
1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2853114, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING 1

Pricing Data Tampering in Automated Fare
Collection with NFC-equipped Smartphones

Fan Dang, Ennan Zhai, Zhenhua Li, Member, IEEE, Pengfei Zhou, Aziz Mohaisen,
Kaigui Bian, Member, IEEE, Qingfu Wen, Mo Li, Member, IEEE

Abstract—Automated Fare Collection (AFC) systems have been globally deployed for decades, particularly in the public transportation
network where the transit fee is calculated based on the length of the trip (a.k.a., distance-based pricing AFC systems). Although most
messages of AFC systems are insecurely transferred in plaintext, system operators did not pay much attention to this vulnerability, since
the AFC network is basically isolated from the public network (e.g., the Internet)—there is no way of exploiting such a vulnerability from
the outside of the AFC network. Nevertheless, in recent years, the advent of Near Field Communication (NFC)-equipped smartphones
has opened up a channel to invade into the AFC network from the mobile Internet, i.e., by Host-based Card Emulation (HCE) over
NFC-equipped smartphones. In this paper, we identify a novel paradigm of attacks, called LessPay, against modern distance-based
pricing AFC systems, enabling users to pay much less than what they are supposed to be charged. The identified attack has two
important properties: 1) it is invisible to AFC system operators because the attack never causes any inconsistency in the back-end
database of the operators; and 2) it can be scalable to affect a large number of users (e.g., 10,000) by only requiring a moderate-sized
AFC card pool (e.g., containing 150 cards). To evaluate the efficacy of the attack, we developed an HCE app to launch the LessPay attack;
and the real-world experiments demonstrate not only the feasibility of the LessPay attack (with 97.6% success rate) but also its low cost in
terms of bandwidth and computation. Finally, we propose, implement and evaluate four types of countermeasures, and present security
analysis and comparison of these countermeasures on defending against the LessPay attack.

Index Terms—Automated fare collection (AFC), Near field communication (NFC), Host-based card emulation (HCE), security,
vulnerability, attack, countermeasure.

F

1 INTRODUCTION

Automated Fare Collection (AFC) systems have been globally
deployed for decades to automate manual ticketing and charging
systems, particularly in public transportation networks. As transit
routes in modern cities are usually quite long, most of today’s AFC
systems adopt a distance-based pricing strategy, where the transit
fee is calculated based on the length of the trip. To date, billions of
AFC cards have been issued across the world.

A typical AFC system leverages a symmetric encryption
method (e.g., based on 3DES [1] or AES algorithm [2]) to
authenticate both the entities and messages involved. When an
AFC card is officially issued, an unchangeable unique transaction
key, TK, is written into the card, which will be used to generate a
dynamic session key, SK; and a message authentication code (or
MAC) [3] during the debit phase. Surprisingly, all the other data
(e.g., the entrance or exit information used for calculating the trip
fare) exchanged between AFC cards and terminals (i.e., faregates

• F. Dang, Z. Li, P. Zhou, and Q. Wen are with the School of Software,
TNLIST, and KLISS MoE, Tsinghua University, Beijing, China
E-mail: {dangf13, wqf15}@mails.tsinghua.edu.cn, {lizhenhua1983,
zhoupf05}@tsinghua.edu.cn

• E. Zhai is with the Department of Computer Science, Yale University, USA
E-mail: ennan.zhai@yale.edu

• A. Mohaisen is with the Department of Computer Science and Engineering,
State University of New York at Buffalo, USA
E-mail: mohaisen@buffalo.edu

• K. Bian is with the Department of Computer Science and Technology,
Peking University, Beijing, China
E-mail: bkg@pku.edu.cn

• M. Li is with the School of Computer Science and Engineering, Nanyang
Technological University, Singapore
E-mail: limo@ntu.edu.sg

Cloud

AFC Card Pool

Entrance

Exit

2. Fake
Entrance 3. Calculate Price

4. Debit

8. Tr
ansaction

Log

1. Entrance
Data

Web Server

Database
(always in consistency)

AFC Back End

5. Debit 6. Auth
Code

7. Auth Code

Fig. 1: Architectural overview of our designed attack on an AFC
system. Red arrows denote the tampered messages, which however
never cause inconsistency in the database of the AFC system.

or fareboxes) are in the plaintext format, which is insecure [4], [5],
[6], [7], [8]. The AFC system operators, nevertheless, do not need
to worry about such a vulnerability, as the AFC network is well
isolated from the public network (e.g., the Internet). Hence, it is
quite difficult for any attacker to hack into the infrastructure of
AFC systems from the outside of the AFC network in practice.

However, in recent years the advent of Near Field Communica-
tion (NFC)-equipped smartphones has bridged the gap between the
AFC network and the Internet, thus putting AFC systems in a highly
dangerous situation. Nowadays, the NFC module has become one
of the default configurations of mainstream smartphones, such
as iPhone and many Android phones. The NFC module operates
at the same frequency (13.56MHz) and implements the same
standard (ISO/IEC 7816-4 and ISO/IEC 14443) as those in most
AFC systems [9]. Moreover, it can work in a special Host-based

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2853114, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING 2

Card Emulation (HCE) mode that allows any Android application
to emulate an AFC card and talk directly to an AFC terminal.

In this paper, we identify a novel paradigm of attacks, called
the LessPay attack, against modern distance-based pricing AFC
systems. The goal of the attack is to pay less than actually required
with a scalable method and does not recover the secret keys,
which usually requires highly professional devices. 1 In order to
launch such attacks, the attackers only need to have NFC-equipped
smartphones and have installed LessPay—our developed HCE app
for LessPay—on their smartphones. Fig. 1 presents a step-by-step
workflow of the LessPay attack, which consists of two important
phases: tampering entrance data (Step 1-2) and relay attack on
AFC card (Step 4-7), which we briefly outline in the following.

• Phase 1: Tampering entrance data. As shown in Fig. 1,
when a LessPay user wants to have a trip by metro, she
first taps her smartphone on an entrance terminal. Then, the
entrance terminal writes the entrance data into the AFC card
emulated by LessPay, indicating the user’s entrance station
and timestamp. Subsequently, the entrance data is reported to
the cloud of LessPay via a cellular connection (Step 1). After
receiving the entrance data, the cloud periodically sends fake
entrance data to the user (Step 2), in order to minimize the
expected fare paid by her (note that the cloud does not know
the user’s destination). In practice, the period is configured as
two minutes and the cellular traffic cost is within tens of KBs.

• Phase 2: Relay attack on AFC card. When the user reaches her
destination, she taps her smartphone on an exit terminal, and
the exit terminal calculates how much the user should pay for
the trip according to the fake entrance data (Step 3). Afterward,
the exit terminal sends a debit message to the emulated AFC
card, which is instantly forwarded to the cloud of LessPay
(Step 4). On the cloud side, this debit message is first relayed
to the physical AFC card corresponding to the emulated AFC
card (Step 5), and then the message authentication code (MAC)
is relayed to the web server (Step 6). Finally, the web server
returns the debit message together with MAC to LessPay to
the smartphone (Step 7), and a transaction log is reported to
the AFC back end by the exit terminal (Step 8). According to
our measurement results, the round-trip time from Step 4 to
Step 7 is generally within 100ms, which is totally acceptable
to user’s real-world driving experience.

The key requirement of the LessPay attack is an AFC card pool
that maintains a number of physical AFC cards for conducting
relay attacks (i.e., Step 5 and Step 6 in Fig. 1). The success of
relay attacks guarantees two important properties. First, AFC back
end cannot detect any data inconsistency during the process of the
attack, which means the attack is invisible to AFC system operators.
In other words, for an AFC system operator, the debit & MAC
provided by LessPay is indistinguishable from the ones offered
by a legitimate AFC card. Second, as the web server (at the cloud
side in Fig. 1) tampers both the station and timestamp information
in the entrance data to forge a very short trip, we only need to
maintain a relatively small number of cards in the pool to serve for
a large number of users, e.g., 150 cards serving 10,000 users. This
is because our users’ very short fake trips can be easily scheduled
by the cloud to totally avoid conflicts.

1. Recovering secret keys is usually achieved via the side-channel attack [10]
by exploiting extensive physical information like timing information or power
consumption during the execution of cryptographic algorithms.

Root

Card Info

Purse

Bus Data

Metro Data

Transaction History

Fig. 2: Example: File structure of CTC.

As a representative case study, we conducted real-world
experiments to launch the LessPay attack against the City Traffic
Card (CTC) system in City X, one of the major cities in China, with
tens of millions population. Specifically, 100 users were recruited
and each user randomly used LessPay to take a subway 40 times
a month. During three-month experiments (from Jan. 10th to Apr.
10th, 2016) with a total of 12,000 tests, 97.6% tests passed (the
failed tests are due to the poor quality of cellular connections).
After the experiments, all cards in our card pool still work well.
This shows the feasibility and scalability of the identified attack.

In order to defend against the LessPay attack, we propose four
types of countermeasures corresponding to different protection
capabilities and deployment overheads: 1) limiting frame waiting
time, or FWT (Section 5.1); 2) protecting the entrance data
(Section 5.2); 3) online fare calculation (Section 5.3); and 4)
dynamic QR (Quick Response) codes (Section 5.4). We not only
design and implement these countermeasures, but also evaluate and
analyze the feasibility of these defenses in reality.

In summary, this paper makes the following contributions:

• We identify a real-world attack with NFC-equipped smart-
phones against the distance-based pricing policy in AFC
systems, which enables users to pay much less than what
they are supposed to be charged.

• We develop an HCE app to launch the LessPay attack (detailed
in Section 3).

• We evaluate LessPay with real-world large-scale experiments,
which not only demonstrate the feasibility of the attack (with
97.6% success rate) but also shows its low cost in terms of
bandwidth and computation (detailed in Section 4).

• We propose four types of attack countermeasures, and discuss
the feasibility and practicality of deploying these countermea-
sures (detailed in Section 5).

2 OVERVIEW OF AN AFC TRANSACTION

This section presents an overview of the working principle of
current AFC transactions, including stored file structure, entrance
protocol, and exit protocol.

File structure. Among today’s AFC systems, the majority of AFC
cards follow the ISO/IEC 14443 standard. In this standard, data in
a smart card is stored in a very simple file system, organized in a
hierarchical tree structure. Each file is identified by its unique file
identifier. As an example, Fig. 2 shows the file structure of CTC.
The basic card information including card number, card type, and
expiration is stored under the root directory. The data involved in
the transactions of bus and metro is stored in the purse directory.

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2853114, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING 3

Card Terminal
(with SAM)

Read basic info

Success

Request Random Number Verify

Random Number (R)
Calculate

MACEntrance Data (with MAC)

Success

Fig. 3: The entrance protocol.

Entrance protocol. When a passenger (with an AFC card) wants
to enter a station, the AFC system needs to execute the entrance
protocol, as shown in Fig. 3, based on the following three steps.

• First, the station’s terminal requests and reads the basic
information of this passenger’s AFC card, including the
card number, the expiration, and the balance. The terminal
verifies this information, including checking the expiration
and whether the balance is sufficient.

• Second, if the above verification succeeds, the terminal would
try to write the entrance data to the Metro Data file (just
using the metro as an example). However, before writing
the entrance data, the AFC card needs to perform a one-
way authentication to the terminal. As shown in Fig. 3, the
terminal gets a random number R from the AFC card, and
then calculates a MAC2 using R with a pre-installed key3

shared with this AFC card (right-hand operations in Fig. 5).
• Finally, after generating MAC, the terminal sends the entrance

data with the calculated MAC to the AFC card. The card
performs an external authentication (shown in Fig. 5): if
passed, the entrance data would be written on the card. On
the other hand, the external authentication works as follows.
As shown in Fig. 5 (left-hand), the AFC card first encrypts
the random number R with the key shared with the terminal.
Because the AFC card has received the terminal’s MAC, which
has been computed by encrypting the same random number
R with the same key (the right-hand operation in Fig. 5), the
AFC card can check whether the terminal’s authentication
passes through comparing the two ciphertexts. If the terminal
is fake, the authentication fails.

After the whole procedure completes, the passenger will be
allowed to enter the station, and her AFC card has been written her
entrance information.

Exit protocol. When the trip is finished, the passenger taps her
card on the exit terminal. The terminal performs the exit protocol,
which is shown in Fig. 4, based on the following two steps.

• First, the terminal reads the same basic information as the
entrance stage, including the card number and the expiration,

2. A 2-key 3DES-MAC algorithm in CBC mode is used.
3. The key of each card is unique in practice. Instead of storing all keys

(which is obviously impossible), the key of each card is generated using a root
key and its card number. The root key is stored in a so-called SAM module
attached to the terminal. The terminal uses SAM to generate the each-card key.

Card Terminal
(with SAM)

Read basic info &
 entrance data

Success

Debit (with MAC)
Verify &

Calculate fare

Success (with MAC’) Upload

Fig. 4: The exit protocol.

Generate Random
Number (R)

Secret
Key (K)

=?

Accept

Reject

Secret
Key (K)

Smart Card Terminal

Fig. 5: External authentication, used by the card to validate the
terminal.

as well as the entrance data from the card. Then, the terminal
verifies the above information. If the verification succeeds, the
terminal calculates the fare that the passenger needs to pay.
The verification process is the same as the first step in the
entrance protocol.

• Second, in order to upload the transaction log information to
the AFC back end, the card and terminal need to perform a
mutual authentication with each other. In other words, besides
the authentication to the terminal, in this step (called debit
checking step), the terminal also needs to check whether
the AFC card is emulated or fake. The process that the
card authenticates the terminal is almost the same as the
authentication step in the entrance protocol. On the contrary,
i.e., the terminal authenticating the card, the AFC card needs
to use its private transaction key TK to generate a session
key SK and a MAC’ (generated using the SK), and then sends
them to the terminal for the authentication. The most important
property in this step is: a fake or emulated AFC card cannot
have a transaction key to pass the authentication.

After the mutual authentication, the terminal uploads the
transaction information to its back-end database.

When AFC network was isolated from the Internet, the
operators did not pay much attention to the communication between
the card and the terminal. They only cared about the security of
the card. Therefore, the debit procedure is protected by the secret
key and the update of entrance data is protected by MAC, but the
entrance protocol is still vulnerable due to the protection is one-way
so that the data in the card is hard to tamper but easy to falsify seen
from the terminal.

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2853114, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING 4

3 ATTACK MODEL AND IMPLEMENTATION OF
LESSPAY

As shown in Fig. 1, there are six steps for launching the LessPay
attack (i.e., Step 1-2 and Step 4-7). Step 3 and 8 do not belong
to the attack since they occur on the terminal side and are not
controlled by the attacker. Step 1-2 and Step 4-7 formulate two
important phases in our attack: tampering entrance data and relay
attack on AFC card. We next detail each of the phases.

3.1 Tampering Entrance Data
In order to tamper the entrance data, we need to know two important
pieces of information: 1) the data structure of entrance data, and
2) the station data, e.g., GPS latitude and longitude coordinates.
In this section, we describe a collection of approaches to infer the
above information.

Collecting entrance data. Instead of collecting entrance data by
physically accessing metro stations, we developed a lightweight app
(different from LessPay app) to specifically collect data listed in
Fig. 2. To allure users to download the app, the app itself provides
useful features including parsing the balance and transaction
histories (which metro line and when the user rode, as well as
the fare) when the user taps the card on her NFC smartphone. We
distributed this app in Google Play. With the agreement of our
users, we collected the anonymized data (the card is innominate)
from 97 different cards.

Obtaining data structure of entrance data. By collecting the
entrance data, we analyze it and try to learn its structure. For
example, Table 1 lists five items of our collected data. By observing
and cross-checking the data, we find that the metro entrance data
contains the following elements:

• The entrance time (yyMMddhhmm format, 5 bytes4)
• The entrance metro line number (1 byte)
• The entrance station identifier (1 byte)
• The balance when entering the station (little endian in 2 bytes,

e.g., 4C1D represents 0x1D4C (7500) cents)
Thus, we obtain the structure of entrance data shown in Fig. 6.

date & time
(YYMMDDhhmm)

station
line

01 balance

Fig. 6: Data structure of entrance data.

Obtaining station information. Rather than collecting station data
by visiting each station (seems impossible), we found a third-party
application called E-Card Tapper [11], which is able to parse the
transaction histories as well as the trip records and details. Driven
by this finding, we reversed this application using Apktool [12] and
dumped the station data from the inner SQLite database of E-Card
Tapper in order to extract its stored station information, such as the
station identifier.

Besides this basic information on stations, we also need to infer
the GPS latitude and longitude coordinates of each station. Thus,
we get the location coordinates of stations using Google Maps.

Tampering the entrance data. We now already have enough
information (i.e., entrance data structure and station information)

4. Noted using patterns for formatting and parsing in JDK 1.8.

to tamper the entrance data. In the LessPay implementation, as
shown in Fig. 1, the web server in the cloud is responsible for
generating the fake entrance data based on the above-collected data.
To falsify a piece of valid entrance data, we simply prepare the
legitimate entrance time, station information, and the balance. In
order to minimize the fare, the attacker’s cloud needs to generate the
proper entrance data according to the destination. Details about the
implementation of tampering the data are described in Section 3.3.

3.2 Relay Attack on AFC Card
This phase covers Step 4-7 shown in Fig. 1. During this phase,
our purpose is to try to pass the mutual authentication in the exit
protocol (mentioned in Section 2). This is because our emulated
card receives a debit from the terminal, and the debit is protected
by transaction key TK via the generated session key SK and MAC’
(mentioned in Section 2). In practice, because a contactless smart
card is a combination of MCU (microcontroller unit, like the most
popular Intel 8051) and an RF (radio frequency) module, under
the protection of the firmware in the MCU, the TK is not readable.
Therefore, it is impossible to emulate an AFC card with debit
support. In other words, the challenge in this phase is how we can
get a transaction key TK for our emulated card to make it pass the
mutual authentication.

We use the physical card equipped with TK to bypass this
security check. This physical card is put in the cloud’s AFC card
pool (see Fig. 1), and it corresponds to the emulated card that
receives the debit from the terminal. In other words, in LessPay, the
emulated card should have a corresponding physical AFC card in
the cloud-side card pool. Our intuition here is to make our emulated
card act as a “proxy”-card and make the cloud server together with
the physical card act as a “proxy”-reader. Such a design enables the
emulated card to forward the debit command to the real card (i.e.,
the physical card) to generate MAC’, because only that physical
card has the needed transaction key TK.

During Step 4-7 in Fig. 1, the debit message transmitted by the
terminal is first received by the “proxy”-card (i.e., the emulated
card) and relayed to the cloud server. The cloud server will transmit
the debit to a physical AFC card. Since the message is authenticated
by MAC, the physical card will assume that it is communicating
with a legitimate terminal and respond normally. Then, the response
is forwarded to LessPay, which will respond to the terminal with
the debit response. Still, the intact message is authenticated by
MAC’, which is identical to a real card, so the terminal cannot
distinguish between the physical card and our emulated card.

Using such a relay attack, the attacker is able to overcome the
fact that our emulated card lacks TK. Moreover, the valid MAC’
will not cause any inconsistency.

3.3 Implementation
Based on the above two important design phases, the implemen-
tation of the LessPay attack consists of a front-end mobile app
LessPay and a cloud-side service (i.e., the cloud in Fig. 1). The
LessPay app requires an NFC-equipped smartphone with Android
4.4 or above. Regarding the cloud server side, any regular server or
workstation is enough to meet the system requirement.

3.3.1 LessPay Client Implementation
Before HCE techniques are proposed, a secure element is required
to perform the communication with the NFC terminal, and no An-
droid application is involved in the transaction at all. Nevertheless,

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2853114, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING 5

TABLE 1: Metro Entrance Data

Entrance Data Enter Time Metro Line Station Balance When Entering

1 1512051417043D014C1D 2015-12-05 14:17 4 Station A 75.00

2 1511301135020801B009 2015-11-30 11:35 2 Station B 24.80

3 15112215225E1D01AC0D 2015-11-22 15:22 X Station C 35.00

4 15112009560A11016612 2015-11-20 09:56 10 Station D 47.10

5 15111220090401015203 2015-11-12 20:09 1 Station E 8.50

Card Pool

Dispatcher

Card 1
Card 1

Card 1
Card 1

Available Cards

Card 1
Card 1

Card 1
Card 1

In Use Cards

Timeout /

Transaction
 Finished

Lock

HTTP Request HTTP Response

New client:
Fetch a new card

In-use client:
Read from pool

Fig. 7: Card pool scheduler.

since Android 4.4 is released, it is possible to emulate a card using
the HCE technology to emulate an ISO/IEC 14443 smart card
without a secure element. Emulating an AFC card requires the
following three features:

An Application ID (AID). When tapping the phone on a terminal,
the HCE service is triggered by a SELECT command. This is
identified by an AID. The AID of CTC is 1PAY.SYS.DDF01,
which we use to register our app.

An emulated card. An emulated ISO/IEC 14443 card needs to
be implemented for communicating with the terminal. As we
mentioned in Section 2, the data in a card is organized in files.
The file structure of this emulated card is the same as the structure
shown in Fig. 2. The messages transmitted and received between
the card and the terminal are called application protocol data
unit (APDU) [4]. The application-level protocol is half-duplex,
by implementing a processCommandApdu method: the input
is the command APDU that the reader sends and the output is
the response APDU. The following commands in the standard are
implemented in LessPay:

• SELECT: Select a different directory.
• READ BINARY: Read data from a specific file.
• UPDATE BINARY: Update data in a specific file. As we

mentioned in Section 2, updating a file requires authentication.
According to the standard, it is a one-way authentication that
the card validates the terminal. In our attack model, we have
to trust the terminal and ignore the MAC unconditionally. As
a result, when the terminal gets a random number, we simply
return a fixed one (see next item) and accept the MAC without
any calculation and comparison.

• GET RANDOM NUMBER: We use a fixed number 00000000
instead of random numbers.

• GET BALANCE: Return the balance of the card. Note that
since the card is reused by many users, therefore, the balance
is fetched from the cloud when the app starts and it is updated

$ 3
12.7%

$ 4
23.3%

$ 5
34.4%

$ 6
15.5%

$ 7
7.7%

$ 8
5.1%

$ 9
1.3%

(a) Users should pay the fares from
$3 to $9.

$ 3
97.6%Failure

2.4%

(b) Except for 2.4% failures, users
actually paid only $3.

Fig. 8: The fares that users should pay and actually paid.

periodically together with the fake entrance data.

The relayed part. The debit command is protected by TK and
requires mutual authentication (as we mentioned in Section 3.2).
Therefore, the debit command is relayed to the cloud server. We
do not implement this command in an emulated card. We respond
to the terminal whatever the cloud server returns.

In order to minimize the expected fare, we need to falsify
the entrance data of the closest station. To achieve a better user
experience, we will not ask the user her destination. Instead, we
use the Android API to locate the user via the Cell-ID and Wi-Fi.
We upload the user’s location every two minutes. In each HTTP
request, we send the user’s coordinate and get the balance, the card
number (see Fig. 4: card number is required to generate the TK,
SK, and MAC), as well as the fake entrance data accordingly.

3.3.2 Cloud-Side Implementation

The configuration of the deployed server is: 2 × 4-core Xeon CPU
E5-2609 @2.50GHz, 8GiB memory, 500GiB 10K-RPM SAS
disk, and a 100Mbps network. The system on the cloud side is
implemented in Akka, which is a JVM-based concurrent system.

Fake entrance generator. PostGIS [13], which is a spatial
extender for PostgreSQL object-relational database, is used to
find the nearest station. Since we are targeting a relatively small
area and City X is not located in high latitude, we choose to use
Cartesian distance to measure the distance rather than the spherical
distance for a better performance.

“Proxy”-card. We use ACR122u contactless smart card readers to
communicate with the AFC cards. In the 100-user test, we prepared
5 readers and 5 physical cards. The server itself maintains the usage
of different cards. We use an LRU dispatching algorithm to select
a card from the cards that were not used in the past two minutes
when receiving a request. Each card is set to the state IN USE
for 2 minutes once we send the card number to the app. After a
successful transaction or timing out, the state is set to AVAILABLE
again. The scheduler is shown in Fig. 7.

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2853114, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING 6

20

10

0 8 16 24
Hour

C
PU

 U
sa

ge
 (%

)

Fig. 9: CPU overhead of the cloud-side server.

C
D

F

1.0

0.2

0

0.4

0.6

0.8

20 40 60 80 100
Traffic (KB)

Maximum traffic: 94.8 KB
Minimum traffic: 1.5 KB
Average traffic: 21.8 KB
Median traffic: 18.5 KB

Fig. 10: The network traffic consumed in LessPay.

C
D

F

1.0

0.2

0

0.4

0.6

0.8

4 8 12 16
Battery Power (mWh)

Maximum power: 15.4 mWh
Minimum power: 0.2 mWh
Average power: 3.4 mWh
Median power 2.9 mWh

Fig. 11: The battery power consumed in LessPay.

50 100 150 200
Card Pool Size

0

80
00

16
00

0
U

se
rs

Service denial rate = 0.1
Service denial rate = 0.2

Fig. 12: The number of users that the card pool can support.

4 PERFORMANCE EVALUATION

This section evaluates LessPay through attacking real-world AFC
systems in City X. In the evaluation, we aim to answer the following
three questions:

• How much money users can “save” through using LessPay
(in Section 4.2)?

• What is the overhead of using LessPay (in Section 4.3)?
• Whether LessPay can support a large number of users (in

Section 4.4)?

4.1 Experimental Setup

We recruited 100 volunteers to use LessPay. These users are
equipped with HCE Android smartphones. The phone models
we used are Samsung Galaxy S5, Huawei Mate 7, Moto XT1095,
and LGE Nexus 5X. 62 users use LTE-TDD network, and the
others use LTE-FDD network.

The experiment lasted for three months (from Jan. 10th to Apr.
10th, 2016). Each user was asked to use LessPay 40 times per
month, with a total of 12,000 tests performed.

4.2 How Much We Can Save?

We now answer the first evaluation question: how much money
users can “save”? The metro fares in City X vary from $3 to $9 (in
the local currency) according to the distance. During the 12,000
tests, the “legitimate” fares are presented in Fig. 8(a). The average
fare that users should pay is $5.03. By using the LessPay app, all
users only need to pay $3 instead of the original fare (i.e., without
using LessPay). This is clear using LessPay enables users to pay
less than the users should pay. $25,181 in total is “saved” (see
Fig. 8(b)).

As shown in Fig. 8(b), we also noticed that among these tests,
there are 2.4% cases that do not succeed, which means these 2.4%
attacks fail to “save” the money. According to the log, we found that
the reason for attack failures is the poor network connection—the
DEBIT command requires a relatively good quality connection.

4.3 System Overhead
We evaluate the overhead of LessPay based on two aspects: client-
side overhead and cloud-side overhead. The former one means the
overhead on smartphones, while the latter one means the overhead
on the cloud server side.
Client-side overhead. The client-side overhead of LessPay comes
from three sources: memory, network traffic, and battery usage.
The typical memory usage is 20MiB, which is moderate.

In terms of bandwidth overhead, our measured results show that
the size of a single request is 48 bytes (16-byte location and 32-byte
user token). The size of a single response is 20 bytes (6-byte card
number, 4-byte balance, and 10-byte entrance data). Including TCP
handshakes, and TCP/HTTP headers, the total network traffic cost
is less than 1KB. The cumulative distribution function (CDF) of
network traffic consumed in these 12,000 tests are shown in Fig. 10.
The average network traffic in all tests is 21.8KB, which costs
only cents. For 80% users, the network traffic cost is less than
36KB. The average total traffic cost in a month (calculated over
40 trips) is less than 1MB.

To understand the overhead of LessPay on battery life, we
record the battery power consumption in these tests. As shown
in Fig. 11, the average power consumption per trip is 3.4mWh,
which is extremely low given that the battery capacity of popular
smartphones lies between 5 - 20Wh [14].
Cloud-side overhead. Fig. 9 illustrates the CPU utilization of the
server on a typical day. The web service is not a CPU-bound

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2853114, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING 7

Terminal TerminalCard

Terminal Proxy Cloud Card Cloud Proxy Terminal

td

ti
tdtp1 tp2

Fig. 13: The upper part shows a direct communication. The lower
part shows a relayed communication.

application. In most time, the CPU usage is as low as 1 ∼ 2%.
Even in rush hours (e.g., 7–9 A.M.), the CPU usage is below 15%.

The inbound/outbound bandwidth for the cloud-side server is
quite low. There is no network traffic when no users turn the app
on. As we pointed out, the traffic in each round-trip is less than
1KB. As a result, network with 100Mbps bandwidth is able to
serve hundreds of thousands of users.

4.4 Scalability

We now explore whether LessPay can scale to a large number
of users. The scalability of LessPay depends on the number of
physical cards in the cloud-side card pool. In other words, more
physical cards can make LessPay support more users. In order
to evaluate the scalability of LessPay, we conducted a simulation
study. The simulation assumes: 1) users use LessPay during rush
hours, 2) all the users use LessPay within two hours, and 3) users’
arrivals follow the Poisson distribution. The user can be denied
service if she has to wait for longer than 15 seconds. We present
the simulation results—the relationship between the number of
users LessPay can support and the number of physical cards in
the card pool—in Fig. 12. We also choose different service denial
rates (0.1 and 0.2) to evaluate the scalability of LessPay under
different environments. As shown in Fig. 12, even during rush
hours, maintaining a card pool size of 150 will satisfy 10,000
users’ need, which means LessPay can serve much more users by
simply adding a few more cards to the pool. Thus, we conclude that
LessPay scales well to a large number of users by only maintaining
a moderate-sized AFC card pool at the cloud-side.

5 COUNTERMEASURES

In order to defend against the constructed relay attacks, this
section proposes four types of countermeasures: 1) limiting frame
waiting time, or FWT (Section 5.1); 2) protecting the entrance
data (Section 5.2); 3) computing fare based on online data-
sharing (Section 5.3); and 4) dynamic QR code to replace AFC
cards.

For each type of countermeasures, we first present the de-
sign and workflow of the countermeasure. Then, we describe
the implementation, real-world deployment and experiment of
the countermeasure. Finally, we discuss the countermeasure’s
advantages, disadvantages, and feasibility. Note that in the second
type of countermeasure, we present four defenses corresponding
to different levels of protection techniques: appending message
authentication code (MAC) to the entrance data (Section 5.2.1),
encrypting the entrance data (Section 5.2.2), and ISO/IEC 7816-4
secure messaging (Section 5.2.3).

At the end of this section, we summarize the advantages and
disadvantages of all the countermeasures (Section 5.5) and show
the comparison results in Table 3.

5.1 Limiting Frame Waiting Time (FWT)

As shown in Fig. 1, we notice during the debit step, LessPay
introduces an extra delay, which is caused by the additional wireless
communication channel and HCE. In particular, Fig. 13 shows the
communication difference between a normal case and a relay-attack
case.

Driven by the insight shown in Fig. 13, we propose the first
type of countermeasure that can quantify the delay in the debit step,
thus detecting suspicious relay attacks. We call this countermeasure
as limiting FWT approach.

Deployment and experiments. We implement a limiting FWT-
based approach which can measure the round-trip times of different
commands using a commercial contactless card reader (HD-100)
directly (i.e., td in Fig. 13), and indirectly (i.e., ti in Fig. 13). Fig. 14
presents our experiments that measure the round-trip times (in
milliseconds) of the four selected commands in our implementation.
Specifically, these four commands include:

1) GET BALANCE aims to read the balance stored in EEPROM.
The response of this command is 6 bytes long.

2) LOAD is responsible for computing a message authentication
code (MAC). The response of this command is 18 bytes long.

3) INTERNAL AUTHENTICATION is used to encrypt data
through 2-key 3DES algorithm [15], and the response of this
command is 10 bytes long. The reason that our experiments
used 2-key 3DES algorithm (rather than AES) is that prevalent
AFC systems keep using 2-key 3DES algorithm in practice
due to historical reasons and deployment overhead. Given the
fact that we are targeting currently in-use AFC systems, our
experiments employ 2-key 3DES, despite the fact that AES
works better than 3DES [16].

4) READ INFO’s main purpose is to read the data stored in
EEPROM. The response of this command is 62 bytes long.

In our experiments, we select a physical card, our LessPay
app5, and a well-applied NFC-eSE based card for comparison.
The physical card contains a microcontroller (MCU) and a crypto
coprocessor. The NFC-eSE based card is embedded in Xiaomi MI
5, and the NFC part is supported by NXP PN66T, which employs
NXP SmartMX as the Java Card VM. Our experiment result is
collected from 100 tests. The density of distribution is recorded
and presented based on the width of each RTT, and the time on the
top-right of each plot is the average RTT in each case.

Based on the RTT of the relay (Fig. 14), we observe that
the time consumed in LessPay is typically much longer when
accessing EEPROM (i.e., command GET BALANCE in (a) and
command READ INFO in (d)). However, when commands require
cryptographic-related operations, the NFC-eSE based card also
slows down. In the load command case, it takes more time than
LessPay. We believe this is caused by the low performance of
Java Card VM. As a result, it is possible to detect the attack by
enforcing stricter timing restrictions. But by doing so, the legitimate
NFC-eSE solution is also banned.

We also notice that deploying the FWT countermeasure may
have some practical issues. First, a restrictive timeout value can

5. Under a good network condition; the network in the metro station is
slower.

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2853114, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING 8

10

20

30

40

26.10

10.13

4.30

20

40

60

80

29.25

49.41

8.48
10

20

30

50

40

32.00

26.19

6.62
20

40

60

80

58.73

20.31
13.97

LessPay NFC-
eSE

Physical
Card

LessPay NFC-
eSE

Physical
Card

LessPay NFC-
eSE

Physical
Card

LessPay NFC-
eSE

Physical
Card

(a) Get balance (b) Load (d) Read info(c) Internal authentication
Ti

m
e

(m
s)

Fig. 14: RTT (in milliseconds) of different commands and targets.

lead to valid transactions rejected, especially with the NFC-eSE
based cards. Second, for a standardized terminal, the maximum
interval between the end of a frame sent by the terminal and the
start of the response frame from the card, i.e., FWT, is determined
by the card. The FWT is calculated from the frame waiting time
integer (FWI) using the formula

FWT = (256× 16

fc
)× 2FWI,

where fc =13.56MHz, varying from 302 µs (FWI = 0) to
4949ms (FWI = 14). FWI is specified during initialization and
anti-collision. Therefore, the response delay can be up to nearly
5 s for a standardized terminal, which makes it difficult to cope
with the problem. Therefore, in this countermeasure, the terminal
should not follow the FWT indicated by a card.

To evaluate the effectiveness of this countermeasure, we set up
an experimental AFC environment. We employed the following
equipment:

• LANDI APOS A8 POS terminal
• C-Union PSAM card
• Physical C-Union traffic card
• NFC-eSE C-Union traffic card
C-Union is a widely-applied standard in China, with hundreds

of millions of cards issued. In the experiment, we choose different
FWTs instead of following the FWT claimed by the card, then
we conduct 100 purchases for the physical C-Union traffic card,
the NFC-eSE C-Union traffic card, and LessPay, and measure the
accept rate of each case. The complete purchase process is shown
in Fig. 15, and the FWT is limited in Step 8 because in this step, the
cryptographic algorithm is applied, while in other steps, LessPay is
able to pre-replay the required data and no relay is required.

The accept rates of various FWTs are shown in Fig. 16.
Under the experimental condition, selecting a reasonable FWT is
impossible. There is no significant boundary to distinguish LessPay
and NFC-eSE. However, in metro stations, the RTT of LessPay is
usually twice or triple of RTT in the experimental environment,
which varies in different stations. It seems that in metro stations,
setting FWT to 60ms is a reasonable choice. Unfortunately, due
to the rapid change of network quality, this FWT may not apply
in the future. To dynamically change the FWT, we may install

SAM POS card

���UHDG�LQIR

���FDUG�LQIR

���GHELW

���GDWD�IRU�GHELW

���YHULI\�GDWD

���0$&

���FRQƉUP�GHELW

���GDWD�ZLWK�0$&Ň

���YHULI\�0$&Ň

����UHVXOW

Fig. 15: The debit process of C-Union.

0

Ac
ce

pt
 R

at
e

1.0

0.2

0.4

0.6

0.8

20 40 60 80
FWT (ms)

Physical Card
LessPay
NFC-eSE

Fig. 16: Accept rates of various FWTs.

cellular modules to measure the network quality. In particular, we
measure the RTT of certain hosts (e.g., the DNS servers of the
ISP) periodically, and set the FWT to the minimum value between
the measured RTT and 60ms (the upper bound of communication
time using NFC-eSE).

Discussions. An obvious advantage of the limiting FWT approach

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2853114, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING 9

SAM POS card

���UHDG�FDUG�QXPEHU

���FDUG�QXPEHU
���FDUG�QXPEHU�ZLWK
GDWD�DQG�Ɖ[HG�,9

���FRPSXWHG�0$&

���YHULI\�0$&

Fig. 17: The procedure of verifying MAC using SAM.

is the approach can be directly used to detect relay attacks without
changing AFC cards or AFC transaction protocol. In other words, it
is easy to deploy in practice. However, as shown in our experiment
results, such a countermeasure cannot work very well because
some parameters of AFC terminals, e.g., restrictive timeout and
time interval, significantly affect the accuracy.

5.2 Protecting the Entrance Data
Besides the communication delay during the debit phase, another
major difference between the normal case and the relay attack case
should be the entrance data. This is because LessPay cannot create
an entrance data as an official terminal does. Inspired by the above
observation, we propose the second group of countermeasure that
protects the entrance data based on security techniques.

In this type of countermeasure, we present three subgroups
corresponding to different levels of protection techniques: ap-
pending message authentication code (MAC) to the entrance data
(Section 5.2.1), encrypting the entrance data (Section 5.2.2), and
ISO/IEC 7816-4 secure messaging (Section 5.2.3).

5.2.1 Appending MAC to the Entrance Data
To protect the entrance data, we first propose a solution that checks
for the entrance data based on a message authentication code along
with the entrance data. This countermeasure should include two
important components.

• First, it is necessary to adopt one key for each card strategy
through key derivation technique; otherwise, simply appending
MAC cannot defend against relay attacks, because attackers
can build a Peer-to-Peer network to share the valid entrance
data together with the MACs from all the terminals. Specif-
ically, in our one key for each card strategy, the derived
key DK should be DK = Encrypt(MK, SN), where MK is
the master key stored in the terminal or the SAM, SN is the
card number, and Encrypt(.) is the 2-key 3DES encryption
algorithm [17], [18]. DK is used as the key of the 2-key
3DES-MAC in CBC mode, which differs in different cards.
The reason for using 2-key 3DES-MAC in CBC mode is to
keep compatible with the old system so that the SAM can be
applied directly. The process which conducts a SAM card is
shown in Fig. 17.

• The second key component is the validation of entrance time
(i.e., step 5 in Fig. 17). Note that the one key for each card
strategy itself cannot prevent attackers from replaying the
entrance data produced by themselves.

Deployment and experiments. We have implemented the above
countermeasure, i.e., appending MAC to the entrance data, based
on two existing techniques, respectively, for comparison purpose.

SAM

MCU

0 40 8060
Time (ms)

20

Fig. 18: Computation time of 3DES-MAC.

1) MCU. We conduct a widely-deployed MCU – STM32F103,
which is ARM Cortex-M3 based and running at 72MHz – to
implement the 3DES-MAC algorithm.

2) SAM. A secure access module is usually used to store secret
keys and execute cryptographic algorithms. We conduct an
Android-based POS terminal with a COTS SAM card and run
the same test.

The experimental results are presented in Fig. 18. Because there
is no operating system when using MCU, the running time of 8
bytes input data is only 0.928ms (based on STM32 cryptographic
library and O1 compilation optimization), whose cost can be
ignored (since a typical transaction costs several hundreds of
milliseconds). While the average running time of 8 bytes input data
is 59.36ms, running on the Android-based terminal. It is much
higher than the former test but still acceptable considering the
transaction time.

We also notice that a practical limitation for this countermeasure
is that MAC is stored statically. As a consequence, reading partial
data, e.g., the entrance time, using READ BINARY command is
possible but the terminal cannot determine whether it is modified.

Discussions. Appending MAC is effective against relay attacks,
and does not need to change anything on the AFC cards or the
back-end service. Despite the effectiveness, this countermeasure
has the following two disadvantages. First, the AFC transaction
protocol has to be changed, which will lead to a lot of additional
efforts on the AFC terminal side. To save time and effort as much
as possible, we suggest using the over-the-air (OTA) programming
to upgrade the firmware remotely, which is adequate for applying
the first two group of countermeasures. Second, because MAC
is appended, additional computational overhead is added to the
protocols, which introduces a slight delay.

5.2.2 Encrypting the Entrance Data

Similar to the approach of appending MAC, another way to protect
the entrance data is to encrypt the entrance data. Fig. 19 shows
an encryption-based approach (adopted in a SAM card) against
relay attacks, which has no significant difference from MAC. The
SAM in this countermeasure checks the information offered by
AFC cards and sends the decrypted data to the POS terminal.

Deployment and experiments. We implemented the encryption-
based countermeasure based on 3DES-CBC scheme. We conducted
the same experiments as what we did for the appending MAC
approach in Section 5.2.1. The experiments use the same condition
and configuration. Fig. 20 presents our experiment results.

There is no significant difference in cost between encrypting
the entrance data and appending MAC to the entrance data. Both
methods keep the proofs that indicate no modification is made since
the whole entrance data is written. In this countermeasure, reading

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2853114, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING 10

SAM POS card

���UHDG�FDUG�QXPEHU

���FDUG�QXPEHU
���FDUG�QXPEHU

ZLWK�HQFU\SWHG�GDWD
DQG�Ɖ[HG�,9

���GHFU\SWHG�GDWD

Fig. 19: The procedure of decrypting data using SAM.

SAM

MCU

0 40 8060
Time (ms)

20

Fig. 20: Computation time of 3DES.

partial data is no longer possible, due to the property of 3DES-
CBC scheme. In addition, encrypting data makes it more difficult
to analyze the usage of data in different files. But it also sacrifices
the possibility to parse data from the card without keys. After
encrypting data, apps like E-Card Tapper can be only provided
by the operator and used online due to data has to be decrypted
remotely.

Discussions. An encryption-based approach is another effective
countermeasure against relay attacks. However, given the fact that
its principle is similar to MAC-based countermeasure, the disadvan-
tages are the same. One of the disadvantages is this approach also
needs to modify the protocol, potentially introducing additional
labors. However, compared with MAC-based countermeasures,
the encryption-based countermeasure should be more expensive,
because most of the encryption operations may introduce more
computational overhead than MAC computation.

5.2.3 ISO/IEC 7816-4 Secure Messaging
ISO/IEC 7816-4 provides a type of mechanism for secure mes-
saging. It allows encrypted data to be transmitted between the
card and the terminal. The basic securing messaging is also a
challenge-response procedure:

1) The terminal sends a GET RANDOM command, and the card
replies the random number rnd.

2) The terminal sends a READ BINARY command, and the
card replies data in ciphertext or plaintext (according to the
card operating system) and uses rnd as IV (initial vector) to
encrypt or calculate MAC.

Deployment and experiments. We developed this countermeasure
based on the above design, and measure the communication time
of reading 8 bytes with and without secure messaging (SM) by 100
experimental runs. Fig. 21 shows the evaluation results.

The cost, which is only less than 10ms, is quite small. However,
it also faces the same threat we mentioned in Section 5.2.1 that
attackers may replay the random number. As a result, the entrance
time must be verified carefully. And the operator may still suffer
from a potential attack. Furthermore, not only does applying this
countermeasure require upgrading the terminals, but it also requires

With SM

Without SM

0 5 1510
Time (ms)

Fig. 21: Communication time (milliseconds) of reading 8 bytes
data.

Fig. 22: Online Fare Calculation.

replacing or reprogramming the cards, which will cost millions of
dollars.

Discussions. Compared with appending MAC and encrypting
data, challenge-response authentication can provide dynamic data
protection, which has been demonstrated more secure. However,
this countermeasure needs to modify both AFC cards (reprogram
or replace) and terminals, which need to a lot of efforts.

5.3 Computing Fare via Online Data-Sharing

Due to the poor network connection in the late 20th and early 21st
centuries, the AFC network decided to use the offline solution.
However, the success of contactless payment in financial systems
like Visa payWave [19] and MasterCard Contactless [20] reveals
that the network condition is no longer a problem.

In online fare calculation systems, when a user taps her card at
the entrance terminal, the terminal simply verifies the card offline.
Once the card contains a valid digital signature or MAC, the doors
open and the entrance data will be uploaded to AFC back end.
When this user taps her card at the exit terminal, the terminal
verifies the card again. If it passes the verification, the user will be
billed then. The process is shown in Fig. 22. Because all the data
(including entrance and exit information of the same AFC card) is
uploaded and stored in the AFC back end, no external attackers
can modify the information.

Except for its security, online fare calculation also has several
advantages compared with traditional procedures:

• No top-up needed. Since the fare is debited from users’
accounts, the top-up is no longer needed.

• Easy applied marketing strategies. Discounting for trans-
fers and multiple rides is quite easy to apply because all of
the fares are calculated after rides daily or even weekly.

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2853114, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING 11

client POS issuer

���DSSO\�IRU�45�FRGH�SD\PHQW

���XVHUŇV�LQIR�	�SXEOLF�NH\��VLJQHG�E\�LVVXHU�

���JHQHUDWH�45�FRGH�
�VLJQHG�E\�FOLHQW�

���VKRZ�45�FRGH ���YHULI\�LVVXHU�	�
FOLHQW�GDWD

���HQWUDQFH�H[LW
GDWD

���XVHU�QRWLƉFDWLRQ

Fig. 23: The Quick Response (QR) code-based payment method
without using an AFC card.

One of the most typical examples of online fare calculation
is in London. Contactless payments were launched on London’s
buses in 2012. And it costs 2 years to accept contactless payments
in London transport. In London, users are billed at the end of the
day instead of exiting stations.

Migrating the current AFC system to online fare calculation
system may cost a huge amount of money. For example, each
terminal costs $200 and a large city owns 20,000 buses, 150 metro
stations. If there are 2 terminals on a bus and 40 terminals in a
station, the total number of terminals is 46,000 and the total cost
should be around 9.2 million US dollars.

In order to reduce the cost, we propose a procedure to utilize
the currently in-use cards. Particularly, a user should associate a
payment account with her AFC card, and the existing challenge-
response mechanism can be used for authentication. Then the fare
can be calculated later.

Besides, the AFC system may introduce contactless bank cards
since they usually support offline data authentication using the PKI
(Public Key Infrastructure) technology, and accordingly, the fare
can be directly credited from users’ bank cards.
Discussions. The online fare calculation can offer the highest level
of security because the computation of this approach is performed
on the cloud side. Thus, any external attacks, e.g., the attackers who
want to perform relay attacks, cannot bypass the terminal checking
with modified data. However, all the terminals and the back-end
system need to be updated, which is a big cost.

5.4 Using Dynamic QR Codes instead of AFC Cards
Motivated by the popularity of Quick Response (QR) code scanning
payment in China, we propose a possible solution using dynamic
QR code for public transportation, targeted at the AFC environment
where almost everything works offline.

The designed process of using a QR code for public transporta-
tion is shown in Fig. 23: with no secure element involved, there
is no such balance in the mobile app. Before using a QR code
for public transportation, a user must provide his or her payment
account to the issuer for the delayed payment. The issuer then
generates a set of data including the identification of the user and
the expiration of QR code. It also generates a pair of asymmetric
keys (stored in the mobile phone for offline data signing). The
issuer should sign these data (but the private key) to avoid being
forged. We call them online generated data. Note that the signature
is generated using the issuer’s private key.

Maximum: 1469 ms

Minimum: 1216 ms

Average: 1358 ms

Median: 1357 ms

1200 1250 1300 1350 1400 1450 1500

0.0

0.2

0.4

0.6

0.8

1.0

Time (ms)

C
D
F

Fig. 24: Time consumed in QR code-based payment.

Maximum: 97.5 KB

Minimum: 82.9 KB

Average: 90.2 KB

Median: 90.0 KB

80 85 90 95 100

0.0

0.2

0.4

0.6

0.8

1.0

Traffic (KB)

C
D
F

Fig. 25: Network traffic consumed in QR code-based payment.

To support offline use, the client needs to generate the QR
code containing online generated data along with the current time
(for preventing replaying) and the signature of these data using
the client’s private key. Note that the client is always possible
to generate new QR code offline before the expiration of online
generated data. Once the POS terminal scans the QR code, it
verifies the signature of online generated data by holding the
public key of the issuer and the signature signed by the client
using the pre-verified public key which is contained in the online
generated data. After these steps, the terminal allows the user to
enter or exit and then uploads the data of QR code to the server for
further notification and payment.

The issuer can adjust the expiration to achieve the trade-off
between the duration of offline usage and the potential risk.
Implementation and experiments. As a totally different method,
we have implemented this countermeasure on Android (Xiaomi
5 with Qualcomm Snapdragon 820 processor @ 1.8GHz) side
for generating QR code, MCU (STM32F103) side for verifying
QR code, and server (in Section 3.3.2) side for generating secret
keys. The complete data elements are listed in Table 2. We use
Ed25519 [21] as the signing and verifying algorithm.

The QR code example is shown in Fig. 26, in which the
expiration of the online generated data is set to 2018-2-15
08:00:00 (UTC), and the QR code generation time is set to 2018-
2-14 22:00:00 (UTC). To verify the QR code, the issuer’s public key
(0FD7E339ED16FEE6CAC84E300B01E4F39AAC962E1E68
443545E119CEBF8E6103) is installed in the MCU. It first
verifies signature1 using this public key. Once the verification
is passed, the public key (#3) of the user can be retrieved, and
consequently, signature2 can be verified.

According to the design, Step 1 is only needed for the first
time a user registers; Step 2 shows up occasionally (new online
generated data will be generated only after its expiration); Step 3-7
exist in every usage. To measure the performance of this design,
we conducted 100 tests. In these tests, the client downloads online
generated data every time (which may happen in low frequency
uses), and then generates the corresponding QR code. We use a

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2853114, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING 12

0000000012345678(user ID)5A853E00(expiration)062C6
C7336106367DC89A5093B5C2855BF8EDA16F2168C913CBBF66
86207CCB0(public key)A5424E8D2F12A4AE4AF536D8E8C9E
484FC88745A30FB49B13E9DA22C79796FC78E3F9705092B2F5
78483BFA67356210D045C25B409EBD3833FF80604E18CE701
(signature1)5A84B160(generated time)39C32E866B06AA
9F5A80FA35A1F55C25D48F0B2DE51F3447A3D04C462E41857B
F93598BFC1A5E4F721005A05CD91057305ABEA2675CF4BA0FC
97A5FD8F630B08(signature2)

Fig. 26: An example of the QR code generated by our implementa-
tion, as well as its implications.

TABLE 2: Data elements contained in the QR code

Element Length Description

Online
generated
data

1 User ID 8 Identification of user

2 Expiration 4 Expiration of online
generated data

3 User’s
public key 32 Different in each generation

4 Signature 64
Signature of online generated
data (element 1 – 3, using
issuer’s private key)

Offline
generated
data

5 Timestamp 4 Timestamp of QR code creation

6 Signature 64
Signature of the entire
data elements (using user’s
private key)

commercial QR code decoder that is connected to the MCU via
serial port, and use the decoder to scan and decode the QR code
on the mobile phone. Finally, the QR code is verified in the MCU
and it notifies our server via an ethernet module. The result is
shown in Fig. 24 and Fig. 25, which indicates that it is a relatively
traffic-saving solution. Note that the time consumed in Step 4 is
not included in Fig. 24 because it depends on the position of how
we show the screen to the terminal. For daily use, Step 2 is not
involved. Therefore, we also measure the running time of signing
data (Step 3) and verifying data (Step 5). During the 100 tests, the
signing time on the mobile phone is less than 1ms. The verifying
time on the MCU is, however, as high as 856ms, which indicates
that such low-performance MCU should not be used to perform
ECC calculation.
Discussions. Using dynamic QR code, which achieves the lowest
cost on the passenger side, entirely replaces the medium of AFC
systems. However, all the terminals and the back-end system need
to be upgraded. Besides, there are also several disadvantages: 1)
the user must open app manually, which may reduce the speed of
entrance or exit; 2) there is no secure element involved, therefore
writing a secure app becomes a challenge.

5.5 Summary
Table 3 presents a summary of the six countermeasures (in four
groups) proposed in this section. As the only one countermeasure
that does not need to replace both AFC cards and protocols, limiting
FWT approach offers the lowest effectiveness. On the contrary,
the online fare calculation approach and the dynamic QR code
approach provide the best effectiveness but need to upgrade lots of
components, which leads to big additional efforts. Between the two
extreme cases, using MAC, encryption and secure messing can also
provide reasonable defense against relay attacks, and at the same
time introduce additional overhead and protocol modification.

To sum up, which countermeasure can be used in practice
relies on specific scenarios and purposes at hand. We believe our
proposed six countermeasures have provided enough choice spaces
for defending against the LessPay attack.

6 RELATED WORK

This section reviews previous studies on relay attack and attacks
on contactless payment, smart card, and AFC system.

Relay attack. Attackers have been trying to implement a relay
attack using various approaches. Initially, researchers built specific
hardware to relay the communication between a smart card and a
terminal. Hancke et al. [22] used a self-built hardware to increase
the distance up to 50m. They also deeply reviewed relay attacks
in [23], discussing relay resistant mechanisms.

With the development of NFC, recent works have focused on
relay attacks using mobile phones. Nokia 6131 was the first phone
ever produced with NFC capability. Francis et al. [24] revealed the
possibility to perform a relay attack using COTS devices. In [24],
[25], [26], researchers performed relay attacks using Nokia mobile
phones and discussed the feasibility of some countermeasures, such
as timing and distance bounding.

More recently, researchers focused on relay attacks with
Android mobile phones. Roland et al. [27], [28] described relay
attack equipment and procedures on Android phones. Lee [29]
demonstrated an open-source software NFCProxy that proxies
transactions using Android phones. Korak [30] compared timing on
relay attacks using different communication channels. Still, some
other work relates to privacy or human interaction issues [31], [32].

Contactless payment. Extracting information from the transaction
communication between a credit card and a POS terminal using
eavesdropping is possible. Haselsteiner and Beitfuß [33] showed a
possible way to eavesdrop NFC. They suggested that, while normal
communication distances for NFC are up to 10cm, eavesdropping
is possible even if there is a distance of several meters between
the attacker and the attacked devices. However, this information
(mainly credit card numbers, and expiration) can be obtained
directly via NFC or even through social engineering. Paget [34]
showed the process and later encode this information and wrote
to magnetic stripe cards. This attack is also known as downgrade
attack, which may not apply nowadays, due to banks refusing
magnetic stripe cards and migrating to Chip and PIN.

Smart card and AFC system. Originally, the MIFARE chip,
which is a memory card chip, was developed as a solution for AFC.
In 1994, an AFC system based on MIFARE was first deployed
in Oslo, Norway. Ten years after its introduction, the MIFARE
Classic was seen as the major candidate for AFC systems. In 2008,
however, researchers discovered a serious security flaw in MIFARE
Classic cards [35], [36], [37]. In particular, the cipher algorithm
used in MIFARE Classic, known as CRYPTO1, has been reversed
and reconstructed in detail, and a relatively easy method to retrieve
cryptographic keys was revealed. Since then, the AFC cards have
been gradually replaced by processor cards globally.

According to a public report, in Dec. 2010, two engineers from
Qihoo exploited the flaw of MIFARE Classic chip to crack four
Beijing Municipal Administration Traffic Cards and modified the
balances. [38] Beijing had stopped issuing the MIFARE Classic
card since then. The newly issuing cards are processor cards, which
are the cards we used in our attack model.

7 CONCLUSIONS

Today’s AFC systems have been globally adopted and billions
of AFC cards have been issued all over the world. Among these
systems, ISO/IEC 14443 is the main protocol used worldwide,

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2853114, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING 13

TABLE 3: Summary of Countermeasures

Countermeasures Pros. Cons. Effectiveness Cost

1 Limiting FWT
• No replacement of cards required
• Reading/writing protocol keep un-

changed

• Ticket tokens vary from types,
which makes determine FWT hard

Low Low

2.1 Appending MAC
• No replacement of cards required
• Apps that can parse data (e.g.,

transaction records) still work

• MAC can be replayed
• Protocol must be modified because

of the extra verification
Medium Medium

2.2 Encrypting data • No replacement of cards required
• Hard to replay

• Protocol must be modified because
of the extra verification

• A proprietary app is required to
parse data

Medium Medium

2.3 Secure messaging
• Challenge-response based authen-

tication
• Dynamic data protection

• Protocol must be modified because
of the extra verification

• Cards need to be replaced or repro-
grammed

• Random number can be replayed

Medium Medium to high

3 Online fare calculation
• Impossible to falsify data
• Operators may run various sales

strategy

• Hard to ensure high network cov-
erage High High

4 Dynamic QR code • Impossible to falsify data
• Low cost on the passenger side

• Terminals and back-end service
need to be upgraded High High

being near universal in East Asia and Europe, and in its early
adoption in the rest of the world.

Under the above background, this paper proposes a new relay
attack on AFC systems, which enables users to pay much less
than actually required by providing fake entrance data. The relay
attack is scalable and invisible to AFC system operators. We have
developed an HCE app, named LessPay, based on our proposed and
reported attack, and evaluated the LessPay app through real-world
experiments. The evaluation results demonstrate the feasibility,
practicality and scalability of our approach.

To handle the constructed relay attack, we finally propose four
types of countermeasures against the constructed relay attack. We
implement, deploy and evaluate these countermeasures, and also
provide the analysis of these approaches.

REFERENCES

[1] W. C. Barker and E. Barker, Recommendation for the triple data
encryption algorithm (TDEA) block cipher. US Department of Com-
merce, Technology Administration, National Institute of Standards and
Technology, 2004.

[2] N.-F. Standard, “Announcing the advanced encryption standard (aes),”
Federal Information Processing Standards Publication, vol. 197, pp. 1–51,
2001.

[3] “Information technology Security techniques Message Authentication
Codes (MACs) Part 1: Mechanisms using a block cipher,” International
Organization for Standardization, Geneva, Switzerland, ISO/IEC 9797-
1:2011.

[4] “Identification cards Integrated circuit cards Part 4: Organization,
security and commands for interchange,” International Organization for
Standardization, Geneva, Switzerland, ISO/IEC 7816-4:2005(E).

[5] “City union card of digital city General technology requirements,”
Standardization Administration of the People’s Republic of China, Beijing,
China, GB/T 31778-2015.

[6] “Specification for Contactless ePurse Application (CEPAS),” Singapore
Standards Council, Singapore, SS 518:2014.

[7] “Contactless pre-paid/post pay IC card User card,” Korean Standards
Association, Seoul, South Korea, KS X 6924:2009.

[8] “CIPURSE V2 - Operation and Interface Specification,” OSPT Alliance,
Munich, Germany, CIPURSE 2.0.

[9] W. Rankl and W. Effing, Smart Card Handbook. Wiley, 2010.
[10] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Examining smart-card

security under the threat of power analysis attacks,” IEEE Transactions
on Computers, vol. 51, no. 5, pp. 541–552, May 2002.

[11] “E-card tapper,” http://www.wandoujia.com/apps/com.siodata.uplink, [On-
line; accessed on July 20, 2016].

[12] “Apktool - a tool for reverse engineering android apk files,” https://
ibotpeaches.github.io/Apktool/, [Online; accessed on July 21, 2016].

[13] “PostGIS Spatial and Geographic Objects for PostgreSQL,” http://postgis.
net/, [Online; accessed on July 21, 2016].

[14] A. Carroll and G. Heiser, “An analysis of power consumption in a
smartphone,” in Proceedings of the USENIX Conference on USENIX
Annual Technical Conference. Berkeley, CA, USA: USENIX Association,
2010, pp. 21–21.

[15] C. J. Mitchell, “On the security of 2-key triple DES,” IEEE Trans.
Information Theory, vol. 62, no. 11, pp. 6260–6267, 2016.

[16] E. Barker, Recommendation for Key Management, Part 1: General. US
Department of Commerce, Technology Administration, National Institute
of Standards and Technology, 2016.

[17] P. Karn, P. Metzger, and W. Simpson, “The ESP Triple DES Transform,”
Sep. 1995, RFC 1851.

[18] EMVCo, “Integrated Circuit Card Specifications for Payment Systems –
Book 2: Security and Key Management,” 2011.

[19] “Visa usa | visa paywave,” https://usa.visa.com/pay-with-visa/
featured-technologies/visa-paywave.html, [Online; accessed on July 20,
2016].

[20] “MasterCard Contactless,” http://www.mastercard.com/contactless/, [On-
line; accessed on July 21, 2016].

[21] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-
speed high-security signatures,” Journal of Cryptographic Engineering,
vol. 2, no. 2, pp. 77–89, Sep 2012.

[22] G. P. Hancke, “A practical relay attack on iso 14443 proximity cards,”
Technical report, University of Cambridge Computer Laboratory, vol. 59,
pp. 382–385, 2005.

[23] G. P. Hancke, K. E. Mayes, and K. Markantonakis, “Confidence in smart
token proximity: Relay attacks revisited,” Computers and Security, vol. 28,
no. 7, pp. 615–627, Oct. 2009.

[24] L. Francis, G. Hancke, K. Mayes, and K. Markantonakis, “Practical nfc
peer-to-peer relay attack using mobile phones,” in Proceedings of the 6th
International Conference on Radio Frequency Identification: Security and
Privacy Issues (RFIDSec). Springer-Verlag, 2010, pp. 35–49.

[25] K. Markantonakis, “Practical relay attack on contactless transactions by
using nfc mobile phones,” Radio Frequency Identification System Security,
vol. 12, p. 21, 2012.

[26] R. Verdult and F. Kooman, “Practical attacks on nfc enabled cell
phones,” in Proceedings of the 3rd International Workshop on Near
Field Communication (NFC), Feb 2011, pp. 77–82.

[27] M. Roland, J. Langer, and J. Scharinger, “Relay attacks on secure
element-enabled mobile devices,” in Proceedings of the 27th IFIP TC 11
Information Security and Privacy Conference, D. Gritzalis, S. Furnell, and
M. Theoharidou, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 1–12.

[28] M. Roland, J. Langer, and J. Scharinger, “Applying relay attacks to google
wallet,” in Proceedings of the 5th International Workshop on Near Field
Communication (NFC), Feb 2013, pp. 1–6.

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2853114, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING 14

[29] E. Lee, “Nfc hacking: The easy way,” DEFCON Hacking Conference,
2012.

[30] T. Korak and M. Hutter, “On the power of active relay attacks using
custom-made proxies,” in Proceedings of the 8th IEEE International
Conference on RFID (IEEE RFID), April 2014, pp. 126–133.

[31] W. Gu, L. Shangguan, Z. Yang, and Y. Liu, “Sleep hunter: Towards fine
grained sleep stage tracking with smartphones,” IEEE Transactions on
Mobile Computing, vol. 15, no. 6, pp. 1514–1527, June 2016.

[32] X. Chen, X. Wu, X. Y. Li, X. Ji, Y. He, and Y. Liu, “Privacy-aware high-
quality map generation with participatory sensing,” IEEE Transactions on
Mobile Computing, vol. 15, no. 3, pp. 719–732, March 2016.

[33] E. Haselsteiner and K. Breitfuß, “Security in near field communication
(nfc). strengths and weaknesses,” in Proceedings of Workshop on RFID
security, 2006, pp. 12–14.

[34] K. Paget, “Credit card fraud – the contactless generation,” in
ShmooCon, 2012. [Online]. Available: http://www.tombom.co.uk/
Paget-shmoocon-credit-cards.pdf

[35] F. D. Garcia, G. de Koning Gans, R. Muijrers, P. van Rossum, R. Verdult,
R. W. Schreur, and B. Jacobs, “Dismantling mifare classic,” in Proceedings
of the 13th European Symposium on Research in Computer Security,
S. Jajodia and J. Lopez, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 97–114.

[36] G. de Koning Gans, J.-H. Hoepman, and F. D. Garcia, “A practical
attack on the mifare classic,” in Proceedings of the 8th IFIP WG 8.8/11.2
International Conference, G. Grimaud and F.-X. Standaert, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 267–282.

[37] N. Courtois, K. Nohl, and S. O’Neil, “Algebraic attacks on the crypto-1
stream cipher in mifare classic and oyster cards.” IACR Cryptology ePrint
Archive, vol. 2008, p. 166, 2008.

[38] “The engineers in qihoo 360 cracked bmac,” http://tech.sina.com.cn/i/
2011-09-28/17166123872.shtml, [Online; accessed on July 20, 2016].

Fan Dang received the B.E. degree from the
School of Software at Tsinghua University in
2013. He is currently pursuing the Ph.D. degree
in the School of Software, Tsinghua University.
His research interests include mobile computing
and security.

Ennan Zhai is currently an associate research
scientist at the Computer Science Department
of Yale University. He received the Ph.D. and
M.Phil. degrees from Yale University in 2015
and 2014. His research interests mainly include
distributed system, applied cryptography, and
software verification.

Zhenhua Li is an assistant professor at the
School of Software, Tsinghua University. He re-
ceived the B.Sc. and M.Sc. degrees from Nan-
jing University in 2005 and 2008, and the Ph.D.
degree from Peking University in 2013, all in
computer science and technology. His research
areas cover cloud computing/storage/download,
big data analysis, content distribution, and mobile
Internet.

Pengfei Zhou is currently working as a postdoc-
toral fellow at Tsinghua University He received
the B.E. degree from the Automation Department
at Tsinghua University in 2009 and the Ph.D.
degree from Nanyang Technological University.
His current research interests include mobile
computing and security, localization, cellular net-
work communications, and NFC.

Aziz Mohaisen (M’05–SM’15) received the Ph.D.
degree from the University of Minnesota in 2012.
He is currently an Associate Professor with the
Department of Computer Science and the De-
partment of Electrical and Computer Engineering,
University of Central Florida. His research inter-
ests are in the areas of systems, security, privacy,
and measurements.

Kaigui Bian received the Ph.D. degree in com-
puter engineering from Virginia Tech, Blacksburg,
USA in 2011. He is currently an associate pro-
fessor in the Institute of Network Computing and
Information Systems, School of EECS, Peking
University. His research interests include mobile
computing, cognitive radio networks, network
security, and privacy.

Qingfu Wen received the B.E. degree from the
School of Software at Tsinghua University in
2015. He is currently pursuing the M.Sc. degree
in the School of Software at Tsinghua Univer-
sity. His research interests include big data and
mobile computing.

Mo Li (M’06) received the B.S. degree from the
Department of Computer Science and Technol-
ogy at Tsinghua University in 2004, and the Ph.D.
degree from the Department of Computer Sci-
ence and Engineering at Hong Kong University
of Science and Technology in 2009. He is cur-
rently an Assistant Professor with the School of
Computer Engineering, Nanyang Technological
University. His current research interests include
wireless sensor networking, pervasive computing,
mobile and wireless computing, and etc.

