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Ülkü Meteriz
University of Central Florida

Orlando, USA
meteriz@knights.ucf.edu

Necip Fazıl Yıldıran
University of Central Florida

Orlando, USA
yildiran@knights.ucf.edu

Joongheon Kim
Korea University

Seoul, South Korea
joongheon@korea.ac.kr

David Mohaisen
University of Central Florida

Orlando, USA
mohaisen@ucf.edu

Abstract—The extensive use of smartphones and wearable
devices has facilitated many useful applications. For example,
with Global Positioning System (GPS)-equipped smart and wear-
able devices, many applications can gather, process, and share
rich metadata, such as geolocation, trajectories, elevation, and
time. For example, fitness applications, such as Runkeeper and
Strava, utilize information for activity tracking, and have recently
witnessed a boom in popularity. Those fitness tracker applications
have their own web platforms, and allow users to share activities
on such platforms, or even with other social network platforms.
To preserve privacy of users while allowing sharing, several of
those platforms may allow users to disclose partial information,
such as the elevation profile for an activity, which supposedly
would not leak the location of the users. In this work, and as a
cautionary tale, we create a proof of concept where we examine
the extent to which elevation profiles can be used to predict the
location of users. To tackle this problem, we devise three plausible
threat settings under which the city or borough of the targets
can be predicted. Those threat settings define the amount of
information available to the adversary to launch the prediction
attacks. Establishing that simple features of elevation profiles,
e.g., spectral features, are insufficient, we devise both natural
language processing (NLP)-inspired text-like representation and
computer vision-inspired image-like representation of elevation
profiles, and we convert the problem at hand into text and image
classification problem. We use both traditional machine learning-
and deep learning-based techniques, and achieve a prediction
success rate ranging from 59.59% to 95.83%. The findings are
alarming, and highlight that sharing elevation information may
have significant location privacy risks.

I. INTRODUCTION

From smartphones to wearable devices, various types of
Internet of Things (IoT) devices are equipped with Global
Positioning System (GPS), accelerometers and gyroscopes to
allow applications to function or to present a better user experi-
ence by making use of geodata, such as location and elevation
information. Specifically, fitness applications which run on
smartphones and smartwatches use these systems to collect
spatial, temporal, and activity-specific information to analyze,
summarize and visualize users’ activities. By analyzing each
activity, many of those applications even deliver personalized
motivations and challenges for users to meet their goals.
Using social media support of these applications for sharing
updates about users’ activities, including training routes and
elevation profiles for the routes taken for the activity (e.g.,
walking, running, climbing, cycling), users can have positive
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Fig. 1. Survey results for understanding users behavior: (a) starting point
statistics, (b) end point statistics, and (c) not sharing location information
implies privacy. While 90% of the 60 participants indicated their start of
activity is either home, school, or work, an overwhelming 98% of the
participant indicated those to be the end point of their activities.

behavioural changes through a more active lifestyle motivated
by competitions with friends and acquaintances [1].

Despite the broad set of advantages geodata has, geodata
usage and uncontrolled sharing can pose a significant privacy
risk which can be exploited in multiple attacks, including
stalking [2] and cybercasing [3]. For example, with the large
amount of geo-tagged data, including text, images, and videos,
cybercasing allows a significant attack vector to criminals
and maliciously motivated individuals. Geo-tagged photos that
are frequently posted on image sharing websites, such as
Flickr, or second-hand sale websites, such as craigslist, may
put owners of those images at risk. For example, geo-tagged
images posted on sales websites may reveal the location of
the advertised product, leading to trespassing or even theft.

While geodata recorded by fitness applications is indeed
important and valuable for the operation of those applications,
it also can be used for launching attacks on users by breaching
their privacy, since sensitive information of users such as home
or workplace location can be easily inferred from such data.
Even worse, a large number of users, when sharing such
information, would be unaware of the ramifications of sharing,
and the potential risk of inferring such contextual information
(home, work location, etc.) from such shared location data. To
support this argument, we conducted an online survey with 60
participants who regularly use fitness applications outdoors,
with the results of the survey summarized in Figure 1. The
survey results reveal that 51% of the participants start their
training from their homes, 36% start from their school and
3% start from their workplace, and 76% of the participants
finish their training at their homes. Moreover, for the same set
of users, 42% of those users have indicated that not sharing



location information implies privacy protection, while 30% of
the respondent where uncertain, and 28% were certain that not
sharing would not necessarily mean their privacy is protected.
This kind of mixed responses highlight the gap between reality
and expectations of privacy when sharing location information
online and call for further investigation.

Although it is possible not to share the location trajectory
by hiding the activity map in the fitness applications, users
still want to share elevation profile or certain statistics of
the activity to show the roughness, technicality, and difficulty
of the routes they took as a measure of their workout. For
example, up until recently, users have been demanding those
fitness applications to allow for fine-grained and customized
access control by allowing them to share, for example, the
elevation profile of an activity while masking the map that
highlights the actual trajectory, which is deemed of high
privacy value to them [4]–[7]. In the same survey conducted
earlier, we asked our 60 subjects if “while sharing an outdoor
workout record, do you think hiding the map and sharing only
the statistics of your training (such as speed and elevation
changes) is enough for protecting your privacy?”. The results
were overwhelmingly positive, with 25 of them indicating
“yes”, 18 indicating “maybe” (together accounting for more
than 71%), while only 17 indicating “no”.

However, is sharing the elevation profile of an activity
enough to maintain the privacy of the users? In this paper, we
argue that an approximate location, extracted from contexts
of activities, and at different levels of location granularity,
could still be revealed from elevation profile information. We
examine this problem at length, and develop approaches that
can be used to accurately associate an elevation profile with
contextual information, such as the location.
Contributions. In this paper, we contribute the following:

• We translated the problem into text classification and image
classification problems by encoding the elevation signals as
strings and visualizing the elevation signals as images to
employ the common approaches for solving image and text
classification problems,

• We investigated the possible attack surface for the problem
by introducing three different threat models, which we later
used to evaluate the success of our approaches by simulating
our methods considering each threat model,

• We proved that location information can be predicted
from elevation profile using different machine/deep learn-
ing methods with accuracy in range 59.59% - 95.83% at
different resolutions as our results showed.

II. THREAT MODELS & APPROACH OVERVIEW

We outline the potential threat models under which this
study is conducted. We describe three models under which the
location privacy is breached only from associated elevation
profiles. We then review our approach, including a pipeline
that consists of data collection, preprocessing, feature extrac-
tion, and multi-class classification for location identification
through elevation profiles. We briefly discuss the phases of

our pipeline, each of which is explained in details in the
Implementation Details section.

We note that the following threat models are only hypo-
thetical: no attacks were actually launched on any users. As
mentioned earlier, this study in its entirety is motivated by the
aforementioned demands of users to have more flexibility over
sharing partial data, such as elevation profiles, and examines
the ramifications of such sharing in a hypothetical setting. We
note, however, that those settings are also plausible if such
sharing is enabled.

A. Threat Models

Our study utilizes three threat models: TM-1, TM-2, and
TM-3, which we outline below with their justifications. The
adversarial capabilities in TM-1 are greater than in TM-2 and
TM-3, making it more a restrictive (powerful) model.
1 TM-1. In TM-1, we assume an adversary with records
of the workout history of a target user, and the goal of the
adversary is to identify the last workout location of the target
user from the shared elevation profiles. TM-1 is justified by
multiple plausible scenarios in practice. For example, such
an adversary might have been a previous social network
connection of the target user that was later blocked. In
such a scenario, the adversary may have previous workout
records of the target from which the adversary may attempt to
de-anonymize the target’s activities. Another example might
include group activities, in which two individuals (i.e., the
adversary and target) may have shared the same route at some
point. In either case, by knowing the target’s history, the
main goal of the adversary in this model is to identify recent
whereabouts only from publicly shared elevation profiles in
workout summaries, thus breaching the target’s privacy.
2 TM-2. In TM-2, we assume an adversary with access
to limited information such as the city in which the target
lives. Such information is easily accessible from public profile
summaries, athlinks.com, public records, etc. The adversary’s
goal in TM-2 is to find out which region or part of a given
city the target’s activities are associated with. The TM-2 use
scenario may include a targeted user sharing private activities,
in which the route is hidden while the elevation profile is
shown. The adversary, knowing the city where the target lives,
would want to identify the region (e.g., borough in the city)
associated with the user’s activity.
3 TM-3. In TM-3, we assume an adversary trying to identify
the target user’s city using only publicly shared elevation
profiles. We assume, however, the adversary has the abil-
ity to profile the elevation of cities, with information that
is easily obtained from public sources (e.g., Google Maps,
OpenStreetMap). The use scenario of TM-3 may be used as a
stepping stone towards launching the attack scenario in TM-2
upon narrowing down the search space to a city.

B. Approach Overview

In this subsection, we give a brief overview of our pipeline,
which consists of the data collection, preprocessing, feature
extraction and classification as illustrated in Figure 2.
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Fig. 2. The end-to-end pipeline of the approach.

Data Collection. We collected three datasets with varying
and rich characteristics, namely 1) user-specific activity data
collected from an athlete, 2) mined training route segments
grouped at city-level, and 3) mined training route segments
grouped at borough-level. For the user-specific dataset, we
collected physical activity records of athletes and converted
those activities to our intermediate format, the GPS Exchange
Format (GPX). Then, we parsed the GPX files and manually
labeled them according to the latitude and longitude infor-
mation included within each file. For the second dataset, we
mined training route segments from a popular fitness tracking
website by specifying the location boundaries, i.e., the class
label of the mined data, and augmented each segment with the
corresponding elevation profiles obtained from Google Maps
Elevation API. Finally, the borough-level dataset is constructed
in a similar manner as in the city-level dataset.
Preprocessing. We use both natural language processing and
image processing techniques for extracting features from the
elevation profiles in order to associate them with a given label.
To this end, the preprocessing phase is two parts: text-like
and image-like representations. For text-like representation, we
discretized the elevation signals and computed the minimum
required word size. We then created a mapping between each
unique discrete value and a string. By mapping the string
correspondents to the unique discrete values, we encoded the
elevation profiles in text. Finally, we form a vocabulary from
the text sequences of each dataset using the n-grams.

To obtain image-like representation, we converted the el-
evation profiles to a fixed-sized line graph where the x-axis
stands for time and y-axis stands for the elevation values. The
lines in the graphs are also colored to represent the elevation
interval in which the elevation profiles range.
Feature Extraction. The classification algorithm operates on
high quality and discriminative features, obtained from the
representations of elevation profiles. For feature extraction,
we utilize Natural Language Processing (NLP) and computer
vision approaches. To employ NLP approaches, using previ-
ously obtained vocabulary, we represent each elevation profile
as a feature vector based on the frequency of the vocabu-
lary in the text-like representation (bag-of-words vector). To
employ computer vision approaches, we utilize Convolutional
Neural Network (CNN) over image-like representations. The
optimal features of an image-like representation are efficiently
extracted by the convolutional and pooling layers in the
Convolutional Neural Network architecture.
Multi-class Classification. We use various machine learning
and deep learning models for classification including Support

Vector Machine (SVM) and Random Forest Classification
(RFC) as machine learning approaches, and Multi-Layer Per-
ceptron (MLP) and Convolutional Neural Network (CNN) as
deep learning approaches.

III. IMPLEMENTATION DETAILS

The implementation details of data collection, preprocess-
ing, feature extraction and multi-class classification are ad-
dressed in the following subsections.

A. Data Collection

In this study, we compiled three datasets: the user-specific
dataset, the city-level dataset, and the borough-level dataset.
The user-specific dataset is retrieved from a voluntary ath-
lete who frequently records activities. It offers a dense and
thorough coverage for regions frequented by the user; those
regions are used as class labels. The city- and borough-level
datasets are created from scratch by collecting location tra-
jectories that are created and frequented by the athletes. Both
city-level and borough-level datasets provide sparse coverage
of cities and boroughs.

1) User-Specific Dataset: For the user-specific dataset, we
collected activity data including each activity’s location trajec-
tory and the corresponding elevation profile from a voluntary
athlete who records activities frequently. First, the location
trajectories included in the user-specific dataset are converted
to GPX format to avoid confusion caused by different formats
and settings. Then, to label the samples, the maximum and
minimum coordinates of each location trajectory are fetched.
Each sample location trajectory is encapsulated with a tight
rectangle whose top right (North East) and bottom left (South
West) corners are computed from the maximum and the
minimum coordinates of the trajectory as illustrated in Figure
3. To classify the samples, each rectangle encapsulating the
trajectory is compared with the previously created regions. If
the Euclidean distance between the center of the rectangle
and the center of the existing region does not exceed a
predetermined threshold, the rectangle and its corresponding
sample are labeled with a unique identity of the region. If
there is no region that includes the trajectory, a new region
is created. The final sample size distribution of user-specific
dataset is shown in Table I.

The user-specific dataset is prone to having similar location
trajectory portions across its samples since the user may
frequent the same set of places in his/her everyday activities,
such as the location trace they follow while leaving/arriving
home, or their favorite routes. Therefore, we calculated the
average overlap ratio of the routes included in the user-specific
dataset by comparing each sample with the other samples with
the same class label. For each sample pair comparison, the
overlap ratio is calculated as the intersection over union of the
tight rectangles encapsulating the sample routes. The average
overlap ratio of the user-specific dataset is calculated as 35%.

2) City-Level Dataset: For the city-level dataset,
we mined publicly available training route segments
in a popular fitness tracking application using its
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Fig. 3. An illustration of the tight rectangle encapsulating an example route.

EXPLORESEGMENTS() functionality. We note that our
experiments do not put any users at risk, and are not
in violation of the terms of use of the fitness tracking
application: since both the trajectory (map) and elevation
profiles are public, we are also not obtaining any information
beyond what is provided by the users explicitly. We note
that training route segments are user-created activity routes
whose main purpose is to compare completion times among
users who also completed the same route, and can be easily
also obtained from other sources (e.g., Google street view).
We note that these routes are particularly useful for the
motivation of our work, since they include public location
trajectories which are frequented by the actual users rather
than randomly created location trajectories. During mining
segments, the anonymity (thus the privacy) of the users who
frequented the segments or created the segments is preserved.
The overall data mining procedure consists of three steps as
illustrated in Figure 4. First, we defined the cities of interest,
which are also the class labels. For each city C, we defined
rectangle boundaries B consisting of the top right and bottom
left corner coordinates. Since EXPLORESEGMENTS() returns
only the top-10 segments encapsulated by a given boundary,
to obtain more data of a city C, we divided the large rectangle
boundary of the city into smaller regions, each denoted by
ri, by following a grid-like structure as shown in the second
phase of the Figure 4. Then, we computed region boundaries,
each denoted by bi. For each region boundary bi, we called
EXPLORESEGMENTS() and received the geolocation polyline
path, pathj

i where j ∈ [1, 10], of the top-10 segments
encapsulated in bi. Finally, since the polyline paths do not
include elevation profiles, we obtained the corresponding
elevation profile elevji for each pathj

i using the Google Maps
Elevation API. The sample size distribution of city-level
dataset can be found in Table II. Unlike user-specific dataset,
city-level dataset does not include overlapped samples since
each region ri is disjoint with the other regions. A segment
route that is included by more than one neighbour region
are not considered since EXPLORESEGMENTS() returns the
routes that are encapsulated within the given boundaries, bi.

TABLE I
USER-SPECIFIC DATASET SAMPLE SIZE DISTRIBUTION.

Regions Sample Size

Washington DC 366
Orlando 232
New York City 120
San Diego 18

Divide into smaller regions

ExploreSegments()

𝒓𝟏, 𝒃𝟏
𝒓𝟐, 𝒃𝟐

𝒓𝑛, 𝒃𝑛

…

Fetch elevations 𝒑𝒂𝒕𝒉𝒊
𝒋

𝒆𝒍𝒆𝒗 𝒊
𝒋

𝑩

Fig. 4. An illustration of data mining pipeline.

3) Borough-Level Dataset: For the borough-level dataset,
we applied a similar mining procedure as of the city-level
dataset, using the borough boundaries of a city instead of the
city boundaries. Table III shows the sample size distribution
of the borough-level dataset for different cities.

B. Preprocessing

We transform the samples to text- and image-like represen-
tations to facilitate feature extraction. We provide details on
the preprocessing methods below.

1) Text-like Representation: To represent data as text-like
contents, we use four steps, as in Figure 5: discretization, word
size decision, text encoding, and vocabulary creation.

1 In the discretization step, the original elevation signal is
discretized along the y-axis, which represents the elevation
values to avoid possible overhead by small differences in
the precision causing a longer string correspondences and,
consequently, longer vocabulary and sparse feature vectors.
The discretization is done as follows. Let eji be the i-th
elevation value in j-th sample. The discretization functions
are defined as f(eji ) = be

j
i c and f(eji ) =

beji×10
3c

103 , where the
first function is used for processing the user-specific dataset
and the second function is used for processing the city-level
and borough-level datasets. Since the user-specific dataset is
dense in terms of sampling rate, using the floor function is
enough to represent the routes. However, as the city-level and
borough-level datasets are already sparse, losing information
is undesired, so we used the second function to represent the
elevations that differ in up to 3 decimal digits precision.

2 For word size decision, we use w = logl c, where w
is the word size, l is the length of the alphabet, and c is the
number of unique value occurrences in the given signals.

3 For text encoding, each unique value in all the discrete
signals is mapped to a unique string with length w and each
sample signal is encoded by referring to the string correspon-
dences of each value in the discrete signal and concatenating
these strings to construct a long text, i.e., corpus.
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TABLE II
CITY-LEVEL DATASET SAMPLE SIZE DISTRIBUTION.

Regions Sample Size

New York City 2437
Washington DC 2129
San Francisco 743
Colorado Springs 369
Minneapolis 363
Los Angeles 280
New Jersey 266
Duluth 156
Miami 94
Tampa 83

TABLE III
BOROUGH-LEVEL DATASET SAMPLE SIZE DISTRIBUTION.

Cities Regions Sample Size

Los Angeles
(LA)

Downtown 280
Santa Monica 128
Chinatown 46
Beverly Hills 38

Miami
(MIA)

Downtown 67
Miami Beach 44
Virginia Key 18

New Jersey
(NJ)

Jersey City 266
West New York 23
Newark 28

New York City
(NYC)

Manhattan 2437
Queens 353
Brooklyn(South) 239
Brooklyn(North) 205
Bronx 142
Staten Island 119

San Francisco
(SF)

South West 743
South East 144
North West 130
North East 86

Washington DC
(WDC)

District of Columbia 2129
Baltimore 218

4 To create our vocabulary, we consider the corpus created
from all encoded signals regardless of labels. Each line in the
corpus represents a sample signal, and each word in a line
represents the text correspondence of an elevation value in the
sample signal. We build a vocabulary from the unique word-
based n-grams of the document. As illustrated in Figure 6, a
window with size W = w×n is slided throughout the corpus
and each window content is appended to the vocabulary set.
Since the vocabulary set does not contain duplicate entries by
definition, we constructed the vocabulary consisting of unique

Discretization
Word Size 
Decision

𝒘

Text 
Encoding

… ABNTJKHQ …
Vocabulary 

Creation
[ AB, BN, … , ABNT, …,
ABNTJK, … ,ABNTJKHQ ]

Corpus
Vocabulary

Original Signal Discrete Signal

Fig. 5. Illustration of the flow of text-like preprocessing. The signal is
discretized by eliminating the small elevation fluctuations. The discretized
signal is also used for deciding the word size of the encoding. The discrete
signal is then encoded in text and a vocabulary is built.

𝐰 = 𝟐
𝐧 = 𝟐

𝐖 = 𝐰× 𝐧 = 𝟒

𝐰

Fig. 6. Illustration of bi-gram creation where the word size is w = 2 and
window size is W = 4.

n-grams of the given dataset after traversing the corpus by n
times with different window sizes.

2) Image-like Representation: In image-like transforma-
tion, the elevation signals are drawn as line graphs. To draw a
line graph, the maximum and minimum values for y-axis are
set to be the extremes of each elevation signal, and the lines
are colored to encode the value interval in which elevation
signal ranges. This method has multiple advantages over other
methods—e.g., the alterations of an elevation signal are more
visible, and the method results in an efficient utilization of
the feature space—which we examined to reach this design
choice, but we omit due to lack of space. We use 200 elevation
values for each, obtained by dividing the elevation signal into
equal-sized parts.

C. Feature Extraction

To classify elevation profiles accurately, we extract discrim-
inative features from the elevation profile representations.
Text-like. In text-like feature extraction, words and non-
overlapping occurrences of word sequences are counted, a
feature vector for each sample is created with each unique
word sequence count being a feature. Finally, the feature
vectors are normalized where each feature represents the
probability of occurrence of each word in the given sample.

When the dataset is large and diverse, the vocabulary
and, consequently, the feature vectors becomes too large and
sparse to do computations with. In feature selection phase, in
case the length of feature vectors are too long, some rarely
occurred features from vocabulary are discarded according to
the specified feature frequency threshold. Features are ordered
by term frequency across the corpus and the features whose
term frequency is under the specified threshold are discarded
and a new vocabulary is created.
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Fig. 7. The CNN architecture used for classification. The input image is
passed to a CONV layer. The output is then forwarded to the MAXPOOL
layer to fetch the most important feature in a kernel. The data is then passed
through following CONV and MAXPOOL layers. The output retrieved from
the last MAXPOOL layer is flattened to be passed to a FCON layer whose
output is the class probabilities.

Image-like. Since we use CNN for images, it is unnecessary
to explicitly extract features, since the convolutional layer
kernels do that already by learning the filters optimally and
efficiently. Therefore, the actual feature extraction mechanism
is discussed in the context of classification.

D. Multi-Class Classification

For classification, SVM, RFC, MLP, and CNN are used.
SVM. We use the standard SVM, where the objective is to
find the best hyperplane separating classes from one another.
RFC. We utilized the standard RFC, with 100 trees, and a
majority voting is taken over the outcomes of those trees.
MLP. We use the standard MLP with 100 hidden layers and
Adam solver [8] for weight optimization, since it is claimed to
work well for large feature space. MLP is shown to outperform
the decision trees [9], [10].
CNN. Figure 7 illustrates the employed CNN architecture.
Two consecutive convolution layers (CONV) are used along
with the ReLU activation function and MAX pooling layers
(MAXPOOL) before a fully connected layer (FCON). For both
of the convolution layers, kernel, stride and padding sizes are
decided as 5, 1 and 2 respectively. The distinctive features
are selected at the max pooling layers with kernel and stride
size of 2, which reduce the dimensions from (32x32) to (8x8)
at two passes. The loss is calculated by Cross Entropy Loss
function and for optimization, the Adam optimizer is used.

IV. EVALUATION, RESULTS, AND DISCUSSION

We performed evaluations for each dataset and threat mod-
els. First, we performed evaluations with text-like representa-
tion. For TM-1, we performed experiments using 5- and 10-
fold cross-validation methods and by fixing the dimension of
n-grams to 8 on the user-specific dataset with SVM, MLP
and RFC techniques. For TM-2, we tried to find the borough
information of a given elevation profile whose city information
is known. For this experiment, we use 10-fold cross validation,
n = 8 for the n-gram, and SVM, MLP and RFC are employed.
For TM-3, we use the same settings as in TM-2. The user-
specific dataset contains overlapped and repetitive portions
by nature. In the Simulations subsection, we simulated the

TABLE IV
TM-1 EVALUATION ON USER-SPECIFIC DATASET. PREDICTION ACCURACY
(%) WITH DIFFERENT CONFIGURATIONS. 4-CLASS = [WASHINGTON DC,
ORLANDO, NEW YORK CITY, SAN DIEGO], 3-CLASS = [WASHINGTON

DC, ORLANDO, NEW YORK CITY], 2-CLASS = [WASHINGTON DC,
ORLANDO]. 5-F: 5-FOLD CROSS-VALIDATION. 10-F: 10-FOLD

CROSS-VALIDATION. C: THE NUMBER OF CLASSES IN THE
CLASSIFICATION. S: SAMPLE SIZE OF EACH CLASS.

SVM RFC MLP
C S 5-f 10-f 5-f 10-f 5-f 10-f
2 232 97.8 97.8 96.5 97.2 98.0 98.5
3 120 98.3 98.5 96.3 97.0 97.4 97.6
4 18 86.8 87.5 91.0 94.4 93.0 95.8

same behaviour on the mined datasets and performed the same
evaluations for comparison.

For evaluations using image-like representations, we em-
ployed three methods in CNN: unweighted loss function,
weighted loss function and fine-tuning. In the unweighted and
weighted loss function evaluations, we split the test data from
the dataset by considering the sample size of the classes; we
assigned probabilities for each class considering the inverse
proportion to its size and then randomly select test data with
the associated probabilities. In fine-tuning evaluations, we
performed a 10-fold validation at the last round where all the
classes have the same sample size.

A. Text-like Data Evaluation

1 TM-1. We trained and tested models with the user-specific
dataset. As shown in Table I, the user-specific dataset has
unbalanced sample size across classes. To mitigate bias, we
use the same sample size for each class and change the number
of classes at each step. The accuracy results are shown in Table
IV. Due to the limited number of samples, the accuracy of 4-
class classification is lower than 3- and 2-class classification.
We observe a higher accuracy with k=10 than when k=5 in the
k-fold cross-validation, perhaps due to the large training data
capturing the population’s distribution in the first case than in
the latter. The results show 95.83% accuracy with MLP and
4-class classification. With 3-class classification, we obtained
98.51% accuracy with SVM. With 2-class classification, we
obtained 98.49% accuracy with MLP.

Since the user-specific dataset is compiled from actual users,
exhibiting mobility patterns, about 35% of the routes are
overlapped. In a repetitive and overlapped setting, both training
and testing splits may contain similar patterns leading to the
high accuracy scores. The results prove that a targeted attack
on a person whose activity history is known will be successful
with accuracy between 86.80% and 98.51%.
2 TM-2. While evaluating TM-2, the borough-level dataset
is used. A model is created for each of the cities, Los
Angeles, Miami, New Jersey, New York City, San Francisco,
and Washington DC, by labeling the data as the name of
the corresponding borough and evaluated separately. Figure
8 shows the accuracy, precision, recall and F1 scores of the
each model in bar charts. All of the accuracy scores of the
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TABLE V
TM-3 EVALUATION ON CITY-LEVEL DATASET. PREDICTION ACCURACY
(A), RECALL (R), F1 SCORE (F1) WITH DIFFERENT CLASSIFICATION

TECHNIQUES AND SAMPLE SIZE. C COLUMN STANDS FOR INDICATING
THE NUMBER OF CLASSES IN THE CLASSIFICATION AND S COLUMN

SHOWS SAMPLE SIZE OF EACH CLASS.

SVM RFC MLP
C S A R F1 A R F1 A R F1
3 743 80.0 69.8 70.2 79.1 68.4 68.4 80.9 71.2 71.6
5 362 90.7 77.7 78.4 89.4 74.8 76.0 90.5 77.4 78.4
7 266 90.7 66.7 66.5 89.0 61.1 61.0 90.0 64.3 64.4
8 155 91.9 68.6 68.5 88.9 57.0 60.3 90.9 65.1 64.5

10 82 93.9 70.2 70.4 92.4 58.1 57.5 92.9 63.7 63.3

models are above 55% while precision, recall and F1 scores
are varying across each model. The main justification for this
is that since there is no overlapped or repetitive routes among
the mined segments in borough-level dataset, and the elevation
differences and elevation sequences are not distinctive enough
within a city to decide in which borough is the given test data
is. This fact also clarifies the difference between the results of
TM-1 and TM-2. The results of the simulated behaviour will
be discussed in the simulations subsection.
2 TM-3. In TM-3 evaluations, due to sample size differences
across the labels in city-level dataset, we followed the same
procedure in TM-1 evaluations. A fixed number of samples
was randomly selected from each class for training and test-
ing. Table V shows the results of the evaluation, where we
employed 10-fold cross-validation and averaged results of the
10 folds. Per the reported results, we were able to predict the
city of an elevation profile among 10 cities with an accuracy
of 93.9%, among 8 cities with an accuracy of 91.93%, among
7 cities with an accuracy of 90.67%, among 5 cities with an
accuracy of 90.71%, and among 3 cities with an accuracy
of 80.86%. The success of the city-level estimations when
compared to the borough-level estimations is based on the
elevation range and sequence differences across cities, which
is reasonable, even though the dataset is mined in a similar
fashion as in the borough-level dataset. This mining indicates
that city-level dataset also does not contain comprehensive,
repetitive and overlapped samples. The results of the simulated
evaluation will be discussed in the Simulations subsection.

1) Simulations: The mined datasets do not contain over-
lapped or duplicate samples as in the user-specific dataset. In
this evaluation, we simulated overlapped mined datasets and
performed evaluations under the same threat models.
Simulation of TM-2. For the city-level estimation evaluations,
we rebuilt a simulation dataset with 30 - 34% overlap ratio for
each region within the cities. The same evaluation procedures
are then followed as the original mined dataset, which is 10-
fold cross validation with fixed n-grams size of 8. Figure 9
shows comparison between the results of MLP classification,
confirming our previous hypothesis that having overlapped
route samples would increase the accuracy. Since the mined
dataset is not specific to any target user’s behaviour, it is
anticipated to result in less accuracy than the TM-1 evaluation
accuracy scores.

TABLE VI
TM-3 EVALUATION ON CITY-LEVEL DATASET WHEN 35% OVERLAP IS

INTRODUCED. PREDICTION ACCURACY (A), RECALL (R), F1 SCORE (F1)
WITH DIFFERENT CONFIGURATIONS. C COLUMN STANDS FOR INDICATING

THE NUMBER OF CLASSES IN THE CLASSIFICATION AND S COLUMN
SHOWS SAMPLE SIZE OF EACH CLASS.

SVM RFC MLP
C S A R F1 A R F1 A R F1
3 966 91.7 82.7 82.8 89.0 77.8 79.1 92.4 84.0 84.1
5 470 94.6 81.6 81.2 93.7 78.7 78.4 95.6 85.0 84.7
7 338 93.6 72.1 72.5 92.4 68.4 68.8 93.9 73.4 73.4
8 202 94.7 75.4 74.9 93.2 67.8 66.9 94.6 74.9 74.2

10 107 94.4 71.4 72.5 93.6 67.7 66.9 93.6 68.9 69.8

Simulation of TM-3. For TM-3’s simulated evaluations, we
rebuilt a simulation dataset with 35% overlap ratio for each
city and performed the same evaluation with 10-fold cross
validation and 8-grams. Table VI shows the results. By com-
paring Table V to Table VI, we notice that the accuracy, recall,
precision, and F1 scores have increased for all classification
techniques as expected. The improvements prove our previous
hypothesis that having similar patterns in a dataset affects the
success of the attack.

B. Image-like Data Evaluations

Dealing with Unbalanced Dataset. The original datasets
are unbalanced and there are various methods to deal with
unbalanced datasets, including downsampling, oversampling,
and creating synthetic samples from existing ones. Among
these methods, downsampling and oversampling are the eas-
iest ones to explore, although downsampling leads to losing
great amount of data and oversampling rises the chances of
getting lower accuracy as the misclassified duplicated samples
increases the false ratio.
Weighted Loss Function. For the unbalanced dataset, we
utilized a weighted loss function while training the CNN and
used all the data in the dataset. By assigning a class weight
that is inversely proportional to the sample size of the class,
we signify samples of small classes while calculating the loss,
thus their effect does not easily wear off.
Fine-Tuning with Different Samples. Fine-tuning is a com-
mon technique in deep learning, and is used for re-training
a complex pretrained model with another dataset. To address
the unbalanced dataset, we take advantage of fine-tuning in a
different manner. Namely, we introduced rounds and created
a set of small datasets from the unbalanced datasets for each
round. As illustrated in Figure 10, several small and balanced
datasets are created by randomly selecting samples. For each
consecutive rounds, samples of one or more classes are dis-
carded, and the round dataset is created from the remaining
classes. After round dataset creation, the model is trained with
the round dataset that contains the least number of classes, i.e.,
the lattermost created round dataset. At each step, the model
is re-trained using the same or different hyperparameters until
all the rounds expire. The dataset ordering of the rounds are
reversed, since the impact of the smallest dataset would wear
off if the model is trained with the same order of round
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Fig. 8. Accuracy, precision, recall and F1 score of TM-2 evaluation with different classification techniques.
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Fig. 9. Comparison of the TM-2 simulated dataset evaluation accuracy scores by using Multi-Layer Perceptron classification and the original dataset evaluation
accuracy scores by using Multi-Layer Perceptron classification.
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Fig. 10. An illustration of round creation from an unbalanced dataset of 3
classes.
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Fig. 11. An illustration of the fine-tuning pipeline for an unbalanced dataset
of 3 classes.

dataset creation, which conflicts with the whole idea. As
illustrated in Figure 11, while re-training, the parameters of the
previous model are passed to the model of the next round. The
hyperparameters of each round can be tuned accordingly. For
instance, for the last round, where we include all of the classes,
the learning rate can be reduced to find the loss minima.

To evaluate our attacks on the image-like data, the elevation
profiles are converted into a dataset of images and rounds
using the configurations and steps discussed above. Table VII
highlights the maximum achieved prediction accuracy along
with comparisons among methods.
Weighted vs. Unweighted Loss Function. To observe the
impact of the weighted loss function, we conducted evalu-
ations without giving any weight to the classes in the loss

TABLE VII
COMPARISON OF MAXIMUM ACHIEVED ACCURACY ACROSS DIFFERENT

METHODS. THE UNWEIGHTED LOSS(UW) COLUMN IS NOT CONSIDERED
WHILE DECIDING THE MAXIMUM ACCURACY, AS THE RESULTS ARE

BIASED. THE MAXIMUM ACCURACY OF EACH EVALUATION IS WRITTEN
BOLD, THE RESULTS THAT ARE NOT CONSIDERED ARE WRITTEN italic.

LOCATION ABBREVIATIONS ARE IN TABLE III.

Text-like Image-like

Methods DS
UWL

(biased) WL FT

TM-1 95.83 96.98 95.23 87.93
TM-2: LA 65.13 68.85 68.39 63.63
TM-2: MIA 68.65 88.96 86.80 62.50
TM-2: NJ 63.52 93.45 79.42 57.14
TM-2: NYC 78.85 74.20 79.37 72.79
TM-2: SF 64.52 67.20 78.70 65.38
TM-2: WDC 60.79 62.79 70.28 71.50
TM-3 93.90 92.51 92.82 89.00

function while using an unbalanced dataset. We note that the
unweighted loss function evaluation results are biased due
to the unbalanced dataset. Table VII shows the maximum
achieved accuracy for each dataset and method. Even though
the weighted loss function evaluation results are biased, which
seems successful in outputting the largest class used during
training and testing, the biased results remain behind 4 eval-
uations out of 8. For the remaining evaluations, and except
TM-2: NJ, the difference between the results is insignificant.
When the biased results are excluded for TM-2 evaluations, the
weighted loss function performed better than text-like and fine-
tuning methods. However, in TM-1 and TM-3, the accuracy
scores between methods are considerably close. Thus, we
conclude the weighted loss function improved the prediction
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TABLE VIII
THE FINE-TUNING RESULTS FOR TM-1 AND TM-3 AS THE EPOCH SIZE

CHANGES.

TM-1 TM-3
Epoch Size 500 1000 2000 500 1000 2000

Accuracy 79.3 87.9 82.7 86.0 89.0 87.8
Recall 55.8 67.5 63.1 29.7 45.3 38.9

Specificity 86.3 92.6 88.4 92.2 93.9 93.2
F1 Score 58.6 68.2 63.3 36.2 45.4 41.1

TABLE IX
THE FINE-TUNING RESULTS FOR TM-2 AS THE EPOCH SIZE IS 1000 AND

LEARNING RATE IS 0.001 FOR ALL ROUNDS.

LA MIA NJ NYC SF WDC
Accuracy 63.6 62.5 57.1 72.8 65.4 71.5

Recall 28.0 25.6 40.0 18.1 30.7 73.2
Specificity 75.8 75.9 66.7 83.4 76.3 73.2
F1 Score 28.8 28.6 37.5 18.4 31.4 73.4

performance primarily for TM-2.
Fine-tuning. Round datasets are created from the original
data. For TM-1, with 4 classes, 3 rounds are created. For TM-
3, with 10 classes, 5 rounds were created by eliminating 1, 2, 1
and 2 classes at each round, respectively. The dataset of TM-2
can be considered as a compilation of the dataset of 6 cities:
Los Angeles (3 rounds), Miami (3 rounds), New Jersey (2
rounds), New York City (4 rounds), San Francisco (2 rounds),
and Washington DC (1 round). Even though the main idea is
using all the data we have, we decided to downsample the
classes with large sample size. For instance, in the evaluation
of TM-2: New York City, the biggest class has 5,455 samples
where the second biggest class has 960 samples. In such cases,
we did not create additional round for only one class as this
round would have strong influence over the predictions, i.e.,
may cause overfitting.

Table VII shows the fine-tuning method outperformed other
methods only for TM-2: Washington DC. The difference
between the fine-tuning evaluation of Washington DC and
others is that we were able to create only one round from
the data in the former. Overall, according to the results shown
in Table VIII and Table IX, the fine-tuning evaluation is not
as successful as the weighted loss function evaluation, since
we still lost some data while creating rounds.

V. RELATED WORK

In this work, we addressed location privacy in activity
trackers using side channel information from publicly shared
elevation profile, a topic that is related to various pieces of the
literature. In the following, we review some of those studies.

Most location privacy breaches are caused since users do
not know why or how to preserve location privacy. [11]
developed a tool to examine possible privacy exposures of
users in their social networks where the data is mostly col-
lected from wearable devices. Using this tool, the authors
aimed to enhance the awareness of information leakage in

social networks, particularly fitness apps in which the data
retrieved from wearable devices is shared on social networks.
[12] aimed to increase awareness of location privacy on geo-
social networks by surveying 186 users, where 77% of them
indicated they use location-based services often, several times
a day, and 47% of them reported that they were not aware that
the location-based apps collect and store location information
when users select the private location option. Moreover, 43%
of respondents were not aware that application may share the
location information with third parties.

Despite the methods employed to preserve location privacy,
several attacks are devised to uncover supposedly protected
locations. Experiments for revealing exact locations from
trajectories with private zones are conducted on Strava [13].
Researchers found the exact end points associated with users,
even when such users selected the private zone option when
sharing the training route. In another study, location trajec-
tories of users are recovered from publicly available aggre-
gated mobility data obtained from GSM operators [14]. The
attack relies on tracking the regularity—i.e., coming across
the same location trace in the aggregated data regularly—and
uniqueness—i.e., the location trace belongs to a unique user—
of the user mobility traces to recover trajectories.

As our study exemplifies, online social networks lays under
the scope of privacy breach risks for users. [15] shows that
sharing data which reveals spatiotemporal features of users’
mobility patterns on online social networks reveal sensitive
information such as home location, using a different form of
data, i.e., multimedia. [16] shows that location-based social
networks are vulnerable to identity privacy breaches by reveal-
ing the identity of users by observing their mobility patterns.

Several attacks against general location privacy methods are
proposed [17]. The homogeneity attack [18] is an attack
on k-anonymity to infer data of interest from other shared
data. [18] illustrated a scenario where an adversary infers
the illness of a target person from available information,
the zip code, age, etc. The same method can be applied to
infer location data. In location distribution attacks [19], the
adversary exploits the fact that users are mostly not uniformly
distributed in the location space. Another attack [20] utilized
the aggregated traffic statistics and environmental context
information. The attack scenario includes an adversary who
tries to reveal the possible location of the target by making
use of the fact that the probability of target’s whereabouts is
not uniformly distributed. Map matching methods [21] aim
to restrict the obfuscated area to a smaller but plausible area
by removing irrelevant areas. Movement boundary attacks
were explored [22], where the adversary aims to calculate the
movement boundary of a target by chasing the position queries
and updates of the target. After calculating the boundary, the
location of interest, such as home or work place, is inferred
and the irrelevant locations are discarded.

Although we did not directly touch upon preserving the lo-
cation privacy in our study, there has been a few related studies
in this space. The fast-growing need of preserving location
privacy over the aforementioned attacks excited researchers’
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attention. Researchers introduce obfuscation methods such as
decreasing the quality of the location by introducing inaccu-
racy and imprecision [23]. Additionally, the term k-anonymity
is defined as obscuring the location information of individuals
with k number of other individuals within the region [24], [25].

VI. CONCLUSION

In this paper, we presented new attacks on location privacy
using only elevation profiles. The attacks are categorized into
three types: predicting location by knowing the activity history
of the target, predicting the borough by knowing the city
of the target, and predicting the city of the target without
any prior knowledge. The key contributions of our work
are proving the concept that hiding the route of a workout
and sharing only the elevation profile is not sufficient to
preserve location privacy, defining a new attack surface by
creating scenarios for possible threat models, and providing
a machine-learning approach to realize such threat as attacks.
To validate our attacks we created three datasets by collecting
data from athletes, and mining data from a popular fitness
tracking website and Google Elevation API. We preprocessed
the datasets by employing Natural Language Processing and
Computer Vision approaches, and then employed classification
techniques to predict the location from elevation profiles. En
route, we defined three threat models and evaluated each of
them individually on the different datasets. As a result of
the evaluations, we were able to identify the corresponding
location of an elevation profile with accuracy between 59.59%
and 95.83%. In the future, we will explore compatible defenses
such as devising and using route statistics that serves the
same purpose as sharing elevation profile; demonstrating the
roughness of the route, while preserving users’ privacy.
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