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Abstract—Sampling is a powerful tool to reduce the processing
overhead in various systems. NetFlow uses a local table for
counting records per flow, and sFlow sends out the collected
packet headers periodically to a collecting server over the
network. Any measurement system falls into either one of these
two models. To reduce the overhead, as in sFlow, simple random
sampling (SRS) has been widely used in practice because of its
simplicity. However, SRS provides non-uniform sampling rates
for different fine-grained flows (defined by 5-tuple), because it
samples packets over an aggregated data flow (defined by switch
port or VLAN). Consequently, some flows are sampled more
than the designated sampling rate (resulting in over-estimation),
and others are sampled fewer (resulting in under-estimation).
Starting with a simple idea that “independent per-flow packet
sampling provides the most accurate estimation of each flow”, we
introduce a new concept of per-flow systematic sampling, aiming
to provide the same sampling rate across all flows. In addition,
we provide a concrete sampling method called SketchFlow,
which approximates the idea of the per-flow systematic sampling
using a sketch saturation event. We demonstrate SketchFlow’s
performance in terms of accuracy, sampling rate, and overhead
using real-world datasets, including a backbone network trace,
I/O trace, and Twitter dataset. Experimental results show that
SketchFlow outperforms SRS (i.e., sFlow) and the non-linear
sampling method while requiring a small CPU overhead to
measure high-speed traffic in real-time.

I. INTRODUCTION

The simple random sampling (SRS) has played an important
role in network traffic measurement, resulting in standards
such as Sampled NetFlow [28] and sFlow [32]. For instance,
the Sampled NetFlow samples packets to reduce the CPU over-
head of switches to prevent delay in routing decisions. sFlow
uses simple random sampling to reduce meta-data transmission
over the network. Sampling has been comprehensively studied,
since the work of Claffy et al. [4], which uses sampling
for gathering network statistics. As an alternative solution,
however, sketches have been introduced by Morris [26] and
Flajolet et al. [10]. Since then, many works have been con-
ducted to enhance sketches’ accuracy while reducing their
overhead [9], [17], [29], [37]. A comparative study of sampling
and sketches has been done by Tune et al. [36].

Sampling is a practical solution in many areas, such as net-
work measurement and high-volume data analysis (categories
of sampling are shown in Fig. 1). As such, it has played a
significant role as a filter to reduce the burden on the flow
record table (e.g., in NetFlow) and to lessen the network

Fig. 1. Design space of SketchFlow.

bandwidth overhead (e.g., in sFlow). Therefore, maintaining
a stable task reduction rate is a crucial part of evaluating
sampling algorithms, where the reduction of the influx of
elements is determined by the sampling rate, which also leads
to the well-known trade-off between accuracy and overhead.
A large sampling rate (e.g., 1/10) achieves high accuracy
by conducting fine-grained sampling by obtaining samples
more frequently. On the contrary, a small sampling rate (e.g.,
1/10, 000) provides coarse-grained samples (i.e., relatively
low accuracy), but fewer samples are taken. To provide a
better trade-off, many sampling strategies have been proposed.
Claffy et al. [4] showed that timer-driven sampling does not
perform as well as event-driven (or packet-driven) sampling.
Among packet-driven sampling methods, most research works
are on packet sampling, but flow thinning or flow sampling
has been shown to be better in terms of its accuracy [13].
However, it heavily relies on additional information, such
as TCP SYN/SEQ signals. That means the sampling is not
general enough to be used for other purposes such as UDP
traffic measurement–QUIC (Quick UDP Internet Connections)
has occupied 7% of the global traffic in 2016 (and more than
7.8% as of late 2018) [31]. Moreover, such an approach has to
manage flow labels in a hash table, which is another challenge.

Packet sampling is categorized into linear and non-linear



sampling, per Fig. 1. The linear sampling is featured by
uniformly sampling 1/p packets of a data stream, where p is
the sampling interval and 1/p is the sampling rate. According
to Claffy et al. [4], the simple random sampling, stratified
sampling, and systematic sampling can be applied as sampling
strategies. Recent works have focused on how to apply a non-
linear sampling rate according to the flow size [14], [19],
[30], where mouse flows get sampled more often and elephant
flows less often using a non-linear function based on the flow
size. On the downside, the non-linearity in the sampling rate
substantially increases the overhead by sampling small flows
heavily to guarantee the accuracy for a traffic distribution.

Sketches are compact data structures that use probabilis-
tic counters for approximate estimation of spectral densities
of flows [5], [18], [21]–[23], [29]. Sketch-based algorithms
have been shown more accurate in estimation than sampling
approaches while using a small amount of memory. The
higher accuracy of sketches is owing to its per-flow nature of
estimation. However, research on sketch-based estimation has
mainly focused on the sketch itself: the very nature of sketch
to use only a small amount of memory prohibits it from being
used for processing large scale data. More specifically, once a
sketch is saturated, it cannot count at all. Consequently, sketch-
based measurement algorithms have been used in a limited
way such as for anomaly detection (e.g., heavy hitter, super
spreader, etc.) within a short time frame [15], [22], [24], [39].
Also, decoding a sketch is computational heavy, thus cannot
be done in data-plane, and thus sketches usually are delivered
to a server with enough computing power for decoding, which
inevitably introduces a control loop delay.

Our goal is to design a new sketch-based sampling algo-
rithm, called SketchFlow, to provide a better trade-off between
accuracy and overhead for a given sampling rate of 1/p.
SketchFlow performs an approximated systematic sampling
for fine-grained flows (e.g., layer-4 flows) independently. As
a result, almost exactly 1/p packets from each and every
flow will be sampled. This property is in contrast to SRS, in
which the sampling rate across different flows in a data stream
is not guaranteed. SketchFlow provides a high estimation
accuracy, processes high-speed data in real-time, and is general
enough to be used for many estimation purposes without any
application-specific information. The core idea of SketchFlow
is to recognize a sketch saturation event for a flow and sample
only the triggering packets. The saturated sketch for the flow
is reset so that it can be reused. Therefore, SketchFlow can be
seen as a sampler as well as a sketch. SketchFlow, however,
does not work alone as a sketch measuring the whole data
stream, but as a general sampler to NetFlow and sFlow.

In summary, our contributions in this paper are as follows:
i We introduce the new notion of per-flow systematic packet

sampling for a precise sampling. See Fig. 1 for how our
contribution fits within the literature. ii We propose a new
framework using the per-flow sketch saturation event as a
sampling signal of the flow, whereby only a signaling packet is
sampled from the flow, and the saturated sketch is emptied for
the next round sampling. This use of a sketch as a sampler is

new in the sense that a per-flow sketch now works as a per-flow
systematic sampler, and the sketch saturation is not any more
an issue. We note, however, that a sketch is an approximate
per-flow counter thus a sampling algorithm under the frame-
work is only an approximate per-flow systematic sampler.
A new instance can be designed using any better sketch
when available. iii We realize an approximate version of per-
flow systematic packet sampling called SketchFlow. For this
purpose, a new per-flow sketch algorithm is presented, which
can encode and decode flows in real-time. Multi-layer sketch
design is applied for scalable sampling. iv We demonstrate
SketchFlow’s performance in terms of the stable sampling rate,
accuracy, and overhead using real-world datasets, including
a backbone network trace, hard disk I/O trace, and Twitter
dataset.

II. MOTIVATION: FLOW-AWARE SAMPLING VS.
FLOW-OBLIVIOUS SAMPLING

The bottleneck of NetFlow is the processing capacity for
the local table, and that of sFlow is the network capacity.
To address the bottleneck, the widely-adopted simple random
sampling (SRS) is used with a very small overhead. In
theory, SRS guarantees each packet has an equal chance to be
sampled. However, the general usage of SRS is for sampling
over the interface or VLAN, which collects coarse samples
without considering the individual fine-grained flows, such as
a flow defined by the 5-tuple. Consequently, some flows are
sampled more than the designated sampling rate, resulting in
over-estimation, while others suffer from under-estimation. We
note that, although the main purpose of traffic measurement is
mostly to obtain per-flow statistics such as the spectral density
of flow size and distribution, sampling has been applied to data
streams aggregating all the flows, rather than individual flows.
SRS samples packets with 1/p over the entire data stream,
although it cannot guarantee the sampling rate to be 1/p
for each flow. For per-flow statistics, however, the estimation
accuracy is ideal when exactly f/p packets for each flow are
sampled (See the solid lines in Fig. 2), where f is the flow
size and 1/p is the sampling rate. If more or fewer packets
than f/p are sampled for a flow, it leads to over- or under-
estimation of the actual flow size, because the number of the
sampled packets is multiplied by p to estimate f . Therefore,
the best strategy is to keep the per-flow sampling rate identical
across flows. To that end, we propose the per-flow systematic
packet sampling, which is a method to sample every p-th
packet within a flow, whereas the well-known packet-level
systematic sampling is to sample every p-th packet over the
entire data stream. Fig. 2(a) shows the number of sampled
packets according to flow size for a given sampling rate. The
sampling quality is captured by how close the grey dot (the
number of actually-sampled packets) is from the solid line (the
number of ideally-sampled packets) in this figure. Here, we see
that the sampling quality of the flow-oblivious sampling, such
as the simple random sampling (i.e., SRS), is much poorer than
that of the per-flow systematic sampling (i.e., ideal), which is
a flow-aware sampling algorithm ( i ).



(a) Flow-oblivious sampling (b) Flow-aware sampling

Fig. 2. Number of sampled packets compared to exact per-flow systematic
sampling (i.e., ideal): the estimation of SketchFlow is more accurate than the
simple random sampling (SRS).

The complexity of the per-flow systematic sampling prob-
lem is equivalent to the per-flow counting problem, which
means we still have to pay a large amount of mem-
ory/computations for the flow table (i.e., fail to reduce the
complexity). To address this issue, we propose a sketch
saturation-driven per-flow systematic sampling framework.
Our framework utilizes a sketch to reduce the complexity of
the per-flow counting problem. The sketch in the framework,
however, is used to estimate a sampling interval of a flow,
rather than the flow size. Therefore, the sketch does not need
to be large to hold the whole flows’ total length, but it would
be sufficient even when small because it holds only concurrent
flows’ sampling intervals and resets. When a packet arrives,
the sketch encoding algorithm recognizes its flow to sketch
individual flows on a small memory in real-time. When the
sketch space is saturated, the triggering packet is sampled to a
flow table (e.g., NetFlow) or to a collector (e.g., sFlow), and
the saturated sketch is emptied for the next round sampling.
One can build a per-flow systematic packet sampling algorithm
easily from the generic framework by defining an online-
encodable/decodable sketch algorithm. Since a sketch for per-
flow estimation of the sampling interval has an approximate
counting structure, a sampling algorithm from the framework
is an approximate version of the per-flow systematic sampling,
providing a very high accuracy in per-flow statistics while
reducing the overhead (both tables and network bandwidth)
by keeping the sampling rate consistent across flows ( ii ).

SketchFlow is a concrete example of the framework.
Fig. 2(b) illustrates the accuracy of SketchFlow. For each flow,
the fraction of the sampled packet number over the flow size
is almost equivalent to the sampling rate of 1/p. Moreover, the
variance of SketchFlow is much smaller than flow-oblivious
sampling schemes (Fig. 2(a)). In addition, SketchFlow can
provide mouse flow samples by stacking these flows to trigger
sampling events (See section V-D). To sum up, legacy SRS
can be replaced by SketchFlow in many applications such as
network monitoring (e.g., NetFlow and sFlow), big data ana-
lytics (e.g., PowerDrill [12]), and social network service data
analysis (e.g., Twitter and Facebook) for better performance.

III. SKETCH-BASED PER-FLOW SYSTEMATIC SAMPLING

We present SketchFlow, an instance of our framework using
per-flow sketch to trigger per-flow sampling. SketchFlow is an

Fig. 3. The overview of SketchFlow

approximate per-flow systematic sampling ( iii ).

A. Encoding: Data Structure and Overview

Fig. 3 shows an overview of SketchFlow designed to per-
form an approximate per-flow sampling using a small amount
of memory. We constructed SketchFlow using a word array,
which is initialized to all 0’s. When a flow f arrives, a word
from the word array will be selected using the 5-tuple hash
value h(f) ( 1 ) , and then s bits of the register (i.e., vector
mask) are allocated to f according to the partial output (sliding
window) of h(f) ( 2 ). The virtual vector is extracted by doing
“Bitwise AND” between register and vector mask ( 4 ). For
each packet from f , a randomization technique [29] is used
for multiplicity counting. That is, one bit position of the vector
is randomly flipped to 1 by 3 - 5 . A sampling event of each
flow is triggered when the usage of the vector exceeds its limit
(i.e., vector saturation) ( 6 ), and then the estimated value of
the average number of packets to saturate the vector becomes
the sampling interval p̂. In SketchFlow, Linear counting (LC)
is used for volume estimation by p̂ = −m ln(V ), where m is
the number of bits (or memory size), and V is the fraction
of 0’s remaining in the vector. Our approach is consistent
with the theory of LC, while inheriting its limitations—that
is, LC guarantees accuracy only before 70% of a vector is
exhausted [37]. After a sampling event, the vector is recy-
cled (reset to 0) in anticipation of the next round sampling
event ( 7 ). By doing so, the reduction ratio of each flow
(equivalently, the sampling rate) is approximately 1/p̂. Due
to the constrained memory space, however, vectors have to be
designed to share bit positions with one another (virtual vector
hereafter), which brings about a major challenge, the noise
owing to virtual vector collisions. That is, multiple concurrent
flows fall in a race condition when claiming bits in shared bit
positions. We carefully designed the sketch to take a noise-free
approach by minimizing the race condition (See section III-C).



B. Decoding: Sampling Trigger
Understanding the Saturation Event. A sampling event is
triggered by the saturation of a virtual vector assigned to each
flow, and the usage of virtual vector is monitored whenever a
packet is encoded into it. The packet that triggers the saturation
event of a vector (hereafter, signaling bit) is one that flips a
0’s position to 1 and eventually causes more than 70% usage
of the vector. We observed that the LC’s formula could not be
directly applied here, because it overestimates the number of
packets encoded in the virtual vector. The key reason is that the
last packet in a 70% marked vector is highly likely to remark
the bit already marked in LC, whereas the signaling bit marks
a fresh 0’s bit in our sketch. We note that this estimation gap
does not mean that LC is wrong, but event-driven sampling
trigger (i.e., signaling bit) was not intended by LC.
Saturation Event-based Estimation (Sampling Interval).
Here, we propose a new formula to calculate the estimation
considering the saturation event, which is the basis of the real-
time sampling.

Theorem 1: Considering the saturation event that triggers
setting the (s−z+1)-th signaling bit in a virtual vector of size
s, the sampling interval of a flow, p̂ is calculated as follows:

p̂ =
lnVz

ln (1− 1
s )

+

(
1− V τs−z
1− Vs−z

− τ · V τs−z
)
, (1)

where z (Vz) is the fraction of 0’s in a virtual vector, τ is a
positive constant, and s is the vector size. For convenience,
we consider the first term as f(z) and the second as g(z).

Proof: The equation consists of two parts: the former
modifies the LC’s formula without truncating the minor terms,
and the latter is the probabilistic expectation by considering
the saturation event. Let n be the number of packets and n̂ be
the estimation of packets. In appendix A in [37], Wang et al.
derived the mean of the random variable Un which represents
the number of 0’s in the bit map, or a virtual vector. Let Aj be
an event that the j-th bit is 0, and let 1Aj

be the corresponding
indicator random variable. Then, since Un is the number of
0’s, Un =

∑s
j=1 1Aj , where s is the size of the vector. Finally,

per [37], we have the following.

E(Un) =

s∑
j=1

P (Aj) = s · (1− 1/s)
n̂
, (2)

where P (Aj) is the probability of Aj . Since the assignment
of the bits is independent, P (Aj) = (1− 1/s)

n̂.
They approximate this equation to a convergence value

when s and n go to infinity. However, for a more precise
estimation, Nyang et al. [29] used the non-approximation
estimation derived from the expectation of Un, which is used
as f(z) for better accuracy, because the frequent accumulation
of small estimation error can grow bigger. They obtained

Vz = (1− 1/s)
n̂
, (3)

where Vz is the fraction of 0’s in the vector, that is, E(Un)/s.
And by taking the log, they deduced

lnVz = n̂ · ln (1− 1/s). (4)

We choose n̂ as f(z), because n̂ is the estimation of packets
when there are z zeros in the vector. Note that the first part
f(z) is not a cumulative sum of the second part g(z) because
z is the number of zeros before the signaling bit flips to 1’s.

Let g(z) be the expected number of packets required for
saturation after a virtual vector state reaches to the state having
z − 1 zero bits from z zero bits. We assume that g(z) is
the number of packets needed to make the event. This means
that the first g(z) − 1 packets did not convert a new 0-bit to
1, and the last g(z)-th packet selects the 0-bit in the virtual
vector. The probability of the former is Vs−z , the fraction of
1’s in the virtual vector v, and the latter Vz , the fraction of
0’s in v; namely, Vz equals 1 − Vs−z . Since g(z) must be a
positive integer, we can expect g(z) from 1 to some extent, τ .
Therefore, we get the following expectation:

g(z) = Vz + 2VzVs−z + 3VzV
2
s−z + · · ·+ τVzV

τ−1
s−z

=

τ∑
i=1

(
iVzV

i−1
s−z
)
=

1− V τs−z
1− Vs−z

− τ · V τs−z.

The last term in the above equation is obtained from g(z) −
Vs−z · g(z). Vz in g(z) is canceled out by dividing both sides
by Vz; that is, 1− Vs−z . �

In this paper, we set the number of trials (τ ) to 8 because
it has 95% of confidence on flipping a new 0’s to 1’s from
having z zeros. A random variable K follows the binomial
distribution with parameters τ and Vz , where τ is the number
of trials (or packets) and Vz is a probability that one packet
make the saturation event.
Proof of Unbiased Sampling. The first term is unbiased when
it is used to estimate the average number of packets per the
virtual vector usage (See [37]). We use it to estimate the
condition before the saturation event (i.e., f(z)). The second
term is the expected number of packets (constant) that triggers
the saturation event from the last condition (i.e., g(z)), which
does not impact the variance of the entire formula.

Theorem 2: Assume that there is an initial virtual vector v
for SketchFlow. We define the saturation event by the state
transition from the state where the number of zeros in v is z
to the state with z − 1 (z is 30% of the virtual vector size
when s ≥ 8.). At the exact moment when the event has just
occurred, SketchFlow’s estimation of the number of packets
needed to trigger an event is unbiased.

Proof: The first term of the estimation, f(z), is the number
of packets which is used to maintain z zeros in v. The
expected value of f(z), E(f(z)), is unbiased by LC’s theory.
Starting from the point when v has z zeros, the expected
value of the number of packets for the saturation event is
E(g(z)), which is also unbiased according to Theorem 1.
Therefore, SketchFlow’s formula f(z) + g(z) is unbiased,
because E (f(z) + g(z)) = E(f(z)) + E(g(z)). �

C. Estimation without Noise Reduction

In SketchFlow, a fixed virtual vector (of s bits) was “tem-
porally” given to a flow for performing LC-like probabilistic
counting. Thus, vectors of concurrent flows may partially or



fully share bit positions, and bring about a race condition for
the shared bit positions resulting in a virtual vector collision.
We propose a noise-free approach to dramatically mitigate the
virtual vector collision spatially and temporally. We also show
that even when the noise occurs, SketchFlow can ignore the
vector collision problem introducing the noise. For instance,
once a specific flow triggers saturation event of the virtual
vector, the flow takes all bits in the vector regardless of how
many bits (or noises) were actually contributed by other flows,
and it resets the vector. Our approach is tolerant to collision
considering the following dispersion aspects:
Spatial Dispersion. Spatially, SketchFlow confines the virtual
vector of flows within a word range (i.e., 32-bit or 64-bit),
then distributes flows in the memory space (i.e., word array)
uniformly. This greatly reduces the probability of collision
of concurrent flows, when enough number of words for con-
finement are given. In a local view, SketchFlow uses a small
size for virtual vectors, which is smaller than the word size.
The probability of vector collision within a sw-bit word with
respect to the size of vector (sv) and the number of concurrent
flows (nf ) is pcollision = 1/

(
sw
sv·nf

)
, where pcollision decreases

when sv gets smaller. Both contribute to reducing spatial
collision of virtual vectors of concurrent flows.
Temporal Dispersion. SketchFlow looks into a small
timescale for TCP bursts. TCP usually sends a window of data
in one or a few bursts and waits for ACKs, which causes a flow
to be broken into many small subsets named flowlets. Sinha
et al. [33] reported that the number of concurrent flowlets was
much smaller than that of concurrent flows, which makes the
probability of the spatial virtual vector collision even smaller
in the smaller timescale. Moreover, the small vector size of
SketchFlow increases the probability that the saturation events
are triggered before the end of flowlets, which also reduces the
probability of virtual vector collision in a temporal manner.
Worst Case. For the worst case, we can consider the situation
where multiple concurrent flowlets share bit positions with
each other. We claim that even without considering the noise
by other concurrent flowlets, equation (1) is enough to decide
whether the flow reaches the sampling interval or not. Whether
two flows are mouse or elephants, probabilities of each flow to
lose bits are the same in a sampling interval. This is because,
during a sampling interval, two flows lose the concept of
transmission rate but are only mixed in a random sequence
in the buffer when concurrently arriving flowlets are loaded.

D. Scalable Sampling

As described in section III, SketchFlow uses a virtual vector
smaller than the size of the word. However, a 32-bit virtual
vector cannot count over 40 (See Fig. 4(a)), which limits the
minimum sampling rate. Increasing the confinement size does
not help with scaling up the sampling interval but induces
more memory read and write. To scale up the sampling
interval, SketchFlow employs a “multi-layer” strategy where
each layer of SketchFlow maintains an independent word
array. Unlike other multi-layer sketch approaches that only
scale up the retention capacity (e.g., [3]), SketchFlow provides

Algorithm 1: Encoding and Sampling Trigger
input: # of layer l, word array w[l][] , vector size s

1 forall Pktf do
2 hf ← hash(Pktf );
3 wv ← make confined vector(hf );
4 for L = 0 to l − 1 do
5 w[L][hf ]← w[L][hf ] | leave one bit only(wv);
6 /*Saturation event is triggered if usage > 70%*/;
7 if Popcount(w[L][hf ] & wv) ≥ 0.7× s then
8 w[L][hf ]← w[L][hf ] & bitwiseNOT(wv);
9 /*Sampling event is triggered in the last layer*/;

10 if L = l − 1 then
11 Trigger a sampling event with flow f ;
12 end
13 else
14 break;
15 end
16 end
17 end

an online decoding feature as well to help with the high-speed
processing. Encoding the arriving packet starts from the lowest
layer and climbs the layers depending on the saturation of the
virtual vector. Repeatedly, the saturation from the lower layer
is encoded into its upper layer following the same process
of encoding. That is, the upper layer counts the saturation
of its lower layer. Finally, the sampling event happens when
the flow is saturated at the highest layer. All layers share
the same hash value of a flow but run different random
functions. The sampling interval of multi-layer SketchFlow is
the multiplication of the sampling interval of each layer (See
Fig. 4(b) for sampling interval by different layers). For 3-layer
SketchFlow with an 8-bit virtual vector, the sampling interval
is 9.7643. Note that each layer can use different virtual vector
sizes to achieve different sampling intervals on demand.

IV. IMPLEMENTATION

A. Algorithm

SketchFlow’s algorithm can be divided into encoding, sam-
pling/saturation trigger, and multi-layer sampling phases.
Encoding. For each arriving packet of a flow f , SketchFlow
computes the hash (hf ) of the 5-tuple extracted from the
header (line 3). The hf is used for two purposes. First, part of
hf is used to calculate the bit positions of the virtual vector
in a word (line 4). By calling make confined vector(), we
obtain a virtual vector bit mask in a word register (wv) for
one confinement in which only the bit positions of the virtual
vector for f are set. Second, hf is regarded as an index that
determines in which word the virtual vector is confined among
word arrays (line 5). Once wv and w[Layer][hf ] are ready,
leave one bit only() randomly selects one of the 1’s po-
sition among wv and “Bitwise OR” it with w[Layer][hf ].
Sampling/Saturation Trigger. After several rounds of en-
coding, the virtual vector of f will be saturated (>70%
usage). SketchFlow monitors the saturation of the vector
after every encoding by counting the number of 1’s using
Popcount() [25] (line 7). Once the saturation threshold is



reached, the bit positions will be reset to 0 (line 8), and the
sampling/saturation event is triggered1. One sampled packet
represents p̂ packets in equation (1), which is a pre-decoded
value and enables real-time sampling.
Multi-layer Sampling. To implement multi-layer SketchFlow,
the encoding process is repeated (line 4-16) for each saturation
event to the upper layer using the word array the layer
belongs to. Eventually, the sampling event is triggered when
the saturation events occur in the last layer (line 11-12). All
layers share the hash value (hf ) and virtual vector mask(wv)
computed in the lowest layer to alleviate the computation.

B. Parameter

The size of confinement of a virtual vector is selectable
depending on the processor architecture (32 or 64 bits). The
size of the virtual vector is recommended not to exceed half
of the size of a word to reduce the probability of virtual vector
collisions within a word. For memory usage, we recommend
that the maximum possible number of virtual vectors that can
be contained in a word array should be equivalent to the
number of concurrent flows in a second for tolerant sampling.
In our evaluation, we used a 110KB 32-bit word array per layer
and an 8-bit virtual vector when performing the experiments
using CAIDA trace because the maximum number of concur-
rent flows was ≈110K. We found that SketchFlow provides
better accuracy than other sketch approaches even with a small
memory usage (See section V-E).

C. Performance Optimization

For real-time per-flow systematic sampling, we take several
optimization efforts. 1) By careful design, SketchFlow requires
only one conditional branch for each layer to trigger the sam-
pling/saturation event. 2) For fast computation, SketchFlow
marks the bit positions of the virtual vector in an empty
register (line 3) so that encoding (line 5) and recycling (line
8) can be done in a single “Bitwise OR” and “Bitwise AND”
operations. 3) Due to the confinement of a virtual vector, usage
check of a virtual vector can be done using a built-in hardware
population counting function (Popcount()) [25]. 4) Inspired
by the implementation of the exact match cache (EMC)
module of OpenvSwitch using DPDK [6], the hardware-based
CRC checksum instruction of streaming SIMD extensions
(SSE) [34] was used to calculate our 5-tuple hash function.

V. EVALUATION

In this section, we use various metrics to evaluate Sketch-
Flow. First, we compare our theoretically-estimated sampling
interval with the experimental result to verify the sampling
interval in equation (1). Also, we show the scalability of our
multi-layer strategy in terms of the sampling interval. Second,
we evaluate the overall performance of SketchFlow using
CAIDA trace by varying the sampling rate and comparing
SketchFlow with simple random sampling (sFlow [32]) and
with a non-linear scheme (sketch guided sampling [19], SGS

1If s = 8, a sampling event is triggered when 6 or more 0’s positions are
marked as 1’s (i.e., k = 6), because 6 bits are 75% (>70%) of an 8-bit vector.

(a) Single-layer design (b) Multi-layer design

Fig. 4. Theoretical and experimental sampling interval of SketchFlow.

hereafter). Third, we discuss the overhead of SketchFlow.
Lastly, we evaluated SketchFlow not only in the network traffic
dataset [1] but also in the keyword ranking problem (Twitter
dataset [20]) and in the hot block ranking problem (Disk I/O
trace [27]) that has more complex data distribution ( iv ).

A. Estimation Accuracy and Scalability

Fig. 4(a) shows sampling interval of SketchFlow by varying
the virtual vector size. The Y -axis is the average number of
packets to trigger a sampling/saturation event. We compared
the estimated value of SketchFlow with the experimental
results (1 million runs). As a result, our estimation is accurate
regardless of the size of the virtual vector (error rate<0.07%
for 8-bit). However, the growth rate is very slow, and so the
counting capacity for a 32-bit virtual vector cannot go over 40
packets (Fig. 4(a)). With the multi-layer strategy, the counting
capacity exponentially increased, as shown in Fig. 4(b). Using
an 8-bit virtual vector for 4-layer SketchFlow which equally
assigned 32 bits for each flow, the counting capacity dramati-
cally increased to reach around 9,088. Note that to achieve the
equivalent counting capacity without the multi-layer strategy,
thousands of bits are needed for a virtual vector. Furthermore,
hundreds of memory accesses are required to decode it, which
is unacceptable for online sampling. In the multi-layer mode,
SketchFlow needs only one memory access for each layer.

B. SketchFlow vs. Linear Sampling Approach (SRS)

Per-flow Accuracy. For our baseline, we compared Sketch-
Flow with SRS using the CAIDA trace. The implementation
of SRS followed the way used in sFlow. To achieve the
same sampling rate as SRS, SketchFlow approximated the
sampling rate using the multi-layer strategy where each layer
used 8-bit virtual vector. The approximated sampling rates
of SketchFlow are 1/9.764 (L1), 1/95.328 (L2), 1/930.750
(L3) and 1/9087.749 (L4), respectively. In SketchFlow, each
layer was assigned with a 110KB 32-bit word array so that the
maximum possible number of virtual vectors without collision
should be equivalent to the maximum concurrent flows of
CAIDA trace in a second. No memory usage is required by
SRS. Fig. 5 presents the relative error of SketchFlow and
SRS varying sampling rates, where SketchFlow’s estimation is
unbiased from the ground truth and its accuracy is better than
SRS’s, regardless of flow sizes. Also, SRS’s variance grows
faster as the sampling rate decreases. Fig. 6 shows the CDFs



Fig. 5. CAIDA trace: Relative error of independent flows of SketchFlow and SRS. Each point stands for each flow. To see how accurate each scheme is,
check how close the point is to y = 0. Multi-layer SketchFlow was used to approximate sampling rates 0.01-0.0001 (left to right), respectively. Each layer
was assigned with a 110KB 32-bit word array, and 8-bit virtual vector was used for all experiments. No memory usage is required by SRS. CAIDA trace
contains ≈2 billion packets and ≈95 million L4 flows.

Fig. 6. CAIDA trace: CDF of flow-level relative error of SketchFlow and SRS. The overall accuracy of SketchFlow is better than SRS.

TABLE I
FLOW THINNING PERFORMANCE: HIGHER IS BETTER

Sampling Rate 0.1 0.01 0.001 0.0001

SketchFlow precision 0.414 0.174 0.240 0.293
recall 0.931 0.950 0.959 0.954

SRS precision 0.408 0.161 0.201 0.159
recall 0.916 0.960 0.921 0.923

TABLE II
PACKET THINNING PERFORMANCE

Sampling Rate SketchFlow SRS
samples ratio samples ratio

0.1 198,322,728 0.10156 195,274,392 0.10000
0.01 19,973,488 0.01023 19,531,764 0.01000
0.001 1,964,032 0.00101 1,952,120 0.00100

0.0001 154,041 0.00008 195,865 0.00010

of overall flow-level relative error of both schemes according
to the sampling rate. Both were compared with the ground
truth. As shown, SketchFlow is more accurate than SRS in all
cases where the sampling rates ranged from 0.1 to 0.0001.
Flow Thinning. We evaluated the quality of flow thinning
(sampling). Precision refers to the fraction of correctly-
sampled flows (i.e., sampled flows where the size is equal to
or greater than the sampling interval) over all sampled flows.
As shown in Table I, the overall precision of SketchFlow is
higher than that of SRS. The precision gap is even greater
when the sampling rate decreases. The recall is the fraction
of correctly-sampled flows over flows that are supposed to
be sampled (i.e., all the flows of which sizes are equal to or
greater than the sampling interval). As a result, the recall of
SketchFlow is shown to be better than SRS in most cases.
Overall, the quality of SketchFlow in flow sampling is better
than or equal to that of SRS. Note that when the sampling
rate is 0.01, the precision is low in comparison with 0.1 and
0.001 due to the drastically-increased mouse flows.

Fig. 7. Comparison of mouse flow sampling between SketchFlow and SRS.
Mouse flow is a flow which the volume is less than sampling interval p

Packet Thinning. We compared the fraction of the sampled
packets over the entire packets of the CAIDA traffic. As shown
in Table II, SketchFlow guarantees the traffic reduction rate,
which can relax the overhead under a fixed boundary.
Mouse Flow Sampling. One of the desirable features of SRS
is the ability to provide mouse flow samples. The mouse flow
is referred to a flow of which the volume is less than the
sampling interval p. We note sampling of mouse flows is
irrelevant to the size of the flow, which means one-packet
sized mouse flows also have a chance to be sampled because of
noise in the virtual vector. Fig. 7 shows a comparison between
SketchFlow and SRS with respect to the number of sampled
flows and the sampled packets. As shown, SketchFlow cap-
tures comparable or more mouse flow samples than SRS with
sampling rates (1/p) of 0.1, 0.01, and 0.001. This illustrates
that SketchFlow can be a good alternative to SRS for general-
purpose sampling tasks without losing the information of
mouse flows, but providing better accuracy of elephant flows.
Unsurprisingly, though, when the sampling rate is 0.0001, the
number of the sampled mouse flows is halved compared to
SRS. This is because SketchFlow uses a sketch saturation-
based sampling mechanism. Since our dataset follows a heavy-
tailed distribution [2], the volume increment of mouse flows
following the increment of the sampling interval (p) is slow.
Thus, it is hard for mouse flows to saturate the sketch for



(a) Relative Error (b) Small Flows (10-1,000) (c) Medium Flows (1,000-10,000) (d) Large Flows (10,000+)

Fig. 8. CAIDA trace: Accuracy comparison between SketchFlow and SGS. Both were assigned with 110KB memory for fair comparison. The sampling rate
of SketchFlow was 0.1 and the expected relative error of SGS was 0.01. (a) shows the relative error of independent flows. Each point stands for each flow.
The closer point to y = 0, the better accuracy. (b)-(d) show the CDF of relative error of different flow size intervals.

triggering sampling events. We note that the efficiency of
mouse flow sampling of SketchFlow is better than that of SRS
with any sampling rate, which means SketchFlow can capture
more mouse flows with fewer samples.

C. SketchFlow vs. Non-linear Sampling Approach (SGS)

We compared SketchFlow with a non-linear scheme,
SGS [19]. For fairness, both SketchFlow and SGS used
110KB memory space for their sketch. As shown in Fig. 8(a),
the overall relative error of SketchFlow is closer to 0 than
SGS’s by varying the flow size. Remarkably, SGS outperforms
SketchFlow in small flows (Fig. 8(b)) but not large flows
(Fig. 8(c)-(d)). The result is reasonable and anticipated because
the strategy of SGS is to sample mouse flows with a very
high probability, which leads to the frequent sampling of
mouse flows. Fig. 8(b) shows that SketchFlow samples only
10% (44M packets), compared to what SGS sampled (440M
packets). The estimation of SGS is accurate, and it guarantees
the relative error of most flows is within the expected margin (ε
= 0.01 in our experiments). However, the most critical problem
of SGS is packet thinning: in our experiments, SGS triggered
53% sampling events over the entire traffic because a large
number of mouse flows appear in the CAIDA trace, the real-
world dataset. This unacceptably high sampling rate explains
the impracticality of SGS as well as the high accuracy for
mouse flows. Unlike SGS, in terms of the flow table over-
head (NetFlow) or the network overhead (sFlow), SketchFlow
guarantees the desired overhead relaxation rate than SGS.

D. SketchFlow vs. Sketch Approaches

We further compared SketchFlow with three state-of-the-
art sketch approaches: CountMin [5], Elastic sketch [38]
and FlowRadar [22]. We followed experiments in Elastic
sketch [38] and divided a one-hour CAIDA dataset into 720
five-second subset traces. We varied the memory usage from
0.2MB to 1MB and evaluated the accuracy in terms of the
average relative error (ARE = 1

n

∑n
i=1

|fi−f̂i|
fi

). For Elastic
sketch, we fixed the heavy-part with 150KB memory and the
remaining for the light-part. For CountMin, we used 3 hash
functions as recommended in [11]. In Fig. 9(a), we found that
SketchFlow achieves the lowest ARE in all cases, while using
similar or even using less memory. On the contrary, accuracy
degradation is observed for both CountMin and Elastic sketch

(a) Accuracy Comparison (b) Speed Comparison

Fig. 9. SketchFlow vs. Sketch Approaches: comparison of memory usage,
accuracy and processing speed of sketches on a CPU platform.

following the decrease in memory usage. We also conducted
the same experiment using FlowRadar, which failed to decode
any flow using 1MB memory.

E. Overhead Evaluation

To evaluate the overheads, we conducted experiments with
a testbed that is equipped with Xeon E5-2620 v4 2.10GHz,
which supports Streaming SIMD Extensions (SSE).
CPU Platform. We evaluated SketchFlow in terms of through-
put (Mpps) using a CPU platform. We compared our approach
with four solutions (FlowRadar, CountMin, Elastic sketch, and
SGS). As shown in Fig. 9(b), SketchFlow achieved higher
throughput than FlowRadar, CountMin, and SGS. SGS can
reach a throughput of 48.66 Mpps, while SketchFlow is 1.16
times faster (i.e., 56.78 Mpps). Remarkably, Elastic achieved
the highest throughput (i.e., 61.58 Mpps), which is 1.08 times
faster than SketchFlow. However, we note that we did not
involve any sketch or sample sending in this experiment.
Elastic sketch requires a sketch compression process for saving
bandwidth overhead caused by sketch delivering.
OpenvSwitch. To comparatively evaluate the overhead of
SketchFlow, we integrated SRS (sFlow) and SketchFlow in
the packet processing pipeline of OpenvSwitch (using DPDK
17.11.2 [6]). We generated the CAIDA trace using Intel
X540AT2 10G NIC and pktgen [6] for measuring the average
cycles required to make the sampling decision of a packet. In
this experiment, a 4-layer SketchFlow was used to approximate
the sampling rate of 0.0001 to compare with SRS (1/p =
0.0001). According to the experimental results, SRS required
fewer cycles (52 cycles/packet), and SketchFlow required
slightly more than SRS; 69 cycles per packet. When com-
paring SRS with SketchFlow, the additional hash computation



(a) Relative Error (b) CDF

Fig. 10. Twitter dataset: Accuracy of SketchFlow and SRS. Both were
evaluated with sampling rate 0.0001. Tweet dataset contains ≈7 billion sub-
units including word, link, name, etc.

(a) Relative Error (b) CDF

Fig. 11. Disk I/O trace: Accuracy of SketchFlow and SRS. Both were
evaluated with sampling rate 0.01. Disk I/O trace contains 170 million I/O
requests of 390 thousand different offsets.

overhead of SketchFlow is large, although can be substantially
reduced using hardware-based functions (i.e., CRC instruction
of SSE), and a few memory accesses are also acceptable for
online sampling. Through an in-depth examination, we found
that the overhead of SketchFlow occurred mostly in calculating
the bit positions of the virtual vector of flows. This overhead
can be mitigated by caching the virtual vector of the last flow
because a frequent burst behavior of the same flow has been
observed in many modern traffic loads [16].

F. Twitter and Disk I/O trace

We also examined the scalability of SketchFlow using a
large dataset (Twitter dataset) and its versatility using a dataset
with a different distribution (Disk I/O trace). As results,
SketchFlow outperforms SRS for both datasets in terms of the
relative error. For the Twitter dataset, we used the sampling
rate of 0.0001 by considering its scale. As shown in Fig. 10(b),
the overall absolute relative error of SketchFlow is much
smaller than SRS. Moreover, SketchFlow is shown more
accurate than SRS for different word frequencies, and the
variance of SketchFlow is much smaller (Fig. 10(a)). While
the scale of disk I/O trace is much smaller than Twitter’s, it
presents a different distribution. A sampling rate of 0.01 was
used reflecting the fact that most of the blocks were accessed
under 105 times. As shown in Fig. 11, SketchFlow performs
better than SRS in terms of the relative error and variance.

VI. RELATED WORK

Sampling is implemented using one of two approaches:
timer- and packet-driven sampling. Timer-driven sampling is
chosen by both sFlow [32] and NetFlow [8], [28]. However,

the packet-driven approach is preferred in practice because of
its performance. Therefore, several packet-driven approaches
have been proposed since its introduction, initially to measure
the NSFNET backbone. Claffy et al. described three different
sampling methods, simple random sampling, stratified sam-
pling, and systematic sampling [4]. Hohn and Veitch [13]
compared packet-level sampling’s inaccuracy over flow-level
sampling’s. Duffield et al. [7] argued that flow-level sam-
pling is unstable under resource constraints and proposed a
threshold-based sampling. In both works, the flow sampling
schemes showed higher accuracy than the packet sampling.
However, the traffic reduction rate cannot be guaranteed [19].

Another line of works used non-linear sampling rates.
Kumar et al. [19] introduced a non-linear scheme (SGS) using
different probabilities depending on the size of the flows. Their
approach acknowledges that information on mouse flows is
likely to be lost using a linear approach. SGS employed a com-
pact sketch to record the flows’ size with a higher probability
for smaller flows. Hu et al. [14] and Ramachandran et al. [30]
introduced similar approaches with different architectures and
data structures, providing high accuracy in flow size estimation
with mouse flows. However, the high sampling probability of
mouse flows leads to a huge number of samples, negatively
affecting the traffic reduction rate.

VII. CONCLUSION

In this paper, we introduced a new notion of per-flow
systematic sampling, where the sampling accuracy is shown
to be superior to that of the simple random sampling. To
realize this idea, we proposed a new sampling framework using
sketches as per-flow samplers. In this framework, a per-flow
sketch saturation event works as a signal to sample a packet
in a flow, and the per-flow saturation interval as the per-flow
sampling interval. Instead of using a sketch as a full flow size
estimator that necessarily causes sketch saturation and offline
decoding, we had our new sketch algorithm measure only the
sampling interval and be emptied for reuse in real-time. With
this framework and a sketch algorithm, we successfully built a
highly-accurate sampling algorithm, SketchFlow, which is able
to perform per-flow systematic sampling. We showed proof
on SketchFlow’s accuracy and demonstrated performance by
experiment with real-world datasets such as traces from the
network, I/O, and social network platforms. We believe that
our work opens a new direction in data sampling, and we
expect that SketchFlow would inspire more work on per-flow
sampling.
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