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Abstract—In this paper, we present a new form of attack
that can be carried out on the memory pools (mempools) of
blockchain-based cryptocurrencies. Towards that end, we study
such an attack on Bitcoin mempool and explore its effects
on transactions fee paid by legitimate users. We also propose
countermeasures to contain such an attack. Our countermeasures
include fee-based and age-based designs, which optimize the
mempool size and help in countering the effects of DDoS attacks.
We further evaluate our designs by simulations and analyze
their usefulness in varying attack conditions. Our analyses can
be extended to other blockchain-based applications which use
memory pools to cache network activities.

I. INTRODUCTION

In blockchain-based cryptocurrencies, DDoS attacks are
launched on blockchain, miners, users, and currency ex-
changes [1]. A classical form of DDoS attack on Bitcoin
exploits the block-size limit and the network throughput to
prevent legitimate users from getting their transactions mined.
In Bitcoin, the block size is limited to 1MB and the average
block publishing time is 10 minutes. The size of individual
transaction varies from 200–1K Bytes. Under these constraints,
Bitcoin can only verify 3-7 transactions per second [2], [3].
Low transaction throughput creates a competitive environment
where only selected transactions are mined. This makes Bit-
coin vulnerable to flood attacks [4], where malicious users
exploit the block size limit in Bitcoin (1MB) to overwhelm
the blockchain with low-valued spam transactions, and cause
delay in the verification of legitimate transactions. To prevent
such attacks, miners apply priority checks on transactions, and
prioritize the ones that pay higher mining fee.

In cryptocurrencies, the memory pool (mempool) acts as a
repository for unconfirmed transactions. Once a user generates
a transaction, it is broadcast to the network, and stored in
mempools of nodes. If the rate of incoming transactions at
the mempool is less than the network throughput (3-7 trans-
actions/sec), there is no queue of unconfirmed transactions.
Once the rate exceeds the throughput, a transaction backlog
develops and the transactions that remain unconfirmed for long
are eventually rejected. On November 11, 2017, the mempool
exceeded 115k transactions, resulting in USD 700 million

worth transaction stall [5]. As the mempool size grows, users
naturally pay higher mining fee to prioritize their transactions.

In this paper, we identify mempool flooding attack that
causes denial-of-service for legitimate users. We establish a
relationship between the mempool size and transaction fee, and
demonstrate how attackers can use it to make legitimate users
pay higher than the normal fee. Although miners discard spam
transactions during the mining process, there is no effective
mechanism to prevent the mempool DDoS attack.
Contributions. In summary, we make the following contri-
butions. 1) First, we identify the effect of mempool flooding
on legitimate users in Bitcoin and the way it shapes into a
DoS attack. 2) We present the threat model and the attack
procedure that enable an adversary to exploit current protocols
of the system. 3) We propose effective countermeasures at the
mempool level, including fee-based and age-based designs,
that optimize mempool size and prevent attacks. 4) We test
the performance of our proposed countermeasures through
discrete-event simulations.
Organization. In §II we outline the preliminaries of this work,
including the operations of cryptocurrencies, DDoS attack on
mempools and data collection for this study. In §III and §III-A
we describe the threat model attack procedure that lead to
mempool flooding and rise in the mining fee. We propose
countermeasures in §V. Experimental results are reported in
§VI. In §VII we review the related work. Conclusion and future
work are presented in §VIII.

II. PRELIMINARIES

UTXO. In Bitcoin, a user generates a transaction by using
spendable balance in his wallet. Spendable balance comprises
of confirmed “Unspent Transaction Outputs” (UTXO’s) [6]
that are previously mined in the blockchain.
Relay Fee and Mining Fee. Relay fee in Bitcoin is the
minimum fee paid for a transaction to be included in a
mempool. If a transaction does not include the relay fee, peers
do not forward the transaction to other peers. Mining fee is the
fee paid to a miner as an incentive to include the transaction
into a block [7]. Miners tend to prioritize the transactions
which pay higher mining fee.
Confirmation. Transaction confirmation means that a trans-
action has been mined into a block and its parent UTXO’s are
valid and spendable in receiver’s wallet [7]. A confirmation978-1-7281-1328-9/19/$31.00 2019 IEEE
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Fig. 1. Temporal study of mempool size and mining fee paid by the users.
Notice that as the mempool size grows, the mining fee increases accordingly.
The spikes during May, September, and November indicate spam attacks.

score, also known as the age of a transaction, is the difference
between the block number in which it was mined and the
most recent block. A confirmation score of 0 means that the
transaction is in the mempool, and not yet mined. Such a
transactions is also called an “unconfirmed transaction.”
Memory Pool. In cryptocurrencies, a memory pool (mem-
pool) acts as a cache of unconfirmed transactions [7]. The
mempool is a bottleneck in the system, and if the transactions’
rate of arrival exceeds their mining rate, the mempool size
starts to grow and the verification process gets delayed.
Dust Transactions. In cryptocurrencies, transactions with
small input values are known as “dust transactions” [8]. Dust
transactions contribute very little to the exchange volume of
Bitcoin but consume as much space in the block as a high
valued transaction. Spam attacks to exhaust the block space
are carried out using these transactions [4].

A. DDoS Attack on Mempools

There are two types of DDoS attacks on blockchain-based
cryptocurrencies. In the classical attack, attackers exploit the
size limitation of blocks (1MB in Bitcoin) and generate dust
transactions to occupy the space and prevent other transactions
from mining. This attack has been addressed by the research
community [4], and there are countermeasures adopted by the
miners to prevent it. The other form of DDoS attack targets
mempools by choking them with a flood of unconfirmed
transactions. Although, these transactions may eventually be
rejected by miners, but their presence in the mempool creates
another major problem. The mempool size determines the fee
paid to the miners. If the mempool size is big, miners have
a limited choice of mining the transactions, and the users
try to prioritize their transactions by paying higher mining
fee. Therefore, by mempool flooding, the attacker might trap
the users into paying high fee. In Figure 1, we show the
relationship between the mempool size and the fee paid to
the miners. Notice a high correlation between them.

B. Data Collection

To observe the relationship between the mempool size and
the mining fee, we used the public dataset provided by the
company called “Blockchain” [9]. For this study, we gathered
the dataset of mempool size and fee from January 2016 to May
2018. In Figure 1, we plot the results obtained from the dataset
and we use the min-max normalization to scale our dataset in

the range [0–1]. Our data shows that Bitcoin mempool has
been attacked three times in 2017, and each time it resulted
in an unfair increase of the mining fee.

III. THREAT MODEL

For our threat model, we assume an attacker with spendable
balance in this wallet. The attacker controls a group of sybil
accounts, each with multiple public addresses, intended to be
used during the attack. Furthermore, the attacker and sybils
have client side software and scripts, which enable them to
initiate a flood of “raw transactions” [7], higher rate than the
network throughput [2]. Additionally, the attacker is also con-
strained by a fixed “budget.” Since each transaction requires
a minimum relay fee, it limits the number of transactions that
the attacker can generate.
Attacker’s Goals. The end goal of the attacker is to flood
mempools with unconfirmed dust transactions. At mempools,
the arrival rate corresponds to the flow of incoming trans-
actions and the departure rate corresponds to the rate of
transaction mining. The departure rate is fixed, because the
average block computation time and the size of the block
are fixed. When the arrival rate increases due to a flood of
transactions, it results in transactions backlog. Overwhelming
the mempool size alarms the legitimate users, who naturally
start paying higher mining fee to prioritize their transactions.

The secondary objective of the attacker will be to reduce the
attack cost by getting his transactions rejected. For the attacker,
mining will result into losing balance to miners. However, if
the transactions get rejected, the attacker will have another
chance to repeat the attack. Furthermore, while the attack
on block size can be effectively countered by miners, the
mempool attack cannot be prevented by them.

A. Attack Procedure
To reduce the attack cost, the attacker will design his

transactions in a way that they are less likely to be prioritized
by miners. At the same time, the attacker would want his
transactions to stay in mempools for as long as possible. To
this end, we envision that this attack can be carried out in two
phases: the distribution phase and the attack phase.
The Distribution Phase. In the distribution phase, the at-
tacker estimates the minimum relay fee of the network, divides
his spendable bitcoins (“UTXO’s”) into various transactions
and sends them to the sybil accounts. The attacker generates
a series of outputs to all the addresses of sybil nodes with one
or more transactions per address. Transactions made in the
distribution phase will have input “UTXO’s”, which will be
previously mined in the blockchain. Hence, these transactions
will have greater-than-zero age (confirmation score), and will
be capable of paying the relay fee and the mining fee.
The Attack Phase. In the attack phase, sybils will carry
out “raw transactions” [7] from the balance received in the
distribution phase. Sybils will generate dust transactions and
exchange them with each other. The rate of exchange of
transactions will be much higher than the network throughput.
As a result, the arrival rate of the transactions at mempools will
be higher than the departure rate of mined transactions. This
will increase the transaction backlog and the mempool size.
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Transactions made in the attack phase will have transactions
of distribution phase as input “UTXO’s”. These inputs will
still be awaiting confirmation in the blockchain. Due to that,
their confirmation factor or age score will be zero.

B. Attack Cost

To reduce the attack cost, the attacker requires transactions
to be part of the mempool but not the blockchain. This can
be achieved by adding the minimum relay fee (Rf ) to each
transaction but not the minimum mining fee (Mf ). The relay
fee is necessary for a transaction to propagate in the network
and be accepted by the mempool. If the attacker adds the
mining fee, his transactions will attain priority from a miner
and might get mined. To avoid that, sybils only pay the relay
fee. If a transaction has i inputs, each contributing a size of
k Bytes, and o outputs, each contributing a size of l Bytes,
then the total size of the transaction S and its associated cost
C(BTC) are determined by (1).

S(Bytes) = (i× k) + (o× l) + i, C = Rf × S

1024
(1)

Assuming that the attacker is limited by a budget B (BTC)
and minimum transferable value set by the network as Tmin,
then the total number of transactions Ta that the attacker can
generate can be computed in (2).

Ta =
B × 1024

Rf × Tmin × [(i× k) + (o× l) + i]
(2)

On the other hand, a legitimate user who intends to get
his transaction mined, pays relay fee for transaction broadcast
and mining fee as an incentive to the miner. For such a
user, contributing a total T transactions, the cost incurred per
transactions and the total cost of all transactions Tl is:

C = [Rf +Mf ]× S

1024
, Tl = T × [Rf +Mf ]× S

1024
(3)

Under these settings, the maximum loss an attacker can
incur would happen if all his transactions possibly get mined.
The cost in such a case will be the product of the total number
of transactions and the relay fee (Ta ×Rf ). The attacker can
re-launch the same attack with a new balance of B−(Ta×Rf ).
If a portion of the attacker’s total transactions ta gets mined,
where ta ≤ Ta, then the attacker would be able to re-launch
the attack with new balance of B − (ta ×Rf ).

IV. MODELLING THE MEMPOOL ATTACK

As mentioned in §II, mempool acts as a buffer for uncon-
firmed transactions, where the incoming transactions denote
the arrival, and transaction mining represents the departure
process. As long as the arrival process is within the bounds
of system’s throughput, the mempool queue remains stable
and there is no transaction backlog. However, the attacker
overflows the buffer by accelerating the arrival process and
increasing the queue size. Therefore, to construct effective
countermeasures, it is useful to formulate this abstraction
as a queuing theory problem with associated mathematical
primitives. To that end, we model this attack as Lyapunov
optimization problem that encapsulates the attack procedure
and provides a roadmap towards countermeasures.

�������

Fig. 2. Mempool as a queue, with arrival and departure processes. The arrow
with control is the point where optimization schemes are applied.

A. Lyapunov Optimization

Lyapunov optimization is a popular scheme applied to the
field of dynamic control systems for time-average optimization
[10]. In queuing networks, Lyapunov drift is used to stabilize
queues by optimizing time-average performance objectives.
Subject to the queue stability, i.e., limt→∞ 1

t

∑t−1
τ=1 Q[τ ] <

∞, the time-average Lyapunov optimization (i.e., drift-plus-
penalty (DPP) [11], [12]) is defined as:

Minimize : lim
t→∞

1

t

∑t−1

τ=1
yo[τ ] (4)

where yo[t] is the objective function at t and Q[t] is the queue
backlog at t, respectively. Based on DPP, this time-average
optimization subject to queue stability can be formulated as
the following decision-making framework:
α∗[t] ← arg min

α[t]∈A
[V · yo[α[t]] +Q[t] {a(α[t])− b(α[t])}]

(5)
where α[t] is possible decision at t, α∗[t] is time-average
optimal decision at t, A is a set of possible decisions, V is
tradeoff coefficient between optimization criteria and stability,
yo[α[t]] is objective value with decision α[t] at t, a(α[t]) is
an arrival with decision α[t] at t, b(α[t]) is a departure with
decision α[t] at t, respectively.

We model the mempool as a queue and show the arrival and
departure processes. We present our design model in Figure 2,
where the arrival process is denoted by a[t], the departure
process is denoted by b[t], and the mempool is denoted by
Q[t]. Since the mining rate eventually determines the network
throughput, therefore, we use throughput as the departure
process. The control allows us to apply countermeasures
and modify the queue size. Our objective is to minimize
the time-average size, subject to the queue stability. Queue
stability can be achieved by removing malicious transactions
or limiting the total number of transactions in the queue.
The cost is the unwanted removal of legitimate transactions.
Therefore, we have two cases that represent the state of the
mempool. In the first case, when the mempool is idle, the
applied control policy should only remove a small number of
transactions to fulfill the objective function of time-average
cost minimization. In the second case, when mempool is
flooded, the applied control policy should remove a large
number of transactions to guarantee mempool size stability.
With these objectives, the Lyapunov-based DPP changes to (5)
is updated to (6), where C(α[t]) is power consumption when
our decision is α[t]. If the mempool is empty (Q[t] = 0),
we have to minimize our cost by permitting more arrivals. If
the mempool is flooded (Q[t] ≈ ∞), we have to minimize
(α[t]) by removing a majority of malicious transactions, and
stabilizing the mempool size.

α∗[t] ← argminα[t]∈A {V · C[α[t]] +Q[t]a(α[t])} (6)
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V. COUNTERING THE MEMPOOL ATTACK

To counter DDoS on Bitcoin’s mempool, we propose fee-
based and age-based countermeasures.

A. Fee-based Mempool Design

For fee-based mempool design shown in the algorithm 1,
we assume that the mempool is initially empty (Q[t] = 0)
when transactions begin to arrive at α[t]. We fix a baseline
threshold beyond which the mempool starts spam filtering.
Initially, when the transactions arrive at the mempool, for
each transaction, the mempool checks if the transaction pays a
minimum relay fee. If the transaction pays the minimum relay
fee, it is accepted and the mempool size is updated. When the
mempool size reaches the threshold, it starts applying the fee-
based policy. Now, if the incoming transaction pays both the
relay fee and the mining fee, only then it is accepted. The key
idea is that only those transactions should be accepted, which
aim to be eventually mined into the blockchain. As a result,
we filter spam transactions to optimize the queue size. If the
new size is less than the baseline threshold then the mempool
proceeds its operation from relay fee check. Otherwise, it
continues with the fee-based design.

Algorithm 1: Fee-based Mempool Design
State: Mempool Empty

1 foreach transaction ∈ incoming transactions do
2 while (Mempool Size < Threshold Size) do
3 if (transaction relay fee > minimum relay fee)

then
4 Mempool ← transaction
5 UPDATE (mempool);
6 else
7 (transaction relay fee < minimum relay fee)

transaction rejected;
State: Mempool Size Exceeds Threshold Size

8 while (Mempool Size > Threshold Size) do
9 while (transaction relay fee > minimum relay

fee) do
10 if (transaction mining fee > minimum

mining fee) then
11 Mempool ← transaction;
12 UPDATE (mempool);
13 else
14 transaction rejected
15 return Mempool Size

Result: Spam Transactions Rejected

1) Analysis of Fee-based Mempool Design: In the follow-
ing, we analyze the workings of fee-based design and its utility
in the light of our threat model. We will limit the number
of transactions an attacker can generate within his budget by
increasing the mining fee threshold. We also observe how this
design affects legitimate users in the network.

In the current settings, if mempools employ the fee-based
design, all spam transactions will be rejected. The mempool
will only accept transactions that pay both the relay fee and
the mining fee. Legitimate users will benefit from this design,
since they will always pay the relay and the mining fee. Once
the attacker becomes aware of this design, the only way he can
attack is by adapting to the new settings. The attacker can do
that by adding mining fee to each transaction. Given a budget

TABLE I
CONFUSION MATRIX

Actual Transaction
Legitimate Malicious

Mempool Legitimate TP FP
Transaction Malicious FN TN

B, adding mining fee to each transaction will reduce the total
number of transactions Ta the attacker can generate, and the
equation (2) will change to:

Ta =
1024×B

[(i× k) + (o× l) + i]× [Rf +Mf ]× Tmin
(7)

From (7), we can observe that the number of transactions
the attacker can generate has an inverse relationship with the
total fee paid per transactions. Using that relationship, we
can adjust the fee parameter and investigate how it limits
the attacker’s capabilities. To do that, we simulate the affect
of increasing the mining fee on the volume of transactions
that the mempool accepts. We allocate a fixed budget to the
attacker and select thresholds of minimum mining fee and
maximum mining fee. Using (2), we select a suitable budget
for attacker that results into 1,000 transactions with a minimum
mining fee. Then, we generate 1000 legitimate transactions,
each with a mining fee normally distributed over the range of
the minimum and maximum mining fee. Using a discrete-event
time simulation, we increase the mining fee and monitor its
affect on transactions of the attacker and the legitimate users.

2) Evaluation Results: We plot the results in Figure 3, and
use the confusion matrix in Table I, and evaluation parameters
Table II to observe the effect of the fee-based design on
the mempool. The results in Figure 3(a) show that with
the increase in the mining fee threshold, the mempool size
(TP+FP), malicious transactions (FP) and legitimate transac-
tions (TP) decrease. The trend of (FP) is explained by (7).
With a fixed budget, increasing the mining fee decreases the
total transactions Ta. Accordingly, the size of the mempool
also decreases due to fewer spam transactions (FP). However,
increasing mining fee also limits the budget of legitimate users,
which explains the trend of decreasing (TP). Figure 3(b),
shows that the accuracy increases with the mining fee to a
maximum value and then decreases. Using that, we found a
minimum fee cutoff corresponding to the maximum accuracy.
In Figure 3(c), we plot accuracy and size ratio; the size ratio is
the fraction of mempool transactions out of the total number
of incoming transactions. Lower size ratio indicates higher
size optimization. The results show that at a fee threshold
of 13, we achieve 60% accuracy, 70% size optimization, and
78% precision. Increasing the fee parameter further, increases
the size optimization but decreases the accuracy. Therefore,
the fee-based design presents a trade-off between the size
efficiency and the accurate detection of malicious transactions.

3) Limitations of Fee-based Mempool Design: To under-
stand limitations of “Fee-based Mempool Design” we high-
light the nature of some transactions in Bitcoin. Suppose Alice
sends 10 BTC to Bob in a transaction. That transaction is yet to
be verified and mined, but Bob spends them by sending 5 BTC
to Charlie. For Bob’s transaction to be successfully mined,
its parent transaction by Alice needs to be mined first. This
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Fig. 3. Analysis of Fee-based Design. As the mining fee increases, the mempool size reduces. However increasing fee also affects legitimate transactions
which reduces detection accuracy. An optimum cut-off fee can be selected from Figure 3(c) based on the trade-off between accuracy and size ratio.

TABLE II
EVALUATION PARAMETERS

Precision TP
TP+FP

Recall TP
TP+FN

F1
2×precsion×recall
precision+recall

Accuracy TP+TN
TP+TN+FP+FN

Negative Rate TN
TN+FN

sequence of transactions is known as parent-child transaction
[7]. For a child transaction to be mined, its parent transaction
needs to be mined first. Often when priority factor of a parent
transaction is low, the child transaction increases the mining
fee to increase the overall priority factor. This process is called
“Child Pays For Parent” (CPFP) [7]. For legitimate users, this
situation might be undesirable, since more child transactions
can lead to transactions getting stuck. However, the attacker
can exploit this to circumvent the fee-based design.

For transactions generated in the attack phase, their parent
transactions in the distribution phase need to be verified
and mined. The attacker can minimize the probability of
transaction acceptance in the first phase by reducing their
priority factor; e.g., by paying a minimum relay fee and no
mining fee. Once the parent transactions have lower proba-
bility of acceptance in the first phase, the child transactions
can increase their priority factor by adding higher relay fee
and mining fee. In such a situation, and when the mempools
apply the countermeasures, spam transactions of the attack
phase will get into the mempool.
Countermeasure. One way to address this problem is to
prioritize the incoming transactions on the basis of the mining
fee. Mempool can sort the incoming transactions for the fee
value and accept the ones which pay higher fee. As we increase
the mining fee, the capability of attacker to produce transac-
tions reduces (7). The attacker is constrained by the budget
and increasing mining fee reduces the number of transactions
he can produced. We can observe this trend in Figure 3(a).
Although this reduces the number of spam transactions in
the mempool and optimizes its size, it also reduces accuracy
and the number of legitimate transactions that get accepted.
As the fee parameter is increased, the capability of all the
legitimate users to pay higher fee also decreases. To this
end, the fee-based countermeasures limit the attacker from
flooding the mempool, but also limit the number of legitimate

transactions that successfully pass the fee threshold. To address
these limitations we propose the age-based countermeasures.

Algorithm 2: Age-based Mempool Design
State: Mempool Size Exceeds Threshold Size

1 foreach transaction ∈ incoming transactions do
2 initialize;
3 average age = 0;
4 N ← number of parent transactions of current

transaction;
5 while (transaction relay fee > minimum relay fee) do
6 while (transaction mining fee > minimum mining

fee) do

7 average age =
(
∑N

i=1 parenti)

N
;

/* apply age filter */
8 if ( average age > minimum age limit) then
9 Mempool ← transaction;

10 UPDATE (mempool);
11 else
12 transaction rejected
13 return Mempool Size;

Result: Spam Transactions Rejected

B. Age-based Mempool Design

To limit attacker’s chances, we propose the “Age-based
Mempool Design” that addresses the limitations of our pre-
vious model. We leverage the confirmation factor or “age” of
a transaction to distinguish between legitimate and malicious
transactions. The age of a transaction determines how many
confirmations it has achieved over time (§II).

For this design shown in algorithm 2, we assume that the
baseline size threshold of the mempool has been reached, and
the mempool is only accepting transactions which are paying
the relay fee as well as the mining fee. Now, for each incoming
transaction at α[t], we count the number of inputs or parent
transactions. We initialize a variable “average age” and set
its value to 0. Next, we calculate the average age of the
transaction by adding the age of each parent transaction and
dividing by the total number of parent transactions. This gives
an estimate of confirmation score of the incoming transaction.
Then, we apply a “minimum age limit” filter on the mempool.
The “minimum age limit” can take any arbitrary value greater
than 0. Only if the transaction’s mean age value fulfills the
criteria of age limit, then the mempool accepts the transaction.
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Fig. 4. Analysis of Age-based Design. Notice that with age-based design, the accuracy, precision, and size ratio are comparatively higher than the fee-based
design. This policy is effective in rejecting the unconfirmed transactions.

A transaction in Bitcoin has an input pointer pointing to
the spendable transaction that it has previously received. In
this design, we apply the check on the age of the incoming
transactions. In the attack phase (§III-A), the spam transactions
will have input pointers of a parent transaction that will not
be confirmed in any block. The age of of all those parent
transactions, made in the distribution phase (§III-A), will be
0. Using this knowledge, we compute the average age of all
the input pointers (parent transactions); minimum age value
of 1 means that all transactions coming into the pool are
confirmed in at least the most recent block. Once this design is
implemented, if a user tries to spend his coins, he needs to have
at least one valid confirmation backing up his transaction. This
gives advantage to the legitimate user who can make a normal
transaction with confirmed parent transaction of significant
age. On the other hand, transactions of the attacker will be
rejected due to low confirmation factor despite high fee.

1) Analysis of Age-based Mempool Design: Now, we ana-
lyze the working of “Age-based Mempool Design” and how it
helps in countering DDoS attack. For this design, we establish
that the attacker has the capability of circumventing the “Fee-
based Design” and is willing to pay the relay fee and the
mining fee for all transactions. Also, the attacker knows that
its transactions will not be verified, so it pays higher relay and
mining fee than the legitimate users.

To analyze the effectiveness of age-based countermeasures,
we set a minimum age limit and a maximum age limit as
thresholds for the incoming transactions. For the attacker, the
only set of transactions with age value greater than 1 are
generated in the distribution phase. Child transactions made in
the attack phase were assigned 0 age value due to unconfirmed
parent transactions. To capture that, we normally distribute the
average age value of all malicious transactions from 0 to the
minimum age limit. The average age value of all legitimate
transactions was set from 0 to the maximum age limit. A
total of 2000 transactions were generated with half of them
being malicious and half being legitimate. Then we applied
the age-based design on all the incoming transactions at the
mempool. We increased the age requirement for the incoming
transactions and evaluated the accuracy of detection and the
state of mempool for each transaction.

2) Evaluation Results: For evaluation of this design, we
used the same confusion matrix in Table I and evaluation

parameters in Table II. The results in Figure 4 show that upon
increasing the average age the malicious transactions, (FP) de-
creases sharply. The mempool size decreases to a point where
there are only legitimate transactions left in the mempool. Due
to low (FP) and higher (TP), the precision reaches a close to
1 in Figure 4(b). In Figure 4(c), it can be observed that at
an average age value of 100 we achieve 60% accuracy, 80%
size optimization and 80% precision. As we increase the age
parameter to 200, the accuracy does not decrease as of the fee-
based design, while the size ratio increases up to 90% and the
precision increases up to 98%. This shows that the age-based
prevents a majority of malicious transactions from entering
into the pool and favors the legitimate users in the system.

In these settings, if the attacker intends to spam the network,
he needs to have majority of his transactions confirmed in the
blockchain. However, in our attack model, we have described
that confirmation is undesirable for the attacker since it results
in losing budget in mining and relay fee. In Bitcoin, recall
that the average block mining time is 10 minutes. For a single
confirmation of all of the transactions, the attacker has to wait
on average for 10 minutes. Using the results from Figure 4(c),
the attacker will have to wait a minimum of 100 blocks to
relaunch the attack. With average block computation time of
10 minutes, 100 blocks lead to 16 hours of delay. Even if the
attacker still plans to carry out the attack after waiting and
paying all the fee, he will not be able to flood the mempool.
The best the attacker might achieve will be occasional network
stressing with series of transactions. Higher attack cost and low
incentive might discourage the attacker. Therefore, the age-
based design offers more security against the DDoS attack
while ensuring regular service for the legitimate users.

3) Limitations of Age-based Countermeasures: Although
the age-based countermeasures are more effective in prevent-
ing DDoS attack, they may also have some limitation. In fast
transactions where users cannot wait for verification [13], their
transactions will be rejected by the mempool. An illustration of
the fast transaction is bitcoin vending machine [14]. However,
we do not see Bitcoin evolving into such an applications in
near future, therefore it is not a significant problem.

VI. EXPERIMENT AND RESULTS

In this section, we describe the experiments we performed
to compare our designs. We try to present the scenario similar
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Fig. 5. Performance of both designs under mempool DDoS attack. When the percentage of malicious transactions is low, indicating less severe attack, the
fee-based policy is effective in terms of accuracy and size optimization. As the attack rate increases, the age-based policy also becomes more effective.

to [5], where a group of attackers attacked Bitcoin with
unconfirmed transactions. We construct the attack scenario in
our simulations and analyze our countermeasures for detection
accuracy and mempool size optimization.

For simulations, we generate a series of legitimate and
spam transactions. For both types of transactions, we normally
distribute the relay fee and mining fee over a selected range of
fee values. As per our attack procedure (§III-A), we generate
the spam transactions with low age factor. Although, we
observed in the distribution phase (§III-A), that the attacker
may possess some transactions which can have some age
value. To capture that, we normally distribute the age of spam
transactions from 0 to a lower age limit, and for legitimate
transactions, we normally distribute the age factor from 0 to an
upper age limit. To mimic the attack scenario in [5], we fixed
the size of legitimate transactions and sequentially increased
the number of malicious transactions from 0 − 90% of the
total transactions. We found (TN) and (FP) from confusion
matrix as suitable measures to determine efficiency of fee and
age-based models in detecting spam.

In Figure 5(a), we plot the accuracy. It can be seen that the
accuracy of the age-based design exceeds 80% as malicious
transactions increase. The accuracy of fee-based design is
low at the beginning, but eventually grows as the malicious
percentage grows. The reason for the low accuracy at the
start is due to the low detection of (TP). Although, the age-
based design appears to be suitable for detecting malicious
transactions, Figure 5(b) shows that the fee-based model
achieves better size efficiency.

Mempool size is determined by (TP+FP). For both the
designs, we plot mempool size in Figure 5(b). The figure
shows that below 80% malicious transactions, fee-based design
has lower mempool size. After that, age-based design becomes
more size-efficient due to low (FP). To understand the mem-
pool size optimization ratio, we use (8). The equation gives a
ratio of size difference of mempool when countermeasures are
applied. The results in Figure 5(c) show that fee-based design
achieves a consistent size optimization of 78% irrespective of
malicious percentage. The size ratio for age-based design in-
creases with the percentage increase in malicious transactions.
At 88% malicious transactions, age-based design achieves a
size ratio of 60%. We have already shown in §V-A, that there
is a trade-off between the accuracy and size optimization.

size ratio = 1− mempool size under design

mempool size no design
(8)

We can use the size and accuracy trade-off to select appropriate
countermeasures during attack. If the attack is less severe
but the pending transaction backlog is high, the fee-based
design will limit the incoming malicious transactions and
optimize the mempool size until the backlog is cleared. If
the attack is severe [5], and majority of incoming transactions
are unconfirmed then age-based design will be more useful in
detecting malicious transactions, reducing FP and optimizing
mempool size. Using this knowledge and the results obtained
from our experiments, we derive (9) that reduces the spam
transactions under varying attack conditions.

minimize
f,a

Rspam(f, a) = α
Ω(f)

N
+ (1− α)

Φ(a)

N
, (9)

In (9), f and a are the mining fee and average age cutoffs that
we learn from Figure 4(c) and Figure 3(c). The cutoffs f and
a are used to minimize the accepted spam ratio Rspam. Ω(f)
and Φ(a) are two functions of mining fee f and the average
age a learned from the simulations to show the numbers of
accepted spams under the two polices. 0 ≤ α ≤ 1 is a
hyperparameter for balancing the weights of the two policies,
and N is the total number of transactions. During the attack,
when N increases, the mempools will check the transaction
backlog and the nature of incoming transactions. If the backlog
is high and incoming transactions are mostly legitimate, α is
increased. If the incoming transactions are mostly unconfirmed
and the arrival rate is high, α will be decreased.

VII. RELATED WORK

In this section, we review notable work covering security
aspects of blockchains [15], [16], [17].

Selfish mining is a form of attack where miners choose
not to publish their block after computation, hoping to mine
subsequent blocks and get more reward. The problem of
selfish mining has been addressed by Eyal and Sirer [18],
Sapirshtein et al. [19], Solat and Potop-Butucaru [20] and
Heilman [21]. Eyal and Sirer [18] proposed defense strate-
gies to deter selfish mining attacks on Blockchains. Block
Withholding Attack (BWH), introduced in [22], is an attack
in which miners in a pool choose to submit partial proof of
work, instead of the full proof. As a result, they get rewarded
for participating in the pool although the pool suffers a loss
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due to partial solutions. Kwon et al. [23] studied a new attack
on blockchains called “Fork After Withholding” (FAW) attack
that guarantees higher rewards than block withholding attacks.

The 51% attack can be launched if a mining pool in the
network gains more than 50% of the network’s hashing power.
With more than half the hashing power of network, the attacker
can prevent transactions from verification and other miners
from computing a block. Double-spending or equivocation
happens when a user generates two transactions from the same
inputs and sends them to two recipients [13].

Distributed denial-of-service (DDoS) attacks have been
quite prevalent [24]. DDoS attacks are repeatedly launched
against the mining pools, the legitimate users, and the currency
exchanges. Johnson et al. [25] performed a game-theoretic
analysis of DDoS attacks against Bitcoin mining pools. Vasek
et al. [24] empirically illustrated the denial-of-service attacks
on the Bitcoin system. Prior to its release on November 12,
2017, Bitcoin Gold suffered from a massive DDoS attack [5].
Cryptocurrency exchanges have also been frequently targeted
to prevent coin tradings, and no clear nor specific mitigation
techniques to those attacks have been proposed.

Another form of DDoS attack on blockchain includes spam-
ming the network with low valued dust transactions. This
attack is also called the penny-flooding attack. Baqer et al. [4]
performed Bitcoin stress testing to analyze the limitations of
the Bitcoin network, and how attackers exploit them.

VIII. CONCLUSION

In this paper, we identify a DDoS attack on Bitcoin mem-
pools that traps the users into paying higher mining fee.
Attacks on Bitcoin mempools have not been addressed previ-
ously, so we propose two countermeasures to the problem: fee-
based and age-based designs. From our simulations, we con-
clude that when the attack is not severe, the fee-based design
is more effective in mempool size optimization. However, it
does so by affecting both the attacker and the legitimate users.
In contrast, when the attack is severe, the age-based design
is more useful in helping legitimate users while discarding
maximum spam transactions. Although the size optimization
achieved by the age-based design is less compared to the fee-
based design, its accuracy of spam detection is much higher.
In the future, we aim to extend our analysis towards a hybrid
model that leverages the benefits of both designs and achieves
maximum spam detection and size optimization.
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