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Abstract—The burgeoning Internet of Things (IoT) has offered
unprecedented opportunities for innovations and applications
that are continuously changing our life. At the same time,
the large amount of pervasive IoT applications have posed
paramount threats to the user’s security and privacy. While a
lot of efforts have been dedicated to deal with such threats from
the hardware, the software, and the applications, in this paper,
we argue and envision that more effective and comprehensive
protection for IoT systems can only be achieved via a cross-
layer approach. As such, we present our initial design of XLF, a
cross-layer framework towards this goal. XLF can secure the IoT
systems not only from each individual layer of device, network,
and service, but also through the information aggregation and
correlation of different layers.

I. INTRODUCTION

The Internet-of-Things (IoT) concept [1], [2] has rapidly
emerged as a new computing paradigm, where a great variety
of devices are instrumented in a way so that they could
be queried and operated over the Internet either directly
by the users through an operation panel or by automated
programs that encapsulate their behaviors and objectives [3].
This paradigm is continuously shaping the society of tomorrow
and improving urban life substantially, highlighted by its
contributions in smart cities, health care, and transportation,
among others. To a great extend, IoT has revolutionized the
way in which individuals and organizations interact with the
physical world.

IoT has evolved significantly in the past decade. The concept
has expanded and attracted more attention as its potentials
to see real-world implementations start to mature. The ad-
vancements of networking technologies and the paradigm of
Cloud Computing have further made the massive scale of
IoT devices a reality. These technologies bring many benefits
to the device manufactures. For example, 1) management
and operations of the devices could be separated by running
management applications, such as data analytic tools, on the
remote cloud; 2) due to the simplified operations, the design
and implementation of the device hardware become simpler
and the devices could be produced at a relatively low cost;
3) Cloud Computing provides a unified interface to enable
devices from different vendors to interact easily.

However, many challenges are also emerging along with the
explosion of the IoT devices. First, there is a lack of universal
standards for the IoT platforms. Second, the existing network
infrastructures might not be able to keep up with the growth of

the IoT devices. Last but not least, security and privacy remain
a big concern for IoT users. Among these challenges, the
security and privacy have become imperative with more and
more revealed incidents of information leakage and attacks via
IoT devices. Several factors make it particularly challenging to
address the security issues in IoT environments, including the
device heterogeneity, their interoperability, and the layering
design of the IoT platforms, etc.

Many efforts have been invested to explore the appropriate
approaches for security mechanism design and deployment
in the IoT platforms. For example, Farooq et al. analyzed
the security issues and challenges in IoT architectures by
discussing potential violations of data confidentiality, integrity,
and availability (CIA) [4]. Ronen et al. discovered end ex-
ploited a major bug in the implementation of the Touchlink
part of the ZigBee Light Link protocol, making it possible
for attackers to turn all of a city’s lights on or off [5]. The
proposed solution was to add hardware support for asymmetric
cryptography. Soltan et al. demonstrated that an IoT botnet of
high wattage devices, such as air conditioners and heaters,
could be coordinated to launch large-scale attacks on the
power grid [6]. They proposed to prevent such attacks by
enhancing the authentication to access the devices. To defend
against network attacks launched by IoT devices, Midi et
al. proposed a knowledge-driven adaptable intrusion detection
for the IoT devices, called Kalis [7]. Based on the domain
knowledge of different attack behaviors, Kalis detects suspi-
cious network activities from the collected traffic. Miettinen
et al. built a system to identify the types of different IoT
devices and enforce mitigation measures for device-types that
have potential security vulnerabilities [8]. The goal is to
restrict communications in the network so that adversaries
could not connect to the vulnerable devices. Fernandes et
al. analyzed and revealed security concerns of the current
programming framework of smart homes [9]. To address the
security vulnerabilities in the framework, Jia et al. [10] and
Fernandes et al. [11] proposed various schemes to monitor
the behavior and state transitions of the applications.

However, most of these existing designs either focus on
the specific applications (e.g., smart homes) or target at the
particular vulnerabilities identified in the hardware or com-
munication protocols. The reality is that with more and more
innovative applications and deployment, the attack surface
of IoT systems keeps growing, at a very fast pace, and we



Fig. 1: A generic layered architecture of IoT platforms

envision that attackers can exploit new vulnerabilities in an
ever-increasing attack surface to launch various new attacks.

To this end, we argue that a generic approach would be
desired, yet is currently missing. We vision that such a generic
approach should take the defense at various layers of the IoT
systems into account, and achieve a comprehensive and more
effective protection via a cross-layer approach. Thus, in this
paper, we present our initial design of XLF, a cross-layer
framework to secure the IoT systems, towards this objective.
For this purpose, we first present a comprehensive analysis
of the IoT system capabilities and attack surface components.
Unlike existing approaches that focus on addressing a specific
threat, XLF aims to utilize insights into adversarial capabilities
as well as the system characteristics at different layers to
achieve protection. XLF utilizes various building blocks that
can be implemented either at-device, in-network, in the service
provider’s cloud, or in the gateway.

The remainder of the paper is organized as follows. We
provide a layered view of IoT systems in section II. Following
this layered approach, we present an analysis of attack surfaces
layer by layer in section III. We present our initial design of
XLF in section IV. We conclude the paper in section V.

II. LAYERED VIEW OF IOT SYSTEMS

IoT systems and applications are very rich and diverse, com-
prising a variety of computing resources. Table I shows some
typical configurations of a few IoT-enabled home appliances,
with their computing capabilities.

Regardless of which applications such platforms are de-
signed for, in general, we can see that an IoT system usually
consists of three main layers: a device layer, a network layer
and a service layer. The device layer provides the front-end
interface to the environment and performs some sensing and
data collection functions, while the data are usually transmitted
(perhaps after aggregation) to the back-end on the cloud or a
server where the application runs, through various networking
technology. Figure 1 depicts such a layered view of a typical
IoT system. As shown in the figure, each layer contains
multiple interfaces and different capabilities, which we briefly
elaborate in this section.

A. Device Layer

The device layer consists of two often separate sub-layers:
a hardware layer (sometimes also called the perception layer)
and a resident software layer. The hardware layer provides

Fig. 2: Some IoT network protocols mapped to the TCP/IP
stack

interfaces for sensors, such as temperature, motion, and smoke
sensors, and networking capabilities, such as WiFi, Bluetooth,
Z-WAVE, ZigBee, and 6LoWPAN. The resident software
layer, on the other hand, runs various Operating Systems
(OSes), such as RIOT [12], Contiki [13], and TinyOS [14],
and provides a cache to store frequently used OS files or other
important files.

B. Network Layer

Communication is central to an IoT system. Networking
technologies enable IoT devices to communicate with other
devices as well as with applications and services that are
running in the cloud or servers. Many emerging and competing
networking technologies are being adopted within the IoT
space. These technologies come with different constraints,
including their communication range, network bandwidth,
power usage, interoperability, and security. The Internet relies
on standard protocols to ensure secure and reliable commu-
nication between heterogeneous devices. Standard protocols
specify the rules and formats that devices use for establishing
and managing networks, as well as for transmission of data
across those networks. Some of the networking protocols are
widely adopted within IoT and they could fit in the TCP/IP
stack appropriately as we show in Figure 2.

From the security perspective, it is necessary to select
networking technologies that implement end-to-end security,
such as authentication, encryption, and open port protection.
For example, IEEE 802.15.4 includes a security model that
provides security features including access control, message
integrity, and replay protection. These are implemented by
technologies based on this standard such as ZigBee [15].
For authentication, the X.509 standard could be adopted to
support authentication, for gateways, users, and applications
and services. For wireless network encryption, a Private Pre-
Shared Key (PPSK) approach could be employed. Protocols
such as Transport-Layer Security (TLS) or Datagram TLS



TABLE I: Various components in the device layer of a typical home network system;
computation, storage, and power limit the security functions that can be implemented on the device.

Device Type Chipset Core Freq. RAM Flash Memory Power

HID Glass Tag Ultra (RFID) EM 4305 134.2 kHz 512 bit RW NA NA
HID Piccolino Tag (RFID) I-Code SLIx, SLIx-S 13.56Mhz 2048 bit RW NA NA

Sensor Devices Microcontroller 4 - 32Mhz 4 - 16KB 16 - 128KB Battery
Google Chromecast ARM Cortex-A7 1.2Ghz 512MB 256MB NA
NETGEAR Router Broadcom BCM4709A 1.0Ghz 256MB 128KB AC Power

Gateway WISE-3310 ARM Cortex-A9 1.0Ghz NA 4GB AC Power
REX2 Smart Meter Teridian 71M6531F SoC 10Mhz 4KB 256KB Battery

Philips Hue Ligh tbulb TI CC2530 SoC 32Mhz 8KB 256KB Battery
Nest Smoke Detector ARM Cortex-M0 48Mhz 16KB RAM 128KB Battery

Nest Learning Thermostat ARM Cortex-A8 800Mhz 512MB RAM 2GB Battery
Samsung Smart Cam GM812x SoC Up to 540Mhz N/A Up to 64GB AC Power
Samsung Smart TV ARM-based Exonys SoC 1.3Ghz 1GB N/A AC Power

OORT Bluetooth Smart Controller ARM Cortex-M0 50Mhz 16KB/32KB Up to 256KB Battery
Dacor Android Oven PowerVR SGX 540 graphics 1Ghz 512MB NA AC Power

Fitbit Smart Wrist Band Flex ARM Cortex-M3 32Mhz 16KB 128KB Battery
LG Watch Urbane 2nd Edition Snapdragon 400 chipset 1.2Ghz 768MB 4GB Battery

Samsung Watch Gear S2 MSM8x26 1.2Ghz 512MB RAM 4GB Battery
Apple Watch S1 520Mhz 512MB RAM 8GB Battery

iPhone 6s Plus A9/64-bit/M9 coprocessor 1.85Ghz 2GB Up to 128GB Battery
12.9-inch iPad Pro A9X/64-bit/M9 coprocessor 1.85Ghz 4GB Up to 256GB Battery

(DTLS) could ensure privacy and data integrity for communi-
cation between applications. Port protection ensures that only
ports that are required for communication with the gateway
or upstream applications or services remain open to external
connections. All other ports should be disabled or protected
by applying firewall rules.

C. Service Layer
There are many application domains that are impacted

by the emerging IoT devices, including personal and home
domain, enterprise domain, utilities domain and mobile do-
main [3]. The applications are supported by either public or
private cloud computing infrastructures. These cloud platforms
follow different design paradigms. The extensibility of the
framework greatly stimulates device manufacturers and appli-
cation developers to participate in the ecosystem.

One good example of such platforms is Samsung’s Smart-
Things [16]. The SmartThings architecture provides an ab-
straction of devices from their distinct capabilities and at-
tributes in a way that allows developers to build applications.
A SmartThings Hub is utilized to mediate the communica-
tion between the connected devices, the SmartThings cloud
and the SmartThings mobile application. On the cloud side,
SmartThings cloud consists of several subsystems, including
the Connectivity Mangement system, Device Handlers, the
Subscription Mnagement system and the SmartApp execution
environment. SmartApps executes in a sandboxed environment
in the SmartThings cloud and encompasses the interoperabil-
ities of different devices.

Another paradigm that further expands the idea of interop-
erability is exemplified by a free web-based service, called If
This Then That (also known as IFTTT). IFTTT allows users to
write trigger-action programs that connect numerous services,
social media sites, and physical devices [17]. It has gained a
growing popularity since it was launched in 2011. Services
are the basic building blocks of IFTTT. They mainly describe
a series of data items from a certain web service or actions
controlled with certain APIs.

Fig. 3: IoT Attack Surface Areas

III. ATTACK SURFACES OF IOT SYSTEMS

The realm of IoT keeps expanding daily. As we discussed
before, in such a multi-service and heterogeneous environ-
ment, IoT has become a big contributor to security and
privacy with its rapidly growing attack surfaces. The Open
Web Application Security Project (OWASP) [18], an online
community that produces freely-available resources in the field
of web application security, suggests a list of attacks that
should be understood by manufactures, developers, security
researchers, and those looking to deploy or implement IoT
technologies within their organizations.

From a system perspective, we classify these attacks into the
layered architecture as we presented in the previous section.
Figure 3 illustrates which layer these attacks are mapped to. As
we can see, except for the privacy and ecosystem concerns, the
threats come from every layer of the IoT architecture. In the
following, we provide a preliminary attack surface analysis,
by following the three layers in our system model.

A. Attacks in the Device Layer

Ideally, devices in the device layer should provide several
guarantees: i) have a secure software, ii) allow for authorized
access only, and iii) securely store and transmit data to other



TABLE II: Attack surface: enumeration of vulnerabilities, attacks, and impact at the device layer.

Device Vulnerability Attack Impact

Smart light bulb Static password MitM, password stealing Bulb controlled by remote
Wall pad Buffer overflow Value manipulation, shellcode exe. Housebreaking, monitoring
Network camera Firmware integrity Firmware modulation damage peripherals
Chromecast Rickrolling D/C & reconnects to attacker Privacy violation.
Coffee machine Unprotected channel Listens to UPNP. Hijack password of Wi-Fi
Fridge Generic auth. Malicious code infection Send malicious mail
Oven unsecured Wi-Fi MitM attack Access other devices

devices and the service clouds. As a result, the attack surface
in the device layer is a result of the violation of one or more
of those requirements.

For example, software could be vulnerable due to poor
software design and language use, including buffer over-
flow, injection vulnerabilities, failing to handle error correctly,
allowing for cross-site scripting, improper use of security
packages (such as TLS and SSL at the device layer), and poor
usability, among others. They could also come from firmware
vulnerabilities, such as firmware downgrade and outdated
firmware. Users could access the IoT devices through multiple
interfaces, including administration and web interfaces. The
violations of administration authentications could result from
credential management vulnerabilities, including username
enumeration, weak passwords, known default credentials and
insecure password recovery mechanisms, as well as insecure
direct object references. Attackers could also access the de-
vices from web interfaces. In a recent study performed by
Costin et al. , they found serious vulnerabilities in at least
24% of the web interfaces of IoT devices, including 225 high
impact vulnerabilities by automatic analysis [19]. The devices
being tested include routers, DSL/cable modem, VoIP phones
and IP/CCTV cameras. In their study, it is revealed that these
web interfaces could be leveraged by SQL injection, cross-
site scripting, cross site request forgery, command injection
and HTTP response splitting. Finally, information leakage is
very likely to happen if the devices store unencrypted data or
data encrypted with discovered keys within its local storage.
This becomes even worse since most devices lack proper data
integrity checks and encryption/decryption key management
system. Table II shows some examples of the vulnerability,
attack method, and impact in the devices.

Manufactures are aware of the potential problems in the
devices. For example, some of them bond together to create
the Internet of Things Security Foundation to promote security
practices [20]. Members include important players such as
Siemens, Vodaphone, Webroot, British Telecom (BT), etc.
While this sheds a light on some common efforts, however, it
will be challenging to set standards for the industry.

B. Attacks in the Network Layer
The networking capability is a key for attacks. The vulnera-

bilities in the network layer relate to the network services that
could be exploited to access the IoT device that might allow an
attacker to gain unauthorized access to the device or associated

data. More importantly, the devices could be recruited by
the attacker to form an army to launch massive scale attacks
against some targets. Specific security vulnerabilities include
poor implementations of encryption algorithms, open ports via
Universal Plug and Play (UPnP), vulnerable UDP services, and
lack of payload verification and integrity checks. Besides the
issues with the devices themselves, the transportation channel
for data could also cause problems. For example, if the data
is exchanged with the IoT devices in an unencrypted format,
this could easily lead to an attacker sniffing the data and either
capturing this data for later use or compromising the device
itself. Misconfigurations or bad implementations of SSL/TLS
could lead to such vulnerability as well.

C. Attacks in the Service Layer

Since IoT devices often lack the ability to perform complex
computations, they typically rely on a back-end cloud or
server to provide certain services, such as collaborative tasks
among different devices. By doing so, the IoT devices have
inherent and implicit trust of the cloud or mobile applications
running in a remote platform. If such a platform lacks strong
authentication and access control mechanisms, it is very likely
that the platform will suffer from injection attacks. As a
result, the cloud could be compromised to execute hidden
services, such as collecting personally identifiable information
(PII) and running misbehaving applications that could lead to
unexpected security compromises.

Another important function of backend cloud is to dis-
tribute updates to its connected hardware devices. This is
usually achieved through a mechanism called over-the-air
(OTA) update. This mechanism allows remote update of the
Internet-connected hardware devices with new settings, soft-
ware, and/or firmware. A robust OTA update mechanism is a
core part of a system’s architecture and a key step to guarantee
the security of the devices. It is the device’s responsibility to
identify and apply the updates to itself. However, if the update
is sent unencrypted or unsigned, or the implementations of
the verification are not robust, then the device could be easily
compromised and controlled by an attacker.

IV. XLF: A CROSS-LAYER SECURITY FRAMEWORK

Different from existing defenses that are often designed
by targeting specific application or motivated by a particular
vulnerability, in this section, we present our vision of XLF,
a generic security framework to secure the IoT systems.



Fig. 4: XLF Cross Layer Security Design

XLF achieves effective protection not only by relying on
the various functions that we propose to build in each layer,
but also by enhanced protection capability via a cross-layer
approach. These functions built in each layer are motivated by
our understanding of the IoT system architecture, the system
capabilities, and the corresponding attack surface that we have
discussed in each layer.

Figure 4 sketches the key components of XLF and the
functions we propose to build in each layer. As shown in the
figure, we propose to build various functions and capabilities
in the device layer, the network layer, and the service layer,
respectively, and the details of which shall be discussed soon.
Different from previous approaches, while building such capa-
bilities, these layers do not work individually, but interact with
each other whenever possible through the XLF Core in the cen-
ter. The XLF Core not only facilitates the interactions between
different layers, but also aggregates the raw and the detection
results whenever necessary from each layer, and conducts its
own comprehensive evaluations by utilizing the most advanced
techniques, such as deep learning. In this way, the cross-layer
design of XLF aims to provide proactive protection against
intrusions and comprehensive anomaly detection through the
combined security functions deployed in each component of
the system. In the following, we discuss the proposed functions
in each of the three layers and the XLF Core. Note that XLF
Core can be implemented independently or integrated with one
of the three layers.

While the proposed security mechanisms for each layer
are highlighted in Figure 4, in the subsequent sections, we
discuss some design details. Although our discussion follows
the layered structure, various functions and factors from more
than one layer are considered in our discussions.

A. Security Mechanisms in Device Layer

Based on the analysis of attack surfaces, we argue that the
following defenses are necessary: authentication, constrained
access, malware detection, and encryption. At the device
layer, these security functions are designed to secure the
firmware and the software running in the IoT devices and their
interactions with the end users, the back-end cloud, and the
third-party services. In the IoT environment, security threats
could also come from physical interactions, such as micro
probing and reverse engineering that cause security problems
by directly tampering with the hardware components. Since
these threats require close proximity to the devices and special
tools, they are relatively hard to perform. Therefore, currently
we do not consider the physical threats in XLF. In the
following, we elaborate on the four major proposed security
functions.

1) Authentication: A well-designed authentication method
ensures authenticity so that only the authorized personnel or
object has access to the private information. While many of
the traditional algorithms and authentication methods could
still address some security issues, they run into trouble when
applied to the IoT environment. One of the problems to
be addressed is to make it more convenient for users to
perform authentication for multiple accounts following the
repeated steps. Two-factor authentication (2FA) has been
widely adopted in many services. Some services also use
single sign-on (SSO), an authentication system that allow
users to sign on to a single account, such as Google or
Facebook, and use the same authentication token to access
other services. NIST has recently released a new draft of
the Security and Privacy Controls, which acknowledges the
benefits of combining multi-factor authentication (MFA) and
SSO to improve system security [21].

Barreto et al. proposed an authentication model that works
in two different modes depending on the privilege of the
users [22]. For basic users who only access the devices, their
requests are authenticated and delegated by the IoT cloud
provider. Thus, they get the processed data sent back from
the cloud provider. For advanced users who can perform
firmware update, their initial authentication is performed by
the cloud provider. Then, the user is redirected to the IoT
device by means of an SSO authentication so that all the
subsequent access requests are directly handled by the device.
The proposed schemes fall short in two aspects. First, this
solution does not scale to deal with a large number of users
with multiple devices. It also increases the latency for users to
access their devices. Secondly, due to the resource constraints,
it could be challenging for IoT devices to perform the SSO
authentication and the proper timestamp validations for the
advanced users.

We propose to address these challenges by leveraging the
capabilities of the XLF Core to delegate the authentication
function for the IoT device. The delegation could be adopted
in both the device layer and the network layer, such as a smart
gateway. But we envision the delegation proxy having mulitple



TABLE III: Lightweight cryptographic algorithms.

Algorithm Key Size Block Size Structure No. of Rounds
AES 128/192/256 128 SPN* 10/12/14

HEIGHT 128 64 GFS+ 32
PRESENT 80/128 64 SPN 31

RC5 02040 32/64/128 Feistel- 1255
TEA 128 64 Feistel 64

XTEA 128 64 Feistel 64
LEA 128,192,256 128 Feistel 24/28/32
DES 54 64 Feistel 16
Seed 128 128 Feistel 16

Twine 80/128 64 Feistel 32
DESL 54 64 Feistel 16
3DES 56/112/168 64 Feistel 48

Hummingbird 256 16 SPN 4
Hummingbird2 256 16 SPN 4

Iceberg 128 64 SPN 16
Pride 128 64 SPN 20

* SubstitutionPermutation Network + Generalized Feistel Structures
- Feistel is a design model for many different block ciphers.

access channels, such as ZigBee, Z-WAVE, and LAN, and
being equipped with more computation power and memory
resources than the IoT devices. For this purpose, the proxy
needs to perform, i) caching of SSO tokens from the cloud
provider, ii) SSO authentication and timestamps validation and
iii) processing of raw data for low-privileged users. Further-
more, we propose to distinguish access requests from LAN and
WAN to enforce different levels of authentication. To support
this requirement, we enable the XLF Core to correlate and
integrate the authentication results from the delegation proxy
and the service cloud. In this case, the proxy authenticates
the LAN requests while the cloud service authenticates the
WAN request combining both SSO and MFA mechanisms. The
XLF Core determines the lifetime of the authentication tokens
based on the correlation results. The interactions with the XLF
Core capabilities not only address the scalability issue, but also
provide a chance for the heterogeneous IoT devices to share
a uniform security framework.

2) Encryption: To protect user privacy and the critical
information (e.g., username and password), the data exchanged
between the IoT devices and the cloud provider should be
properly encrypted. Conventional encryption schemes provide
strong security guarantees. However, it is challenging to apply
them to the resource-limited devices. To address this issue,
NIST outlined a number of lightweight cryptography methods
that could be useful in IoT devices [23]. In this report, they
specified several performance metrics for both hardware and
software. They summarized several lightweight cryptography
primitives that have been proposed, including lightweight
block ciphers, lightweight hash functions, lightweight Message
Authentication Codes (MAC), and lightweight stream ciphers.
Some of the lightweight cryptographic algorithms are listed
in Table III The proposed lightweight algorithms need to be
adopted by the vendors to provide end-to-end data security
and integrity. However, applying encryption alone can hardly
preserve user privacy. We propose a remedy scheme leveraging
the information obtained from the network layer to address this
issue that will be discussed soon.

3) Constrained Access: This protection is to constrain the
resources and third-party services the devices are supposed to
communicate with, or access without interrupting their normal
operations. One of the front-line defenses should be network
access control (NAC). With NAC, the network access requests
are either accepted or denied based on a pre-determined set of
parameters and policies that are programmed into the system.
While the concept is straightforward, it is more challenging
to deploy NAC because of its requirements of interacting
with the protocols. Such a mechanism could be enforced in
either devices or in specifically configured network devices.
More often, the devices are hard-coded to connect to certain
corporate domains. However, this makes them vulnerable to
DNS cache poisoning attacks. In a recent work, Apthorpe et
al. revealed that passive network observers could infer device
types and user behaviors by collecting DNS queries [24]. Thus,
DNS plays a vital role in IoT security efforts.

Domain Name System Security Extensions (DNSSEC) is
a suite of IETF specifications for securing the information
provided by the DNS. While DNSSEC guarantees secure
naming, it only has cryptographically signed but not encrypted
responses. In addition, DNSSEC has not been widely adopted
by mainstream IoT device vendors [25]. Even with the encryp-
tion mechanisms adopted by the devices, they are often utilized
over TCP connections instead of UDP communications.

There have been many efforts aiming to raise awareness
of this issue and provide resources to mitigate these threats.
For example, the DNS Privacy Project [26] lists some of
the current solutions, such as DNS-over-TLS (DoT), DNS-
over-HTTP (DoH), DNS-over-DTLS, DNSCrypt, DNS-over-
HTTPS (proxied), etc. But all these protocols are designed
for conventional devices with abundant resources. On the other
hand, we could not simply adopt the lightweight cryptographic
algorithms proposed for the IoT encryptions because that also
requires a forklift upgrade of all the DNS servers. Thus, we
propose to take advantage of the computing powers supported
by XLF Core to bridge the gap between the lightweight
cryptography based DNS and the existing DNS privacy so-
lutions. For this purpose, the XLF Core allows the adoption
of lightweight encryption in the device layer and the stan-
dard encryption mechanisms in the network layer, providing
stronger privacy guarantees across the Internet.

4) Malware Detection: Besides the interactions with the
external services, the internal health of IoT devices is also
very crucial. Once a device gets compromised, all the proposed
security mechanisms would fail. In the worst case, other IoT
devices connected on the LAN could also be affected. To
mitigate such threats, both proactive and reactive mechanisms
should be employed. For the proactive mechanisms, all the
firmware and software updates should be examined by per-
forming either deep packet inspection or fingerprint identifica-
tions. For the reactive mechanisms, malicious activities should
trigger alert and be blocked when they happen. Both methods
require cooperation and support from the network layer. Such
cooperations are facilitated by the XLF Core functions, which
we will discuss next.



B. Security Mechanisms in Network Layer

The network layer provides channels for the IoT devices
to interact with other entities on the Internet. At the same
time, it also provides a pathway for malicious actors. Thus,
the security functions in this layer should satisfy several
requirements: i) robust to zero-day vulnerabilities, ii) scale to
a large number of connected devices, and iii) easy to manage
and customize. Based on these considerations, we propose to
provide a Security-as-a-Service platform in the XLF Core so
that security functions are easy to integrate and interoperate.
Such a platform is not necessarily vendor-specific, making
it easier to implement custom security functions. One such
example is the Samsung SmartThings Shield for Arduino,
which provides a way to allow access to the SmartThings
platform for home automation projects [27]. Although this
was not designed for security purposes, the idea could be
extended to accommodate security functions. In this section,
we highlight the design of several critical security functions
in this layer.

1) Network Traffic Shaping: In the investigation conducted
by Apthorpe et al. , a network observer could easily infer
sensitive device information following three steps [24]. First,
network traffic could be separated into several packet streams
by the external IP addresses of the cloud or third-party
services. Thus, observers could identify and count the distinct
clients (IoT devices) behind a Network Address Translator
(NAT). In the second step, observers could identify each
individual IoT device by associating DNS queries with each
packet stream. For example, the Nest Cam queried domains
from dropcam.com, which is the predecessor of the Nest
Cam. Finally, simple calculations of send/receive rates of each
stream reveal potential user interactions with the devices.

Zhang et al. took a step further to infer the state of the
devices by collecting and fingerprinting the wireless packets
exchanged between the IoT devices and the hub device [28].
The fingerprint of an event is defined by a cluster of packet
sequences that are similar with each other. Each wireless
packet in the sequence is represented by a quadruple of packet
length, timestamp of the packet, source device, and destination
device. Then, the similarities of the sequences are measured
with Levenshtein Distance [29]. Both studies revealed that the
network traffic patterns are directly associated with the state
of the devices. To defend against such threats, we propose
to embed a lightweight yet effective network function in this
layer, called traffic shaping.

Traffic shaping is designed to be a bandwidth management
technique to optimize or guarantee performance, improve
latency, or increase usable bandwidth. In our proposed archi-
tecture, it is used to rearrange the packet sequence to preserve
user privacy from both external and internal observers. For
this purpose, there are two basic operations to execute in our
design. First, it should change the packet transmission rates of
different flows by inserting random delays. Secondly, for the
incoming traffic, redundant packets could be inserted without
changing the states of the devices. The existing algorithm

could balance the adversary confidence and the bandwidth
overhead when performing traffic shaping [30]. But it is not
sufficient to address the potential privacy violations in the
device. To achieve this goal, we could leverage the data
collection and analyzing capability of the XLF Core to employ
the adversarial machine learning techniques to perform the
traffic shaping.

2) Network Traffic Monitoring: Certain security functions
in the device layer rely on the information obtained from the
network layer to take actions, such as malware detection. This
function is mainly proposed to prevent IoT devices from being
infected by malware from unknown or compromised third-
party service providers. In a recent work, Alhanahnah et al.
proposed a method to generate signatures for IoT malwares
using extractable strings and N-gram text analysis [31]. In
this analysis, they pointed out that there are specific shell com-
mands and IP address strings that are used for Communication
and Control (C&C) channel in the malware samples. These
keywords could be organized together to generate malware
detection rules. Each rule then is used to describe an attack
and it contains one or more keywords to be matched in the
traffic, offset information for each keyword, and sometimes
regular expressions.

Since malicious traffic enters the system through network,
the security checks are naturally to be executed in the network
layer. However, given the rule set, it is still challenging to
perform the keywords matching due to the proposed encryp-
tion mechanisms in the device layer. Conventionally, some
systems propose to mount a man-in-the-middle attack on SSL
by installing fake certificates on the middlebox [32]. However,
this breaks the end-to-end security of SSL. Alternatively, we
propose to adopt searchable encryption mechanisms to match
the keywords in the payload against the rules, similar to
BlindBox [33]. To preserve end-to-end security of SSL, a
separate secure connection needs to be established between the
XLF Core and the service layer so that the XLF Core could
perform searching over the encrypted contents. The challenge
is the generation of rule sets from the feature keywords
we uncovered. This solution also brings significantly extra
traffic load to the public Internet considering the number of
connected IoT devices. But this could be alleviated by the
proposed authentication function that grants different permis-
sions for users with different privileges. As a result, only
service providers with advanced SSO tokens are allowed to
perform software or firmware updates. Thus, only their traffic
is examined through this function.

3) Malicious Activity Identification: This function provides
another layer of protection in case the devices are infected.
Nokia recently released an analysis of the IoT botnet ac-
tivity and its evolution since Mirai [34]. In this report, IoT
botnets accounted for 78% of the malware carrier network
activity detected in 2018. The malicious activities involve
hacking activities, scanning activities,and Distributed Denial
of Service (DDoS) attacks. Such attacking activities have been
extensively studied and many research efforts have aimed to
mitigate these attacks over the past decade. The number of



the connected devices makes it almost impossible to provision
any effective defense mechanism close to the target. On the
other hand, a security mechanism on the device side may lack
sufficient information to identify specific attack activities.

Besides the proposed Constrained Access function, we
could also rely on the fact that IoT devices present certain
behavior patterns for the normal operations. As pointed out in
HoMonit proposed by Zhang et al. , the states of the devices
could be profiled by packet sequences [28]. Furthermore,
the state transitions are dictated by the automation programs
installed in the service cloud. Therefore, a Deterministic Finite
Automation (DFA) could be used to reflect normal device
behaviors. Even for devices without automation programs,
such as Amazon Echo, their activity patterns should still be
predictable since they are not as multi-functional as mobile
devices or general purpose machines. Thus, we propose to
employ the advanced machine learning techniques in the XLF
Core to aggregate the information collected from the service
layer and the device layer to learn the normal operations of
the IoT devices and trigger alarms when there are considerable
deviations.

C. Security Mechanisms in Service Layer

As we discussed before, modern IoT applications are often
supported by back-end services running on clouds. They
provide core services like remote administration, alerts, and
content. Most IoT devices have trust of the service providers
by default. However, the cloud endpoints are discovered to
have several potential vulnerabilities, including misbehaving
services, weak authentications, and insecure APIs, from pre-
vious studies. For example, Obermaier et al. analyzed four
video surveillance systems and found that attackers could
inject footage, trigger false alarm, and carry out denial-of-
service attacks against the camera system [35]. These threats
come from weak authentications, misconfigurations of the
infrastructure, and insecure APIs. The authentication could be
improved by employing SSO authentications proposed in the
device layer and a robust identity management system. We
elaborate on the proposed security functions to address the
other problems next.

1) Secure APIs: APIs are the focal point of cloud inno-
vation and enable the connections and data sharing. All the
applications providing services to IoT devices rely on APIs to
function or grow. For example, the cloud IoT applications use
APIs to gather data, or even control other devices. However,
they remain the most overlooked threat in the IoT environment.
This is due to the fact that API vulnerabilities are not easy
to spot and require specialized technology for detection and
prevention. The most common APIs in the IoT environment
are Web APIs and cloud backend APIs.

Simple Object Access Protocol (SOAP) and Representa-
tional State Transfer (REST) are two popular approaches
for implementing APIs. The built-in standards and envelope-
style of payload transport of SOAP require more overhead
compared with other API implementations, such as REST.
Unlike SOAP, which requires parsing and routing for each

request, REST leverages standard HTTP requests. For exam-
ple, Samsung SmartThings Cloud utilize REST APIs to control
and get status notifications from IoT devices. However, SOAP
could provide more comprehensive security and compliance
benefits.

To secure the APIs against attacks, proper authentica-
tions and authorizations are required. For authentications,
OAuth2 [36] and OpenID Connect [37] are the most widely
adopted mechanisms. Similar to our proposed scheme in the
device layer, users should be prevented from accessing API
functions outside their predefined roles so that a read-only
API client should not be allowed to access an endpoint
providing administration functionality. Thus, each API call
should be assigned an API token to validate incoming queries
and prevent attacks on endpoints.

2) Application Verification: IoT applications are automa-
tion programs that gather data from IoT devices and use the
information to control and interoperate IoT devices. Several
companies provide cloud-backed and programming platforms
for users to setup and develop IoT applications, such as Sam-
sung’s SmartThings Cloud, Apple’s HomeKit, and Google’s
Weave/Brillo. However, these applications could be vulnerable
to attacks due to the design flaws.

Fernandes et al. conducted a security analysis of the pro-
gramming framework of smart homes, particularly focusing
on evaluating Samsung’s SmartThings platform [9]. Through
their analysis, they discovered security-critical design flaws
in the capability model and the event subsystem of the
SmartThings cloud. The potential security violations caused
by the flaws include: over-privileged access in SmartApps,
insufficient sensitive event data protection, insecurity of third-
party integration, unsafe use of Groovy dynamic method
invocation, and unrestricted API access control. Some of the
vulnerabilities could be addressed with the above mentioned
mechanisms to secure APIs, while other concerns like over-
privileged access and insufficient event data protection require
more efforts to detect and mitigate.

The over-privileged accesses enable the SmartApps to gain
the access to all capabilities of the devices so that a malicious
application could run hidden services or even take control of
the whole device. The lack of protection of sensitive event data
makes it possible to leak sensitive user information to other
applications subscribing to the same event. Furthermore, since
the integrity of the events is not protected, malicious actors
could easily launch spoofing event attacks. Many research ef-
forts have been invested to mitigate such threats. For example,
Fernandes et al. proposed a framework to support flow policy
rules for IoT applications [11]. Jia et al. proposed a system to
gather information before a sensitive action is executed, and
ask for user approval through frequent run-time prompts [10].
Some researchers also explore to address the root cause of
these threats. He et al. studied the limitations of the current
access control and authentication model, and they envisioned
a capability-based security model for these platforms [38].

However, most existing solutions are proposed to be exe-
cuted and enforced in the back-end cloud platform, which will



become unreliable once the cloud gets compromised. Thus,
we propose to build a more robust monitoring system on the
user end to perform integrity checks against the applications.
Since the state transitions of the devices are dictated by the
commands received from the applications, monitoring and pro-
filing the state transition patterns could be applied to achieve
this goal. To this end, we propose to enable the network
layer to collect device status. Then, by employing machine
learning techniques, such as time series modeling, the XLF
Core could verify that the applications are executing correctly.
Furthermore, the smart gateway could provide programming
APIs for users to develop their own security applications to
deal with the emerging security threats.

3) Data Analytics: Many big data analytic frameworks and
models have been proposed to improve the performance and
quality of the provided cloud service. Naturally, the data gener-
ated by the devices are valuable sources for security analytics.
The behaviors of IoT devices are usually dictated by the
automation programs, thus the state transitions should follow
certain behavior model. Even though the devices are subject
to the influence of the physical environment, the devices are
often deployed in a static environment. Thus the collected
data should present predictive patterns as well. Base on
these observations, multi-dimensional security analytics that
correlate data from multiple domains help service providers
identify anomalies that might be suspicious, malicious, or
inadvertent, and provide context intelligence regarding the
nature of the threat, threat vectors used, associated business
risk, and recommended mitigation.

For example, an automation application could connect smart
thermometer with the smart lock on the window by enforcing
a policy which is to open the window when the temperature
increases above 80◦F. Then, if an attacker is in the proximity of
the device, it is very easy for the attacker to exploit this policy
and increase the temperature of the environment. In such a
situation, the cloud service should be able to monitor the state
transitions of the device and associate the transitions with
the behavior and pattern learnt from history as well as third-
party information, such as weather report and the mobility
or location of user cellphones. Another utilization of security
analytics is to detect whether there has been a spike in CPU
on the sensor or irregular amounts of keep-alive packets on
the device. These data could indicate whether the device has
exceeded its baseline of data or is performing its programmed
behaviors.

When combined with threat intelligence data, security ana-
lytics help more effectively detect threats. Thus, we propose
to build a data analytics module for security purposes in the
cloud framework to help deploy strategic mitigation solutions.

D. XLF Core

XLF Core connects and correlates the security functions in
different layers by providing delegation function, correlation of
the authentication results from different layers, and computing
power to bridge the gap between different layers. In addition to

the interactions with each layer, there are several capabilities
that are central to the design of XLF Core.

IoT ecosystem consists of numerous sensors and services
that continuously collect enormous amounts of data. The
velocity at which data is collected and processed is higher than
it is for the conventional big data analytics. The data collected
from different layers are highly structured but also heteroge-
neous. The integrated analysis of multiple data sources allows
to gain important insights in a wide range of security applica-
tions, such as malware detection and anomaly detection. How-
ever, the integration of various sources of information remains
a big challenge due to the need to develop generic methods to
take the data heterogeneity into account. For this purpose, we
propose to integrate a multi-kernel learning (MKL) module
into XLF Core to correlate data from different sources and
perform classifications to identify malicious activities. The
benefits of applying MKL include: i) it provides a technically
sound way to combine features from heterogeneous sources,
ii) the feature combination and classifier training could be
done simultaneously, making it very efficient, iii) the classifier
generates good learning bounds.

Another important learning module we envision to deploy in
XLF Core is graph-based learning, which provides a principled
approach to community detection. Such techniques have been
extensively used in mining social networks and hierarchical
image clustering etc. In the IoT ecosystem, users running
the same IoT devices and similar automation applications
could be considered as a group or community, which should
present similar behaviors. Thus, XLF Core should leverage the
knowledge obtained from the group to perform data correla-
tions. Particular signals could be associated with certain events
through such correlations. The employment of the graph-
based learning is particularly useful to provide comprehensive
protections for the small IoT environments.

The logic design of XLF Core does not limit the location
where it is deployed. But based on practical considerations, it
could realize its full potential when deployed in the network
layer by extending the existing smart IoT gateway or deployed
in the service layer leveraging the computing power of cloud.
The proliferation of IoT and with the vast amount of data
it produces have pushed the emerging of a new computing
paradigm, Edge Computing [39]. Following this paradigm,
many previous work have proposed to deploy data analytics
platforms at the edge [40], [41]. The deployment of XLF Core
at the edge devices, e.g., smart IoT gateway, is also in align
with this trend and will benefit from the advances in this area.

V. CONCLUSION AND ONGOING WORK

The IoT paradigm provides us unprecedented opportunities
for innovations and also challenges. Facing the increasing
threats of security and privacy, the community has come
together with various defense mechanisms. Instead of cus-
tomizing defenses for particular applications or addressing
particular vulnerabilities, in this paper, we envision that a
generic security framework would be more effective by taking
a cross layer approach. Accordingly, we have presented our



initial design of XLF to secure IoT systems. We hope that our
design can motivate more enhancement and better protection
of current and future IoT systems. In the meanwhile, we are
actively working on different modules in each layer as we
have discussed and implementing the XLF Core. We expect to
obtain and publicize some practical results via the experiments
with our prototype.
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