proposed construction can also help

in evaluating the blockchain safety and liveness properties using
theoretical frameworks presented in [22, 34].

Attack Cost. In SyncAttack,A hosts |𝐴𝑟 |=10 reachable nodes with
unique IP addresses and over 500GB storage space for blockchain.

Moreover,A also hosts |𝐴𝑢 |=115 reachable nodes that only execute
lightweight scripts. Among those 115 reachable nodes, 16 are emu-

lated using the same IP address and different ports. The remaining

99 are hosted in 99 network groups with unique IP addresses.A can

host |𝐴𝑟 |=10 as cloud instances. Currently, multiple cloud services

(i.e., DigitalOcean and Amazon) support instance hosting across

multiple network groups and geographical locations. The estimated

60 days cost for |𝐴𝑟 |=10 is≈$1,800 [4]. For |𝐴𝑢 |=100 (16 connections
with the same IP address and 99 with unique IP addresses), A can

simply acquire a static IP address and host |𝐴𝑢 | on Docker contain-

ers across different cloud services. With a modest estimate of ≈$23
for acquiring an IP address [2] and $5 for hosting a virtual machine

with Docker containers [32], the cost of operating |𝐴𝑢 |=100 nodes
is ≈$2,800. Therefore, the total attack cost is ≈$4,600.

It is important to note that SyncAttack is significantly cheaper

than prior IP address based partitioning attacks (i.e., Eclipse at-

tack [26]). A recent work [42] showed that eclipsing a Bitcoin node

requires an adversary to own more than 100K IP addresses. The

total cost of acquiring 100K IP addresses by an adversary can be

prohibitively high (≈$2.3 million using the calculations provided

Reachable
Nodes

Source
Node

Adversarial
Connections

Fingerprinting
Node

Honest
Connections

Figure 12: Experiment setup for transaction deanonymiza-
tion. The source node 𝑆𝑁 and the fingerprinting node 𝐹𝑁
were connected to (O=O1 . . . O7). Additionally, 𝐹𝑁 estab-
lished 30 connections to 𝑆𝑁 (1 IP and 30 ports).

above and [2]). In comparison, the total cost for SyncAttack is only

≈$4,600, making it more cost effective.

5.3 SyncAttack: Associated Risks
Although our main focus in this work is the practical analysis

of Bitcoin network synchronization and SyncAttack, during our

investigation we also discovered some other related weaknesses in

Bitcoin Core that have critical security and privacy implications.

A key weakness that we discovered is that Bitcoin Core allows

multiple incoming connections from the same IP address, and an

adversary can exploit this weakness to (1) link transactions to an

IP address, and (2) exhaust a victim node’s bandwidth to reduce its

hashing power. Due to the page limits, we have moved the detailed

analysis of transaction deanonymization and bandwidth exhaustion

to Appendix §C and Appendix §D. Below, we only provide a brief

summary of our experiment on transaction deanonymization.

In 2015, Bitcoin replaced the transaction relaying protocol from

trickle spreading to diffusion spreading to prevent an adversary from

connecting to all nodes and link transactions to IP addresses (see

Appendix §C for a detailed background on trickle spreading and

diffusion spreading). We hypothesized that by establishing multiple

connections to the same node (ideally through the same computer),

the anonymity guarantees of diffusion spreading can be weakened.

Experiment and Results. We set up a source node 𝑆𝑁 in the

testnet. 𝑆𝑁 established outgoing connections to seven reachable
nodes (O=O1, . . . O7), and we executed getpeerinfo RPC command

to obtain their IP addresses. Next, we deployed our fingerprinting

node 𝐹𝑁 that established one outgoing connection to each node in

O, and 30 connections (P = P1. . .P30) to the source node 𝑆𝑁 . All

30 connections were established using the same IP address and a

different port. The experiment setup is shown in Figure 12. From

𝑆𝑁 , we generated 19 transactions that were relayed to O and 𝐹𝑁 ,

following the diffusion spreading protocol. Additionally, 𝐹𝑁 received

15 transactions from 𝑆𝑁 and O, that were not generated by 𝑆𝑁 .

We then followed a heuristic (formally described in §C) that

if 𝑆𝑁 is the transaction source, then 𝐹𝑁 receives the transaction

from 𝑆𝑁 (through one of the 30 connections), before receiving that

transaction from 𝑂 . Similarly, if 𝑆𝑁 is not the transaction source,

then 𝐹𝑁 receives that transaction from 𝑂 before receiving that

transaction from 𝑆𝑁 . Among the total (19+15=34) transactions, 27

transactions satisfied the heuristic, yielding ≈79.4% accuracy.
14

14
Among the 19 transactions generated by 𝑆𝑁 , 13 were received by 𝐹𝑁 before𝑂 .

6 SYNCATTACK UNDERWAY AND
COUNTERMEASURES

6.1 Ongoing Activities
Considering the feasibility of SyncAttack and other associated risks,

it is logical to assume that malicious nodes could be exploiting the

network weaknesses in order to deteriorate synchronization or to

perform other malicious activities. To investigate such activities,

we set up a reachable node and observed the number of incoming

connections that use the same IP address. We conducted our exper-

iment for three days and analyzed the IP addresses of the incoming

connections using the getpeerinfo RPC API.

In Figure 19 (Appendix F), we report our results showing in-

stances where our node received up to 33 incoming connections

from the same IP address. Figure 19 also shows two time windows

spanning ≈21 hours and ≈4.5 hours, in which the number of incom-

ing connections significantly increased. Given that each Bitcoin

node randomly selects an IP address for the outgoing connection,

it is improbable that up to 33 unreachable nodes selected the same

IP address to request the blockchain. Therefore, the two anomalies

observed in Figure 19 suggest likely malicious activities. Although

the activities observed at our node do not represent all the security

risks associated with the SyncAttack, they however clearly indicate

actions that can lead to the deterioration of synchronization. In

order to extrapolate the impact of such activities, in §D, we conduct

experiments to demonstrate how establishing multiple connections

and requesting bulk data can impact a miner’s hash rate.

6.2 SyncAttack Countermeasures
In this section, we present the SyncAttack countermeasures.

[C1] Preventing Multiple Connections. Our analysis in §5.1

and §5.3 shows that by allowing multiple incoming connections

from the same node, an adversary (1) lowers the requirement

for SyncAttack from 115 IP addresses to 100 IP addresses, (2) de-

anonymizes transactions with a high accuracy, and (3) reduces the

hash rate of the mining nodes. Therefore, the first line of defense

to mitigate deanonymization and increase the SyncAttack cost is to

prevent multiple incoming connections from the same IP address.

The modified client version with [C1] can be found in [1].

[C2] Limiting Multiple Connections. When we shared [C1]
with the developers community, their feedback suggested that while

[C1] is effective, it might affect the unreachable nodes behind NAT.

By limiting 1 IP address per incoming connection, two nodes be-

hind NAT may not be able to connect to the same set of reachable
nodes. Therefore, the next step was to find a balance between the

number of nodes that can be allowed from the same IP address.

For that purpose, it is important to determine the total number of

unreachable nodes behind NAT in the Bitcoin network. In 2020,

we had set up our nodes that connected to the reachable nodes
and iteratively sent GETADDR messages to collect the IP addresses

known to the reachable nodes. We used that dataset to find the right

balance between the number of nodes that can be allowed from the

same IP address. Through our dataset and Bitnodes [8], we found

that there were up to ≈8K–12K reachable nodes in the network at

any time. Moreover, by analyzing the GETADDR messages, we found

that there were ≈195K unreachable nodes (details in Figure 20).

Among those unreachable nodes, we found that ≈12K addresses

were behind NAT (using the same IP address and a different port).

Diving into the number of NATed nodes (12K) by the conservative

estimate of reachable nodes (8K), we found that a reachable node
accommodates up to ≈2 nodes behind the NAT. As a result, up to

≈2 nodes behind the NAT can connect to the same reachable node,
which is an optimal number to support that NATed nodes without

significantly sacrificing the benefits achieved through [C1].
[C3] Improving the Eviction Policy. As long as there is net-

work churn, SyncAttack is possible. However, SyncAttack can be

mitigated if nodes in 𝑁𝑖 evict the adversary’s connections in 𝑁𝑒 .

We note that the current eviction policy favors nodes that have

longest connection time. Since nodes in 𝑁𝑖 join the network af-

ter the adversary has already occupied the connection slots in 𝑁𝑒 ,

therefore, 𝑁𝑖 cannot evict those connections. To prevent the ad-

versary’s hegemony in 𝑁𝑒 , we propose a change to the current

connection eviction policy by randomizing the victim. For example,

when any 𝑛𝑖 ∈ 𝑁𝑖 attempts a connection with 𝑛 𝑗 ∈ 𝑁𝑒 , 𝑛 𝑗 can

select two random network groups and (1) evict one connection

with the oldest connection time, and (2) evict one connection with

latest connection time. As a result, the adversary will lose one con-

nection with 𝑛 𝑗 , breaking the partitioning between 𝑁𝑖 and 𝑁𝑒 , and

mitigating the SyncAttack.

To summarize, [C2] is a more suitable countermeasure to mit-

igate the SyncAttack. However, it does not prevent transaction

deanonymization. In contrast, [C1] increases the cost for SyncAt-
tack and largely preserves the transaction anonymity as well as

the effective hash rate. Finally, [C2] is the optimal implementation

of [C1] that marginally decreases the SyncAttack cost without

impacting the unreachable nodes. A combination of [C1] and [C3]
could be useful for the mining nodes as it would prevent SyncAttack

and preserve the hash rate. On the other hand, a combination of

[C2] and [C3] could be useful for non-mining nodes as it would

mitigate SyncAttack while also supporting unreachable nodes.

7 RELATEDWORK
In this section, we review the prior works on Bitcoin security that

are related to our study in this paper.

Theoretical Models. The two notable theoretical models that

characterize the Bitcoin security properties are (1) the lock-step syn-
chronous model by Garay et al. [22], and (2) the non-lock-step syn-
chronous model by Pass et al. [34]. Although both models assume

well-connected topology, the non-lock-step synchronous model in-

corporates a block propagation delay of ≈10 seconds between the

mining nodes. Especially different from their model specifications,

our ideal functionality (Figure 1) presents a more realistic model

consistent with the current Bitcoin deployment.

Network Synchronization Measurements. In 2013, Decker et
al. [19] conducted the first measurement study to analyze block

propagation in the Bitcoin network. They observed that a Bitcoin

block takes ≈12 seconds to reach 90% reachable nodes. In 2018,

deterioration in blockchain synchronization started to occur and

it was reported in [38]. However, both studies did not take into

account the permissionless nature of the Bitcoin network, and the

attacks that they proposed required using the mining power.

Partitioning Attacks. In 2017, Apostolaki et al. [6] analyzed the

Bitcoin network hash rate distribution across the Internet and ob-

served that an adversary can reduce the hash rate by more than

60% by hijacking only 3 ISPs. Although they did not discuss the

effects of such an attack on the blockchain consistency, it can be

easily inferred that the attack would reduce the majority attack

requirement to only 21% of the hash rate.

In 2020, Tran et al. [42] proposed a stealthier attack that partitions
the Bitcoin network without manipulating the routing paths. Their

attack relied on poisoning the new and tried tables of the victim
node so that the node establishes all its outbound connections to

the adversary. As discussed in §5, the attack requires an adversary

to own thousands of IP addresses, which can only be mounted by a

strong adversary with a budget to afford thousands of IP addresses.

In 2015, Heilman et al. [26] identified a vulnerability in Bitcoin

Core that allowed an adversary to eclipse the victim node by occu-

pying all the victim’s incoming and outgoing connections. However,

the vulnerability has since been patched in Bitcoin Core. Never-

theless, the cost for an Eclipse attack was higher than SyncAttack,

since the adversary was expected to own thousands of IP addresses.

SyncAttack: A Comparative Evaluation. In terms of the attack

cost and attack feasibility, SyncAttack is less costly than all the ex-

isting partitioning attacks in the literature. The attack feasibility is

self-evident since we consider a much weaker adversary than prior

works [6, 37, 42]. Similarly, SyncAttack is also cost effective since

the adversary benefits from (1) the natural partitioning created by

churn, and (2) the weaknesses in the existing network. Alongside

the core contributions that are foundational to the Bitcoin design,

our work also exposes risks associated with the discovered weak-

nesses (i.e., transaction deanonymization and hashrate reduction).

We minimize those risks by proposing refinements to Bitcoin client.

8 CONCLUSION
In this paper, we have investigated the network synchronization

and incorporated it into the Bitcoin security model. Our measure-

ments and analysis present a contrast between the ideal functional-

ity and the real world network behavior to expose various attack

vectors that can be exploited to deteriorate the network synchro-

nization and violate the Bitcoin blockchain consistency property.

Especially new to the Bitcoin security model is our observation

that the network churn can be exploited to partition the network

and deteriorate the network synchronization. We formally ana-

lyze the churn-based partitioning by presenting SyncAttack that

allows an adversary to double-spend without using any mining

power. Moreover, we identify weaknesses in the current Bitcoin

deployment that can be exploited to lower the SyncAttack cost,

deanonymize transactions, and reduce the effective network hash

rate. Accordingly, we propose three refinements in Bitcoin Core as

countermeasures for SyncAttack.

Acknowledgements. This work is supported in part by NRF grant
2016K1A1A2912757. We want to thank Alin Tomescu for shepherd-

ing our paper. We also would like to thank Ben Price, Ameer Sheikh,

and Ashar Ahmad for helping with the supernode deployment. S.

Chen was supported in part by the NSF grant CNS-2007153 and a

Commonwealth Cyber Initiative grant.

REFERENCES
[1] 2021. Bitcoin Synchronization Attack. (2021). https://anonymous.4open.science/

r/106b2297-8daf-4b75-a209-6468a8dc91c1/

[2] 2021. IP Address Marketplace: Worldwide. (Jan 2021). https://ipv4marketgroup.

com/ipv4-pricing/

[3] 2021. PoW 51% Attack Cost. (2021). https://www.crypto51.app/

[4] Amazon. 2021. EC2 Instance Types & Pricing. https://ec2pricing.net/. (2021).

[5] Maria Apostolaki, GianMarti, JanMüller, and Laurent Vanbever. Feb 2019. SABRE:

Protecting Bitcoin against Routing Attacks. In Annual Network and Distributed
System Security Symposium, NDSS, San Diego, California, USA. https://www.ndss-

symposium.org/ndss-paper/sabre-protecting-bitcoin-against-routing-attacks/

[6] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. 2017. Hijacking Bitcoin:

Routing Attacks on Cryptocurrencies. In IEEE Symposium on Security and Privacy.
375–392. https://doi.org/10.1109/SP.2017.29 https://doi.org/10.1109/SP.2017.29.

[7] Annika Baumann, Benjamin Fabian, and Matthias Lischke. 2014. Exploring

the Bitcoin Network. In International Conference on Web Information Systems
and Technologies, Valérie Monfort and Karl-Heinz Krempels (Eds.). 369–374.

https://doi.org/10.5220/0004937303690374

[8] B.Community. 2021. Bitnodes: Discovering All Reachable Nodes In Bitcoin. (2021).

https://bitnodes.earn.com/

[9] Blockchain. 2018. Hashrate Distribution. (2018). https://blockchain.info/pools.

[10] ChaniQuery. 2021. bitcoin-cli getchaintips – ChainQuery. https://chainquery.

com/bitcoin-cli/getchaintips. (2021).

[11] Bitcoin Community. 2018. Bitcoin Core version history. (2018). https://github.

com/bitcoin/bitcoin.

[12] Bitcoin Community. 2020. Bitcoin Net.cpp File Containing Node Eviction Logic.

https://github.com/bitcoin/bitcoin/blob/master/src/net.cpp. (2020).

[13] Bitcoin Community. 2020. bitcoin/net.h at master · bitcoin/bitcoin. https://github.

com/bitcoin/bitcoin/blob/master/src/net.h. (2020).

[14] Bitcoin Community. 2021. Bitcoin (BTC) Block Explorer. https://explorer.bitcoin.

com/btc. (2021).

[15] Bitcoin Community. 2021. Bitcoin Relay Network. https://bit.ly/3tjtAUa. (2021).

(Accessed on 01/29/2021).

[16] Bitcoin Community. 2021. Fork Monitor. https://forkmonitor.info/stale/btc/

677102. (2021).

[17] Bitcoin Community. 2021. Pool Stats - BTC.com. https://btc.com/stats/pool?

pool_mode=all. (2021).

[18] Christian Decker. 2021. (2021). https://bitcoinstats.com/network/dns-servers/

[19] Christian Decker and Roger Wattenhofer. 2013. Information propagation in

the Bitcoin network. In IEEE International Conference on Peer-to-Peer Computing.
1–10. https://doi.org/10.1109/P2P.2013.6688704 https://doi.org/10.1109/P2P.2013.

6688704.

[20] Sergi Delgado-Segura, Surya Bakshi, Cristina Pérez-Solà, James Litton, Andrew

Pachulski, Andrew Miller, and Bobby Bhattacharjee. 2019. TxProbe: Discovering

Bitcoin’s Network Topology Using Orphan Transactions. In International Con-
ference on Financial Cryptography and Data Security (Lecture Notes in Computer
Science), Vol. 11598. Springer, 550–566. https://doi.org/10.1007/978-3-030-32101-
7_32

[21] Giulia C. Fanti and Pramod Viswanath. Dec 2017. Deanonymization in the Bitcoin

P2P Network. In Annual Conference on Neural Information Processing Systems
2017 Long Beach, CA, USA. 1364–1373. https://tinyurl.com/y72zgvtk.

[22] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2017. The Bitcoin Backbone

Protocol with Chains of Variable Difficulty. In International Cryptology Conference
on Advances in Cryptology. 291–323. https://doi.org/10.1007/978-3-319-63688-
7_10

[23] Arthur Gervais, Hubert Ritzdorf, Ghassan O. Karame, and Srdjan Capkun. 2015.

Tampering with the Delivery of Blocks and Transactions in Bitcoin. In ACM
SIGSAC Conference on Computer and Communications Security. 692–705. https:
//doi.org/10.1145/2810103.2813655

[24] Cyril Grunspan and Ricardo Pérez-Marco. 2017. Double spend races. CoRR
abs/1702.02867 (2017). arXiv:1702.02867 http://arxiv.org/abs/1702.02867

[25] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and

Sharon Goldberg. 2017. TumbleBit: An Untrusted Bitcoin-Compatible Anony-

mous Payment Hub. In ISOC Network and Distributed System Security Sympo-
sium. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/

ndss201701-3HeilmanPaper.pdf.

[26] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. 2015. Eclipse

Attacks on Bitcoin’s Peer-to-Peer Network. In USENIX Security Symposium. 129–

144. https://www.usenix.org/conference/usenixsecurity15/technical-sessions/

presentation/heilman

[27] Marco Alberto Javarone and Craig Steven Wright. 2018. Modeling a Double-

Spending Detection System for the Bitcoin Network. CoRR abs/1809.07678 (2018).

arXiv:1809.07678 http://arxiv.org/abs/1809.07678

[28] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus

Gasser, and Bryan Ford. 2016. Enhancing Bitcoin Security and Performance with

Strong Consistency via Collective Signing. In USENIX Security Symposium. 279–

296. https://www.usenix.org/conference/usenixsecurity16/technical-sessions/

presentation/kogias

[29] Jing Li and Dongning Guo. 2020. Liveness and Consistency of Bitcoin and

Prism Blockchains: The Non-lockstep Synchronous Case. In IEEE International
Conference on Blockchain and Cryptocurrency. https://doi.org/10.1109/ICBC48266.
2020.9169464

[30] Sinisa Matetic, Karl Wüst, Moritz Schneider, Kari Kostiainen, Ghassan Karame,

and Srdjan Capkun. 2019. BITE: Bitcoin Lightweight Client Privacy using Trusted

Execution. In USENIX Security Symposium. 783–800. https://www.usenix.org/

conference/usenixsecurity19/presentation/matetic

[31] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).

https://bitcoin.org/bitcoin.pdf.

[32] Digital Ocean. 2021. Spin up your virtual machine in just 55 seconds. https:

//try.digitalocean.com/. (2021). (Accessed on 01/27/2021).

[33] Giuseppe Pappalardo, Tiziana di Matteo, Guido Caldarelli, and Tomaso Aste. 2018.

Blockchain inefficiency in the Bitcoin peers network. EPJ Data Sci. 7, 1 (2018),
30. https://doi.org/10.1140/epjds/s13688-018-0159-3

[34] Rafael Pass, Lior Seeman, and Abhi Shelat. 2016. Analysis of the Blockchain

Protocol in Asynchronous Networks. IACR Cryptology ePrint Archive 2016 (2016),
454. http://eprint.iacr.org/2016/454

[35] Ling Ren. 2019. Analysis of Nakamoto Consensus. Cryptology ePrint Archive,

Report 2019/943. (2019). https://eprint.iacr.org/2019/943.

[36] Meni Rosenfeld. 2014. Analysis of Hashrate-Based Double Spending. CoRR
abs/1402.2009 (2014). arXiv:1402.2009 http://arxiv.org/abs/1402.2009

[37] Muhammad Saad, Afsah Anwar, Srivatsan Ravi, and David A.Mohaisen. Nov 2021.

Revisiting Nakamoto Consensus in Asynchronous Networks: A Comprehensive

Analysis of Bitcoin Safety and Chain Quality. (Nov 2021).

[38] Muhammad Saad, Victor Cook, Lan Nguyen, My T. Thai, and Aziz Mohaisen.

2019. Partitioning Attacks on Bitcoin: Colliding Space, Time, and Logic. In IEEE
International Conference on Distributed Computing Systems. 1175–1187. https:
//doi.org/10.1109/ICDCS.2019.00119

[39] David W. Scott. 1992. Multivariate Density Estimation: Theory, Practice, and
Visualization. Wiley. https://doi.org/10.1002/9780470316849

[40] Yahya Shahsavari, Kaiwen Zhang, and Chamseddine Talhi. 2019. Performance

Modeling and Analysis of the Bitcoin Inventory Protocol. In IEEE International
Conference on Decentralized Applications and Infrastructures. 79–88. https://doi.
org/10.1109/DAPPCON.2019.00019

[41] Michael Bedford Taylor. 2017. The Evolution of Bitcoin Hardware. Computer 50,
9 (2017), 58–66. https://doi.org/10.1109/MC.2017.3571056

[42] Muoi Tran, Inho Choi, Gi Jun Moon, Anh V. Vu, and Min Suk Kang. 2020. A

Stealthier Partitioning Attack against Bitcoin Peer-to-Peer Network. In IEEE
Symposium on Security and Privacy. 894–909. https://doi.org/10.1109/SP40000.
2020.00027

[43] Peng Wang, Hua Deng, Yi Min Wang, Yue Liu, and Yi Zhang. 2020. Kernel

Density Estimation Based Gaussian and Non-Gaussian Random Vibration Data

Induction for High-Speed Train Equipment. IEEE Access 8 (2020), 90914–90923.
https://doi.org/10.1109/ACCESS.2020.2994224

APPENDIX
A IDEAL FUNCTIONALITY PROOF
In this section, we provide the proof sketch for Theorem 3.1.

Proof. For the proof sketch, we show that the protocol in Fig-

ure 1 securely realizes the ideal functionality Fsyn by modelling

the real world network characteristics [8]. For that purpose, we set

up the model parameters for each condition in Theorem 3.1, and

use values from the real world Bitcoin network [8].

The first condition in Theorem 3.1

(
deg

+
(𝑁𝑟) ≥ deg

+

min
(𝑁𝑟)

)
refers to the Bitcoin network’s capability of delivering blocks to all

the reachable nodes. Therefore, deg+
min

(𝑁𝑟) characterizes the mini-

mum number of edges required to construct a connected overlay

topology among the reachable nodes. Logically, if the network outde-

gree falls below the minimum outdegree

(
deg

+
(𝑁𝑟) < deg

+

min
(𝑁𝑟)

)
,

a group of reachable nodes will not be connected to the network,

thus weakening the network synchronization [40].

To show that our ideal functionality satisfies the first condition

in Theorem 3.1, we derive the minimum Bitcoin network outdegree

from [40], and compare it with the empirical values from the real

world Bitcoin network [8]. From [40], we note that among |𝑁𝑟 |

https://anonymous.4open.science/r/106b2297-8daf-4b75-a209-6468a8dc91c1/
https://anonymous.4open.science/r/106b2297-8daf-4b75-a209-6468a8dc91c1/
https://ipv4marketgroup.com/ipv4-pricing/
https://ipv4marketgroup.com/ipv4-pricing/
https://www.crypto51.app/
https://ec2pricing.net/
https://www.ndss-symposium.org/ndss-paper/sabre-protecting-bitcoin-against-routing-attacks/
https://www.ndss-symposium.org/ndss-paper/sabre-protecting-bitcoin-against-routing-attacks/
https://doi.org/10.1109/SP.2017.29
https://doi.org/10.1109/SP.2017.29
https://doi.org/10.5220/0004937303690374
https://bitnodes.earn.com/
https://blockchain.info/pools
https://chainquery.com/bitcoin-cli/getchaintips
https://chainquery.com/bitcoin-cli/getchaintips
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin/blob/master/src/net.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/net.h
https://github.com/bitcoin/bitcoin/blob/master/src/net.h
https://explorer.bitcoin.com/btc
https://explorer.bitcoin.com/btc
https://bit.ly/3tjtAUa
https://forkmonitor.info/stale/btc/677102
https://forkmonitor.info/stale/btc/677102
https://btc.com/stats/pool?pool_mode=all
https://btc.com/stats/pool?pool_mode=all
https://bitcoinstats.com/network/dns-servers/
https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1007/978-3-030-32101-7_32
https://doi.org/10.1007/978-3-030-32101-7_32
https://tinyurl.com/y72zgvtk
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1145/2810103.2813655
https://doi.org/10.1145/2810103.2813655
https://arxiv.org/abs/1702.02867
http://arxiv.org/abs/1702.02867
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/ndss201701-3HeilmanPaper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/ndss201701-3HeilmanPaper.pdf
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://arxiv.org/abs/1809.07678
http://arxiv.org/abs/1809.07678
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias
https://doi.org/10.1109/ICBC48266.2020.9169464
https://doi.org/10.1109/ICBC48266.2020.9169464
https://www.usenix.org/conference/usenixsecurity19/presentation/matetic
https://www.usenix.org/conference/usenixsecurity19/presentation/matetic
https://bitcoin.org/bitcoin.pdf
https://try.digitalocean.com/
https://try.digitalocean.com/
https://doi.org/10.1140/epjds/s13688-018-0159-3
http://eprint.iacr.org/2016/454
https://eprint.iacr.org/2019/943
https://arxiv.org/abs/1402.2009
http://arxiv.org/abs/1402.2009
https://doi.org/10.1109/ICDCS.2019.00119
https://doi.org/10.1109/ICDCS.2019.00119
https://doi.org/10.1002/9780470316849
https://doi.org/10.1109/DAPPCON.2019.00019
https://doi.org/10.1109/DAPPCON.2019.00019
https://doi.org/10.1109/MC.2017.3571056
https://doi.org/10.1109/SP40000.2020.00027
https://doi.org/10.1109/SP40000.2020.00027
https://doi.org/10.1109/ACCESS.2020.2994224

0 2000 4000 6000 8000 10000

Number of Nodes (Nr)

0

1

2

3

4

d
eg

+ m
in

(N
r
)

Figure 13: Relationship between the network size |𝑁𝑟 | and
the minimum outdegree deg+𝑚𝑖𝑛(𝑁𝑟) required for a con-
nected topology. In the current network size of ≈12.5K
nodes [8], deg+𝑚𝑖𝑛(𝑁𝑟) must be greater than 4.1.

0 500 1000 1500 2000 2500

Delay (kt seconds)

0.0

0.2

0.4

0.6

0.8

F
or

k
P

ro
b

ab
il
it

y

Figure 14: Probability of fork due to block propagation delay
𝑘𝑡 . We note that at 𝑘𝑡=2500 seconds, the fork probability be-
comes greater than 0.99. Therefore, we set our upper bound
delay threshold 𝑇=2500 seconds.

reachable nodes, the minimum outdegree deg
+

𝑚𝑖𝑛(𝑁𝑟) is bounded

by the following relationship.

deg
+

𝑚𝑖𝑛(𝑁𝑟) ≥
⌈
|𝑁𝑟 |
|𝑁𝑟 |−1

log𝑂𝑖
(|𝑁𝑟 |)

⌉
(2)

Using (2), we plot deg
+

𝑚𝑖𝑛(𝑁𝑟) against |𝑁𝑟 | in Figure 13. We

increase |𝑁𝑟 | from 0 to 11K nodes, which is currently the num-

ber of reachable nodes in the network [8]. Figure 13 shows that

among |𝑁𝑟 |=11K nodes, if deg
+

𝑚𝑖𝑛(𝑁𝑟) is greater that 4.1 (i.e., 5),
then there is a path from each node to every other node to deliver

a block. Furthermore, through source code inspection, we observe

that each reachable node in the real world network establishes ten

outgoing connections (𝑂𝑖=10), making that the network outdegree

(deg+(𝑁𝑟) = 10) [11]. Since deg+𝑚𝑖𝑛(𝑁𝑟) < deg
+
(𝑁𝑟), therefore, our

ideal functionality satisfies the first condition in Theorem 3.1 by

correctly modeling the synchronization requirement.

The second condition in Theorem 3.1 (𝑘𝑡 ≤ 𝑇) refers to the

Bitcoin network’s capability of preventing forks during block prop-

agation. For that purpose, we specify that if the end-to-end block

propagation delay 𝑘𝑡 is below the delay threshold parameter 𝑇 , the

probability of a fork remains 0.99, thus preserving the blockchain

consistency properties [22, 28].

In order to obtain a realistic value for𝑇 , we identify events during

block propagation that can cause forks. Consider a node 𝑛0 that

mines a block 𝑏𝑟+1 ⪯ 𝑏𝑟 at time 𝑡𝑎 . Next, consider another node

𝑛 |𝑁𝑟 | as the last node in 𝑁𝑟 to receive 𝑏𝑟+1 ⪯ 𝑏𝑟 at 𝑡𝑏 . Therefore,
the end-to-end delay 𝑘𝑡 becomes 𝑡𝑏 − 𝑡𝑎 , and a fork appears if 𝑛 |𝑁𝑟 |
mines 𝑏

′
𝑟+1
⪯ 𝑏𝑟 between 𝑡𝑏 − 𝑡𝑎 . Let P[𝑋 = F] be the probability

that a fork appears during block propagation time 𝑘𝑡 . From [19],

we note that P[𝑋 = F] can be calculated as follows.

P[𝑋 = F] = 1 − (1 − 𝜆)𝑘𝑡 (3)

In (3), 𝜆 is the probability of finding a block in 1 second. In Bitcoin,

𝜆=1/600, where 600 is the average block time. Using 𝜆=1/600, (3)

can also be written as follows.

P[𝑋 = F] = 1 −
(
1 − 1

600

)𝑘𝑡
(4)

In Figure 14, we plot (4) by varying𝑘𝑡 from 0 to 2500 seconds, and

observe that P[𝑋 = F] increases with 𝑘𝑡 . Since we aim to maintain

P[𝑋 = F] 0.99, we derive the cutoff value, 𝑇=2500 seconds, which

limits P[𝑋 = F] 0.99. Moreover, given that deg
+
(𝑁𝑟)=10, we calcu-

late the propagation delay 𝑡 in each step𝑘 as 𝑡 = 𝑇 /log
deg

+
(𝑁𝑟)
|𝑁𝑟 | ≈32

seconds. Our bound on 𝑇 is realistic since prior measurements re-

ported 𝑘𝑡 ≈ 12 seconds in Bitcoin [19].

To conclude, our ideal functionality for the Bitcoin network

synchronization is admissible in the Bitcoin computation model

since we show that (1) the average network outdegree is greater

the minimum required outdegree, and (2) the realistic bound of

𝑘𝑡 ≤ 2500 prevents forks with a high probability. □

Forks can occur due to any of the two conditions mentioned

in Theorem 3.1. As such, if forks do not resolve for 𝑘 consecu-

tive blocks either due to (1) continuously high block propagation

delay, or (2) deg
+
(𝑁𝑟) remaining below deg

+

min
(𝑁𝑟), then the Bit-

coin blockchain will violate the common prefix and chain quality

properties that capture consistency and liveness [22, 34].
Our ideal functionality in Figure 1 is based on the Bitcoin pri-

mordial design in [31] which assumed a democratized network in

which 1 CPU had 1 Vote. If Bitcoin were to follow the primordial

design, then the SyncAttack adversary would be required to or-

chestrate a mining race between 𝑁𝑖 and R𝑝 (§5.2). However, due to

mining centralization, the current Bitcoin network has significantly

departed from [31]. So we had to tailor our attack construction by

modeling a mining race between the mining nodes only (§5.2). To

the adversary’s advantage, since all mining nodes experience churn,

therefore, the SyncAttack is more feasible in practice. Moreover, we

want to emphasize that our ideal functionality and attack can be

easily generalized across other PoW-based blockchain systems that

are inspired from Bitcoin.

B GENERALIZED CONSTRUCTION FOR
SYNCATTACK

In Figure 15, we present the generalized construction of SyncAttack

for the Nakamoto consensus. We model our construction of the

Bitcoin primordial design [31] by assuming a uniform distribution

of themining power. In the generalized attack construction,A waits

for six days until |𝑁𝑖 |== |𝑁𝑒 |. As a result, in addition to violating

Input: 𝑁𝑖 , 𝑁𝑒 , and adversary A. Initially, 𝑁𝑖=0, 𝑁𝑒=12.5K, and each 𝑛𝑖 ∈ 𝑁𝑒 mines on 𝐶 . We assume 1CPU=1 Vote (i.e., a uniform hash

rate distribution as envisioned in [31]).

Churn: A waits for 8 days until the size of 𝑁𝑖 is equal to the size of 𝑁𝑒 . During the network churn, whenever any 𝑛𝑖 ∈ 𝑁𝑒 or 𝑛 𝑗 ∈ 𝑁𝑒

produces a block, A relays that block to all nodes 𝑁𝑟 through 𝐴𝑟 . As a result, all nodes have the same ledger C on their blockchain.

Attack Initiation: When the size of 𝑁𝑖 is equal to the size of 𝑁𝑒 , A stops relaying blocks between 𝑁𝑖 and 𝑁𝑒 to split the network. When

any 𝑛𝑖 ∈ 𝑁𝑖 produces a new block, A only relays that block to other nodes in 𝑁𝑖 . Similarly, when 𝑛 𝑗 ∈ 𝑁𝑒 mines a new block, the block is

only relayed to other nodes in 𝑁𝑒 (either by A or other nodes in 𝑁𝑒 whose connections are not controlled by A). As a result, the hash rate

splits into 𝑁𝑖 ← 𝛼 and 𝑁𝑒 ← 𝛽 , where both 𝛼 and 𝛽 are 0.5.

Issue Double-spent Transactions: A selects two users 𝐴 and 𝐵 with nodes 𝑛𝑎 ∈ 𝑁𝑖 and 𝑛𝑏 ∈ 𝑁𝑒 , respectively. A then generates a

transaction tx, and a double-spent transaction tx

′
from the same UTXO [31]. For tx, A selects 𝐴 as the recipient, and for tx

′
, A selects 𝐵 as

the recipient. For each transaction, A sets a high mining fee and sends tx to 𝑁𝑖 and tx

′
to 𝑁𝑒 .

Block Race: Assuming 𝑏𝑟 to be the latest block on C, when the block race starts, the mining nodes in 𝑁𝑖 mine 𝑏𝑟+1 ⪯ 𝑏𝑟 , while the mining

nodes in 𝑁𝑒 mine 𝑏
′
𝑟+1
⪯ 𝑏𝑟 . The blockchain C splits into C1 ⪯ C and C2 ⪯ C. The block 𝑏𝑟+1 contains 𝑡𝑥 and the block 𝑏

′
𝑟+1

contains 𝑡𝑥
′
.

Upon receiving 𝑏𝑟+1 and 𝑏
′
𝑟+1

, A relays 𝑏𝑟+1 to 𝑁𝑖 and 𝑏
′
𝑟+1

to 𝑁𝑒 . Additionally, A relays 𝑏𝑟+1 to 𝑛𝑎 and 𝑏
′
𝑟+1

to 𝑛𝑏 .

Receiving Product: When both branches (C1 and C2) become 𝑘 blocks (typically 𝑘 = 6 is the confirmation factor in Bitcoin [11]), both 𝐴

and 𝐵 will deliver the product to A or further spend tx and tx

′
with other users.

Dissolving Fork: Once A receives the products from both 𝐴 and 𝐵, A releases the longer chain C1 or C2 to all the reachable nodes 𝑁𝑟

in the Bitcoin network. Complying with the longest chain rule [22, 31], all mining and non-mining nodes switch to the longer chain. A
double-spends since tx

′
is invalidated.

Double-spending in the SyncAttack

Figure 15: Generalized construction for SyncAttack.A orchestratesmining on two blockchain branches and generates conflict-
ing transactions on each branch. When A receives the reward for each transaction, A releases the longest branch to diffuse
the fork. Note that despite diffusing the fork, A still controls 𝑁𝑖 and can always re-launch the attack.

the consistency property, A also wastes ≈50% of the network’s

hashing power.

C DEANONYMIZING TRANSACTIONS
Before 2015, Bitcoin used a gossip-style protocol known as trickle
spreading to relay transactions among nodes [21]. In trickle spread-
ing, a node generates a transaction and relays that transaction to all

connections. As such, if an adversary connects to all the reachable
nodes in the network, the adversary can link a transaction to the

reachable node’s IP address
15
. In 2015, Bitcoin replaced the trickle

spreading with diffusion spreading in order to preserve transaction

anonymity [21]. In diffusion spreading, the source node waits for
a random exponential delay before relaying transactions to each

connection. Due to random delay, an adversary may receive a trans-

action from a different node before receiving the same transaction

from the source node. Therefore, diffusion spreading increases the
transaction anonymity by potentially obfuscating the source node.

However, as noted in [21], an adversary canweaken the anonymity

guarantees of diffusion spreading by establishing multiple connec-

tions to the source node. In [21], the authors implicitly assumed

that detecting the source node through such an attack requires an

adversary to establish multiple connections through different IP

addresses. However, as we have shown in §5.2, the adversary can

establish multiple connections using the same IP address, making

the attack more feasible. Moreover, using the same node to estab-

lish multiple connections also increases the source node detection

15
Transaction linking in trickle spreading is analogous to block linking through which

prior works identified the mining nodes [6, 37]

Reachable
Nodes

Source
Node

Adversarial
Connections

Fingerprinting
Node

Honest
Connections

Figure 16: Experiment setup for transaction deanonymiza-
tion. The source node 𝑆𝑁 and the fingerprinting node 𝐹𝑁
were connected to the same set of seven nodes (𝑂 = 𝑂1 ..𝑂7).
Additionally, 𝐹𝑁 established 30 connections to 𝑆𝑁 (1 IP and
30 ports). When 𝑆𝑁 generated a transaction tx at 𝑡𝑜 , we eval-
uated if any of the 30 connections by 𝐹𝑁 received tx from 𝑆𝑁
before receiving tx from 𝑂 .

accuracy since multiple nodes with different IP addresses can expe-

rience non-homogeneous propagation delay. In the following, we

present our experiments to deanonymize Bitcoin transactions.

Experiment Setup. We set up a source node 𝑆𝑁 in the testnet.

𝑆𝑁 established outgoing connections to seven reachable nodes

(𝑂 = 𝑂1, ...,𝑂7), and we executed getpeerinfo RPC command to

obtain their IP addresses. Next, we deployed our fingerprinting

node 𝐹𝑁 that established one outgoing connection to each node in

𝑂 , and 30 connections (𝑃 = 𝑃1, ..., 𝑃30) to the source node 𝑆𝑁 . All

30 connections were established using the same IP address and a

different port. From 𝑆𝑁 , we generated a series of transactions that

were then relayed to 𝑂 and 𝐹𝑁 , following the diffusion spreading

protocol. We denoted each transaction as a tuple (tx, 𝑡𝑜), where tx

is the transaction identifier and 𝑡𝑜 is the transaction generation

time. When 𝑆𝑁 relayed the transaction with a random delay, the

transaction arrived at 𝐹𝑁 through (1) one of the 30 connections in

𝑃 , and (2) one of the seven connections in 𝑂 . We denoted (tx, 𝑡𝑖) as

earliest timestamp of receiving tx from one of the connections in𝑂 ,

and (tx, 𝑡 𝑗) as the earliest timestamp of receiving (tx from one of the

connections in 𝑃 . Figure 16 illustrates the experiment setup and

the transaction relay procedure. After generating 19 transactions,

we applied Heuristic 3 to deanonymize transactions.

Heuristic 3. 𝐹𝑁 correctly maps transactions to 𝑆𝑁 if (1) for all
transactions generated by 𝑆𝑁 and relayed by 𝑆𝑁 and𝑂 to 𝐹𝑁 , 𝑡𝑖 > 𝑡 𝑗 ,

and (2) for all transactions not generated by 𝑆𝑁 but relayed by 𝑆𝑁
and 𝑂 to 𝐹𝑁 , 𝑡𝑖 < 𝑡 𝑗 .

The first condition inHeuristic 3 specifies that if 𝑆𝑁 is the trans-

action source, then 𝐹𝑁 receives the transaction from 𝑆𝑁 (through

one of the 30 connections), before receiving that transaction from

𝑂 . The second condition in Heuristic 3 specifies that 𝑆𝑁 is not

the transaction source, then 𝐹𝑁 receives that transaction from 𝑂

before receiving that transaction from 𝑆𝑁 . The second condition

is admissible in our experiment settings since we know that 𝑆𝑁 is

only connected to 𝐹𝑁 and𝑂 . Therefore, if 𝑆𝑁 is not the transaction

source, and it relays the transaction to 𝐹𝑁 , then clearly 𝑆𝑁 received

the transaction from𝑂 . Based onHeuristic 3, the transactions that
did not satisfy the first and second conditions were false positives

and false negatives, respectively.

Results. We generated 19 transactions from 𝑆𝑁 out of which 13

transactions satisfied the first condition in Heuristic 3 (𝑡𝑖 > 𝑡 𝑗).

Moreover, during the experiment, 𝐹𝑁 also received 15 transactions

that were not generated by 𝑆𝑁 . Among those 15 transactions, 14

transactions satisfied the second condition in Heuristic 3 (𝑡𝑖 < 𝑡 𝑗).

Overall, among the total 34 transactions, 27 transactions satisfied

the two conditions in Heuristic 3. Therefore, our experiment of

detecting the transaction source achieved an accuracy of ≈79.4%.
Per [21], prior works on trickle spreading (the weaker anonymity

model) achieved an accuracy of ≈30%. In contrast, our experiments

on diffusion spreading (the stronger anonymity model) achieved an

accuracy of ≈79.4%. We suspect that a key contributor to accuracy

was using the same node to establish multiple connections, thereby

minimizing the non-homogeneous delay.

D REDUCING THE HASH RATE
In addition to double-spending and transaction deanonymization,

SyncAttack can also be used to reduce the effective hash rate of the

Bitcoin network [19]. In §5.1, we outlined three functionalities for

𝑎𝑖 ∈ 𝐴𝑢 , including the capability of requesting blockchain data from
the reachable nodes. If A occupies all the incoming connections of

𝑛𝑖 ∈ 𝑁𝑖 and continuously requests the blockchain data from each

connection using either the getblock or getheaders request, then
𝑛𝑖 will incur the overhead of processing each request and relaying

data to each connection. The problem becomes worse if 𝑛𝑖 ∈ 𝑀𝑒

is a mining node, where any unnecessary delay in block relaying

reduces the miner’s effective hash rate [19]. In the following, we

investigate how A reduces the effective hash rate of the network.

5 10 15 20 25

Number of Blocks

0

1

2

3

δ 1
−
δ 2

(s
ec

o
n

d
s)

Figure 17: Delay caused by requesting the blockchain data
from a victim node through each connection. Our measure-
ments show that on average, a delay of ≈1.56 seconds can be
added by overwhelming the bandwidth of the target node.

Experiment Setup. We developed a script with all the function-

alities specified in §5.1. We then set up two reachable nodes, 𝑁1

and 𝑁2, each maintaining an up-to-date blockchain and establish-

ing 8 outgoing connections to the same set of 8 reachable nodes.
All other experiment conditions (i.e., bandwidth and processing

power) were kept the same for both nodes. We used the getchaintips
RPC command to record the time at which both nodes received

blocks from their outgoing connections. We defined 𝛿1 and 𝛿2 as

the two timestamps at which 𝑁1 and 𝑁2 received the same block,

respectively.

Launching the Attack. Using the lightweight scripts on our local

machine, we occupied all the incoming connections of 𝑁1 using

1 IP address and 115 ports. Each connection sent getheaders re-

quests to 𝑁1, adding up to 115 parallel requests per second. Upon

receiving the block headers from 𝑁1, the connecting node simply

discarded those headers and generated new requests. Concurrently,

we recorded 𝛿1 and 𝛿2 values when 𝑁1 and 𝑁2 received a new block

from their outgoing connections.

Results. We conducted the experiment for 26 consecutive blocks.

In Figure 17, we plot 𝛿1 − 𝛿2 against the number of blocks. Our

results show that 𝑁1 experienced ≈1.56 seconds of additional delay
in receiving a block, on average. The maximum and minimum delay

values were recorded to be 3 and 0 seconds, respectively. By inspect-

ing the Bitcoin Core source code (net.cpp in [11]), we discovered

that Bitcoin implements a round-robin request processing for each

connection. Therefore, an extra delay of ≈1.56 seconds could have

occurred while processing and relaying a response to the bulk of

getheaders requests sent by the connected node.

Impact on Hash Rate. If A attacks all the mining nodes, we can

expect that each mining node will be delayed by ≈ 𝛿1 − 𝛿2 seconds
in receiving blocks from other mining nodes. As a result, the mining

node will perform unnecessary computations for additional 𝛿1 − 𝛿2
seconds on a block that is already mined by another node. Keeping

in mind that 𝑘𝑡 is the block propagation delay (3) and 𝛿𝑥 = 𝛿1 − 𝛿2
is the delay incorporated by A, the effective hash rate H𝑒 of the

entire network becomes H𝑒 = 1 − 𝑘𝑡+𝛿𝑥
𝜆

. Since 𝜆=600 seconds,

𝛿𝑥 decreases H𝑒 by 0.26% for any value of 𝑘𝑡 . In other words, in

addition to double-spending and transaction deanonymization, A
can reduce the hash rate of the Bitcoin network by 0.26%.

Miner A

Miner B

Unreachable
Nodes

Reachable
Nodes

Mining Pool
Machinery

Figure 18: The Bitcoin network anatomy exemplified by the
reachable and unreachable nodes. Miner A owns a reachable
mining node while Miner B hosts both reachable and un-
reachable mining nodes. Blocks between the mining nodes
are relayed by the intermediary reachable nodes.

Algorithm 2: Determining deg
+

min
(𝑁𝑟)

1 Input: reachable nodes 𝑁𝑟

2 Blockchain C = (𝑐1, 𝑐2, ..., 𝑐𝑧)

3 Initialize: Object 𝑂syn with 𝑁𝑟 as keys

4 foreach 𝑐 𝑗 ∈ C do
5 foreach 𝑛𝑖 ∈ 𝑁𝑟 do
6 if the latest block 𝑏𝑟 of 𝑛𝑖 = 𝑐 𝑗 then
7 append 1 to 𝑂syn[𝑛𝑖]

8 else
9 append 0 to 𝑂syn[𝑛𝑖]

10 Return: 𝑂syn

650000 700000 750000 800000 850000

Timestamp (UNIX Epoch) +1.611×109

0

10

20

30

N
u

m
b

er
of

C
on

n
ec

ti
on

s

Figure 19: Number of incoming connections from the same
IP address recorded on our reachable node. We observed in-
stances where the node received up to 33 connections from
the same address, indicating an attempt to target our node.

E ADDITIONAL RISKS OF SYNCATTACK
During our measurements in §6.1, we also observed additional risks

associated with the weaknesses in the current Bitcoin deployment.

In the following, we discuss those risks.

Bitcoin implements a peer banscore policy to prevent DoS attacks
on the nodes [11]. If a node sends messages that violate the Bitcoin

protocol specifications (i.e., invalid signatures), the banscore of that
node is increased with each message. If the banscore reaches 100 the
node is disconnected. Theoretically, this means that one IP address

1.586 1.587 1.588 1.589 1.590 1.591 1.592

Sample Time ×109

200000

400000

600000

N
u

m
b

er
of

A
d

d
re

ss
es Per Sample

Cumulative

Figure 20: Longitudinal analysis of unreachable addresses.
The black line shows the unique IP addresses collected in
each experiment and the red line shows the cumulative
number of unique IP addresses collected in 60 days. The
gap between the two lines shows that in each experiment,
new IP addresses appeared in the network. Overall, we col-
lected ≈694K unique IP addresses of unreachable nodes,
with ≈195K nodes present in the network at any time.

can send up to 100 malicious messages to a target node. However,

in practice, by exploiting the existing weaknesses, an adversary

can send up to 115 × 99 = 113, 85 such messages while staying

connected to the victim.
16

Moreover, given that the adversary has a complete control over

the communication in 𝑁𝑖 , the following attacks can be launched to

harm users in 𝑁𝑖 .

The adversary can selectively relay transactions of high profile

nodes (i.e., a Bitcoin exchange) to let only few transactions reach the

miners and get mined in the blockchain. The adversary can also stop

relaying those transactions altogether to halt trading activities on

the exchange and deteriorate the user experience. (1) The adversary

can increase delay in the block propagation [23] of a target mining

pool to further reduce its effective mining power. As a result, the

mining pool might be forced to switch to another cryptocurrency.

(2) The adversary can violate the chain growth and chain quality

properties of the Bitcoin blockchain [34] by reducing the effective
mining power to bring down the PoW difficulty and then increase

the effective mining power while the difficulty remains stable.

F SUPPLEMENTARY FIGURES
In this section, we provide all the supplementary figures that were

omitted from the main paper due to space limitations. Each figure is

sequentially presented as it appears in the main paper. The figures

include (1) Figure 18 used in §2 to illustrate the Bitcoin network

anatomy, (2) algorithm 2 used in §4.1.2 to determine if deg
+
(𝑁𝑟)

falls below deg
+

min
(𝑁𝑟) for a long period of time, (3) Figure 19 used

in subsection 6.1 to show the number of incoming connections from

the same IP address received at our node, and (4) Figure 20 used

in §5.2.4 to show the number of unreachable IP addresses collected

to construct [C2].

16
The default banscore is 100. Some nodes can manually increase or decrease the

banscore. For simplicity, we assume banscore=100.

	Abstract
	1 Introduction
	2 Background
	3 Ideal Functionality for Bitcoin Network Synchronization
	4 Bitcoin Network Measurements
	4.1 Bitcoin Network Synchronization
	4.2 Bitcoin Network Churn

	5 The SyncAttack
	5.1 Threat Model
	5.2 Attack Procedure
	5.3 SyncAttack: Associated Risks

	6 SyncAttack Underway and Countermeasures
	6.1 Ongoing Activities
	6.2 SyncAttack Countermeasures

	7 Related Work
	8 Conclusion
	References
	A Ideal Functionality Proof
	B Generalized Construction for SyncAttack
	C Deanonymizing Transactions
	D Reducing the Hash Rate
	E Additional Risks of SyncAttack
	F Supplementary Figures

