
InstaMeasure: Instant Per-flow Detection Using
Large In-DRAM Working Set of Active Flows

Rhongho Jang
University of Central Florida

(UCF) & Inha University
r.h.jang@knights.ucf.edu

Seongkwang Moon
Inha University
Incheon, Korea
skmoon@isrl.kr

Youngtae Noh
Inha University
Incheon, Korea

ytnoh@inha.ac.kr

Aziz Mohaisen
University of Central Florida

Orlando, USA
mohaisen@ucf.edu

DaeHun Nyang
Inha University
Incheon, Korea

nyang@inha.ac.kr

Abstract—In the zettabyte era, per-flow measurement becomes
more challenging for the data center owing to the increment of
both traffic volumes and the number of flows. Also, the swiftness
of detection of anomalies (e.g., congestion, link failure, DDoS
attack, and so on) becomes paramount. For fast and accurate
traffic measurement, managing an accurate working set of active
flows (WSAF) from massive volumes of packet influxes at line
rates is a key challenge. WSAF is usually located in high-speed
but expensive memory, such as TCAM or SRAM, and thus the
number of entries to be stored is quite limited. To cope with
the scalability issue of WSAF, we propose to use In-DRAM
WSAF with scales, and put a compact data structure called
FlowRegulator in front of WSAF to compensate for DRAM’s slow
access time by substantially reducing massive influxes to WSAF
without compromising measurement accuracy. To verify its prac-
ticability, we further build a per-flow measurement system, called
InstaMeasure, on an off-the-shelf Atom (lightweight) processor
board. We evaluate our proposed system in a large scale real-
world experiment (monitoring our campus main gateway router
for 113 hours, and capturing 122.3 million flows). We verify that
InstaMeasure can detect heavy hitters (HHs) with 99% accuracy
and within 10 ms (detection is faster for heavier HHs) while
providing the one million flows record with only tens of MB
of DRAM memory. InstaMeasure’s various performance metrics
are further investigated by the packet trace-driven experiment
using one-hour CAIDA dataset, where the target of measurement
was all the 78 million L4 flows for one-hour.

Keywords-Anomaly detection; traffic measurement; sketch

I. INTRODUCTION

We are inching closer to the zettabyte era with ever-
increasing volumes of traffic on the Internet. According to
a Cisco’s report [1], the annual Internet traffic will reach
3.3ZB per year by 2021. To deal with the rapidly surging
demands on network bandwidth, per-port bandwidth now
reaches 100 Gbps, or even more. To improve the utilization
of the deployed network equipment (e.g., switch and router)
by traffic engineering and secure networks, the role of traffic
measurement becomes more important than ever, especially for
data centers, where large volumes of traffic are moved between
different sites or even with a single datacenter. Therefore, to
enable fine-grained network traffic control, per-flow measure-
ment (5-tuple: source IP address/port number, destination IP
address/port number, and protocol) and its treatment become
more crucial.

Thanks to the high-speed network traffic, measurement
algorithms now have to cope with enormous incoming data

rates (i.e., larger number of flows) with tight deadlines (i.e.,
real-time). We stress that instant measurement is highly neces-
sary for the data center traffic engineering (TE) and network
anomaly detection. For example, if denial of service (DoS)
attack causes an influx of packets at 100 Gbps, the detection
delay of 100 ms will cause 1.2GB data to hit a server or
a network. Therefore, to eschew large bandwidth payment,
instant anomaly detection is essential.

For per-flow measurement, sketch-based techniques have
been greatly enhanced over several decades, starting with
original proposals such as Flajolet-Martin (FM) sketch and
Alon et al.’s approximate frequency measurement [2], [3] [4]–
[10]. Unlike their counterparts (e.g., Netflow [11], sflow [12],
jflow [13], etc.), sketch-based counting algorithms only require
a small amount of memory to measure a large volume of
traffic in real-time. To decrease memory usage, most works
have used statistically shared counters [10], matrices [2], and
Bloom filters [8] as statistical noise from each estimation
can be removed at the time of estimation (or decoding). To
enhance estimation accuracy, maximum likelihood estimation
is usually adopted, thereby introducing a substantial amount
of additional computations. Due to their designs, most of
the sketch-based decoding algorithms involve hundreds of
hash calculations (i.e., computationally hard) and memory
accesses from statistically mixed random blocks [14] to obtain
meaningful statistics (e.g., heavy hitters, DDoS attack, flow
size distribution and entropy, etc.) [8]–[10]. For this reason,
offline decoding in a high-performance server is commonly
accepted in practice but inherently incurs huge network delay.
Particularly, for a software switch that is to be wildly used in a
data center server, remote decoding undoubtedly increases the
network congestion which degrades the user experience. Thus,
online decoding is highly necessary for instant measurement
and further timely detection.

To enable instant measurements, scalability, as well as
online decoding of measurement algorithms, are essential. This
is because sketches are quickly saturated, and cannot count
anymore when a flow grows, forcing the saturated sketch to
be sent to a remote collector over the network and resulting in
a high detection latency. For the scalability, instead of sending
out a saturated sketch to a collector, we can decode and store
the value into a table in a switch (or router) for hours or even
days. By doing that, a switch can always refer to the table that

mailto:r.h.jang@knights.ucf.edu
mailto:skmoon@isrl.kr
mailto:ytnoh@inha.ac.kr
mailto:mohaisen@ucf.edu
mailto:nyang@inha.ac.kr

keeps track of flows and their sizes. However, this approach
requires not only online decoding capability of the underlying
sketch, but also the scalability of the table, because our target
time scale is very long—an hour to a week. Naturally, we
considered the working set of active flows (hereafter, WSAF),
which should be maintained by a switching fabric/software
(e.g., Openswitch) for measurement and further refinements
(e.g., routing, TE, and so forth). A WSAF is a type of cache
of a full flow table, which can be found usually in TCAM
(Ternary Content Addressable Memory), CAM, or sometimes
SRAM for fast switching (or forwarding) [15]. NetFlow uses
TCAM for storing WSAF in which an entry consists of a flow
ID and the counting value, while OpenSketch takes advantage
of TCAM and SRAM [11], [16]. The number of entries in
the table cannot be large because those types of memories
are quite expensive. To support scalability by increasing the
WSAF’s capacity, we can put WSAF in DRAM instead of
the expensive memory (i.e., incentive to cost-effectiveness).
However, there is a speed issue for In-DRAM WSAF: a packet
arrival rate is too fast to handle by In-DRAM WSAF, owing
to the DRAM’s speed and WSAF table’s hash collision.

Unfortunately, most sketch-based algorithms lack scalability
and online decoding capabilities. Our approach to solving
these two problems is 1) to use a counting algorithm that can
perform online decoding and 2) to put a flow regulator before
WSAF to slow down the incoming packet rate to WSAF. To
realize both ideas, we designed a highly scalable counting and
flow regulating algorithm called FlowRegulator. By design,
instead of directly inserting or updating every packet of flow
into the WSAF table, FlowRegulator (i.e., a small cache buffer)
retains a fraction of flow counts. By doing so, we can suppress
frequent WSAF updates in DRAM; thereby FlowRegulator can
support the large-scale influx of flows with the use of cost-
effective large DRAM. Consequently, FlowRegulator relaxes
the necessity of precious memories (TCAM or SRAM) for
maintaining large WSAF, and further enables us to build a
highly scalable and fast measurement system. We realize that
in a system called InstaMeasure, and deliver the following
contributions:

• We design FlowRegulator to overcome the lack of scal-
ability and online decoding capabilities. To verify its
practicability, we further build a large-scale per-flow
measurement system called InstaMeasure (Section III).

• To show InstaMeasure’s feasibility and practicability, we
implemented prototype of InstaMeasure using an off-the-
shelf Atom processor board, and extended InstaMeasure
to a multi-core measurement system (Section IV).

• We evaluate the performance of InstaMeasure in several
scenarios. First, we evaluate the estimation accuracy and
processing speed of InstaMeasure with 78 million L4
flows in one-hour CAIDA dataset by varying parameters
(e.g., memory usage, the number of cores, packet per
second, etc..). Second, we conduct a real-world cam-
pus network experiment for 113 hours by connecting
InstaMeasure to a mirroring port of the main gateway

router, capturing 9.11 billion packets, 122.3 million flows,
and 8.5TB bytes. InstaMeasure successfully measured the
whole L4 flows both in packets and in bytes where the
standard errors of both estimations were smaller than
0.65%. As one key application, InstaMeasure detected
heavy hitters with 99.8% accuracy within 10 ms in the
worst case—the prefix Insta comes from this tight time-
bound (Section V).

II. MOTIVATION

Our large WSAF in DRAM is in contrast to the small
WSAF in TCAM (i.e., industry practice), which uses a central
collector over the network at high rates. In DRAM, we can
store much more flows; thereby, we do not need a remote
collector for decoding. However, the downside is that we
cannot evade the “sluggishness” of DRAM.
Managing a WSAF at packet arrival rate: DRAM’s access
speed is limited to process packets arriving at a line rate (e.g.,
40 or 100 Gigabit Ethernet), so today’s online measurement
algorithms assume fast but expensive SRAM for processing
sketches. Due to SRAM’s prohibitive cost, only tens of
megabytes are available to a counting algorithm [16]. Thus,
instead of storing all the information of flows in SRAM, a
measurement algorithm stores only a sketch or a summary in
SRAM that does not have flow information (i.e., flow ID and
its 5-tuple). A set of flow IDs in a table, a mapping between
a sketch and a flow, or even a reversible sketch during a
measurement period are normally stored in DRAM. This use
of DRAM is necessary and common in practice [10], [16],
but managing flow IDs are quite challenging, and insertion-
per-second (hereafter, ips) to the structure should be as high
as packets-per-second (hereafter, pps). Also, in NetFlow, there
exists a WSAF table in which ips should be high enough to
process pps at a line rate. Under the constraint where {ips =
pps} (insertion and lookup at WSAF should be done at packet
arrival rate), it is hard for WSAF to keep up with the speed if
the traffic increases. Packet sampling might be a viable option,
which is used by NetFlow, SFlow, and many sketch-based
schemes. However, such an approach degrades the estimation
accuracy essentially. NetFlow uses both sampling and TCAM
to ensure speed, but the most popular switching silicon chips
have tables that can hold only up to thousands of route entries
in TCAM and CAM [15], which cannot support a large-scale
WSAF for instant measurement.
FlowRegulator to relax the {ips = pps} constraint: Instead
of using TCAM or SRAM, we can use DRAM for WSAF
by relaxing the ips requirement for the WSAF table. Thus,
instead of directly inserting or updating every flow packet
into the table, we put a small buffer called FlowRegulator to
retain a fraction of flow counts before WSAF. FlowRegulator
has a memory block (or a virtual vector initialized to all 0’s)
for every single flow, and whenever a packet comes in, the
corresponding block is updated by setting a random bit of the
block. When the block saturates (or a portion of the block
has set to 1’s), the resulting counting fraction (we note that
this is not the total size of flow) is added up to the WSAF

0 10 20 30 40 50 60
Time (minute)

0K

100K

200K

300K
800K

1200K
1600K

Sa
tu

ra
tio

ns
 p

er
 s

ec
on

d
Actual pps (CAIDA) 8-bit RCC 16-bit RCC

Fig. 1. RCC’s saturation occurs in the speed of 12-19% of packet arrival
rate (the black solid line), which is too frequent to compensate for SRAM’s
speed margin over DRAM’s (5-10%) in CAIDA dataset.

(i.e., a hash table in DRAM). Because FlowRegulator retains
mice flows whose sizes are lower than the saturation condition,
not all the packets are fed into WSAF, but only the packets
that trigger the saturation condition are given to WSAF. This
design greatly reduces ips even under a high pps condition.
How to build FlowRegulator: To develop FlowRegulator,
we utilize sketch-based counting algorithms, because they can
encode packets at line rates, and can accurately estimate flows
with a small amount of memory. Additionally, they satisfy
our requirements: online decoding for adding up to WSAF
when the block is saturated and scalability to deal with a large
number of flows. A hitherto known solution is RCC proposed
by Nyang and Shin [17] because it already has online decoding
capability, and proven to be useful for measurement in the
wireless SDN environment [18]. To investigate its feasibility,
we have tested RCC for its rate regulation (defined as Output
ips/Input pps). Given that the access time of SRAM is 10-
20 times faster than DRAM’s (and even faster with TCAM),
RCC’s rate regulation should be less than 5%. However, its
regulation and retention capacity (the maximum number of
packets in a virtual vector) are not operationally sufficient. To
show that, we conducted an offline experiment using a CAIDA
dataset [19]. As shown in Fig. 1, the solid line shows the actual
packet arrival rate in pps, which is 1 mpps (million packets per
second) on average, but RCC’s saturation frequency is around
19% (output rate is about 190 kips (thousand ips) for the 8-bit
vector, and 12% for 16-bit vector, which is far higher than the
speed margin of SRAM over DRAM. Thus, it is impossible
to work with RCC for building FlowRegulator. One way to
increase the rate regulation is to give RCC a larger virtual
vector, but that does not expand the retention capacity. This
will further be investigated in evaluation Section V.
Two-layer design for higher rate regulation: Here, our ob-
servation is that enlarging the virtual vector size increases the
retention capacity just in an addictive manner, and thus, this is
not a viable (i.e., scalable) option. Instead, we designed a new
counting algorithm for FlowRegulator, which has two layers
of probabilistic counters to achieve the higher rate regulation.
Note that the multi-layer sketch is not first introduced by this
paper (e.g., [20]), but the only sketch-based data structure
that supports online decoding. Our FlowRegulator plays a
key role in retaining flows (from feeding into WSAF) for

a while as well as counting flows. In the two-layer design,
the second (higher) layer’s one bit encodes multiple packets
of a flow from a saturated sketch of the first (lower) layer.
This design has substantially improved the rate regulation
in a multiplicative manner. It enables higher rate regulation
while not being detrimental to accuracy and speed while being
scalable.
Saturation-based decoding for flows: Another aspect of
FlowRegulator is counting elephant flows. Whenever a packet
comes in a virtual vector, the estimation of the saturated
vector is calculated by online decoding, and if saturated, the
decoded counting value is finally accumulated to WSAF. This
is called “saturation-based decoding” in contrast to “packet-
arrival-based decoding”. The latter is for actual online count-
ing, and obviously, it is not feasible because of memory
and computation speed. Saturation-based decoding has the
property that it allows the only elephant flows (flow sizes
greater than retention capacities of the sketch) get through
FlowRegulator to reach the WSAF table, which prevents
WSAF from exploding from a huge number of incoming
mice flows. This is in contrast to NetFlow, which registers
every flow, if not sampled, in the table regardless of its
size. Owing to this, WSAF can keep the counters only for
active elephant flows, which means FlowRegulator helps to
maintain a WSAF with good quality. Notably, even though
our FlowRegulator filters mice flows well, there are still mice
flows that get through to WSAF (recall that FlowRegulator
is a probabilistic counter). We note, however, that it is es-
sential for some applications to have samples of mice flows
(e.g., DDoS attack, SuperSpreader and entropy etc.). However,
WSAF needs to evict the expired (or least significant) mice
flows when the table is full. For FlowRegulator, instead of
running a separate core periodically (NetFlow approach), when
a new flow is inserted, and an empty slot is searched by
hash chaining, garbage collection is performed. Using our
WSAF in DRAM, we can also analyze flow behavior for
long-term measurement. Considering that other sketch-based
schemes send a sketch and flow ID information periodically
to a remote collector for sketch decoding, the decoding can
be regarded as a “delegation-based decoding”. Comparing the
three different approaches, namely the delegation-based, the
packet-arrival-based (used as ground truth and a baseline), and
the saturation-based decoding, we note that the packet-arrival
decoding has the fastest detection time. However, the time
difference between packet-arrival-based and the saturation-
based decoding is within 10 ms, while the difference between
packet-arrival-based and delegation-based decoding is tens
of milliseconds (may increase depending on network delay).
Therefore, our saturation-based decoding is substantially faster
than delegation-based decoding.

III. FLOWREGULATOR DESIGN

Today’s Internet traffic follows a Zipf-like distribution [21],
and mice flows (e.g., 1-10 packets flows) are the majority of
network flows, which is the main reason for WSAF cache
saturation. The DRAM is relatively cheap; thus we have fewer

(a) (b)

Fig. 2. Design of FlowRegulator: (a) Components of FlowRegulator (b)
Probing limit-based second-chance replacement policy of WSAF Table

constraints on its use, compared to SRAM and TCAM. To
overcome its slow read/write access time, we designed a
sketch-based FlowRegulator to regulate influx rates of packets
in front of WSAF by retaining mice flows until they overflow
(or saturate) sketches that they reside in. Note that most mice
flows do not grow enough to overflow their sketches.

A. Two-layer sketch-based counter

Fig. 2(a) illustrates our design of FlowRegulator. The L1
counter is a sketch-based data structure introduced in RCC
(Recyclable counter with confinement [17]). The authors of
RCC proved that a small virtual vector (8-bit) provides a
higher estimation accuracy. A major problem, however, is that
if we use RCC for FlowRegulator, the 8-bit virtual vector can
only count up to 9 packets in the best case. That means the
structure can retain mice flows up to 9 packets and insertion
operations of an elephant flow occur every 9 packets. This rate
regulation is still not acceptable for In-DRAM WSAF: Fig. 1
of RCC’s flow regulation rates for two vector sizes shows the
vector size increment, which does not effectively increase the
regulation rate. To address this problem, we use a two-layer
sketch strategy to increase FlowRegulator’s retention capacity
significantly by designing the second layer sketch to count
in multiple units of the first layer sketch. This multiplicative
approach enables FlowRegulator to retain larger mice and to
retain more packets of each elephant flow (up to around 100
packets for a single flow—10 times more than that of RCC).

As shown in Fig. 2(a), the L2 counter is a set of L1 counters.
We categorized L1’s estimation into three cases based on the
noise level (i.e., relevant to the number of bits set to 0). This
is, for an 8-bit virtual vector, a single flow can set at most
three bits (i.e., 70%) of the 8-bit virtual vector to 1’s; thus
the estimation can be divided into three cases. We use those
three different estimation values as the units of three counters
in layer-2. For example, when the estimation of L1 is 5, the
counter of unit 5 in L2 is chosen, and only one bit of the
counter is set. If the estimation of the counter of unit 5 in
L2 was 4, the total counting value would be 20 (=5×4). The
encoding and decoding processes of L2 counters are designed

Algorithm 1: Two-layer FlowRegulator
1 Init L1[]
2 Init L2[Noisemin][], ...,L2[Noisemax][]

3 forall Pkt f do
4 (idx f , vv f) ← Hash(Pkt f)
5 NoiseL1 ← RCC Encode(L1[idx f], vv f)
6
7 if NoiseL1 , NULL then
8 /*vv f saturated in L1*/
9 NoiseL2 ← RCC Encode(L2[NoiseL1][idx f], vv f)

10
11 if NoiseL2 , NULL then
12 /*vv f saturated in L2*/
13 unit ← RCC Decode(NoiseL1)
14 estpkt ← unit × RCC Decode(NoiseL2)
15 estbyte ← estpkt × Length(Pkt f)
16 ACCWSAF(f , estpkt, estbyte)
17 end
18 end
19 end

to be the same as that of L1, and even the memory layout
and the virtual vector’s bit positions of every flow are the
same (hash function reuse of L1 virtual vector). Thus, L2
counting only requires one additional memory access (in total,
two memory accesses and one hash including L1 counting).
By doing this, we obtained around 1.02% flow regulation rate;
thus the insertion request rate to WSAF table could be reduced
substantially (See Section V).

B. WSAF table management

Our FlowRegulator can retain most mice flows, but not all
of them. There still is a probability for mice flows to pass
through FlowRegulator and to be inserted into the WSAF
table owing to noise. These mice flows lead to memory
space wastes and frequent hash collisions (i.e., probing of
active flows increases). We address this problem by using a
probe limit-based and second-chance replacement algorithm
to evict mice flows from WSAF table to save memory space
and increase probing speed. Moreover, the probe limit-based
approach allows us to use specific parameters (i.e., table size
m = 2n, h(k, i) = hash(k) + 0.5i + 0.5i2 mod m) for probing
all table positions in [0,m − 1] to achieve a high load factor.
See Fig. 2(b).

C. Byte counter

InstaMeasure has another desirable feature that provides
packet and byte counting at the same time. Based on the packet
counting technique, we utilize a sampling-based approach to
perform byte estimation. When a flow f saturates FlowRegu-
lator, an estimated packet number (est) will be accumulated to
WSAF table using the fid . We use the size of the last arrived
packet len to multiply with est and accumulate len × est to
the byte counting field of WSAF table. Even though the idea
is straightforward, it works quite accurately (< 1% error rate,
see Section V.B) and efficiently (one extra multiplication).

Fig. 3. InstaMeasure as a measurement device Fig. 4. Configuration of real-world experiment Fig. 5. Multi-core flow regulation

D. Algorithm

L1 counter of FlowRegulator has a simple word array
structure, where the size of each word is selectable (32 or
64 bits depending on processor). When a packet arrives from
flow f , FlowRegulator computes a hash function using 5-tuple
extracted from the packet (line 4). The hash value is used for
two purposes, 1) to extract virtual vector vv f (i.e., bit positions
confined in a word—virtual vector confinement technique as
in [17]), and 2) to determine vv f ’s word location (idx f)
at L1 counter (L1[idx f]). Once idx f and vv f are decided,
RCC Encode performs encoding of the sketch until vv f of
L1[idx f] saturates and returns a noise level (NoiseL1) (line
7). L2 is a set of L1 counters. When the saturation happens in
L1, one of the counters in L2 will be selected depending on
NoiseL1 to perform second layer counting using the same idx f

and vv f (line 9). When vv f is saturated in L2, FlowRegulator
estimates the total packet number (estpkt) by multiplying
RCC Decode(NoiseL1) and RCC Decode(NoiseL2), where
the former is the number of packets at L1 at the saturation
moment, and the latter is the frequency of saturation at L2
(lines 14-15). The estimation of byte volume (estbyte) is done
by the saturation-based sampling approach. That is, the byte
volume is calculated by multiplying estpkt with the size of
the packet that triggered the L2 saturation (line 15). Finally,
FlowRegulator accumulates estpkt and estbyte to the WSAF
table using flow ID f (line 16) either by insertion or by update.

IV. IMPLEMENTATION

We prototyped InstaMeasure in an off-the-shelf device with
8-Core Atom processors. The estimation accuracy and the
processing speed of InstaMeasure were evaluated by a packet-
driven experiment using 1-hour CAIDA dataset (1-4 cores
used). Further, we set up a real-world experiment using
InstaMeasure device at the backbone gateway router of our
campus network for 113 hours autonomously and ran a use
case: heavy hitter detection (1 core used).

A. Hardware description

Fig. 3 shows the hardware setup of our InstaMeasure device.
We used a Supermicro motherboard A1SRi-2758F that embeds
8-Core Intel Atom processor C2758 ($312) which has a

4MB cache memory (448KB for L1 cache and 4096KB for
L2 cache). In total, 16G (2x8G) DDR3 1600MHz memory
was used with a 200W power supply. We used a 128G
SSD for running Linux 16.04 server (x86) and 4T HDD to
record the network trace for offline analysis. For fast packet
processing, we implemented InstaMeasure based on DPDK
(version 17.11.2) to bypass the kernel. Note that our choice of
the CPU is reasonable as Atom series CPU appears in many
modern routers/switches including bare metal switches [22].

B. Real-world experiment setup

Our campus uses 2 Gbps bandwidth in total (1 Gbps
for up-link and 1 Gbps for downlink), and the backbone
gateway router uses a Juniper EX9208 switch, as shown in
Fig. 4. Since, for logistical reasons, the gateway could not be
programmed for this experiment, we used the mirroring port
of the gateway to perform our measurement. The purpose of
this experiment is to check InstaMeasure’s performance (CPU
and memory use) and scalability (accuracy for 113 hours) (See
section V.D for results). We also ran a use case of heavy hitter
detection. Because the mirroring port starts to drop packets
when port capacity is exceeded, the estimation accuracy was
evaluated by comparing results of InstaMeasure to results
obtained by the recorded traffic experiencing the same packet
drop. Due to the policy of our school, we were permitted to
access only the up-link although for a long time. Moreover, we
evaluated the processing speed and heavy hitter detection delay
using the CAIDA dataset and artificially-generated traffic, to
cope with non-deterministic mirroring delays caused by port
buffering in our real-world experiment.

C. Multi-core traffic measurement system

To perform faster encoding and decoding by taking ad-
vantage of the multi-core Atom processor, we implemented
InstaMeasure as a multi-core traffic measurement system.
Fig. 5 shows a case of the four-core model. As shown, we
allocate memory blocks exclusively to each worker core to
avoid memory collision, where each worker core maintains an
independent FlowRegulator structure with a FIFO task/packet
queue. A worker continuously monitors its task queue and
performs encoding and (if necessary) decoding whenever each

packet arrives. An additional manager core is responsible for
allocating packets to a worker’s queue. To evenly distribute
packets to be processed, the number of 1 bit of source IP
address is used to determine which queue the packet goes
into. As will be shown in Section V.C, InstaMeasure scales
based on the number of core.

D. Parameters

The main component of FlowRegulator is the two-layer
counter. To construct FlowRegulator, we used a total of four
small counters, one for L1 and three for L2 as described in
section III. Thus, when we use a 32KB L1 counter, the total
size of the two-layer counter is 128KB. Moreover, in the multi-
core system, the total memory usage is M times of the number
of worker cores, where M is the memory allocated to the L1
counter. For the four-core system, the allocated memory will
be 128KB×4=512kB.

In a lab experiment, we evaluated the accuracy of a single
core FlowRegulator using the CAIDA dataset by varying the
memory usage of the L1 counter from 32KB to 512KB (in
total, we had 128KB-2048KB when including the three L2
counters for FlowRegulator). In the real-world experiment, we
used 128KB of memory with a single core worker. FlowReg-
ulator’s processing speed was shown to be fast enough to
process 10 Gbps link (see section V). For the memory usage
of the WSAF hash table, we fixed the total entry numbers to
220 for all experiments including the multi-core case.

As shown in Fig. 2(a), the size of each hash table entry
is 33 bytes to include a flow ID (32 bit hash of 5-tuple),
packet counter (32 bits), byte counter (32 bits), timestamp (64
bits) and the 5-tuple (104 bits). Thus, the total DRAM space
required for the hash table is only 33MB. If we allocate more
DRAM, e.g., 1GB, it can run for several days autonomously
and without interruptions on a 10 Gbps link.

V. EVALUATION

First, we evaluate the estimation accuracy and processing
speed of InstaMeasure with the CAIDA dataset by varying
parameters (e.g., memory usage, the number of cores, pps
(packets-per-second), ips (insertion-per-second) etc.). Second,
we demonstrate the feasibility of InstaMeasure by showing
results of real-world experiment.

A. Datasets

• CAIDA Anonymized Internet Trace 2016. [19] We
used one-hour (13:00-14:00, 6th of April, 2016) network
traffic trace that was collected at the Equinix-Chicago
data center on an OC-192 link (maximum load of 10
Gbps). We merged trace data of both directions (i.e.,
between Chicago and Seattle) in the order of timestamp
to evaluate InstaMeasure with larger-scale network trace.
As a result, our dataset contains 3.7 billion IPv4 packets
(include UDP, TCP, and ICMP), 78 million L4 flows, and
the highest speed was 1.5 mpps (million pps). This scale
is substantially large and beyond current sketch-based

(a) CAIDA (b) Backbone gateway of Campus

Fig. 6. Distribution of CAIDA dataset and 113 hours campus traffics.

measurement’s capability. See Fig. 6(a) for the traffics
distribution of the dataset.

• 113-hour backbone gateway traffic on campus net-
work. We implemented our InstaMeasure in an off-
the-shelf device and measured up-link traffics (1 Gbps
bandwidth) at the backbone gateway (Juniper EX9208
switch) of our campus for 113 hours in total. For further
analysis, we also recorded 5-tuple, the packet size and the
timestamp of every single packet. In total, about 8.5TB
of traffic, 9.1 billion packets (broken down into 6.4% of
UDP and 93.6% TCP) and 122.3 billion L4 flows were
observed in 113 hours. See Fig. 6(b) for the distribution.

B. Evaluation of FlowRegulator

WASF ips relaxation. In Fig. 7, the x-axis represents the
timeline of our merged CAIDA dataset, and the solid black line
on the top represents the actual pps of the trace. Below the pps
line, RCC’s and FlowRegulator’s regulation rates are shown in
red squares and blue diamonds, respectively. The figure shows
that RCC relaxes ips to feed packets to WSAF table at the
speed of 112 kips (thousand ips), which corresponds to 12%
regulation rate. FlowRegulator effectively regulated flows to
pass only 1.02% with 128KB DRAM memory, Considering
that WSAF is usually stored in SRAM or TCAM, and SRAM
is 10-20 times faster than DRAM, FlowRegulator has sufficient
margin, while RCC does not have as can be seen in Fig. 7.
Even for WSAF in TCAM, which is faster than SRAM,
FlowRegulator can be configured to have enough margin by
adjusting the vector size or even the number of layers.
Regulation rate vs. sketch size. Because FlowRegulator’s
role is to slow down the insertion request rate to WSAF, we
evaluate how effectively it achieved this goal. Fig. 8(a) shows
comparatively the retention capacity of each virtual vector by
varying its size. For RCC, the growth rate of the retention
capacity is very slow; thus its retention capacity is only 77
packets even with a 64-bit virtual vector. We note that to use
64-bit virtual vector the confinement size should be at least 256
bits, which incurs 8 memory accesses and 8 hash computations
for every packet in a 32-bit system, which is not acceptable for
FlowRegulator. Compared to RCC, FlowRegulator’s retention
capacity grows very quickly as the size increases, and thus
a 16-bit vector (8 bits for each layer) is enough to retain
a hundred flows. To fairly compare FlowRegulator of two
layers to RCC of a single layer, FlowRegulator’s vector size is

0 10 20 30 40 50 60
Time (minute)

103

104

105

106

ip
s

of
 W

SA
F

ta
bl

e

Actual PPS (CAIDA) 16-bit RCC (3MB) 16-bit FlowRegulator (128KB)

Fig. 7. WASF relaxation: FlowRegulator (FR) and RCC ips of CAIDA dataset

(a) Flow retention capacity (b) Saturation frequency (c) Decode error per saturation

Fig. 8. FlowRegulator’s retention capacity and saturation frequency outperforms RCC’s, paying a little degradation of accuracy.

defined to include all the vectors where a packet can reside—
since we are interested in the number of packets retained by
a virtual vector. Since FlowRegulator’s design has two layers,
it would be twice of L1 counter’s virtual vector size. Fig. 8(b)
shows the saturation frequency of a sketch for a single flow
comparatively, which indicates that the insertion request rate
to WSAF is decreased (better for WSAF) as the frequency
becomes low. The figure shows that RCC with 64-bit virtual
vector seems to be barely comparable to FlowRegulator, but
it is impractical as we mentioned above. Also, in the real
world, a sketch accommodates a large number of flows, so
the saturation rate is much higher than that in the analysis as
shown in Fig. 7. Thus, even a larger vector for RCC should
be utilized. Consequently, as shown in Fig. 7, FlowRegulator
provides enough retention capacity to suppress the insertion
request frequency, which cannot be achieved by RCC.
On cost. Two-layer design of FlowRegulator, however, pays
a small penalty of accuracy degradation, which is shown in
Fig. 8(c). The overall accuracy of FlowRegulator is lower
than that of RCC with a single layer, but the difference is
very small except when the vector size is 8 bits (4 bits for
each layer). We note that FlowRegulator implementation for all
the experiment has 16-bit long vector. Another cost might be
the detection latency: because FlowRegulator relies on sketch
saturation-based decoding, an event such as heavy hitter cannot
be detected immediately, but when the flow is registered in the
WSAF table. This, in turn, delays the detection. However, as
shown in Fig. 9(b), the delay is less than 10 millisecond, which
is negligible compared to tens of milliseconds of delay in most

(a) Speed of FlowRegulator (b) Heavy hitter detection latency

Fig. 9. InstaMeasure’s processing speed scales well, and its detection latency
of heavy hitters is under 1 ms if a heavy hitter consumes more than 100 kpps.

frameworks (e.g., [23]). Also, in the same figure, we draw
that significant attackers use more bandwidth, and thus can be
caught earlier than slow attackers, who are less important in
volume-based attacks.
Processing speed of FlowRegulator. To evaluate the encoding
speed of FlowRegulator, we used our off-the-shelf device in
Fig. 3; it is equipped with an 8-core 2.4 GHz Atom processor
and 16G DRAM. We pre-loaded the CAIDA dataset into
memory and focused on how many packets FlowRegulator
can process per second. Fig. 9(a) shows the processing speed
of FlowRegulator by varying the number of cores. As shown,
FlowRegulator could process 18.88 mpps (on average) with a
single core. Clearly, a one-core FlowRegulator can measure the
OC-192 link of the CAIDA dataset even when the traffic is 64-
byte packets, The processing speed with 2 cores increased to
25.48 mpps. Three and four core FlowRegulator still achieved
higher processing speed: 36.19 mpps and 46.32 mpps, respec-

(a) Error rate vs. memory usage (b) Quality of packet Top-K list

Fig. 10. Accuracy of packet counting (CAIDA one-hour trace)

(a) Error rate vs. memory usage (b) Quality of byte Top-K

Fig. 11. Accuracy of byte counting (CAIDA one-hour trace)

tively. We note that FlowRegulator’s memory usage does not
affect processing speed but only on the accuracy.

In conclusion, this experiment shows that FlowRegulator—
even using an Atom processor and DRAM– has enough
processing speed that can be sufficiently used for 10 Gbps
high-speed links without any packet loss.
Detection latency. We conducted an experiment to show the
heavy hitter detection delay caused by our FlowRegulator’s
saturation-based decoding in a 1 Gbps network environment.
We used a high-end desktop to generate traffic with various
speeds (10-200 kpps) to InstaMeasure device. At the same
time, our device performed heavy hitter detection in parallel.
A fixed threshold (T=0.05% of link capacity) was used to
detect heavy hitters and recorded the first detected time using
both packet-arrival-based and saturation-based decoding. As
shown in Fig. 9(b), when the traffic generator was in a low
transmission rate, the detection delay was more than 10 ms.
However, as the transmission rate increased, the detection
delay decreased sufficiently. When the speed was 10 kpps, the
average delay was around 10 ms and 1 ms at the rate of 130
kpps. Note that byte volume-based heavy hitter detection delay
is almost the same as with the packet counting-based one. This
is mainly because our byte volume counting depends on the
packet counting.

C. Accuracy of packet and byte counters

We used the one-hour CAIDA dataset and ran a single core
InstaMeasure to evaluate the estimation accuracy (packets and
bytes) while varying the memory usage of our L1 counter
(i.e., 32KB-512KB). Then, we compared each estimated flow
size (both in packets and in bytes) with the ground-truth. Since

InstaMeasure can measure a flow larger than a million packets,
we divided flows into three intervals depending on the size and
evaluated the average error of each interval.
Packet counter. Fig. 10(a) shows the averaged error rates of
all L4 flows of the packet counter after one-hour measurement.
When the total memory usage was 128KB, the average error
rate of flows that have more than 1000K packets was 0.56%
and 1.54% for 100K+ flows. For relatively small flows (10K+
flows), it was 3.48%. As shown in the figure, it decreased as
more memory was used. When we increased the memory to
256KB, InstaMeasure achieved 0.28% of average error rate for
1000K+ packet flows, 0.99% for 100K+ flows and 2.79% for
10K+ packet flows. Further, when the amount of memory was
2048KB, InstaMeasure achieved the highest accuracy, with
0.19% (1000K+), 0.58% (100K+) and 1.76% (10K+) error
rates, respectively.
Byte counter. Fig. 11(a) shows the averaged error rates of all
L4 flows of the byte counter. When the memory usage was
128KB, the average error rate of 1GB+ sized flows was 0.54%,
1.57% for 100MB+ sized flows, and 3.47% for 10MB+ sized
flows. Same as with the packet counter, the accuracy of the
byte counter also increased when more memory was given. For
128KB memory, the average error rates were 0.27%, 1.00%,
and 2.67% respectively. For 2048KB of memory, InstaMeasure
achieved 0.18% error rate for 1GB+ sized flows, 0.61% for
100MB+ sized flows and 1.66% for 10MB+ sized flows.
Top-K identification. Owing to InstaMeasure’s high accuracy
for millions of flows, Top-K identification problem can be
scaled up to Top-million. Moreover, InstaMeasure can provide
two kinds of Top-K flow lists at the same time: Packet Top-
K and Byte Top-K. For evaluation, we fixed the memory
usage of the counter to 10MB and used a standard recall
metric to measure the quality of packet number-based and
byte volume-based Top-100, 1K, 10K and 1M lists using the
CAIDA dataset, with updates done every 10 minutes. Fig. 10
and Fig. 11 show that the recall rates of byte/packet Top-K
are mostly above 95%.
Comparison. We also report that we conducted an experiment
with CSM [10] using 60MB, which corresponds to around two
times of the largest memory used in InstaMeasure. The vector
size of 10,000 was chosen to be large enough to count the
maximum flow size. However, decoding the entire dataset did
not terminate, and we failed to conduct experiments on one-
hour data. Instead, we ran CSM over one-minute data and
checked the accuracy. Instead of decoding all flows, we limited
our decoding to the top-100 and top-1,000 flows and checked
the accuracy. We found that the average error rate was 2.4%
for the top-100 and 8.53% for the top-1,000, which is much
higher compared to InstaMeasure using even one-hour data.

D. Monitoring in the wild

We observed that the traffic collected in our campus for 113
hours had the typical Zipf-like distribution as other network
traces did. During 113 hours, 9.1 billion packets of 122.3
billion L4 flows were measured simultaneously both in packets
and in bytes. InstaMeasure used a single Atom processor

(a) Packet per second (kpps)

(b) Gigabit per second (Gbps)

(c) CPU load of 1 core InstaMeasure

Fig. 12. Monitoring in the wild

Fig. 13. Estimation result of 133 hour real-world experiment using 12MB
sketch. Accuracy of packet counting (left) and byte counting (right). Each
point stands for each flow. To see how accurate estimation is, check how
close every point is to the reference line y = x.

Fig. 14. False positive and false negative rates of packet heavy hitter detection
(left) and byte volume heavy hitter detection (right).

core, 128KB for the sketch, and 33MB for the WSAF table.
Sketches and WSAF table are all in DRAM.
Accuracy. Fig. 13 shows the estimation accuracy by standard
error for the real-world experiment. For packet counting, we
report 0.54% standard error over 350 flows of which size is
1000K+, 1.61% over 11,047 flows for 100K packets, 3.46%

over 104292 flows for 10K+ packets. For byte counting, we
report 0.63% over 414 flows of which byte size is 1G+, 1.74%
over 12,125 flows of 100MB+, 3.65% over 107,726 flows of
10MB+. This accuracy matches the accuracy observed in the
lab experiment with the CAIDA dataset.
Overheads. Our campus network’s traffic volume is shown
as a time series in Fig. 12(a). We observed that the amount
of traffic reached a peak during the daytime, whereas less
traffic was observed at the weekend and night. InstaMeasure’s
CPU workload and the queue memory usage during the 113
hours are shown in Fig. 12(c). the core’s workload matches
the traffic pattern, and the core usage did not go over 40% at
any point. As for the queue (represented in black diamonds in
the figure), it did not grow noticeably. The results confirmed
that InstaMeasure implemented on Atom board worked well
for the 1 Gbps network monitoring, and for a quite long time.
Heavy hitter detection. Fig. 14 shows InstaMeasure’s heavy
hitter detection accuracy in terms of false positive/negative
rate. Owing to InstaMeasure capability of counting both in
packets and in bytes, it can detect both packet heavy hitters
and byte heavy hitters. False negative rates in both cases are
negligible, and the false positive rates of packet/byte heavy
hitters are less than 0.1% and 0.2%, respectively.

VI. RELATED WORK

A large volume of works on sketch-based measurement
have been done to leverage its estimation accuracy for traffic
engineering and anomaly detection [5]–[10], [17]. Among
them, Estan and Varghese’s work was on heavy hitter detection
during a measurement period [4], which was followed by
several other works [5], [24]–[26]. Recently, Basat et al.
proposed an elephant-flow identification and a Top-K counting

algorithms [27], [28]. Their Top-K is quite limited (up to top-
512). InstaMeasure is concerned with the larger scale of Top-
K, e.g., tens of thousands to millions.

Notable works on real-time measurement system include
OpenSketch, which utilized various sketches and specialized
hardware: e.g., TCAM and SRAM [16]. FlowRadar, which
took advantage of a recently proposed hash data structure
called IBLT (Invertible Bloom Lookup Table) to resolve the
hash collision problem [23], [29], and UnivMon, which uses
a single universal sketch [30]. Especially, FlowRadar’s view
on WSAF is similar to InstaMeasure, although it tried to
solve non-deterministic insertion time by IBLT’s constant time
insertion, instead of relaxing the {ips = pps} constraint.

VII. CONCLUSION

In this work, we have developed InstaMeasure for instant
flow detection, by counting of packets and bytes in high-
speed networks. Our approach is different from conventional
measurement frameworks in that we reduced detection delay
by introducing a new notion of very large In-DRAM working
set of active flows. As a result, we could obtain measurement
results with under 1 ms detection delay, which is negligibly
small compared to tens or even hundreds of milliseconds
in conventional approaches. We demonstrated InstaMeasure’s
performance and feasibility through extensive analyses, thus
opening a new direction in per-flow measurement.

ACKNOWLEDGEMENT

This research was supported by the Grobal Research
Laboratory (GRL) Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Sci-
ence and ICT (NRF-2016K1A1A2912757). This work has
supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (NRF-
2017R1A2B4010657). DaeHun Nyang and Aziz Mohaisen are
the corresponding authors.

REFERENCES

[1] , “The zettabyte era: Trends and analysis,”
http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html.

[2] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for
database applications,” Journal of Computer System Science, vol. 31,
pp. 182–209, 1985.

[3] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approx-
imating the frequency moments,” J. Comput. Syst. Sci., vol. 58, no. 1,
pp. 137–147, 1999.

[4] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice,” ACM Trans.
Comput. Syst., vol. 21, no. 3, pp. 270–313, 2003.

[5] X. A. Dimitropoulos, P. Hurley, and A. Kind, “Probabilistic lossy
counting: an efficient algorithm for finding heavy hitters,” Computer
Communication Review, vol. 38, no. 1, p. 5, 2008.

[6] S. Cohen and Y. Matias, “Spectral bloom filters,” in Proceedings of the
2003 ACM International Conference on Management of Data, SIGMOD
2003, San Diego, California, USA, June 9-12, 2003, 2003, pp. 241–252.

[7] A. Kumar, J. Xu, and J. Wang, “Space-code bloom filter for efficient
per-flow traffic measurement,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 12, pp. 2327–2339, 2006.

[8] O. Rottenstreich, Y. Kanizo, and I. Keslassy, “The variable-increment
counting bloom filter,” IEEE/ACM Trans. Netw., vol. 22, no. 4, pp. 1092–
1105, 2014.

[9] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter braids: a novel counter architecture for per-flow measure-
ment,” in Proceedings of the 2008 ACM International Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS 2008,
Annapolis, MD, USA, June 2-6, 2008, 2008, pp. 121–132.

[10] T. Li, S. Chen, and Y. Ling, “Fast and compact per-flow traffic
measurement through randomized counter sharing,” in Proceedings of
the 30th IEEE International Conference on Computer Communications,
INFOCOM 2011, 10-15 April 2011, Shanghai, China, 2011, pp. 1799–
1807.

[11] “NetFlow,” http://www.cisco.com/c/en/us/products/ios-nx-os-
software/ios-netflow/index.html.

[12] “sFlow,” http://www.sflow.org/.
[13] “jFlow,” https://www.juniper.net/us/en/local/pdf/app-notes/3500204-

en.pdf.
[14] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y. Chen, and G. Zhang,

“Sketchvisor: Robust network measurement for software packet process-
ing,” in Proceedings of the 2017 ACM Special Interest Group on Data
Communication, SIGCOMM 2017, Los Angeles, CA, USA, August 21-
25, 2017, 2017, pp. 113–126.

[15] “Td-routing: Supported route table entries,”
https://docs.cumulusnetworks.com/display/DOCS/Routing#Routing-
SupportedRouteTableEntries.

[16] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” in Proceedings of the 10th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2013, Lombard,
IL, USA, April 2-5, 2013, 2013, pp. 29–42.

[17] D. Nyang and D. Shin, “Recyclable counter with confinement for real-
time per-flow measurement,” IEEE/ACM Trans. Netw., vol. 24, no. 5,
pp. 3191–3203, 2016.

[18] R. Jang, D. Cho, Y. Noh, and D. Nyang, “Rflow+: An sdn-based
WLAN monitoring and management framework,” in Proceedings of
the 2017 IEEE International Conference on Computer Communications,
INFOCOM 2017, Atlanta, GA, USA, May 1-4, 2017, 2017, pp. 1–9.

[19] “The cooperative association for internet data analysis, equinix chicago
data center,” https://www.caida.org, [Apr 06 2016].

[20] M. Chen, S. Chen, and Z. Cai, “Counter tree: A scalable counter
architecture for per-flow traffic measurement,” IEEE/ACM Trans. Netw.,
vol. 25, no. 2, pp. 1249–1262, 2017.

[21] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and zipf-like distributions: Evidence and implications,” in Proceedings of
the 1999 IEEE International Conference on Computer Communications,
INFOCOM 1999, New York, NY, USA, March 21-25, 1999, 1999, pp.
126–134.

[22] “All about bare metal switch,” https://bm-switch.com/.
[23] Y. Li, R. Miao, C. Kim, and M. Yu, “Flowradar: A better netflow for data

centers,” in Proceedings of the 13th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2016, Santa Clara, CA, USA,
March 16-18, 2016, 2016, pp. 311–324.

[24] R. Karp, S. Shenker, and C. Papadimitriou, “A simple algorithm for
finding frequent elements in streams and bags,” ACM Transactions on
Database Systems, vol. 28, no. 1, pp. 51–55, 2003.

[25] N. Kamiyama and T. Mori, “Simple and accurate identification of high-
rate flows by packet sampling,” in Proceedings of the 2006 IEEE
International Conference on Computer Communications, INFOCOM
2006, 23-29 April 2006, Barcelona, Catalunya, Spain, 2006.

[26] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Finding
hierarchical heavy hitters in streaming data,” TKDD, vol. 1, no. 4, pp.
2:1–2:48, 2008.

[27] R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner, “Random-
ized admission policy for efficient top-k and frequency estimation,” in
Proceedings of the 2017 IEEE International Conference on Computer
Communications, INFOCOM 2017, Atlanta, GA, USA, May 1-4, 2017,
2017, pp. 1–9.

[28] ——, “Optimal elephant flow detection,” in Proceedings of the 2017
IEEE International Conference on Computer Communications, INFO-
COM 2017, Atlanta, GA, USA, May 1-4, 2017, 2017, pp. 1–9.

[29] M. T. Goodrich and M. Mitzenmacher, “Invertible bloom lookup tables,”
in Proceedings of the 49th Annual Allerton Conference on Communica-
tion, Control, and Computing, Allerton 2011, Allerton Park & Retreat
Center, Monticello, IL, USA, 28-30 September, 2011, 2011, pp. 792–799.

[30] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
univmon,” in Proceedings of the 2016 ACM Special Interest Group on
Data Communication, SIGCOMM 2016, Florianopolis, Brazil, August
22-26, 2016, 2016, pp. 101–114.

