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Abstract. Recent solutions to defend against the Sybil attack, in which
a node generates multiple identities, using social networks. In these solu-
tions, social networks are assumed to be fast mixing, and Sybil nodes—
which disrupt the fast mixing property of social networks—are detected.
Little is known about the cause of the mixing quality in social graphs,
and how to improve it in slow mixing ones. In this work we relate the
mixing time of social graphs to graph degeneracy, which captures cohe-
siveness of the graph. We experimentally show that fast-mixing graphs
tend to have a larger single core whereas slow-mixing graphs tend to
have smaller multiple cores. We then propose several heuristics to im-
prove the mixing of slow-mixing graphs using their topological structures
by augmenting them. We show that our heuristics greatly improve Sybil
defenses.
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1 Introduction
The Sybil attack is a very challenging security threat in distributed systems.
In this attack, a single malicious node claims multiple identities with the inten-
tion of disrupting the normal operation of the distributed system by acting as
if she is multiple nodes [6]. To defend against this attack, there are two schools
of thoughts: centralized [3, 4, 6, 30] and decentralized solutions [13, 24, 28, 29].
In the centralized solutions, a centralized authority is used to provide digital
credentials, such as cryptographic keys, and to bind them to the identity of par-
ticipating nodes in the system. These credentials are then used to hold nodes
accountable to their actions. While effective, those solutions are expensive: 1)
they require an online authority that is hard to bring in distributed systems, 2)
the authority would rely on privacy-sensitive information, like an identification
number, physical address, and the like, and that would scare users away from us-
ing the system, 3) the existence of the centralized authority is very challenging
to the scalability and security of the distributed system in general; an adver-
sary would target that authority with attacks making it a potential bottleneck.
Accordingly, centralized solutions are impractical in largely distributed systems.

Decentralized solutions replace the centralized authority with decentralized
mechanisms. Nodes in distributed systems oftentimes have physical resources
that are limited in nature, such as processing capabilities, memory, addresses,
and geographical location, and these can be verified by other nodes in the dis-
tributed system to establish the identity of that node. Solutions that rely on
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those credentials overcome several of the shortcomings of the decentralized so-
lutions: no single point of failure, and (mostly) no privacy concerns associated
with the solution. However, these solutions work effectively on the premise that
the adversary has a user-level resources: a powerful adversary can easily sur-
pass such assumptions and gain control over more resources, thus bypassing the
detection mechanism and introducing more Sybil identities in the system.

Recent solutions to the problem use social networks and their fabric of
trust [4,10,15,17,28,29]. In such solutions, nodes are limited by their resources;
the number of edges they create with others. To make such identities well en-
meshed into the social graph, the adversary needs to create many edges between
himself and the rest of the social graph, collectively representing honest users,
which is associated with a high cost. Informally, many social network-based de-
signs to defend against the Sybil attack rely on the mixing characteristics of
social graphs for their operation. These designs assume that social networks are
fast mixing, meaning that a short random walk from any node in the graph after
a small number of steps will end up on a node that is randomly selected from the
entire graph. The introduction of large number of Sybil identities hidden behind
a few nodes that are connected by a few edges with the rest of the graph would
violate this property: the honest and dishonest parts of the graphs are slow mix-
ing. More formally, the prior literature on defending against the Sybil attack
makes the assumption that a random walk of O(log n) steps, where n is the
number of nodes in the social graph, is enough to obtain a sample that is driven
from a distribution close to the stationary distribution of the random walk.The
theoretical guarantees of Sybil defenses and their practicality rely greatly on
such parameters: the number of tolerable Sybil identities per an attack edge,
an edge connects an honest node with a malicious node, is proportional to the
random walk length that is considered the mixing time.

Researchers recently demonstrated that the mixing time of social graphs is
slower mixing used in the literature, and showed several immediate findings [22].
First, the theoretical guarantees that make use of certain qualities of the mixing
time of social graphs are inaccurate, since the property does not hold in these
graphs as being assumed. Second, although the mixing time is larger than ex-
pected, Sybil defenses still work fairly reasonably on many of the graphs with
the relatively large mixing time, indicating that a more relaxed property than
the one used in the theoretical reasoning about the operation of Sybil defenses.
Finally, different graphs have different quality of the mixing time, and in cer-
tain graphs—which are mostly the result of face-to-face interactions—the slow
mixing prohibits the applicability of Sybil defenses on them [17,22].

The main intuition behind the quality of the mixing time is hypothesized to
be the community structure in them: whereas face-to-face graphs have slower
mixing characteristics because of their clear community structure, online social
networks have faster mixing times because they are likely subject to noise and
weak social ties, resulting in flat and less clear community structures. However,
no prior work tested this intuition to show its validity in social networks used
for building such applications. Yet more importantly, no prior work used the
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inherent properties of slower mixing social graphs to improve their mixing time,
and make them more suitable for such applications as Sybil defenses. To this end,
we set out to investigate the reasons why certain graphs are slower mixing than
others. We use our findings on why certain social graphs are slower mixing to
improve their mixing time, and thus improve the security of social network-based
systems when operated on top of them.
I Contributions. Motivated by the lack of prior work on understanding the
mixing time of social graphs, our contribution is two-fold. First, we explore
understanding the mixing time of social graphs by identifying why some social
graphs are fast mixing whereas others are slow mixing. We relate the quality
of the mixing characteristics of social graphs to the degeneracy (coreness) of
graphs: we find that whereas slow mixing graphs have multiple small cores,
fast mixing graphs have a single large core. Second, we use this observation
to propose several heuristics that utilize the structure of slow mixing social
graphs to augment them and to improve their mixing characteristics. We show
that the improvement in the mixing time affects Sybil defenses built on top of
social graphs. In one particular heuristics, we are able to reduce the overhead of
operating SybilLimit by more than 55% and the security by more than 70%.
I Organization. The rest of this paper is organized as follows. In Section 3, we
review preliminaries used in this work; including the graph model and the formal
definition of the mixing time, as long as the k-coreness, the main metric used
for understanding the mixing time. In Section 4, we present measurements on
relating the mixing time of social graphs to core structure followed by heuristics
to improve the mixing time in section 5. Conclusion is in section 6.

2 Related Work
To the best of our knowledge, there is no prior work on understanding the mix-
ing time, improving the mixing time of slow mixing social graphs, and studying
the impact of that on the operation of Sybil defenses, except for our preliminary
work in [19] which is limited to the first part. Concurrent to this work, rewiring
of social graphs to improve the mixing time is proposed in [31], without identify
reasons why some social graphs are slow mixing, and without considering the
context of Sybil defenses for the improvement. The rest of the related work can
be broadly classified into three veins: wok that investigated improving Sybil de-
fenses, although in different ways than our approach, related work on measuring
the mixing time, and work on building new Sybil defenses.

Our prior work in [17] improves the performance of Sybil defenses by ac-
counting for trust, not the underlying honest social graphs: selection on nodes
and edges in Sybil defenses are biased based on differential trust. Measuring
the mixing time and testing whether assumptions widely used for building Sybil
defenses are valid or not is studied in [22] and independently in [5], although
findings and conclusions of both studies are at odd. Looking into building tools
to measure the mixing time of directed graphs and the security implications on
the operation of Sybil defenses, as well as anonymous communication systems
built on top of social networks and using the mixing time, is done in [21]. Fi-
nally, mathematical tools and theoretical bounds that characterize the mixing
time and are used for measuring it are proposed in [8, 25].
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As pointed out in the introduction, there has been several works on the design
of defenses that make use of the mixing time of social networks, some of which
use it directly and require some strict quality for their theoretical guarantees
to be achieved while others merely require it as a crude property to conceptu-
ally capture an identifying and distinguishing characteristic between Sybil and
honest nodes. Those works include [3, 4, 11, 16, 17, 22, 28, 29], among others—an
interesting survey of such works is provided in [27]. Our findings in this paper,
although test on SybilLimit, are easily extendable to other designs. Indeed, our
heuristics provided in this paper do not alter the operation of SybilLimit, but
rather the underlying social graph to improve its mixing characteristics. To this
end, we expect that one can easily extend the results and findings on improving
the operation of other Sybil defenses using the same mechanisms.

3 Preliminaries

3.1 Graph model

Let G = (V,E) be an undirected and unweighted graph over n vertices and
m edges, where the set of vertices V = {v1, v2, . . . , vn} and the set of edges
E = {eij} for every vi ∼ vj (vi is adjacent to vj). For G, let P = [pij ]

n×n be a
transition probability matrix s.t. pij = 1/deg(vi) if vi ∼ vj (i.e., if eij ∈ E) and
0 otherwise. kx denotes a fully connected graph on x vertices.
I The mixing time. Informally, the mixing time is the length of a random
walk to reach a constant distance from the stationary distribution of that walk,
when starting from any node in the graph. The stationary distribution is defined
as a probability distribution for any node to be selected as the final node in a
random walk after an infinite number of steps. For the same graph defined above,
the stationary distribution is defined as π = [πi]

1×n, where πi = [deg(vi)/2m]
for 1 ≤ i ≤ n. Formally, the mixing time is defined as

T (ε) = max
j

min
t
{t : ||π − π(j)P t|| < ε}, (1)

where π(j) is the delta distribution (also known as the Kronecker delta function)
concentrated on the j-th position in that vector. This is, π(j) is defined as π(j) =
δ[x] where δ[x] = 0 if x 6= j and 1 otherwise, and the norm || · || in (1) is defined

as ||π − π(j)|| = 1
2

∑n
i=1 |πi − π

(j)
i |.

In the literature, two methods are used for measuring the mixing time of
social graphs. The first method uses the definition in (1); given that the mixing
time converges as the sample of the starting distribution increases, and because
the property of interest in many social network-based Sybil defenses is the dis-
tribution over ε, rather than a fixed ε as defined for the largest t in (1), one can
start from a random set of nodes and obtain different values of ε as t increases.
The different values of ε can be used to measure its distribution and characterize
the mixing time of social networks. On the other hand, the second method for
measuring the mixing time makes use of the second largest eigenvalue of the the
matrix P defined above, and only provides an upper and lower bound on the
mixing time as defined in (1).
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Graphs are either fast or slow mixing depending on how quickly walks on
them reach the stationary distribution [22] (i.e., how large is t for a given ε in
the model in (1)). It has been claimed that the mixing time does not relate to
any of the graph structural properties, making the mixing time interesting in
its own right [5]. We re-examine this claim, and find that mixing characteristics
of a graph are closely related to the core structure, which captures graph cohe-
siveness. We show that fast mixing graphs have large single core, whereas slower
mixing graphs have multiple small cores and use that observation to propose
several herustics to improve the mixing time.

3.2 k-coreness

For the undirected graph G we defined in § 3.1, let k be a parameter such that
k ≥ 1. We define the graph Gk = (Vk, Ek), where Vk = {vik, . . . , vnk

k }, and

Ek = {eij} for all vik ∼ vjk ∈ Vk, to be a subgraph in G such that |Vk| = nk,
min{deg(vik)} ≥ k for all vik ∈ Vk. The subgraph Gk is said to be a k-core
of G if it satisfies the above degree condition, it is maximal in size, and it is
a connected graph. By relaxing the connectivity condition, we obtain a set of
cores (potentially more than one), each of which satisfies the degree condition.
For such k-core, we define the normalized size as sk = nk/n. Formally, Gk

consists of tk ≥ 1 components denoted as {G1
k, G

2
k, . . . , G

tk
k }. We denote nodes

that are in Gi
k as vi1k , . . . , v

i|V i
k |

k . We refer to the largest connected Gi
k as the

major core and others for a given k as minor cores.
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Fig. 1. An illustration of the k−core decomposition of the graph. The original graph
G = G1 is shown in 1(a). Notice that G4 is an empty graph, which results from
trimming nodes in G3, which is shown in Figure 1(c), with degrees ≤ 3.

An example illustrating the definition stated above is shown in Figure 1 of
a graph over 11 nodes and 14 edges, with a lowest degree of 1 and highest
degree of 3, thus the k−core number of the graph is less than or equal to 3.
By recursively omitting nodes in G with degree less than or equal to 1, we
get G2, shown in Figure 1(b). Similarly, omitting nodes with degree less than or
equal to 2 in Figure 1(b) produces G3 shown in Figure 1(c), which consists of two
components, each of which is a fully connected graph defined over 4 nodes. Given
that they are equal in size, either of the components can be considered as the
major component, and the other is considered as the minor component. Given
that the highest degree in G3 is 3 as well, the original graph has a maximum
k of 3, and this dissolves entirely when omitting nodes with degree less than or
equal to 3. Computing the k-cores of a graph for any k is done efficiently using
off-the-shelf algorithms. An efficient algorithm for decomposing a simple graph
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on m edges and n nodes to its k−cores by iteratively pruning nodes with degree
less than k has the complexity of O(m) [2]. To this end, the overall complexity
of running algorithms described in the rest of this paper is linear in both the
maximum k value and the number of edges in the graph G. Finally, notice that
the definition of k-core [14] is related to k-coloring [7], and thus can be naturally
connected to the connectivity of the graph.

4 Measurements and Results
I Datasets. We use the datasets in Table 1 in our measurements. All of these
datasets are widely used as benchmarking graphs in the literature [3,12,18,19,21].
The datasets DBLP, Physics 1, and Physics 2 are scientific collaboration graphs,
and can be considered of the same type, while Slashdot is a blog following graph,
and Wiki-vote is wikipedia’s admin voting graph. In DBLP, nodes represent au-
thors while edges indicate that two authors have a co-authored paper among
them. The Slashdot dataset consists of users and as nodes and an edge between
two nodes indicates that the first node follows an article by the second node
(we omit directions as below). Finally, Wiki-vote is the wikipedia administra-
tors voting dataset in which the first node has voted for the promotion of the
second node to become an administrator. Some of these datasets are directed
(i.e., Slashdot and Wiki-vote), so we follow the literature [3,12] and convert the
directed graphs to undirected ones, by considering an edge between two nodes
in the undirected graph if it exists in either direction in the directed one.
I Measuring the mixing time. We use the definition in (1) to compute
ε for a varying t when starting walks from different nodes in the graph. For
feasibility, we sample the initial distributions of the walks: we start from 1000
uniformly distributed nodes in each graph and compute the mixing time as
per the definition in (1) and the average ε for each walk length. The mixing
characteristics of these graphs are shown in Fig. 2—maximum in Fig. 2(a) and
average in Fig. 2(b).

Table 1. Datasets used in experimentation and validation.

Dataset # nodes # edges

DBLP 769, 641 3, 051, 127

Slashdot 70, 355 459, 620

Physics 2 11, 204 117, 619

Physics 1 4, 158 13, 422

Wiki-vote 1, 300 36, 529

For each graph in Table 1, we use an off-the-shelf linear-time algorithm [2]
to compute the k−core. As k increases to its ultimate value at which the graph
diminishes, we compute the following: (1) the number of cores in each k-core,
(2) the normalized size of each k-core. Results are shown in Fig. 3. Notice that
graphs in Fig. 3(a)-3(b) are slow mixing and graphs in Fig. 3(c)-3(d) are fast
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Fig. 3. The core structure of slow mixing (3(a) and 3(b)) versus fast mixing (3(c) and
3(d)) graphs. The slow mixing graph dissolves into multiple cores as k, the minimum
degree in the k−core algorithm increases, unlike fast mixing graphs which consist of a
single large core.

mixing, as demonstrated in Fig. 2 for both the maximum and average mixing
time cases.
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Fig. 2. Mixing time measurement of graphs in Table 1.

By comparing Fig. 3(a),
Fig. 3(c), and Fig. 3(d),
we observe that slow
mixing graphs are less
cohesive whereas fast
mixing graphs are more
cohesive. This obser-
vation is reflected in
the number of cores
in the k-core of each
graph as we increase k until the graph is dissolved entirely. Also, whereas slow
mixing graphs—shown in Fig. 3(a) and Fig. 3(b)—are decomposed into multiple
cores as we increase k, fast mixing graphs resist this decomposition and remain
cohesive as k increases, even for larger k than in the slower mixing graphs.

Second, even though slow mixing graphs are decomposed into multiple cores,
these cores are relatively small in size and the graph dissolves quickly as k
increases. Fast mixing graphs on the other hand remain in a single core, which
is relatively larger in size than the counterpart core in slow mixing graphs

5 Improving the Mixing Time and Sybil Defenses

With a different motivation, there has been several attempts in the literature
to design algorithms that improve the mixing time of random walks on social
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graphs [1,9]. The main motivation of these designs is to provide a better method
for sampling large graphs and to obtain representative samples of the large pop-
ulation in these graphs [9,18,23]. However, these solutions fall short in providing
the desirable features for Sybil defenses. For example, existing solutions that
improve the mixing characteristics of social graphs by providing uniform tele-
portation probability to any node in the graph at any step in the random walk
are expensive [1], since they require each node to know the entire social graph.
More importantly, these designs are impractical for Sybil defenses, which use
the mixing time for their operation. This impracticality comes from the fact
that these algorithms will ultimately improve the mixing characteristics of both
honest and dishonest nodes arbitrarily, since the probability of choosing an hon-
est and a Sybil node in the graph as a next step of the random walk due to
the teleportation is equal, even when the algorithm is performed in a centralized
fashion. Notice the latter shortcoming can be prevented if the label of destina-
tion is known in advance. However, deviation based on the label would of the
nodes will reduce the effectiveness of the algorithm by not achieving the claimed
improvement in the mixing time in aforementioned work.

As we have shown in the previous section, the mixing characteristics of social
graphs, which influences the operation of Sybil defenses on top of social networks,
depend on the core structure of these graphs. Slower mixing graphs tend to have
multiple cores as the parameter k increases, whereas fast mixing graphs resist
dissolution and consist of a single core as k increases. Using this observation, we
proceed to describe several heuristics to improve the mixing time, and ultimately
improve the operation of Sybil defenses on top social networks. The main goal
of these heuristics is to prevent the dissolution of social graphs into multiple
cores, thus improving its connectivity in a meaningful way. Our work is different
in both objective and tools we use, and is tailored for random walks on social
graphs.

5.1 Heuristics to Improve the Mixing Time

From our previous measurements we observe that as k increases the graph dis-
solves into multiple cores, particularly in slow mixing social graphs. Accordingly,
we refer to the largest core for a given k value as the main core, and other cores
as minor cores. In each of the following heuristics we aim to improve the mixing
time by preventing the creation of multiple cores as k increases using auxiliary
edges. We call this process of adding edges as core wiring. We introduce these
heuristics with sybil defenses in mind as potential applications.
Heuristic X-1-C. The intuition here is to add edges so that only prevent the
dissolution of the graph into multiple cores as k increases. Accordingly, for Gk =
{G1

k, . . . , G
tk
k } (k ≥ 1 and tk > 1), where G1

k is the main core and Gi
k for

i ≥ 2 is a minor core, we add an edge between only one random node vijk in the
minor core Gi

k (where j is chosen at random) and v1lk in the major core G1
k. We

repeat that process as k increases to its ultimate value upon which the whole
graph diminishes. The total number of added edges in the original graph G is
[(
∑kmax

k=1 tk) − kmax], where kmax is the largest k of a core in G. Heuristic X-
A-C. An illustration of the operation of the heuristic is highlighted in Figure 4.
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As k increases, for k = 1 and k = 2, the resulting graph is a single component,
so no edges are added to it. However, when k = 3, the graph dissolves into two
components, as shown in Fig. 1(c). Thus, two nodes are randomly selected; one
from each component (i.e., one is from the major and the other is the minor
component, which these labels used interchangeably for the graph in G3). Then
an edge is created between the two selected nodes, which is the dotted edge in
Figure 4, created between node v5 and v2.

Unlike in the previous heuristic where only dissolution prevent measure is
taken to improve the connectivity of the graph, in this heuristic we aim to further
improve the connectivity by adding multiple edges that would improve resilience
of the graph to the removal of edges in between of different components. The
heuristic accordingly adds multiple edges between each component in the k-core
graph, as k increases. This is, for Gk = {G1

k, . . . , G
tk
k } (k ≥ 1 and tk > 1), where

G1
k is the main core and Gi

k for i ≥ 2 is a minor core, we add an edge between

every node vijk in the minor core Gi
k and random nodes v1lk in the major core

G1
k. We repeat that process as k increases to its ultimate value upon which the

whole graph diminishes. The total number of added edges in the original graph
G is [(

∑kmax

k=1 tk)− k].
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several heuristics to improve the mixing time, and ultimately improve the operation of
Sybil defenses on top social networks. The main goal of these heuristics is to prevent
the dissolution of social graphs into multiple cores, thus improving its connectivity in a
meaningful way. Our work is different in both objective and tools we use, and is tailored
for random walks on social graphs.
5.1 Heuristics to Improve the Mixing Time
From our previous measurements we observe that as k increases the graph dissolves
into multiple cores, particularly in slow mixing social graphs. Accordingly, we refer to
the largest core for a given k value as the main core, and other cores as minor cores. In
each of the following heuristics we aim to improve the mixing time by preventing the
creation of multiple cores as k increases using auxiliary edges. We call this process of
adding edges as core wiring. We introduce these heuristics with sybil defenses in mind
as potential applications.
I Heuristic X-1-C. The main intuition of this heuristic is to add edges so that only
prevent the dissolution of the graph into multiple cores as k increases. Accordingly, for
Gk = {G1

k, . . . , Gtk

k } (k � 1 and tk > 1), where G1
k is the main core and Gi

k for i � 2

is a minor core, we add an edge between only one random node vij
k in the minor core

Gi
k (where j is chosen at random) and v1l

k in the major core G1
k. We repeat that process

as k increases to its ultimate value upon which the whole graph diminishes. The total
number of added edges in the original graph G is [(

Pkmax

k=1 tk)� kmax], where kmax is
the largest k of a core in G.
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Fig. 4. An illustration k�core decomposition to
improve graph connectivity using X-1-C. The
edge v5v2 is add added in G3, after the removal
of v10 in G2 to prevent decomposing G3.

An illustration of the operation of the
heuristic is highlighted in Figure 4. As k
increases, for k = 1 and k = 2, the re-
sulting graph is a single component, so
no edges are added to it. However, when
k = 3, the graph dissolves into two com-
ponents, as shown in Figure 1(c). In such
case, two nodes are randomly selected;
one from each component (i.e., one is
from the major and the other is the minor
component, which these labels used in-
terchangeably for the graph in G3). Then
an edge is created between the two selected nodes, which is the dotted edge in Figure 4,
created between node v5 and v2.
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Fig. 5. An illustration of how the k�core de-
composition of the graph is used to improve
graph connectivity using heuristic X-A-C.

I Heuristic X-A-C. Unlike in the previous heuristic where only dissolution prevent
measure is taken to improve the connectivity of the graph, in this heuristic we aim
to further improve the connectivity by adding multiple edges that would improve re-
silience of the graph to the removal of edges in between of different components. The
heuristic accordingly adds multiple edges between each component in the k-core graph,
as k increases. This is, for Gk = {G1

k, . . . , Gtk

k } (k � 1 and tk > 1), where G1
k

is the main core and Gi
k for i � 2 is a minor core, we add an edge between every

node vij
k in the minor core Gi

k and random nodes v1l
k in the major core G1

k. We repeat
that process as k increases to its ultimate value upon which the whole graph dimin-
ishes. The total number of added edges in the original graph G is [(

Pkmax

k=1 tk) � k].

Fig. 4. An illustration of how the
k−core decomposition of the graph is
used to improve graph connectivity us-
ing X-1-C.
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Fig. 6. An illustration of how the k�core de-
composition of the graph is used to improve
graph connectivity using X-1-C.

An example that illustrates the operation
of this heuristic and extends the previ-
ously used graph is shown in Figure 5.
In this example, and without losing gen-
erality, recall that only G3 dissolves into
multiple components, and requires addi-
tion of edges to prevent such dissolution,
as shown in Figure 1(c), according to
the heuristic X-A-C. Also, without los-
ing generality, let G1

3 = (V 1
3, E

1
3)

where V3
1 = {v4, v5, v6, v7} be the minor core and let G2

3 = (V 2
3, E

2
3)where

V3
2 = {v0, v1, v2, v3} be the major core. In this heuristic, every node in G2

3 is cho-
sen and associated with a node in the major core G2

3, where the latter node need not to
be unique. Accordingly, the wiring of these pairs of edges would result into the graph
shown in Figure 5.
I Heuristic X-A-A. In this heuristic, we aim to further enmesh nodes in different cores
together by adding edges across cores, not only between nodes in the major and the
minor cores. To this end, we wire all nodes in a minor core to other cores in the graph,
including both minor and major cores. The number of auxiliary edges is bounded by the
order of the number of nodes in each k-core. However, to avoid undesirable complexity
in the operation of the heuristic, we first sort all components in a given graph Gk, for
any valid k, with respect to their size (i.e., the number of nodes each component has).
Then, we wire nodes in the smaller component with nodes in the bigger component
only. The same graph in Figure 5 can be used to illustrate the operation of this heuristic.
However, assuming an additional component in G3, namely G0

3 = k5 graph (a complete
graph defined over 5 nodes), then we would start with all node in G2

3, connect them with
nodes in G1

3 and G0
3, then connect all nodes in G1

3 with nodes that are randomly selected
from the component G0

3. The graph of this example is omitted for the lack of space.
I Heuristic X-A-A+. As we have seen in the previous proposed heuristics, additional
edges are added to the graph in order to prevent its dissolution as k increases. These
added edges can be viewed as a cost associated with the operation of these heuristics,
and it is desirable to reduce this cost. Indeed, one desirable modification to the previ-
ous heuristic is graph rewiring. At each time an edge is added between two nodes in
two different components, an edge is removed from either component (for that, we re-
move edges from the minor component, or the component with the smaller size when
the number of minor components is greater than one). Desirably, we remove edges that
constitute triangles within that component, and stop the process of rewiring the graph
when we exhaust all triangles in that component. This approach is similar to the con-
current work in [28], although the strategy used for rewiring edges is different.

Notice that this heuristic would preserve the number of edges in the original graph,
and would rewire nodes instead of adding edges. As we see in the experiments, this
heuristic provides the highest improvement in the mixing time among all heuristics pro-
vided in this paper, which suggests that adapting this strategy to other earlier heuristics
would improve them as well.

Fig. 5. An illustration of how the
k−core decomposition of the graph is
used to improve graph connectivity us-
ing X-A-C.

An illustration of this heuristic is applied to the graph in Figure 5. In this
example, and without losing generality, recall that only G3 dissolves into multiple
components, and requires addition of edges to prevent such dissolution, as shown
in Figure 1(c), according to the heuristic X-A-C. Also, without losing generality,
let G1

3 = (V 1
3, E

1
3) where V3

1 = {v4, v5, v6, v7} be the minor core and let
G2

3 = (V 2
3, E

2
3)where V3

2 = {v0, v1, v2, v3} be the major core. In this heuristic,
every node in G2

3 is associated with a node in the major core G2
3, where the latter

node need not to be unique.
I Heuristic X-A-A. In this heuristic, we aim to further enmesh nodes in
different cores together by adding edges across cores, not only between nodes in
the major and the minor cores. To this end, we wire all nodes in a minor core to
other cores in the graph, including both minor and major cores. The number of
auxiliary edges is bounded by the order of the number of nodes in each k-core.
However, to avoid undesirable complexity in the operation of the heuristic, we
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first sort all components in a given graph Gk, for any valid k, with respect to
their size (the number of nodes each component has). Then, we wire nodes in
the smaller component with nodes in the bigger component only.
I Heuristic X-A-A+. As we have seen in the previous proposed heuristics,
additional edges are added to the graph in order to prevent its dissolution as
k increases. These added edges can be viewed as a cost associated with the
operation of these heuristics, and it is desirable to reduce this cost. Indeed, one
desirable modification to the previous heuristic is graph rewiring. At each time an
edge is added between two nodes in two different components, an edge is removed
from either component (for that, we remove edges from the minor component,
or the component with the smaller size when the number of minor components
is greater than one). Desirably, we remove edges that constitute triangles within
that component, and stop the process of rewiring the graph when we exhaust
all triangles in that component. This approach is similar to the concurrent work
in [31], although the strategy used for rewiring edges is different. Notice that this
heuristic preserves the number of edges in the original graph, and would rewire
nodes instead of adding edges. This heuristic provides the highest improvement,
which suggests that adapting this strategy to other earlier heuristics will also
improve them.

5.2 Practical considerations

Two issues have a great influence on the operation of the proposed heuristics
in this paper that could possibly limit their practicality. In the following, we
raise these issues as questions and subsequently answer them. First, what is the
rationale of using such edges, particularly when the number of edges is large?
Second, what is the guarantee that edges are not going to be created between
good nodes and Sybil nodes, thus improving the mixing time not only for the
honest region of the graph, the region that includes honest nodes only, but also
the dishonest region of the graph as well?

We address the first issue by pointing out two practical considerations. First,
such edges can be made as a part of the natural evolution of the underlying
social graph; by incorporating them into a link recommendation system where
that is possible. Ultimately, not all links will be added to the graph, but some
of them that would be created and such links would be of great importance to
the connectivity of the graph. Second, since the operation of Sybil defenses on
top of social networks does not require a real existence of links between nodes,
but rather the flow of the walk on these links—which makes these edges virtual,
we claim that such edges can be created virtually, but not in reality. This is,
when a random walk is originated from a node on the graph, the random walk
would deviate at that point from the one done on the original graph by assigning
transition probability to the walk towards nodes connected via the virtual edges.

This part of practical consideration of our approach is in a sense similar to
the prior work that adds a random teleportation probability of the random walk
to improve the mixing time [1, 9]. However, our approach will limit the number
of nodes this teleportation would be assigned to (bounded by the number of the
added edges a node in the graph would be a part of), thus no prior knowledge of
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the entire graph is done. However, the probability assigned to each node that is
not connected to a given node have to be given in advance to that node. These
probabilities (practically, they will be identifiers of nodes to which random walks
are then propagated) can be distributed in the initialization phase of the Sybil
defense, which can be done in a centralized manner.

To address the second issue, we use the existing reasoning in the literature
which considers pre-existing labels of nodes in social graph to operate social
network-based Sybil defenses [3, 17, 26]. For example, some of the prior work in
the literature has assumed a predetermined labels of honest and Sybil nodes
to improve the operation of Sybil defenses by incorporating weights on existing
edges between some nodes in a more favorable way than others [17]. On the
other hand, some work has indeed used a pre-determined list of labeled honest
nodes to start the operation of the Sybil defense and to rank other nodes as
either honest or Sybil [3,26]. To address the second issue, we claim that one can
create edges, or add the transition probability as described previously for virtual
edges, between only previously labeled honest nodes, thus improving the mixing
time of the honest region of the graph but not the Sybil one.

In conclusion, auxiliary edges added in our heuristics can be made part of the
evolution of the social graph through link recommendation. Alternatively, when
centralized initialization is viable, these edges can be virtually created among
honest nodes only if some of the nodes are labeled, as used previously.
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Fig. 6. Mixing time measurement of Physics 1 and Physics 2.

5.3 Results and Discussion
We select Physics 1 and Physics 2, two of the slow-mixing and relatively small
social graphs to explore the potential of our heuristics in improving the mixing
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time for slow-mixing social graphs. We emphasize that the main reason to choose
those social networks is their size, which enabled us to compute the mixing time
using the definition in (1) from all nodes in each of the graphs. The results of
measuring the mixing time after applying the heuristics in section 5.1 for all
possible initial distributions are in Fig. 6; Fig. 6(a) and 6(b) are for the Physics
1 dataset whereas Fig. 6(c) and 6(d) are for Physics 2. The total number of edges
before and after wiring graphs using the different methods explained earlier is
shown in Table 2. Notice that the total number of nodes is still the same as
in Table 1, and the number of edges in X-A-A+ is preserved as in the original
graph. In the following we elaborate on how the different heuristics affect the
mixing time and the performance of Sybil defenses on top of them.

Table 2. Datasets used in this study.

Dataset
Number of edges (total)

Orig. X-1-C X-A-C X-A-A

Physics 1 13,422 13,544 16,482 25,064

Physics 2 117,619 117,687 119,082 121,169

Heuristics impact on the mixing time By comparing the different plots
in Fig. 6, it is obvious to see that the heuristics improve the mixing time, and
in some cases greatly, for both the average and the minimum time. Particular,
we first observe that our simplest heuristic (X-1-C), which produces minimal
effect on the graph density—only 122 edges are added to Physics 1—significantly
improves the mixing time according to its definition as the maximal walk length
for a given total variational distance.
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Fig. 7. Accepted honest nodes for varying
attack edges.

Second, the extent to which addi-
tional edges improve the mixing time
differs and depends on the initial
mixing characteristics of the graph.
For example, X-1-C adds 68 edges to
Physics 2 graph, which exhibits al-
most no effect on the mixing time, as
shown in Fig. 6(d). The original graph
already mixes better than Physics 1
dataset on average, and the addition
of these edges, although improves the
slowest mixing sources, does not im-
prove a lot on average. Finally, by con-
sidering the number of added edges in X-A-A in both social graphs and the
measured mixing time after adding these edges, we observe that the addition of
a lot of edges—despite improving the density of the graph—does not improve
the mixing time significantly (sometimes yields worse mixing as in Fig. 6(c)).
This last remark tells us that auxiliary edges need to be placed wisely in graph
in order to improve the mixing time.
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This is further made clear by observing how rewiring the graph in X-A-A+

improves the mixing time, despite maintaining the same number of edges as in
the original graph. We attribute that effect on the performance to the inherent
changes added on the graph to enmesh nodes in it, and reduce the number of
loops within community (core) that would diverge the random walks.
5.4 Heuristics impact on Sybil defenses
We implement and run SybilLimit [28] over the augmented social graphs, ac-
cording to the heuristics described earlier, in order to improve their mixing
characteristics. In the following, we use describe SybilLimit, then provide our
results and findings.
I SybilLimit. In SybilLimit, each node samples r edges in the graph as “wit-
nesses”, where r = r0

√
m, by running r independent instances of random walks

each of length w = O(log n), which is the mixing time of the social graph.
Accordingly, there is an overwhelming probability that the sampled subsets of
honest nodes in the social graph will have a non-empty intersection, which would
be used for suspect verification. Formally, if the social graph is fast mixing—i.e.,
has a mixing time of O(log n)—then probability of the last node/edge visited
in a walk of length O(log n) drawn from the edge/node stationary distribution
is at least 1 − 1

n . Accordingly, by setting r0 properly, one can use the birth-
day paradox to make sure that the intersection between two sampled subsets
of edges (by two honest nodes) is non-empty with an overwhelming probabil-
ity. Furthermore, given that the social graph is fast mixing, and the number
of attack edges—edges that connect Sybil with honest nodes—is limited, the
probability for random walks originated from honest region ending up to the
dishonest region is limited. Chances of dishonest nodes being accepted by sam-
pling honest edges is limited, and bounded by the number of attack edges.
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Fig. 8. The performance of SybilLimit: ac-
cepted sybils under varying number of at-
tack edges.

I Results. To evaluate the perfor-
mance of SybilLimit when operated
on the original and modified graph, we
use both the number of accepted hon-
est suspects by honest verifiers when
using a fixed walk length and vary-
ing number of attack edges, and the
number of accepted Sybil nodes intro-
duced in total for the same settings as
earlier. We used a random walk length
of 16 for the first two heuristics, and
notice that a walk length of 38 on the
original graph is sufficient to accept
97% of the honest suspects by honest
verifiers [22]. Because X-A-A+ improves the mixing time significantly more than
other heuristics, we measure the proper walk length that makes more than 99%
honest nodes accepted by honest verifiers, and find that to be a walk length of
7 which we use for that experiment only. Results are shown in Fig. 7 and Fig. 8,
where Fig 7 shows the number of accepted honest nodes by honest verifiers while
varying the number of attack edges, and Fig 8 shows the number of accepted
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Sybils while varying the number of attack edges for the different heuristics on
the original graph.

In this measurement we observe that (among the first three heuristics) X-
A-A accepted the most honest users followed by X-A-C and X-1-C, which is
anticipated given their consistent order with respect to their modified density as
shown in Table 2 and the mixing characteristics as in Fig. 6. However, and as
anticipated given the theoretical interplay of the mixing characteristics and se-
curity guarantees of Sybil defenses, X-A-A also accepted significantly more Sybil
nodes than others, given its improved mixing time. Interestingly, until the num-
ber of attack edges is 40, X-1-C does not increase the number of accepted Sybil
nodes, while increasing the number of accepted honest nodes by honest verifiers
by around 3.5%. Comparing the Sybil defense when using the three different
heuristics, and that of X-A-A+, we find that the latter heuristic outperforms
them all by accepting most honest nodes and the least of Sybils.

6 Conclusion
In this work we explored understanding and improving the mixing characteristics
of social graphs. We pointed out that the mixing characteristics of social graphs
are related to the core structure, and used that to improve the mixing time. Using
a running example, we demonstrated that the improved mixing time affects Sybil
defenses, such as SybilLimit, although findings can be applied to other defenses.
In the future, we will also look at measures to identify wider range of the quality
of the mixing characteristics, as opposed to both extremes of the maximum and
average explained in this work.
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