
Adversarial Learning Attacks on Graph-based IoT
Malware Detection Systems

Ahmed Abusnaina Aminollah Khormali Hisham Alasmary
Jeman Park Afsah Anwar Aziz Mohaisen

University of Central Florida

Abstract—IoT malware detection using control flow graph
(CFG)-based features and deep learning networks are widely
explored. The main goal of this study is to investigate the
robustness of such models against adversarial learning. We
designed two approaches to craft adversarial IoT software: off-
the-shelf methods and Graph Embedding and Augmentation
(GEA) method. In the off-the-shelf adversarial learning attack
methods, we examine eight different adversarial learning methods
to force the model to misclassification. The GEA approach aims
to preserve the functionality and practicality of the generated
adversarial sample through a careful embedding of a benign
sample to a malicious one. Intensive experiments are conducted
to evaluate the performance of the proposed method, showing
that off-the-shelf adversarial attack methods are able to achieve
a misclassification rate of 100%. In addition, we observed that the
GEA approach is able to misclassify all IoT malware samples as
benign. The findings of this work highlight the essential need
for more robust detection tools against adversarial learning,
including features that are not easy to manipulate, unlike CFG-
based features. The implications of the study are quite broad,
since the approach challenged in this work is widely used for
other applications using graphs.

Keywords-Adversarial Learning, Deep Learning, Graph Anal-
ysis, Internet of Things, Malware Detection

I. INTRODUCTION

The Internet of Things (IoT) is a novel networking prototype
that interconnects a large number of devices, with many differ-
ent applications, such as sensors, voice assistants, automation
tools, etc. [1]. Multiple pieces of software or applications are
installed in each of those devices to function. At the same time,
those applications can be exploited through vulnerabilities,
leading to a wide variety of security threats and impacts,
such as Distributed Denial of Service (DDoS) attacks launched
by Mirai botnet [2]. Thus, it is essential to understand IoT
software to address those security issues through analysis,
abstraction, and classification [1], [3]. To do so, there has been
a large body of research work on the problem of software
analysis in general, and a few attempts on analyzing IoT
software in particular. It should be noted that the research
work on IoT software analysis has been very limited not
only in the size of the analyzed samples, but also the utilized
approaches [4], [5]. A promising direction leverages a graph-
theoretic approach in security [6], particularly, to analyze IoT
malware. Representative static characteristics can be extracted
from a graph [7], [8], such as, Control Flow Graph (CFG),
which is abstracted from IoT malware samples. As IoT soft-
ware can be represented using graph-based features from CFG,
those features can be utilized to build an automatic detection

system to identify whether a given software is malicious or
benign [9]. Moreover, the type of the malicious software can
be identified through malware family-level classification and
label extrapolation, a concept widely applied [10].

Machine learning algorithms, specifically deep learning net-
works, are actively used in the process of detecting/classifying
malicious software from benign ones [10], [11]. Generally,
machine/deep learning networks, thanks to their high perfor-
mance, are widely used in a wide range of applications, such as
health-care [12], finance [13], industry [14], [15], computer-
vision [16], and cyber-security [17], [18]. For instance, ma-
chine learning theory is leveraged into the process of software
graph analysis to build more powerful analysis tools [19]. One
such application is exploring IoT malware using both graph
analysis and machine learning [9]. These models not only
can learn the representative characteristics of the graph, but
also can be utilized to build automatic detection system to
predict the label of the unseen software. However, the rise
in the utilization of deep learning models in security-related
domains creates incentives for adversaries to manipulate the
underlying model to produce their desired outputs. It has been
shown that the machine/deep learning networks are prone to
vulnerabilities. For example, an adversary can force the model
to produce his desired output, e.g., misclassification, through
crafting the adversarial examples (AEs) [20], [21].

Machine and deep learning models learn the inherent pattern
of the input dataset. Therefore, the model output is highly
dependent on the input dataset. At the same time, the AEs
are being crafted through applying small perturbation to the
input dataset. Note that the crafted samples are very similar
to the original ones, and are not necessarily outside of the
training data manifold. Recently, researchers presented sev-
eral algorithms for generating adversarial examples, such as
the fast gradient sign method [22], DeepFool method [21],
the Jacobin-based saliency map method [20], etc.. Although
it is an active research area in the security and machine
learning communities, there is very little research work done
on understanding the impact of adversarial learning on deep
learning-based IoT malware detection system and practical
implications [23], particularly those that utilize CFG features.
It is worth noting that labeling a malicious IoT software as
benign may lead to disastrous results in practice, particularly
in sensitive applications and domains, highlighting the impor-
tance of the issue to be explored in more detail.
Goal of this study. Motivated by the aforementioned issues,
our main goal is generating adversarial IoT software samples

that (1) fool the classifier and (2) function as intended.
Approach. To tackle the above objectives, first we conducted
an in-depth analysis of malware binaries through constructing
abstract structures using CFG, which are analyzed from multi-
ple aspects, such as the number of nodes and edges, as well as
graph algorithmic constructs, including average shortest path,
betweenness, closeness, density, etc. Then we designed two
approaches to craft AEs, including off-the-shelf adversarial
learning approach and GEA approach, while applying small
changes to the graph features. The off-the-shelf adversarial
attack approach incorporates eight well-known adversarial
learning methods to force the model to misclassification.
Whereas, the GEA approach aims to preserve the functionality
and practicality of the generated adversarial sample through a
careful connection of benign graph to a malicious one.
Findings. Extensive experiments are conducted to evaluate the
performance of our work. The results demonstrate that off-
the-shelf adversarial attack methods are able to achieve a high
misclassification rate of 100%, while the GEA approach is able
to misclassify all malware samples as benign. The findings
highlight the need for more robust detection tools against
adversarial learning, such as more sophisticated features that
are not easy to manipulate, unlike CFG-based features.
Summary of contributions. Our contributions are as fol-
lows: First, we examined the robustness of CFG-based deep
learning IoT malware detection system using two different
approaches, including off-the-shelf adversarial learning algo-
rithms and graph embedding and augmentation. The pro-
posed GEA approach that generates adversarial IoT software,
through embedding representative target sample to the original
software, while maintains the practicality and functionality of
the attacked sample. Second, we evaluated the performance of
the proposed method via intensive experiments showing the
effectiveness of the proposed approach in producing successful
AEs. We found that although off-the-shelf adversarial learning
algorithms can generate AEs with high misclassification rate of
100%, they do not guarantee the practicality and functionality
of the crafted AEs. Whereas, the proposed graph embedding
and augmentation approach maintains the practicality of the
generated adversarial IoT software examples, which can mis-
classify all malicious IoT software as benign.
Organization. In section II, a brief background is provided.
The presented practical approach for generating practical ad-
versarial IoT software is described in section III. The perfor-
mance of the proposed approach, evaluated through intensive
experiments, is in section IV. Related work has been discussed
in section V. Finally, limitations and future work are discussed
in section VI, followed by the conclusion in section VII.

II. PRELIMINARIES

We incorporate adversarial learning techniques into CFG-
based deep learning IoT malware detection systems in an
attempt to understand the robustness of such models against
adversarial learning attacks as a result of AEs.

We provide a required preliminary knowledge for under-
standing those techniques and approaches required for mal-
ware analysis to extract graph structures and to automate their

labeling using machine learning. In particular, we provide
general knowledge about the malware analysis approaches
in §II-A. The CFG-based analysis for IoT malware detection is
described in §II-B. Finally, we describe background knowledge
about the concept of adversarial machine learning and its
effects on machine/deep learning models in §II-C.

A. Malware Analysis

Malware analysis is widely used to understand the function-
ality and the behavior of malware. It helps us to understand the
capabilities and the intent of the malware and malware authors.
The results of the analyses are often used to build detectors and
design defenses to protect against future malware campaigns.
There are two approaches utilized for analyzing malicious
software: (i) static and (ii) dynamic analysis. Static analysis
approaches analyze malware binaries without running them.
Given the malicious nature of the malware, static analysis is
utilized as a precursor to the dynamic analysis. The malware
binary can then be executed in a sandboxed environment with a
much reduced focus to observe the patterns, like the behavioral
artifacts – in what is called the dynamic analysis.
Static Analysis. Static analysis approaches employ various
techniques to extract indicators to determine whether the
software is malicious or benign [24]. The various analysis
points, such as strings, functions, disassembly etc. hint at the
possible execution pattern of the software. For example, the
traces of user name and password list, along with shell based
login attempt, hints at possible usage of dictionary attack being
utilized by the software. These inferential results are drawn
from static analysis leverage the analysts to emphasize and
scrutinize on specific patterns. Additionally, traces can also be
used by analysts to address issues during dynamic analysis,
e.g., virtual machine obfuscation, ptrace obfuscation etc..

Among the first steps towards static analysis of a software
is understanding its composition. Reverse engineering can be
used to understand a software’s composition, architecture, and
design. Off-the-shelf tools help analysts achieve the above
goal. In addition to the aforementioned goals, reverse engi-
neering can also help disassembling the software to generate
its high-level representation, including CFGs and Data Flow
Graphs (DFGs). The CFG of a program is the graphical
representation of the flow of control during the execution of
that program. while the DFG represents the system events to
understand the possible execution of the system behaviors. It
explains the flow of the data that passes from one node to
another. Although static analysis is quite powerful and popular,
it sometimes stops short of achieving its end goals due to
multiple evasion techniques. For example, malware authors
use evasion techniques to prevent their malware from being
analyzed. Some of the techniques utilized include packing
(UPX [25]), obfuscation (function-, string- obfuscation), etc..
Dynamic Analysis. Unlike static analysis, dynamic analysis
executes the application in a simulated and monitored en-
vironment to observe its behavior and understand its func-
tionality [26]. This approach unearths different behavioral
patterns of a software. In particular, it unravels a program’s
network patterns, such as communication with the Command

and Control (C&C) server. Since the malicious nature of
software can affect the status of the machine it is executed on,
the following measures are adopted: 1) comparing the system
state before and after the execution of the application, or 2)
monitoring the application’s actions during the execution.

In line with the static analysis, software authors adopt means
to prevent their software from getting reversed. To do so,
they employ conditions such that the software exits or crashes
upon encountering virtual machines, debugging tools and/or
network monitoring tools. Additionally, dynamic analysis is
time consuming.

B. Graph Analysis

Graph Analysis. The CFG is a graph representation of the
program which shows the all paths that can be reached during
the execution as in Figure 2. In a CFG, the set of nodes means
the basic blocks where each block is a straight-line instructions
without any jump or jump target, while the set of directed
edges corresponds to the jump which traverses from the block
to the other block at the branch (if), loop (while, for), and
the end of the function (return). Once the first instruction of
the basic block is executed, the rest of the instructions in the
same block are necessarily executed in order unless terminated
by the external interference. In general, CFG is used for
the structural analysis of the program. For example, from
the perspective of optimization, the CFG is used to analyze
the reachability of each block. By constructing the CFG and
evaluating the reachability, the flaws of the program (infinite
loop or unreachable codes) can be found and addressed.
CFG-based Analysis. In graph theory, there are various
concepts that express the characteristics of a graph. Given
G = (V,E), for example, the number of vertices (|V |) means
the order of G, while the number of edges (|E|) corresponds
to the size of G. The density of the graph can be defined as
D = |E|/(|V | ∗ (|V | − 1)) for directed simple graph, which
means the ratio of the number of edges in G to the maximal
number of edges in the complete graph. The centrality is mea-
sured for the each node v ∈ V , which shows how important a
specific node is. In detail, there are several different kinds of
centrality, such as closeness centrality, betweenness centrality,
Eigenvector centrality, etc..

These indicators (and further concepts not described above)
can be considered the features of the graph G. Moreover,
the combination of those metrics can be a more deterministic
characteristic of the graph. Considering that a CFG is a kind
of graph, it is true that each binary has not only its unique
graph representation but also the associated values, such as the
order, size, and density of CFG, and centrality for each vertex
in CFG. On the other hands, the graph-based analysis can
provide the possibility for identifying the malware. Because it
is highly likely that the binaries in the same ”family” share
the structural similarity (even if there is a little difference),
the CFG-based features can be combined with the state-of-the-
art machine learning technique to determine whether a given
binary is malicious or not.

C. Threat Model

In adversarial deep learning, the goal is to generate AE
that forces the classifier f to misclassify the input sample x
to the desired output. Such attack applies small perturbation
to the original sample to craft the AE [20]. Attacks on deep
learning network can be classified from different perspectives,
including attack’s target type into targeted or untargeted, and
the knowledge of the adversary about the model to black-box,
or white-box attacks [27], [28]. In this study, we assume that
the adversary has full knowledge regarding the structure,
link weights, etc. of the model. We also assume that the
adversary tries to conduct both targeted and untargeted
misclassification attacks.

A brief description of these adversarial attack categories
assumed in our threat model is provided below.
Targeted attacks. The focus of this attack is to generate AE x′

that forces the classifier f to misclassify into a specific target
class t. For instance, the adversary generates a set of malicious
IoT software samples, which are classified as benign. That is:
x′ : [f (x′) = t] ∧ [∆ (x, x′) ≤ ε], where f(.) represents the
classifiers output, ∆ (x, x′) denotes the difference between x
and the crafted AE x′, whereas ε is a distortion threshold.
Untargeted attacks. The focus of untargeted attack is to
generate an AE that forces the classifier f to misclassify to any
class other than the original class f(x), where x is the original
input. That is: x′ : [f (x′) 6= f (x)] ∧ [∆ (x, x′) ≤ ε], where
f(.) shows the classifier’s output, ∆ (x, x′) represents the
difference between x and x′, and ε is the distortion threshold.

III. GENERATING ADVERSARIAL EXAMPLES

Deep learning-based classifiers have been widely used for
IoT malware detection. Recent studies highlighted the vulner-
ability of deep learning models against adversarial machine
learning attacks. Therefore, the key goal of this study is to
investigate the robustness of deep learning-based IoT malware
detection systems that are trained over CFG-based features. In
addition, we try to generate realistic AEs that preserve the
functionality and practicality of the original samples. To do
so, we design two approaches: generic adversarial machine
learning attacks and GEA. The first approach generates AEs
using generic adversarial methods to conduct attacks on the
deep learning-based IoT malware detection systems, causing
misclassification. While the first approach may not generate
practical AEs, due to applying changes to the feature space,
which can be hard or unrealistic to be reflected to the CFG of
the original sample, the GEA approach generates AEs that are
realistic. More information regarding the proposed approaches
are presented in §III-A and §III-B.

A. Off-the-Shelf Adversarial Attacks

This approach incorporates well-established adversarial ma-
chine learning attack methods into IoT malware detection.
These methods apply small perturbation into the feature space
to generate AEs that lead to misclassification. The general
flow graph of the AE’s generation process is demonstrated
in Figure 1. We trained a convolutional neural network (CNN)
model with four convolutional layers based on the extracted

Fig. 1. General flow graph of the generic adversarial machine learning approach

features from the CFGs of the train dataset. Then we evaluated
the performance of the trained model based on the test data and
using standard metrics, such as accuracy rate, false positive
rate, and false negative rate. Then, we used the evaluated
model for the rest of our adversarial attack analysis, as our
baseline model. Note that the distortion validation task checks
whether each feature is within the feature space range. In
the following, a brief description of the adversarial machine
learning attack methods utilized in this study is provided.
Carlini & Wagner (C&W) Method. Carlini and Wagner [29]
proposed gradient-based attacks to generate high-confidence
AEs based on L∞, L2, and L0 norms by optimizing the
penalty and distance metrics. The process is defined as
min ||δ||2p : g (x+ δ) = y′ , x + δ ∈ X , where δ is the
perturbation parameter, g() is the objective function of the
classifier, y′ denotes the targeted class, and x represents the
input image. In this work, we generate AEs based on L2 norm.
As L2 distance denotes the distance between the generated AE
and the original sample. Therefore, a lower L2 norm value
corresponds to a smaller perturbation to the feature space
required in generating the AE. The perturbation δ is defined
as δ = 1

2 (tanh (w) + 1)− x, where tanh() is the hyperbolic
tangent function and w is an auxiliary variable optimized by
min
w
|| 12 (tanh (w) + 1) ||2 + c · g

(
1
2 (tanh (w) + 1)

)
, where c

is a constant. The key goal of C&W method is to minimize the
distance between the generated AE and the original sample,
increasing the similarity and harden the detection.
DeepFool Method. DeepFool is based on iterative lineariza-
tion of the classifier to generate the AEs [21]. It utilizes L2

distance metric to apply minimal perturbation to change the
classification decision. The generating process increases the
distance between the input and its associated class iteratively.
The class is defined as k̂(x) = argk max fk(x), where fk(x)
is the output of the objective function corresponding to the
class k. Assuming that f(x) is an affine classifier represented
by f(x) = WTx + b, then the perturbation needed to
misclassify input x is described as argr min ||r||2 s.t. ∃k :
wTk (x0 + r) + bk ≥ wT

k̂(x0)
(x0 + r) + bk̂(x0)

, where wk is
mapped to the k-th column of W .
ElasticNet Method. ElasticNet generates AEs based on L1

distance, providing sparsity in the added perturbation regard-
ing to the feature space [30]. ElasticNet is inspired from

C&W, using the same loss function to craft the AEs. The
untargeted attack is defined as f (x) = max{[Logit (x)]y0 −
max
j 6=y0

[Logit (x)]j ,−k}, where f represents the loss function,

x0 is the original sample, y0 is the original label, j denotes
the current sample label, and Logit is the logit function.
ElasticNet generates AEs by manipulating the prediction via
the loss function, the formula of the ElasticNet attack is
min
δ

c.f (x, y) + β||δ||1 + ||δ||22, where δ = x − x0, x ∈
[0, 1]p, where c, β ≥ 0, c and β represent the regularization
parameters of the loss function f .
Fast Gradient Sign Method (FGSM). FGSM is a fast method
to generate AE based on one-step gradient update [22]. It
does not take into account the similarity between the gener-
ated AE and the original sample. FGSM can be expressed
as δ = ε · sign (∇xJθ (x, y)) where δ shows the applied
perturbation, ε is a scalar value represents the perturbation
threshold. Moreover, sign(.) denotes the sign function, J(.)
is the cost function, x is the input image, and y is the label
associated with it. ∇ shows the gradient of the cost function
J around the current value of x. Finally, the output, AE, is
x′ = x+ δ where x′ represents the generated AE.
Jacobian-based Saliency Map Approach (JSMA). Paper-
not et al. [20] introduced JSMA, an L0-based iterative adver-
sarial method that perturbs the features based on the adversar-
ial saliency scores. This score reflects the weight of the fea-
tures in shifting the classifier decision from the original class
to the targeted class. Perturbing the features with the highest
adversarial saliency scores allows applying minimal perturba-
tion required to generate the AEs. The adversary starts from
computing the jacobian of the model and evaluate it against
the model’s input, the jacobian is defined as [

∂fj
∂xi

(−→x)]i,j ,
where i, j denotes to the derivative of the input and the class
associated with it, respectively. In order to compute the adver-
sarial saliency map, for each feature, the adversary computes
{0 if st < 0 or so < 0, st|so| otherwise} where st rep-
resents ∂ft

∂xi
(−→x) and so denotes

∑
j 6=t

∂fj
∂xi

(−→x), where t shows
the targeted class of the adversary.
Momentum Iterative Method (MIM). MIM generates AEs
using momentum-based iterative algorithm, by applying mo-
mentum gradient and providing techniques to escape from
poor local maximum during the iterations [31]. The main focus

of MIM is to generate AE x′ that cause misclassification by
satisfying argmax

x′
J (x′, y) , s.t. ||x′ − x||∞ ≤ ε, where

J denotes the loss function and ε is a scalar that represents
the maximum allowed distortion to be applied to the original
sample. The momentum gradient (Mg) is then calculated as

Mgt+1
= µMgt +

∇xJθ(x′
t,l)

||∇xJθ(x′
t,l)||

, where ∇ shows the gradient
function and µ is the decay factor. Initially, x′0 is the original
input and Mg0 is set to 0. Each iteration, x′ is updated as
x′t+1 = x′t + ε · sign (Mgt + 1). After n iterations, x′t+1 is
returned as the AE for input x.
Projected Gradient Descent (PGD) Method. Madry et
al. [32] proposed a PGD-based adversarial method to generate
AE under minimized empirical risk with the trade-off of
high perturbation cost. The model’s empirical risk minimiza-
tion (ERM) is defined as E(x,y)∼D[L (x, y, θ)], where L
represents the loss function, x shows the original sample
and y is the original label. By modifying ERM definition
by allowing the adversary to perturb the input x by the
scalar value S, ERM is represented by min

θ
ρ (θ) : ρ (θ) =

E(x,y)∼D[max
δ∈S

L (x+ δ, y, θ)], where δ is the applied pertur-

bation and ρ (θ) denotes the objective function. Notice that x′

is updated in each iteration, after n iterations, x′ is returned
as the generated AE.
Virtual Adversarial Method (VAM). Miyato et al. [33]
proposed VAM, an adversarial machine learning attack
method to generate AEs based on the Local Distributional
Smoothness (LDS). Assuming training set D, where D =
{
(
x(n), y(n)

)
| x(n) ∈ RI , y(n) ∈ Q,n = 1, . . . , N}, where

RI represents the input space, Q shows the output space, x and
y are vectors representing the input samples and output labels.
The distributions divergence is defined as ∆KL

(
r, x(n), θ

)
≡

KL[p
(
y|x(n), θ

)
||p
(
y|x(n) + r, θ

)
], where ε is the distortion

threshold and θ represents a constant scalar value. More-
over, the perturbation optimization function r is denoted by
r
(n)
v−adv ≡ argmax

r
{∆KL

(
r, x(n), θ

)
; ||r||2 ≤ ε}. r(n)v−adv is

referring to the virtual perturbation used to generate the AEs.

B. Graph Embedding and Augmentation (GEA)

Besides validating adversarial learning attacks on graph-
based IoT malware detection systems, another contribution in
this work is the graph embedding and augmentation (GEA).
The key goal of GEA is to generate realistic AEs that
maintain the functionality of the original IoT software while
also achieving high misclassification rate. The main insight
of this approach is to combine the original graph with a
selected target graph. We show that such a combination results
in misclassification while preserving the functionality and
practicality of the original sample. For better understanding
of this approach, we elaborate the idea using an example.

Note that the concept of GEA can be used for practically
realizing graphs corresponding to modifications introduced by
any of the aforementioned eight approaches for AE generation.
Practical Implementation. Assume an original sample xorg
and a selected target sample xsel, our main goal is to com-
bine the two samples while preserving the functionality and

;-- main:
/ (fcn) sym.main 24
| sym.main ();
| ; var int local_4h @ rbp-0x4
| 0x004004d6 push rbp
| 0x004004d7 mov rbp, rsp
| 0x004004da mov dword [local_4h], 0

| 0x004004e1 add dword [local_4h], 1
| 0x004004e5 cmp dword [local_4h], 9
| 0x004004e9 jle 0x4004e1

| 0x004004eb nop
| 0x004004ec pop rbp
\ 0x004004ed ret

Fig. 2. The generated CFG for the original sample and used for extracting
graph-based features (graph size, centralities, etc.) for graph/program classi-
fication and malware detection.

;-- main:
/ (fcn) sym.main 35
| sym.main ();
| ; var int local_8h @ rbp-0x8
| ; var int local_4h @ rbp-0x4
| 0x004004d6 push rbp
| 0x004004d7 mov rbp, rsp
| 0x004004da mov dword [local_8h], 0
| 0x004004e1 mov dword [local_4h], 0
| 0x004004e8 cmp dword [local_8h], 0
| 0x004004ec je 0x4004f6

| 0x004004f6 nop
| 0x004004f7 pop rbp
\ 0x004004f8 ret

| 0x004004ee mov dword [local_4h], 0xa
| 0x004004f5 nop

Fig. 3. The graph for the selected target sample generated as in Fig. 2.

practicality of xorg and achieving misclassification. Note that
a condition is set to execute only the functionality related to
xorg while preventing xsel functionality from being executed.
Prior to generating the CFG for these samples, we compile
the code using GNU Compiler Collection (GCC) command.
Afterwards, Radare2 [34] is used to extract the CFG from the
binaries. Figure 2 and Figure 3 show the generated graphs for
xorg and xsel, respectively. As it can be seen, the combined
graph in Figure 4 consists of the two aforementioned scripts
sharing the same entry and exit nodes.
GEA Configuration. We select six different graphs from
the benign and malicious samples based on the graph size.
Then, we combine them with the CFGs of the target class
samples, through applying the concept described in the basic
example subsection III-B, to produce the AEs.

IV. EVALUATION AND DISCUSSION

A. Dataset

Alasmary et al. [9] contrast the Android and the IoT
malware binaries by comparing the CFGs of the two malware
types. We gather the CFG dataset of the IoT malware from
them to assess our proposed approach. To facilitate the evalua-
tion, we also gather a dataset of 276 benign IoT samples. Since
the IoT devices run Linux distributions, therefore, the Linux
kernel files can be executed on the IoT devices and can also
be safely considered as benign files. With this on our mind,
we visit the OpenWRT’s [35] online repository. We then look
for router firmware, we download the firmware and filter out

/ (fcn) main 66
| main ();
| ; var int local_10h @ rbp-0x10
| ; va0r int local_ch @ rbp-0xc
| ; var int local_8h @ rbp-0x8
| ; var int local_4h @ rbp-0x4
| 0x004004d6 push rbp
| 0x004004d7 mov rbp, rsp
| 0x004004da mov dword [local_ch], 1
| 0x004004e1 cmp dword [local_ch], 1
| 0x004004e5 jne 0x4004fa

| 0x004004fa mov dword [local_8h], 0
| 0x00400501 mov dword [local_4h], 0
| 0x00400508 cmp dword [local_8h], 0
| 0x0040050c je 0x400515

| 0x004004e7 mov dword [local_10h], 0

| 0x00400515 nop
| 0x00400516 pop rbp
\ 0x00400517 ret

| 0x0040050e mov dword [local_4h], 0xa

| 0x004004ee add dword [local_10h], 1
| 0x004004f2 cmp dword [local_10h], 9
| 0x004004f6 jle 0x4004ee

| 0x004004f8 jmp 0x400515

Fig. 4. GEA. This graph is obtained by embedding the graph in Fig. 3 into
the graph in Fig. 2, although indirectly done by injecting code directly.

TABLE I
DISTRIBUTION OF IOT SAMPLES ACROSS THE CLASSES.

Class types # of Samples % of Samples
Benign 276 10.79%
Malicious 2,281 89.21%
Total 2,557 100%

Linux executable files in the repositories. Having assembled
a benign IoT dataset, we extract CFGs corresponding to each
of the samples. To do so, we reverse engineer the binaries to
extract the disassembled code. We then generate CFG from the
disassembly for further processing. We summarize our dataset
in table I. Moving ahead, we find different algorithmic features
of the CFGs corresponding to individual binaries. In particular,
for each sample, we extract 23 different algorithmic features
categorized into seven groups. Table I represents the feature
category and the number of features in each category. The
five features extracted from each of the four feature categories
represent minimum, maximum, median, mean, and standard
deviation values for the observed parameters.

B. Experimental Setup

We conducted all experiments on Ubuntu 18.04, using
Python 3.6 with a system comprised of an i5-8500 CPU,
32GB DDR4 RAM, 512GB SSD and 4TB HHD storage and
NVIDIA GTX980 Ti Graphics Processing Unit (GPU) used
in deep learning processing.

1) IoT Malware Detection System: The goal of our detec-
tion system is to recognize IoT malicious applications from
benign. Therefore, we trained a CNN-based model over the
extracted CFG-based features. In this study, the input (X) of
the model is a one dimensional (1D) vector of size 1×23 repre-
senting the extracted features. The model architecture consists
of three blocks, namely convolutional block 1 (ConvB1),
convolutional block 2 (ConvB2), and classification block (CB).
In the following a detailed description of each block:
ConvB1. Fed by the input features vector (X), this block is
made up of two convolutional layers, a 1D convolutional layer

TABLE II
DISTRIBUTION OF EXTRACTED FEATURES.

Feature category # of features
Betweenness centrality 5
Closeness centrality 5
Degree centrality 5
Shortest path 5
Density 1
of Edges 1
of Nodes 1
Total 23

(Conv 1) with padding and 46 filters (Fb1′) of size 1 × 3,
convolving over the input data (X) with stride of 1, resulting
in a 2D tensor (Cb1′) of size 1 × 23. Followed by a similar
1D convolutional layer (Conv 2) without padding. The output
of this layer is a 2D tensor (Cb1′′) of size 46 × 21. Then, a
max pooling operation of size and stride of 2 and dropout with
probability of 0.25 are applied. The output of this block is a
2D tensor Sb1 of size 46× 10.

Cb1
′
i = X ⊗ Fb1′i, i = 1 : 46

Cb1
′′
i = Cb1

′
i ⊗ Fb1

′′
i , i = 1 : 46

Mb1i = maxpool(Cb1′′i , 2, 2), i = 1 : 46

Sb1i = dropout(Mb1i, 0.25), i = 1 : 46

ConvB2. Fed by the previous block output (Sb1), this block is
similar to ConvB1 with a difference in the number of filters
(Fb2′) in the convolutional layers. This block consists of 1D
convolutional layer (Conv 3) with padding and 92 filters of size
1×3, convolving with a stride of 1. Followed by a similar 1D
convolutional layer (Conv 4) without padding. The output of
this layer is a 2D tensor Cb2′′ of size 92×8. Afterwards, a max
pooling operation of size and stide of 2 is applied, followed by
a dropout with probability of 0.25, resulting into a 2D tensor
Sb2 of size 92× 4.

Cb2
′
i = Sb1 ⊗ Fb2′i, i = 1 : 92

Cb2
′′
i = Cb1

′
i ⊗ Fb2

′′
i , i = 1 : 92

Mb2i = maxpool(Cb2′′i , 2, 2), i = 1 : 92

Sb2i = dropout(Mb2i, 0.25), i = 1 : 92

CB. The generated tensor in ConvB2 (Sb2) is then fed into this
block. The input is forwarded to flatten operation, resulting
in a 1D tensor (Fl) of size 1 × 368. Followed by a fully
connected (FC) dense layer (FCL) of size 512 and a dropout
with probability of 0.5 resulting into SFC . Finally, SFC is fed
to the softmax layer. The outputs of the softmax layer will
be evaluated based on the accuracy rate (AR), false negative
rate (FNR), and false positive rate (FPR), to measure the
performance of the model.

Fl = Flatten(Sb2)

FCL = dense(Fl, 512)

SFC = dropout(FCL, 0.5)

output = softmax(SFC)

Fig. 5. The internal design of the CNN architecture and used for the detection
task in this work. Notice that 46@1x3, for example, stands for applying 46
filters, each of size 1x3 on the input data.

We trained our model using 200 epochs with a batch size
of 100. Note that all convolutional and fully connected layers
use a Rectified Linear Units (ReLU) activation function. In
addition, we used dropout to prevent model over-fitting and
max pooling operation to make the features more distinct and
to reduce the amount of data. The architecture of the CNN
design is shown in Figure 5. We refer the interested reader
to [16] for more details on CNN internals.

2) Generic Adversarial Attacks: The main focus of the
adversary is to craft AEs that fool the IoT malware detector.
Generic adversarial machine learning attacks apply small
perturbation to the features vector to craft the AEs. In this
approach, we check whether the generated AE features are
realistic. For instance, if the values of the features can be
observed from real samples. All attacks are implemented using
Cleverhans [36], a Python library for adversarial machine
learning attack methods. Each of these attacks has various
variables to be set carefully for best performance. The config-
uration for each of these attacks is described in the following.
C&W Attack. AEs crafted based on C&W L2 distance by
setting the learning rate to 0.1 and 200 iterations.
DeepFool Attack. DeepFool minimizes the L2 distance be-
tween the AE and the original sample, we crafted the AEs
using overshooting value of 0.02 with 100 iterations.
ElasticNet Attack. ElasticNet generates the AEs based on L1

distance using the same loss function of C&W attack. We
generated the AEs by setting the number of iterations to 250
with a learning rate of 0.1.
FGSM Attack. As a fast one iteration method, it generates
AEs by adding perturbation bounded by the value of ε. In the
crafting process, we set the distortion threshold (ε) to 0.3.
JSMA Attack. This method is based on L0 distance, and
minimizing L0 distance leads to reducing the number of
features changed in the process of generating the AE. To
craft the AE using JSMA, we set θ and γ to 0.3 and 0.6,
respectively. In the crafting process, we insure that the applied
changes can be achieved by manipulating the original graph,
which can be done by carefully adding new nodes and edges
to the original graph.
MIM Attack. This method generates AE by using momentum
gradient-based algorithm. To craft the AEs we set the value
of epsilon (ε) to 0.3 with 10 iterations.

PGD Attack. PGD trades the perturbation cost with the
empirical risk, by maximizing the perturbation cost while
minimizing the empirical risk in the crafting process. The AEs
is generated by setting the number of iterations to 40 with
epsilon (ε) value of 0.3.
VAM Attack. It generates the AEs based on LDS, we crafted
the AEs by setting epsilon (ε) value to 0.3 with 40 iterations.

3) GEA: While previous methods manipulate the features
vector to generate the AEs, GEA approach modifies the CFG
to craft the AEs. Due to the nature of the extracted features,
the applied change on the CFG will be reflected to the features,
regardless to the effects on the functionality and practicality of
the original sample. To evaluate our approach, we selected six
different sized graphs from benign and malware samples as
xsel. The selected graphs vary in the size: minimum, median
or max graph size, where the size is referred to as the number
of nodes in the graph. To generate AEs, we connected each
selected graph with all samples from the opposite class using
shared entry and exit nodes as illustrated in the basic example
in subsection III-B. Then, to study the effect of changing
number of edges on the misclassification rate, we fixed the
number of nodes and selected three samples with different
number of edges as xsel in the AEs generation process.

C. Results & Discussion

In order to provide a better understanding of our findings,
this section is broken down into three sections: deep learning-
based IoT malware detection system, generic adversarial ma-
chine learning attacks approach, and GEA approach. In the
following, the findings are discussed in the associated sections.

1) Deep Learning-based IoT Malware Detection System:
The goal of this study is to investigate the robustness of
deep learning-based model trained over CFG-based features
against adversarial attacks. Therefore, we designed a two
class classification CNN-based model that distinguishes IoT
malware from IoT benign applications. The model is trained
over 23 CFG-based features categorized in seven groups.
More detailed information regarding the dataset is provided
in subsection IV-A. We achieved an accuracy rate of 97.13%
with a False Negative Rate (FNR) of 11.26% and False
Positive Rate (FPR) of 1.55%. It is worth mentioning that
the high value of FNR is due to the imbalanced number of
malware and benign samples in the dataset.

2) Generic Adversarial Learning Attacks: We implemented
eight generic adversarial machine learning attack methods to
generate AE by perturbing the feature space. Overall, those
approaches have shown, in general, a good performance. In
particular, We were able to generate AEs that misclassify
malicious IoT applications as benign applications and vice
versa. Our experiments demonstrate that we can achieve
misclassification rate as high as 100%.

Detailed misclassification rate results of each attack method
are in Table III. Note that FGSM and VAM have low misclassi-
fication rate, as FGSM search function cannot escape the local
minimum, increasing the average number of features changed
and lowering the misclassification rate. Moreover, VAM is
an iterative method inspired from FGSM, which explains the

TABLE III
EVALUATION USING GENERIC METHODS. MR=MISCLASSIFICATION RATE,
AVG.FG=AVERAGE NUMBER OF FEATURES CHANGED TO GENERATE AE,

AND CT=CRAFTING TIME IN MILLISECONDS PER SAMPLE.

Attack Method MR (%) Avg.FG CT (ms)
C&W 100 12.60 25.30

DeepFool 86.39 14.90 2.56
ElasticNet 100 5.42 114.18

FGSM 25.84 23 0.37
JSMA 99.80 4.00 0.78
MIM 100 20.60 0.90
PGD 100 22.56 2.40
VAM 28.80 16.64 16.58

TABLE IV
GEA: MALWARE TO BENIGN MISCLASSIFICATION RATE. MR REFERS TO

MISCLASSIFICATION RATE, WHEREAS, CT REFERS TO THE CRAFTING
TIME IN MILLISECOND PER SAMPLE.

Size # Nodes MR (%) CT (ms)
Minimum 2 7.67 33.69
Median 24 95.48 37.79

Maximum 455 100 1,123.12

improvement in the performance. Whereas, JSMA achieves
a misclassification rate of 99.80% with manipulating four
features, which include the number of nodes and edges. JSMA
requires the least amount of changes to the graph topology to
achieve the modifications on the feature space. Nonetheless,
the generated new graph does not necessarily preserve the
practicality and functionality of the original sample.

3) GEA: This approach is designed to generate a practical
AE that fools the classifier, while preserving the functionality
and practicality of the original sample. Here, we discuss the
inherent overhead of the GEA approach. We investigate the
impact of the size of the graph, determined by the number
of the nodes in a graph, and graph density, determined by the
number of edges in a graph while the number of nodes is fixed.
Note that all generated samples maintain the practicality and
the functionality of the original sample. The obtained results
are discussed in more detail in the following.
Graph Size Impact. We selected three graphs, as targets,
from each of the benign and malicious IoT software, and
connected each of these target graphs with a graph of the
other class. The target graphs consist of a minimum, median
and maximum graph size, and the goal was to understand the
impact of size on misclassification with GEA. The results are
shown in Table IV and Table V. As it can be seen in Table IV,
three benign samples were selected, whereas in Table V three
malicious samples were selected. One of the key findings
we observed is that the misclassification rate increases when
the number of nodes increases, which is perhaps natural. In
addition, the time needed to craft the AE is proportional to the
size of the selected sample. We achieved a malware to benign
misclassification rate of as high as 100%, and a benign to
malware misclassification rate of 88.04%, while insuring that
the original samples are executed as intended, a property not
guaranteed with the eight off-the-shelf approaches above.
Graph Density Impact. We fixed the number of nodes and
selected graphs with different number of edges. Afterwards,

TABLE V
GEA: BENIGN TO MALWARE MISCLASSIFICATION RATE. MR REFERS TO

MISCLASSIFICATION RATE, WHEREAS, CT REFERS TO THE CRAFTING
TIME IN MILLISECOND PER SAMPLE.

Size # Nodes MR (%) CT (ms)
Minimum 1 30.65 40.65
Median 64 57.60 69.23

Maximum 367 88.04 473.91

TABLE VI
GEA: MALWARE TO BENIGN MISCLASSIFICATION RATE WITH FIXED

NUMBER OF NODES. MR REFERS TO MISCLASSIFICATION RATE,
WHEREAS, CT REFERS TO THE CRAFTING TIME IN MILLISECOND PER

SAMPLE.

Nodes # Edges MR (%) CT (ms)

8
7 13.72 33.84
9 13.10 34.09

10 13.10 34.17

33
46 94.78 40.17
50 57.47 42.43
53 95.74 40.79

63
91 11.48 49.39
93 22.84 56.31
95 8.37 63.30

we generated the AEs using GEA approach. Detailed results
can be found in Table VI and Table VII. Note that we could not
observe any meaningful relationship between the number of
edges and the misclassification rate. Rather we observed that
the misclassification rate is highly dependent on the confidence
of the classifier in classifying the selected sample.

V. RELATED WORK

Alasmary et al. [9] conducted an in-depth CFG-based com-
parative study for the Android and IoT malware. Pa et al. [37]
established the first IoT honeypot and sandbox system, called
IoTPOT, that run over eight CPU architectures to capture
the IoT attacks running over Telnet protocol. Caselden et
al. [38] built an algorithm that generates an attack from the
representation of the hybrid information and CFG applied to
the program binaries. Alam et al. [39] proposed a metamorphic
malware analysis and detection system that uses two different
techniques that match the CFGs of small malware and then
address the change in the opcodes frequencies. Moreover,
Tamersoy et al. [40] proposed a malware detection algorithm
that identifies the executable files of the malware and then
computes the similarities between them to partial dataset files
from the Norton Community Watch. Then, they construct
graphs based on the measurement of inter-relationship between
these files. In addition, Wuchner et al. [41] proposed a graph-
based detection system that uses a quantitative data flow
graphs generated from the system calls, and use the graph
node properties, i.e. centrality metric, as a feature vector for
the classification between malicious and benign programs.

Some work has been done toward analysis and detection of
the Android applications from the lens of CFG. For example,
ManXu et al. [42] proposed a CNN-based malware detection
system for the Android application from the semantic repre-
sentation of the graph, the CFG and DFG. In addition, Yang et

TABLE VII
GEA: BENIGN TO MALWARE MISCLASSIFICATION WITH FIXED NODES.

MR REFERS TO MISCLASSIFICATION RATE, WHEREAS, CT REFERS TO THE
CRAFTING TIME IN MILLISECOND PER SAMPLE.

Nodes # Edges MR (%) CT (ms)

15
16 67.02 40.03
18 41.66 40.97
20 40.21 41.16

57
74 86.59 47.31
84 56.52 61.34
91 55.79 57.31

71
96 75.00 54.02

100 63.04 69.71
110 49.27 65.75

al. [43] identified and detect Android malicious behaviors
throughout generating two level behavioral representations
built from the CFG graph and call graphs of the program.
Allix et al. [44] designed multiple machine learning classifiers
to detect the Android malware using different textual repre-
sentation extracted from the applications’ CFGs.

A. Adversarial Machine Learning
Machine/deep learning networks are widely used in

security-related tasks, including malware detection [9]–[11],
[19]. However, it has been shown that deep learning-based
models are vulnerable against adversarial attacks [20], [33].
Given that, it should be noted that such a behavior can be
a critical issue in malware detection systems, where mis-
classifying a malware as benign may result in disastrous
consequence [45]. Various adversarial machine learning attack
methods have been introduced to generate AEs. For example,
Goodfellow et al. [22] introduced FGSM, a family of fast
method attacks to generate AEs that forces the model to
misclassification. In addition, Carlini et al. [29] proposed three
L-norm-based adversarial attacks, known as C&W adversarial
attacks, to investigate the robustness of neural networks and
existing adversarial defenses. Similarly, Moosavi et al. [21]
proposed DeepFool, an L2 distance-based adversarial iterative
method to generate AEs with minimal perturbation. Moreover,
Madry et al. [32] presented PGD-based adversarial method
that forces the model to misclassification by increasing the
L2 distance between the original and generated sample. Fur-
thermore, Dong et al. [31] proposed MIM, a momentum-based
algorithm to generate white-box and black-box AEs. Likewise,
Chen et al. [30] introduced ElasticNet, an L1 distance-based
adversarial method to generate AEs.

VI. LIMITATION AND FUTURE WORK

In this study, we implemented two approaches to generate
AEs. Off-the-shelf attack methods apply perturbation directly
to the feature space. In order to analyze the practicality and
functionality of the generated sample, perturbation should be
reflected to the CFG of the original sample. Meanwhile, GEA
solves this issue by applying the perturbation to the CFG
directly, by carefully connecting the original graph with a
selected sample while preserving the practicality and func-
tionality of the original sample. Nonetheless, generating AE
using GEA will increase the size of the original sample. Our

findings indicate that the accuracy of the GEA approach highly
correlates with the size of selected sample.

Malware authors often use different packing techniques,
e.g., Ultimate Packer for Executables (UPX), to obfuscate
different parts of the malware code base, such as functions and
strings. In obfuscated functions, the CFG would differ from
the actual unpacked malware. Although, the packed malware
samples give an attacker a success rate of 100%, it would
be interesting to examine the behavior of unpacked malware
samples exposed to similar attacks. For future work, we would
investigate this attack scenario. Additionally, we would also
investigate more effective methods to minimize the size of the
generated AEs, while preserving the main characteristics, such
as fooling the classifier and preserving the functionality and
practicality as original software, etc.

VII. CONCLUSION

This work studies the robustness of graph-based deep learn-
ing models against adversarial machine learning attacks. To set
out, first an in-depth analysis of malware binaries is conducted
through constructing abstract structures using CFG, which are
analyzed from multiple aspects, such as number of nodes and
edges, as well as graph algorithmic constructs, such as average
shortest path, betweenness, closeness, density, etc. Then two
different approaches are designed to generate AEs, including
off-the-shelf adversarial attack methods and GEA approach,
while applying small perturbation to the graph features. We
examined eight different well-established adversarial learning
techniques to force the model to misclassification. Although,
this approach achieves high misclassification rate, it does not
guarantee the practicality and functionality of the crafted AEs.
Whereas, GEA approach not only preserves the functionality
and practicality of the original sample, but also achieves
high misclassification rate. The performance of the proposed
method is validated through intensive experiments. We were
able to generate AEs that lead to 100% misclassification rate
using generic adversarial learning approach. In addition, we
observed that GEA is able to misclassify all malware samples
as benign ones, highlighting the need for more robust IoT
malware detection tools against adversarial learning.
Acknowledgement. This work is supported by NSF grant
CNS-1809000, NRF grant 2016K1A1A2912757, NVIDIA
GPU Grant Program (2018 and 2019), and a Cyber Florida
Seed Grant. The authors would like to thank Thang N. Dinh
and Saeed Salem for their feedback on an earlier draft.

REFERENCES

[1] A. Gerber. (Retrieved, 2017) Connecting all the things in the Internet
of Things. [Online]. Available: https://ibm.co/2qMx97a

[2] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the Mirai Botnet,”
in Proceedings of the 26th USENIX Security Symposium, 2017, pp.
1093–1110.

[3] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao,
and A. Prakash, “ContexloT: Towards providing contextual integrity to
appified IoT platforms,” in Proceedings of the 24th Annual Network and
Distributed System Security Symposium, NDSS, 2017, pp. 1–15.

https://ibm.co/2qMx97a

[4] A. Azmoodeh, A. Dehghantanha, and K.-K. R. Choo, “Robust mal-
ware detection for Internet Of (Battlefield) Things devices using deep
eigenspace learning,” IEEE Transactions on Sustainable Computing,
vol. 4, no. 1, pp. 88–95, 2019.

[5] S. Siby, R. R. Maiti, and N. O. Tippenhauer, “IoTScanner: Detecting
privacy threats in IoT neighborhoods,” in Proceedings of the 3rd ACM
International Workshop on IoT Privacy, Trust, and Security, 2017, pp.
23–30.

[6] A. Mohaisen, H. Tran, N. Hopper, and Y. Kim, “On the mixing time of
directed social graphs and security implications,” in 7th ACM Symposium
on Information, Computer and Communications Security, ASIACCS ’12,
Seoul, Korea, May 2-4, 2012, 2012, pp. 36–37.

[7] A. Mohaisen, A. Yun, and Y. Kim, “Measuring the mixing time of
social graphs,” in Proceedings of the 10th ACM SIGCOMM Internet
Measurement Conference, IMC 2010, Melbourne, Australia - November
1-3, 2010, 2010, pp. 383–389.

[8] A. Mohaisen, N. Hopper, and Y. Kim, “Keep your friends close: Incor-
porating trust into social network-based sybil defenses,” in INFOCOM
2011. 30th IEEE International Conference on Computer Communica-
tions, Joint Conference of the IEEE Computer and Communications
Societies, 10-15 April 2011, Shanghai, China, 2011, pp. 1943–1951.

[9] H. Alasmary, A. Anwar, J. Park, J. Choi, D. Nyang, and A. Mohaisen,
“Graph-based comparison of IoT and android malware,” in Proceedings
of the 7th International Conference on Computational Data and Social
Networks, CSoNet, 2018, pp. 259–272.

[10] A. Mohaisen, O. Alrawi, and M. Mohaisen, “AMAL: high-fidelity,
behavior-based automated malware analysis and classification,” Com-
puters & Security, vol. 52, pp. 251–266, 2015.

[11] A. Mohaisen and O. Alrawi, “Unveiling zeus: automated classification
of malware samples,” in Proceedings of the 22nd International World
Wide Web Conference, WWW, 2013, pp. 829–832.

[12] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, “Predicting
the sequence specificities of DNA-and RNA-binding proteins by deep
learning,” Nature biotechnology, vol. 33, no. 8, p. 831, 2015.

[13] E. Knorr. (Retrieved, 2015) How PayPal beats the bad guys with
machine learning. [Online]. Available: https://tinyurl.com/y8k3hfr7

[14] A. Khormali and J. Addeh, “A novel approach for recognition of
control chart patterns: Type-2 fuzzy clustering optimized support vector
machine,” ISA transactions, vol. 63, pp. 256–264, 2016.

[15] A. Addeh, A. Khormali, and N. A. Golilarz, “Control chart pattern
recognition using rbf neural network with new training algorithm and
practical features,” ISA transactions, vol. 79, pp. 202–216, 2018.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proceedings of the 26th
Annual Conference on Neural Information Processing Systems NIPS,
2012, pp. 1106–1114.

[17] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions in
binaries with neural networks,” in Proceedings of the 24th USENIX
Security Symposium, 2015, pp. 611–626.

[18] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-scale malware clas-
sification using random projections and neural networks,” in Proceedings
of the 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2013, pp. 3422–3426.

[19] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh,
W. Lee, and D. Dagon, “From throw-away traffic to bots: Detecting
the rise of DGA-based malware,” in Proceedings of the 21th USENIX
Security Symposium, 2012, pp. 491–506.

[20] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
Proceedings of the IEEE European Symposium on Security and Privacy
(EuroS&P), 2016, pp. 372–387.

[21] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A simple
and accurate method to fool deep neural networks,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 2574–2582.

[22] C. S. Ian J. Goodfellow, Jonathon Shlens, “Explaining and harnessing
adversarial examples,” in International Conference on Learning Repre-
sentations., 2015, pp. 1–11.

[23] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. D. McDaniel,
“Adversarial examples for malware detection,” in 22nd European Sym-
posium on Research Computer Security, 2017, pp. 62–79.

[24] Q. Zhang and D. S. Reeves, “Metaaware: Identifying metamorphic
malware,” in Proceedings of the Twenty-Third Annual Computer Security
Applications Conference, ACSAC, 2007, pp. 411–420.

[25] Developers. (Retrieved, 2018) the ultimate packer for executables.
[Online]. Available: https://upx.github.io/

[26] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic
malware analysis using cwsandbox,” IEEE Security & Privacy, vol. 5,
no. 2, pp. 32–39, 2007.

[27] N. Papernot, P. D. McDaniel, I. J. Goodfellow, S. Jha, Z. B. Celik,
and A. Swami, “Practical black-box attacks against machine learning,”
in Proceedings of the ACM on Asia Conference on Computer and
Communications Security, AsiaCCS, 2017, pp. 506–519.

[28] B. Wang, Y. Yao, B. Viswanath, H. Zheng, and B. Y. Zhao, “With
great training comes great vulnerability: Practical attacks against transfer
learning,” in Proceedings of the 27th USENIX Security Symposium,
USENIX Security 2018, 2018, pp. 1281–1297.

[29] N. Carlini and D. A. Wagner, “Towards evaluating the robustness of
neural networks,” in Proceedings of the IEEE Symposium on Security
and Privacy, 2017, pp. 39–57.

[30] P. Chen, Y. Sharma, H. Zhang, J. Yi, and C. Hsieh, “EAD: elastic-
net attacks to deep neural networks via adversarial examples,” in
Proceedings of the Conference on Artificial Intelligence, 2018, pp. 10–
17.

[31] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting
adversarial attacks with momentum,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR, 2018, pp.
9185–9193.

[32] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in International
Conference on Learning Representations., 2018, pp. 1–27.

[33] T. Miyato, S.-i. Maeda, M. Koyama, K. Nakae, and S. Ishii, “Distri-
butional smoothing with virtual adversarial training,” in International
Conference on Learning Representations., 2016, pp. 1–12.

[34] Developers. (Retrieved, 2019) Radare2. [Online]. Available: http:
//www.radare.org/r/

[35] Developers. (Retrieved, 2019) OpenWrt project. [Online]. Available:
https://openwrt.org

[36] N. Papernot, N. Carlini, I. Goodfellow, R. Feinman, F. Faghri,
A. Matyasko, K. Hambardzumyan, Y.-L. Juang, A. Kurakin, R. Sheatsley
et al., “cleverhans v2. 0.0: an adversarial machine learning library,” arXiv
preprint arXiv:1610.00768, 2016.

[37] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, “IoTPOT: A novel honeypot for revealing current IoT
threats,” Journal of Information Processing JIP, vol. 24, no. 3, pp. 522–
533, 2016.

[38] D. Caselden, A. Bazhanyuk, M. Payer, S. McCamant, and D. Song,
“HI-CFG: construction by binary analysis and application to attack
polymorphism,” in Proceedings of the 18th European Symposium on
Research in Computer Security. Springer, 2013, pp. 164–181.

[39] S. Alam, R. N. Horspool, I. Traoré, and I. Sogukpinar, “A framework
for metamorphic malware analysis and real-time detection,” Computers
& Security, vol. 48, pp. 212–233, 2015.

[40] A. Tamersoy, K. A. Roundy, and D. H. Chau, “Guilt by association: large
scale malware detection by mining file-relation graphs,” in Proceedings
of the the 20th ACM International Conference on Knowledge Discovery
and Data Mining, KDD, 2014, pp. 1524–1533.

[41] T. Wüchner, M. Ochoa, and A. Pretschner, “Robust and effective
malware detection through quantitative data flow graph metrics,” in Pro-
ceedings of the Detection of Intrusions and Malware, and Vulnerability
Assessment Conference, DIMVA, 2015, pp. 98–118.

[42] Z. Xu, K. Ren, S. Qin, and F. Craciun, “CDGDroid: Android malware
detection based on deep learning using CFG and DFG,” in Proceedings
of the 20th International Conference on Formal Engineering Methods,
ICFEM, 2018, pp. 177–193.

[43] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. A. Porras, “DroidMiner:
Automated mining and characterization of fine-grained malicious be-
haviors in android applications,” in Proceedings of the 19th European
Symposium on Research in Computer Security, 2014, pp. 163–182.

[44] K. Allix, T. F. Bissyandé, Q. Jérome, J. Klein, R. State, and Y. L. Traon,
“Empirical assessment of machine learning-based malware detectors
for android - measuring the gap between in-the-lab and in-the-wild
validation scenarios,” Empirical Software Engineering, vol. 21, no. 1,
pp. 183–211, 2016.

[45] A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, U. Meteriz,
and A. Mohaisen, “Breaking graph-based IoT malware detection systems
using adversarial examples, poster,” in Proceedings of the 12th ACM
Conference on Security and Privacy in Wireless and Mobile Networks,
WiSec, 2019.

https://tinyurl.com/y8k3hfr7
https://upx.github.io/
http://www.radare.org/r/
http://www.radare.org/r/
https://openwrt.org

