
Received: 13 March 2018 Revised: 26 June 2018 Accepted: 20 July 2018

DOI: 10.1002/ett.3505

S P E C I A L I S S U E A R T I C L E

Thriving on chaos: Proactive detection of command and
control domains in internet of things-scale botnets using
DRIFT

Jeffrey Spaulding1 Jeman Park1 Joongheon Kim2 DaeHun Nyang3 Aziz Mohaisen1

1Computer Science Department,
University of Central Florida, Orlando,
Florida
2School of Software, Chung-Ang
University, Seoul, South Korea
3Computer Science and Information
Engineering, Inha University, Incheon,
South Korea

Correspondence
Joongheon Kim, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of
Korea.
Email: joongheon@cau.ac.kr

Aziz Mohaisen, Computer Science
Department, University of Central
Florida, 4000 Central Florida Blvd,
Orlando, FL 32816.
Email: mohaisen@ucf.edu

Funding information
National Science Foundation,
Grant/Award Number: CNS-1809000;
Korea National Research Foundation,
Grant/Award Number:
2016K1A1A2912757; Chung-Ang
University Research Grant (2018)

Abstract

In this paper, we introduce DRIFT, a system for detecting command and control
(C2) domain names in Internet of Things–scale botnets. Using an intrinsic fea-
ture of malicious domain name queries prior to their registration (perhaps due
to clock drift), we devise a difference-based lightweight feature for malicious
C2 domain name detection. Using NXDomain query and response of a popu-
lar malware, we establish the effectiveness of our detector with 99% accuracy
and as early as more than 48 hours before they are registered. Our technique
serves as a tool of detection where other techniques relying on entropy or domain
generating algorithms reversing are impractical.

1 INTRODUCTION

With the number of connected Internet-of-Things (IoT) devices expecting to surpass 20.4 billion by 2020 (not including
computers and phones),1 the main threat looming on the horizon for these IoT devices is the scourge of botnets. Accord-
ing to the OWASP IoT project,2 IoT systems are at a high security risk due to vulnerabilities such as the lack of adopting
well-known security techniques like encryption, authentication, and role-based access control. The Mirai botnet, for
example, infected thousands of IoT devices and wreaked havoc across the Internet by launching some of the largest and
most disruptive distributed denial-of-service (DDoS) attacks against sites like Krebs on Security, OVH,3 and the domain
name system (DNS) provider Dyn.4

The typical botnet consists of various infected hosts, command and control (C2) channels, and a botmaster. The infected
hosts (“zombies”), as shown in Figure 1, are often massively distributed, whereas the C2 is a channel used by a mastermind
(the “botmaster”) to instruct bots to perform various forms of malice, eg, launching DDoS attacks.5 To communicate with

Trans Emerging Tel Tech. 2018;e3505. wileyonlinelibrary.com/journal/ett © 2018 John Wiley & Sons, Ltd. 1 of 17
https://doi.org/10.1002/ett.3505

https://doi.org/10.1002/ett.3505
http://orcid.org/0000-0003-0047-5156

2 of 17 SPAULDING ET AL.

FIGURE 1 An illustration of a botnet infrastructure

bots, there are several potential ways utilized by botmasters, and domain names as a C2 channel are one of the most
common and preferred methods because they are easy to acquire and recycle.6 To generate such domain names, domain
generation algorithms (DGAs) are widely used today by botmasters. Usually, DGAs use time as a seed to dynamically and
automatically generate potentially pseudorandom domain names that are registered by botmasters and used by bots for
C2 communication. Variants of the Mirai botnet, for instance, started to adopt DGAs to better avoid detection and keep
a constant contact with C2 servers.7 One way of mitigating these botnets is to prevent them from registering their C2
domains in the first place or by taking such domain names down.8,9

To address DGAs by detection, there have been two schools of thought either (1) relying on reverse engineering of the
bot software10 or (2) using the intrinsic features of the generated domains.11 The first method, while powerful in generating
all domain names to be potentially used by a malware family (even in the future and can thus be used to proactively block
those domains by preregistering them), is very expensive. This method requires obtaining samples of the malware family
that utilizes such DGAs. However, obtaining such malware is not the biggest hurdle. Many of today's malware families
employ obfuscation techniques that make their analysis a difficult task.

The second school of thought uses pseudorandomness of algorithmically-generated domains and exploits the fact that
those domains have a high entropy for their detection.12 Registered domain names that are queried by infected hosts
are evaluated, a measure of their pseudorandomness using their entropy is calculated, and the likelihood of them being
malicious based on their entropy score is assigned. While shown to identify malicious domains reasonably well, such
techniques suffer from various drawbacks. First, domain names need to be registered for a monitor to be able to measure
such entropy and determine if a domain is malicious or not. Thus, such techniques cannot be used proactively to detect
malicious domains. Second, those techniques assume that randomly generated domain names are only used in malicious
activities. It is not far fetched to imagine that domain names with high entropy are utilized for domain name parking and
nonpublic facing domains (eg, content delivery network addressing) among others.

1.1 Key idea
To this end, this paper addresses the problem of proactive malicious domain name identification focusing on DGAs.
We aim to identify such domain names before they are registered using our detection system known as DRIFT. Our
main source of inference is the DNS query and resolution of domain names. We motivated our study by a large-scale
analysis of domain names and their queries. We find that domains that are used for malicious activities, and especially
those generated algorithmically, tend to have unique and distinguishing patterns. In particular, domain names that are
algorithmically generated tend to have a large number of DNS queries even before their registration, typically resulting
in NXDomain (nonexistent domain) responses. This trend persists, and the number of queries increases and peaks at
the time of registration, then declines gradually, indicating the ephemeral use of those domain names for their major
purpose. On the other hand, domain names that are being used for benign applications tend to have significantly less
queries before registration, whereas their post-registration query volumes (which may fluctuate over time) do not have a
single declining curve, thus highlighting a fundamentally different use model.

SPAULDING ET AL. 3 of 17

1.2 Contributions
The contribution of this paper is as follows. First, we highlight a fundamental difference between the query patterns for
domain names that are used by botnets, often generated using DGAs, and those by benign ones. We use this insight to
differentiate between those domains using a simple classification algorithm for proactive detection of malicious domains.

1.3 Organization
The organization of the rest of this paper is as follows. Section 2 provides an overview of the DNS resolution and registra-
tion process, which is then followed by Section 3 that describes the threat model and system overview of DRIFT. Section 4
presents our online detector and Section 5 reviews our datasets and high-level characteristics. In Section 6, we evaluate
our system and provide a discussion in Section 7. Section 8 highlights the related work of detecting DGA domains and
we provide concluding remarks in Section 9.

2 PRELIMINARIES

2.1 DNS overview
In this section, we provide an overview of how the DNS functions and the domain name resolution process once a user
initiates a DNS query. In Section 2.1.3, we discuss the process of how a domain name is registered in the DNS.

2.1.1 Functionality
Domain names are integral to the DNS, which allows us to map human-readable strings to machine-readable IP addresses.
In the case of IPv4, the address on the network is composed of 4 bytes (32 bits) in total and can be represented by four
number segments separated by dots as in 1.2.3.4. IPv6, which has an address space that is four times larger than IPv4,
has a total of eight segments in its address structure, with each segment being 2 bytes that are represented by hexadecimal
numbers (eg, 2a03:2880:f10c:83:face:b00c:0:25de). It is a herculean task for users to remember all the numerical addresses
of the Internet services they want to access. The DNS, which is designed to improve the usability, allows users to access
them through the familiar natural language, such as www.example.com.

2.1.2 DNS resolution
The DNS is a hierarchical and distributed database structure for resolving domain names. The string address entered by
users is converted to an IP address through root, top-level domain (TLD), and authoritative name servers. Figure 2 shows
the translation of the domain name. When users attempt to access a particular service through an Internet web browser
such as Chrome or Firefox, the DNS resolution process begins.

FIGURE 2 The steps of DNS resolution through the recursive, root, top-level domain, and authoritative name servers

4 of 17 SPAULDING ET AL.

Local cache and host table. As the first step of DNS resolution, the local resolver initially finds its local cache and host
table. If there is no corresponding entry for the given domain, the local resolver generates and sends the DNS query to the
recursive server for the DNS resolution. Step 1© in Figure 2 shows the initial DNS query from the client to the recursive
server. The query includes a special flag to indicate that is a recursive query. Once the recursive server receives the query
from the client, it begins the recursive steps 2© through 7© with the root, TLD, and authoritative name servers.

Root name server. In step 2©, the recursive name server (which does not have a corresponding entry for the received
query from the client) sends an iterative query to the root name server. The root name server is responsible for the
translation of the root zone in the DNS system using stored data, such as the IP address and location of an authorita-
tive TLD name server. Once the root name server receives the query of www.example.com in step 3©, it returns the
appropriate list of authoritative TLD servers for the .com TLD.

TLD name server. The next phase, ie, step 4©, is querying for the translation of the TLD in the given domain. The
resolver that found the TLD name server list through the previous step sends a query for example.com to one of the
.com TLD name servers. The .com TLD name server searches for the record of the authoritative name server, corre-
sponding to the queried domain and responds to the recursive server with a list, as shown in step 5©. For example, if
example.com has two authoritative name servers, namely, ns1 and ns2, the information about ns1.example.com
and ns2.example.com would be included in the response to the recursive server.

Authoritative name server. The final step of recursive domain name resolution process goes through the authori-
tative name server. In step 6©, the recursive name server contacts one of the authoritative name servers in the records
received from the .com TLD name server. The authoritative name server, which knows the A address record for
www.example.com (or AAAA address record in the case of IPv6), sends the result to the recursive server in step 7©.
At this point, the recursive name server determines the IP address of the requested domain name and forwards it to the
local machine shown in 8©. The local resolver, which finally knows the IP address of www.example.com, delegates it
to a web browser. As a result, the web browser will be able to initiate the loading of a web page by sending a Hypertext
Transfer Protocol (HTTP) request to the resolved IP address.

2.1.3 Domain name registration process
In late 1998, the United States Department of Commerce named a private and newly-formed nonprofit organization called
the Internet Corporation for Assigned Names and Numbers (ICANN) as the new entity to oversee the assignment of both
IP addresses and domain names.13 As outlined by ICANN, the process works as follows.14 A domain name registrant
(a person or organization) will usually apply online to an ICANN-accredited domain registrar (eg, GoDaddy) or one of
their resellers. The registrar will check if the domain name is available and create a WHOIS record with the registrant's
information. While registrars are contracted to conduct the day-to-day business of selling domain name registrations,
registries (eg, Verisign) are responsible for maintaining the registry for each TLD. These registries are also responsible for
accepting registration requests and maintaining a database of the necessary domain name registration data. Furthermore,
they have to provide name servers to publish the zone file data (ie, information about the location of a domain name)
throughout the Internet.

3 SYSTEM OVERVIEW

In this section, we describe the objective and the approach taken by adversaries that DRIFT would like to address as well
as an overview of the system.

3.1 Threat model
With botnets quickly becoming the one of the most prevalent threats on the Internet,15-17 the key threat we are most
concerned with is ultimately the botmaster who commands a herd of bots. To communicate with their bots, botmasters
typically use domain names as its C2 channel because they are easy to acquire and recycle.6 Since using a single domain
name for C2 communication can constitute a single point of failure (ie, law enforcement take downs), botnet authors
(eg, Conficker, Torpiq, Kraken, etc.) began adopting algorithmically-generated domain names. These algorithms that
generate domain names typically use a pseudorandom number generator (PRNG) that is seeded with a time value. As
this algorithm is shared among bots participating in the botnet, using a synchronized seed value such as the current time

SPAULDING ET AL. 5 of 17

FIGURE 3 A system diagram for the detection of DGA-based malicous domains. DGA, domain generation algorithm; DNS, domain name
system

will allow each bot to generate a similar list of DGA domain names to query in a sequential fashion. In the meantime,
a botmaster, knowing full knowledge of the potential DGA domain names for any given time, can easily register one of
those domain names in the DNS. Given that these DGAs can produce hundreds of domain names a day (250 in the case of
Conficker A and B), it is becomingly difficult to deduce and reverse engineer these algorithms due to high entropy of its
output. To this end, DRIFT aims to sever the C2 communication link between a botmaster and its bot herd by proactively
identifying DGA domain names before they are registered.

3.2 System overview
The structure of DRIFT is shown in Figure 3, which is a malicious domain detector based on the supervised learning
technique discussed in Section 4.3. The system consists of two stages, a training phase and an application phase. In the
training phase, feature extraction and learning are performed using precollected data. Afterwards, the application phase
classifies DGA-based domain names through the learned classifier.

Training phase. The data elaborated on earlier in Section 5 is used for training as ground-truth data. As mentioned
previously, a NXDomain response is returned if there is a connection attempt from a bot to a DGA domain that is not
yet registered in the DNS. The time features of the collected NXDomain responses are extracted and used for supervised
learning along with the labels of the domain name (benign or malicious). By analyzing the change of the NXDomain
volume over time, the DRIFT system learns about the unique pattern evident of DGA-based botnets.

Application phase. Through the training process, the system has a general understanding of the volume of changes
in NXDomain responses caused by the clock drift between systems, as shown in Figure 6. Based on the learned result, it
becomes possible to proactively distinguish the queries for the DGA domain names among all queries coming into the
DNS in real time. In other words, at this point, the DRIFT system connected to the DNS is able to detect the suspicious
domain names, which could potentially be used for C2 channel communication in botnets.

4 ONLINE DETECTION ALGORITHM

Compared to the whole population of the NXDomain traffic, the volume and daily reoccurrence make DGA domains
statistically abnormal. Significant traffic uptick for a given DGA domain occurs both one day prior and postgeneration
date. Traffic volumes on the exact generation date soar several magnitudes higher than the ±5 days baseline to 42 887
unique 24 recursive name servers consisting of 199 097 total NXDomain requests from 211 unique countries for an average
DGA domain.

6 of 17 SPAULDING ET AL.

FIGURE 4 Example domain generation algorithm used by CryptoLocker

4.1 Rationale of feature
There are potentially various explanations for why domain names get queried before their registration. First, domain
names intended for benign usage might get queried by interested registrants who want to acquire them, thus explaining
the small number of queries, some of them receive before registration. On the other hand, the large number of queries
that DGA domains receive might have to do with the fact that those domain names are time dependent. As highlighted in
Figure 4, for the DGA domain used initially by CryptoLocker, a bot calculates a domain name using time features as the
main inputs. A large drift in the time or clock misconfiguration would result in bots contacting the domain name before
or after its registration.

We use such verified observation as the main feature for identifying malicious domain names. Using this a priori knowl-
edge captured in a training model, we devise a method that can detect those domains even before they are registered with
a high accuracy rate. The proposed approach based on this feature has various plausible benefits over the state-of-the-art
ones. Among the others, the proposed technique is robust to the behavior of the adversary.

4.2 Online detection
To be able to tell whether a domain name is malicious or not, we use the notion of the difference function. Given a function
y = f (x) that is defined on an interval [x, x + h], the average rate of change of the function on the interval [x, x + h] is as
follows:

𝑓 (x + h) − 𝑓 (x)
(x + h) − x

= 𝑓 (x + h) − 𝑓 (x)
h

. (1)

For an interval of [x − a, x + a] (a is some constant), we have the following:

𝑓 (x + a) − 𝑓 (x − a)
(x + a) − (x − a)

= 𝑓 (x + a) − 𝑓 (x − a)
2a

. (2)

Using this simple concept, in the following, we outline how to build a feature vector, how to build a model, and how to
label various domain names as malicious (used for C2) or benign.

4.2.1 Building feature vectors
For a window of size 2a (a from the left and right of point x; note that x here can be any point in time), we calculate the
difference as the change in the number of NXDomain responses to a given domain, normalized by the total time units,
corresponding to 2a. Parameter a is used based on the desired performance, and x is used for all values of the observed
traffic. We highlight the operation of the basic feature with an example. Let us consider an observation of [o𝑗1, o𝑗2, … , o𝑗k]
(for domain j), where each observation is the total number of NXDomain responses for a domain j over a fixed period of
time (eg, hour). If we are to consider a = 1 in Equation (2), we calculate 𝑓

𝑗

i as |o𝑗i+1 − o𝑗i |∕2, for all i (resulting in a vector
of values, representing the use of the given domain, ie, [𝑓𝑗

i]
1×k). For a unified treatment of the vector, we normalize each

element in it by the sum of all of its elements; this is 𝑓𝑗

i ∕
∑

∀i𝑓
𝑗

i . Our detection algorithm then uses the same idea as earlier,
over a sliding window of observations. As time goes, the window slides by forgetting the oldest observations of NXDomain
responses for the given domain. Additionally, the detector updates the count vector of the NXDomain responses for the
domain and calculates our feature vector as the difference function.

SPAULDING ET AL. 7 of 17

4.2.2 Building a model
For a set of domains d1, … , dt that are known to be malicious, we create model  that is calculated as a centroid feature
vector, corresponding to the average of the feature values of the different domains. As such, we define  as follows:

 = [m1, … ,mk] ∶ mi = 1∕t
t∑

𝑗=1
𝑓
𝑗

i . (3)

As earlier, for a unified treatment, we normalize each element in it by the sum of all of its elements; this is mi∕
∑

∀imi.

4.2.3 Learning labels of domains
The labeling of the domains is divided into two learning types, ie, 1-class, which is concerned with, given the associated
label, if the distance between the feature vector and a reference is at most Δ; and 2-class learning, which is concerned of
associating a domain name with the label that is closest to it (based on the comparison of the feature vector corresponding
to each of them). In the following, we will describe both approaches formally.

1-class learning. For a candidate domain x defined by its difference function f x as earlier, we determine the label of
the domain by conducting the following. We calculate the Manhattan distance between  and f x. That is, we calculate

D(, 𝑓 x) =
∑
∀i

||mi − 𝑓 x
i
|| . (4)

Then, we label the domain as malicious if D(, 𝑓 x) > Δ and as benign otherwise.Δ is determined through measurements
and tuning based on the learning of the underlying distribution of the NXDomain queries and their difference functions
of malicious domains.

2-class learning. Alternatively, we create a model for a set of known benign domains, namely, , where  =
[b1, … , bk], and assign the label of a sample x based on the following:

Label =

{
Malicious ∶ D(, 𝑓 x) > D(, 𝑓 x)
Benign ∶ D(, 𝑓 x) ≤ D(, 𝑓 x).

(5)

We note that our scheme is less aggressive because it prioritizes benign over malicious, as shown earlier. Depending on the
detector objective, we might also be more aggressive by assigning a malicious label to a domains when the two quantities
are equal; this is, alternatively,

Label =

{
Malicious ∶ D(, 𝑓 x) ≥ D(, 𝑓 x)
Benign ∶ D(, 𝑓 x) < D(, 𝑓 x).

(6)

4.3 Detection algorithm
The approach behind DRIFT in classifying domains into "malicious" or "benign" is based on the supervised learning
technique of the nearest centroid neighborhood (NCN) classifier introduced by Chaudhuri in 1994.18 The key idea behind
this algorithm is that it assumes that a target class is represented by a cluster and uses its mean (ie, centroid) to determine
the class of a new sample point based on its distance. Typically, the Euclidean distance calculations are used, but this can
be any distance function. In DRIFT, we calculate the Manhattan distance between feature vectors, as shown in Equation 4.
For a sample with an unknown class, the NCN classifier chooses a class with the closest centroid for the given sample.
Despite this simple approach, Chaudhuri emphasizes that the NCN classifier can obtain high accuracy.18 As shown in
a study by Han and Karypis,19 the centroid-based classifier consistently and substantially outperforms other algorithms,
such as Naive Bayesian, k-nearest neighbors, and C4.5, on a wide range of datasets. The k-nearest neighbors algorithm,
for example, requires computing and sorting every distance between the unknown sample and all others in the dataset,
which is computationally expensive when the dataset is very large.

The first step in DRIFT is to build a model based on a set of domains that are known to be malicious, which is outlined
in Section 4.2.2. Using a set of NXDomain observations for each malicious domain, the feature vectors are built using the
function shown on Line 1 of Algorithm 1. The feature vectors are then fed into the function shown on Line 12, which
produces a model representing a centroid feature vector. For the 1-class learning, we label the domain malicious if the
return value of the function distance(, 𝑓 x) is greater than the threshold value Δ and benign otherwise. The 2-class
learning method is similar, but the threshold value Δ is substituted for a benign domain model.

8 of 17 SPAULDING ET AL.

In terms of computational complexity, the building of feature vectors is O(k), where k is the number of observations
for a given domain j. Building a model of centroid feature vectors, on the other hand, requires O(kt), where t is the num-
ber of domains that the model represents. Note that building models of centroid feature vectors for the malicious and
benign domains is only a preprocessing step prior to the actual learning phase, which runs in O(k) time. Thus, the overall
computational complexity of DRIFT is very low because the main learning phase is linear time.

5 DATASET AND CHARACTERISTICS

Our dataset was originally used by Thomas and Mohaisen in their work on detecting and clustering botnet domains using
DNS traffic.20 The dataset was collected during July of 2012 from a large DNS operator's authoritative name servers for
the COM, NET, TV, and CC TLD authoritative name servers. As the registry of large TLDs, this DNS operator has a global
view of DNS traffic, giving a unique observation of malware-associated DNS traffic.

SPAULDING ET AL. 9 of 17

TABLE 1 Conficker domain generation algorithm by
variant and domains per day

Variant Domains TLDs

A 250 biz, info, org, net, and com
B 250 biz, info, org, net, com, … , cn
C 50k 110 ccTLDs not tv or cc

Abbreviations: TLD, top-level domain.

FIGURE 5 Cumulative distribution of NXDomain traffic volumes to major top-level domains, ie, .cc, .tv, .com, and .net, respectively.
Notice that the majority of the domains receives small number of queries and a small percentage (∼3%) receives more than 10 queries

5.1 Malware data
Conficker is one of the most well-known malware samples that employed the use of DGAs.21 The family was originally
discovered in 2008 and has been active for the past several years by infecting many hosts worldwide and by mutating
into multiple variants, namely, Conficker A, B, C, D, and E.22 The Conficker Working Group, a consortium of researchers
and security professionals, has successfully reverse engineered the DGA and precalculated domains to be generated each
day for variants A, B, and C.23 Table 1 shows the various TLDs for variants A, B, and C and the domains to be gener-
ated on a daily basis. Variants A and B utilize the COM, NET, and CC TLDs, allowing us to analyze the DNS traffic for
them. By April 2009, all domains generated by variant A were successfully locked or preemptively registered to mitigate
the proliferation capabilities of the variant. Of the 15 500 domains to be generated by variants A and B in July of 2012
(corresponding to 500 domains per day over 31 days), 30 of the domains were registered in either COM or NET with active
name servers resulting in the YXDomain (name exists when it should not) traffic, whereas the remaining DGA domains
resulted in the NXDomain traffic.

5.2 NXDomain data
NXDomain is the answer type for a domain name that is unable to resolve because, among other reasons, the domain
name is not registered. The term was originally used to represent DNS response code 3 in RFC24 and RFC 2308.25 All of
the data in the following corresponds to the state of the DNS resolution system by a large DNS operator in middle of 2012.
We note that, while we are not able to use DNS traffic for some of the TLDs listed in Table 1, the ones using TLDs from
the large DNS operator (CC, TV, NET, and COM) were captured, measured, and analyzed.20

In our dataset, a typical day in the COM zone has 2.5 billion NXDomain requests for more than 350 million unique
second-level domains, whereas NET receives about 500 million NXDomain requests for more than 60 million unique
second-level domains. Smaller zones such as TV and CC receive several magnitudes less of NXDomain traffic than COM
and NET. While daily volumes of requests and unique domains are extremely high, the vast majority of the individual
NXDomains observed receives very few requests within a given epoch of time. Figure 5 (subplot for each zone) shows a
cumulative distribution function of the number of requests, a given NXDomain receives in 24 hours. As depicted, more
than 95% of the unique second-level NXDomains receive less than 10 requests within 24 hours.

5.3 Conficker NXDomain DNS
The vast majority of the domains generated by the Conficker DGA falls into the NXDomain category. We analyzed various
aspects of the DNS traffic before, during, and after the domain's generation date to understand the lifecycle of a DGA

10 of 17 SPAULDING ET AL.

FIGURE 6 Conficker NXDomain domain name system lookups ±5 days from the domain generation date

domain with respect to the DNS traffic. Using the 2012 Conficker Domain list of precalculated DGA domains, we were
able to group domains by their generation date and measure their DNS traffic.20 Specifically, for a given domain to be
generated on day x, we measured the domain's DNS traffic on days x − 5 to x + 5. Figure 6 depicts the pre-, during, and
post-DNS traffic patterns for Conficker B with box plots to depict the range of DNS traffic observed on a given day. It is
evident that, despite a specific generation date, DGA domains receive significant volumes of traffic during its pre and
postgeneration date.

6 EVALUATION

To evaluate the performance of our scheme, we use the dataset described in Section 5, with the head of the distribution
of the dataset corresponding to malicious domains and the rest of the distribution corresponding to benign domains.
With labels known in advance, we proceed to evaluate the labeling capability of our scheme. For 1-class learning and
based on the distribution of the various malicious domains, we set Δ = 0.08, which corresponds to 99% of the detection
accuracy of all the domain name samples considered and included for building the baseline model . To build model 
and to simulate a real-world scenario, we use 1000 domains. For unit a, we calculate the number of queries every hour
and consider a sliding window size W as 8, 16, 24, 36, and 48 hours (thus, a window of size 24 would move a step of 1
hour at a time to simulate lazy learning of a new difference vector). We start “observing” responses for each five days (as
highlighted in our dataset) before the registration of a domain. For our evaluation, we consider a variety of evaluation
metrics as follows.

• Standard metrics: (1) True positives (Tp), ie, domains correctly identified as malicious. (2) False positives (Fp), ie,
domains incorrectly marked as malicious. (3) True negative (Tn), ie, domains marked correctly as not malicious.
(4) False negative (Fn), ie, domains incorrectly marked as not malicious. Using those outcomes, precision, recall,
accuracy, and F1 score are P = Tp

Tp+Fp
,R = Tp

Tp+Fn
,A = Tp+Tn

Tp+Tn+Fp+Fn
, and F1 = 2 × P×R

P+R
.

• Time: We use how much in advance (before registration) a domain can be detected as a measure of “proactiveness.”

The results for 2-class learning are shown in Table 2 and Figure 7 across multiple evaluation metrics. We notice that
the performance of our scheme is quite promising, especially with a limited amount of knowledge (expressed in a small
window size). As for time as an evaluation metric, we notice that our scheme can learn with an accuracy of more than
0.90 (on average) for more than 88 hours in advance (= 24 × 5 − 8 − 24) and can achieve an accuracy of more than 0.99
(on average) for more than 48 hours in advance (= 24 × 5 − 48 − 24).

The monitoring of domain names and their usage is a continuous process, often employed for understanding the health
of the domain name state. Thus, our work does not require additional monitoring capabilities not in use today. However,
for a larger window, our system would require obtaining a count of queries per domain name for a larger period of time
(eg, four days). Even when we aggregate those counts per five minutes (hourly is a standard), the overall overhead per

SPAULDING ET AL. 11 of 17

TABLE 2 Standard measurements of performance: true
positive, true negative, false positive, false negative for different
windows size (average, over 24 slides for the given W size)

W TP TN FP FN P R A F1

8 91.3 89.4 10.6 8.7 0.89 0.91 0.90 0.90
16 97.4 92.7 7.3 2.6 0.93 0.97 0.95 0.95
24 98.1 94.5 5.5 1.9 0.95 0.98 0.96 0.96
36 99.3 95.5 4.5 0.7 0.96 0.99 0.97 0.98
48 99.4 98.3 1.7 0.6 0.98 0.99 0.99 0.99

FIGURE 7 Plotting the standard measurements of performance: false negative/true positive, false positive/true negative for different
windows size (average, over 24 slides for the given W size). Notice that an accuracy of 0.99 can be achieved for more than 48 hours in advance

monitoring a domain name will be 9 KB to extract our features if we are to store the entire curve (assuming 64-bit repre-
sentation of a long integer). This overhead is linear in the number of days; one-day monitoring would have an overhead
of 2.25 KB. A similar amount of overhead is required for storing the feature vector and the derivative. However, we notice
that one does not need to store the curve and can calculate the derivative as a feature on-the-fly using the current and last
count of queries. Furthermore, we notice that one can always aggregate the feature space to optimize the feature space,
if storage is an issue.

7 DISCUSSION

In this section, we discuss possible tactics that bots and botmasters can employ to evade the DRIFT system. As evident in
the Conficker NXDomain DNS dataset, which clearly shows significant traffic volume before and after a Conficker-based
DGA domain is registered (see Figure 6), we attribute this distinguishing pattern to a phenomena known as clock drift.

A drift is introduced by many factors, including network jitter, delays introduced by software, and even the environ-
mental conditions in which the computer is operating.26 Since DGAs tend to use time as a seed into a PRNG to ultimately
generate a list of domains to query for C2 communication, any deviation from the actual time will cause the infected hosts
to query domains prematurely (or late).

7.1 Synchronizing to Internet time
Since DRIFT relies on the fact that DGA domains will be queried pre and post their registration date, one simple
tactic botnet authors can employ to evade DRIFT is to ensure that the time value used for the PRNG seed origi-
nates from a reliable remote host, such as an Internet time server. For example, the botnet author can include code
that initiates a HTTP request to a NIST (The National Institute of Standards and Technology) time server located at
“http://nist.time.gov/actualtime.cgi”, which returns the number of milliseconds since Jan 1, 1970.

Indeed, the aforementioned approach is the case for the Conficker family of malware, which randomly selects one of
six search engines (w3.org, ask.com, msn.com, yahoo.com, google.com, and baidu.com) to obtain the time.27 By initiating
an HTTP GET request to one of these websites, the Conficker DGA can extract the date string GMT from the HTTP
header. Since only the day, month, and year values are used, repeated queries on the same day would yield the same
result.27 As Leder et al pointed out, selecting such high-profile websites for time synchronization renders it impossible to
simultaneously disable all target time sources in a coordinated effort.28

12 of 17 SPAULDING ET AL.

If Conficker queries one of the six high-profile websites mentioned previously for the actual time, how is it possible that
there were NXDomain queries prior to the registration of a Conficker DGA domain name on a given day? This may indicate
that an incorrect time was returned from one of those high-profile websites, which is highly unlikely. One plausible
scenario could be an incorrect or Network Time Protocol (NTP) configuration, especially with virtual machines that
typically run web servers. As evidenced on the official NTP.org known issues,29 ie, “NTP server was not designed to run
inside of a virtual machine. It requires a high resolution system clock, with response times to clock interrupts that are
serviced with a high level of accuracy.” Another unlikely scenario is an attack on the NTP itself, which is highlighted in
the work by Malhotra et al,30 where attackers can exploit unauthenticated NTP traffic to alter the time on client systems.

The most likely scenario to explain the clock drift in Conficker, despite obtaining a valid time from a reliable internet
source, is revealed in the work of Leder and Werner,28 who illustrated an issue in the PRNG based on a reimplementation
in the C programming language. Essentially, they discovered that a cross-compiled version (using MinGW) of the DGA
drifts out of sync after a few hundred operations because the log() function used by MinGW differs slightly from the
implementation in the msvcrt.dll used by Conficker. They noticed that a digit at position 1013 differed because of different
roundings. Ultimately, this resulted in a single bit that was different and brought the PRNG and, therefore, the domain
generation out of sync.

7.2 Circumventing DNS
As stated previously, one of the main mechanisms of DRIFT to proactively identify DGA domain names is the use of
the DNS protocol for C2 communication. As such, botnets can simply circumvent DNS (ie, use IP addresses directly)
entirely or use another communication protocol (eg, peer-to-peer) that does not rely on domain names or DNS resolution
to ultimately evade detection by the DRIFT system. In the following, we discuss these circumvention techniques and
alternative C2 communication protocols and their implications.

Hardcoding C2 addresses. In the early days of botnets, bot authors would hardcode the IP address of the C2 server in
the bot binary to eliminate the use of DNS from the picture, thus making their activities stealthier.31 However, as Khattak
et al pointed out, this is a rather primitive method because an obvious pitfall is reverse engineering the bot binary to
potentially reveal the C2 server, thus leading to a C2 server hijack. Another disadvantage of this approach is that network
administrators can easily blacklist C2 IPs at a network gateway using an access control list, thereby severing call-back
channels of all the bots.

Along the same lines, bot authors can also hardcode the domain names for C2 servers into the bot binary, which is a
better approach than IP address hardcoding from the botnet point-of-view.31 This is due to that fact that, if the IP address
associated with the domain name is taken down, the bot master can still carry out its malicious activities by mapping
the domain name to a new IP address (while requiring no updates on the bot end). As mentioned earlier, using a single
domain name for C2 communication can constitute a single point of failure, which gave rise to the adoption of DGAs. This
in turn made it difficult for law enforcement agencies because taking down a domain is a complicated process involving
several formalities.32 By the time a suspected DGA domain is taken down, the botnet has typically already moved to a new
domain (in a process known as bot-herding).31

DNS NXDomain hijacking. The NXDomain response from botnets querying DGA domains prematurely is the key
mechanism behind the DRIFT system. With that being said, altering or "hijacking" this response would throw off the
measurements utilized by DRIFT because it analyzes the number of NXDomain responses over a fixed period of time
(eg, hour). As a case in point, a previous study33 has shown that the DNS servers operated by certain ISPs may hijack
such responses in an effort to “assist” users by sending them to a “search” page filled with advertisements, rather than
returning the NXDomain response. Disconcerting as it sounds, a recent large-scaled study34 concluded that NXDomain
hijacking by ISPs is quite rare because it only affected 4.8% of the 1.2 M network nodes they measured (which were spread
across 14 k autonomous systems (ASes) in 172 countries).

Another possible way that botmasters can mitigate NXDomain responses (thereby avoiding detection by DRIFT) is
to employ caching DNS servers or “rogue” DNS servers on compromised systems. A typical caching DNS server does
not contain any domain resource records, it simply resolves DNS queries from clients and caches the answer to respond
quickly for future queries. As Heron35 described, adversaries would only need a compromised machine or a server
hosted in a country with lax cyber crime laws. Essentially, when a botnet-originated DNS query is accepted by one
of these servers, it could avoid returning a NXDomain response and possibly provide a legitimate IP address under
its control.

SPAULDING ET AL. 13 of 17

7.3 Botnet topologies
Centralized botnet. A centralized botnet is a topology with a clear distinction between the botmaster and its partici-
pating bots, shown prominently in 1. In this topology, the botmaster prepares the C2 channel to issue commands so that
bots accessing the channel can receive instructions to take future actions. In addition to HTTP, these commands can be
sent through various protocols such as UDP, TCP, and IRC. In the case of using preassigned IP addresses for TCP or UDP,
the approach by DRIFT in utilizing the characteristics of the DNS NXDomain responses cannot be directly applied here.
However, if a centralized botnet does not use HTTP or DNS resolution, the botmaster can easily be thwarted simply by
using the countermeasures we discussed previously to determine the C2 server's IP address. We highlight that DRIFT's
approach focuses on DGA-based botnets, which have become increasingly difficult to take down due to the coordination
of law enforcement and different agencies.32

Decentralized botnet. In contrast to a centralized topology, decentralized botnets have no obvious commander, which
makes the C2 communication not concentrated around a specific node (ie, botmaster). Applying DRIFT's detection
mechanisms here will likely be difficult, especially if the C2 communication protocol does not use DNS resolution. For
example, a typical decentralized botnet uses peer-to-peer technology and works by allowing the participating bots to
relay the commands to each other (rather than from a centralized node). The decentralized topology is free from the
single-point-of-failure issues discussed previously because different parts of the botnet also functions as C2 servers. In
summary, DRIFT will likely perform well for decentralized botnets that use DNS resolution because it takes advantage
of patterns in NXDomain responses due to clock drift. However, since the role of the C2 server is distributed, the amount
of NXDomain responses that occur will be significantly lower than that of the centralized botnet. In future work, we will
use the same approach for the analysis of decentralized botnets using DNS resolution.

8 RELATED WORK

8.1 Domain gorithm
Primarily used for a botnet's C2 channel, DGAs are widely used in malware families such as Conficker, Kraken, and
Torpiq. As the potential impact of DGAs continues to expand, a wide range of research has been well underway in the
broad field of computer security. One of the first academic publications that introduced the concept of malware utilizing
DGAs was in 2009 by Stone-Gross et al,36 who described their experiences attempting to seize control of the Torpig botnet.
They pointed out that, in the past, botnet authors would use IP fast-flux techniques where a certain domain is mapped to
a set of frequently changing IP addresses to avoid take downs. Realizing that a single domain name constituted a single
point failure, the authors discovered that the Torpig botnet started using a domain flux technique that employed the use
of a DGA for locating its C2 server. Shin et al22,37 conducted a large-scale survey of the distribution of Conficker (one
the most notorious DGA-based malwares) and the effectiveness of the existing detection systems. The Kraken botnet,
another notorious DGA-based malware, was closely analyzed by Royal,38 who detailed its behavior and provided sample
DGA domains as well as MD5 hashes. Recently, Fu et al39 proposed two new DGAs based on hidden Markov models and
probabilistic context-free grammars, respectively, which can avoid current detection systems.

8.2 Detection of DGA-based botnet
To counter the prevalence of DGA-based malware, several approaches have been proposed over the years to identify
algorithmically-generated malicious domain names by DGA-based botnets. As mentioned previously, all of these works
usually fall into two schools of thought either (1) relying on reverse-engineering of the bot software or (2) using the
intrinsic features of the generated domains. Table 3 summarizes the most recent studies on how to proceed with the
detection of DGA-based botnets. As a result of the development of machine learning technology, the rate of research for
identifying algorithmically-generated domains using various intrinsic features is high.

Approach through reverse-engineering. The recent work by Plohmann et al54 is the epitome of the first school
of thought that relies on reverse-engineering malware. The authors performed a comprehensive measurement study of
43 DGA-based malware families and variants in a bottom-up fashion by reimplementing their algorithms to ultimately
produce over 159 million unique DGA domains. Using a WHOIS dataset from DomainTools (containing over 9 billion
WHOIS records spanning 14 years), the authors removed any DGA domain for families not in the WHOIS dataset, which

14 of 17 SPAULDING ET AL.

TABLE 3 Summary of domain generation algorithm domain identification approaches

Study Approach Malware Families

Stone-Gross et al36 1) Reverse-engineer 1 (Torpig)
Yadav et al40 2) Intrinsic 3 (Conficker, Torpig & Kraken)
Antonakakis et al12 2) Intrinsic 12 Botnets
Barabosch et al41 1) Reverse-engineer 4 Families
Guerid et al42 2) Intrinsic 2 (Conficker & Kraken)
Zhang et al43 2) Intrinsic 3 (Conficker, Torpig & Srizbis)
Haddadi and Zincir-Heywood44 2) Intrinsic 3 (Conficker, Kraken & Alexa)
Nhauo and Sung-Ryul45 2) Intrinsic 3 (Conficker, Torpig & Kraken)
Mowbray and Hagen46 2) Intrinsic 19 DGAs
Schiavoni et al47 2) Intrinsic 3 (Conficker, Torpig & Bamital)
Bilge et al48 2) Intrinsic 2 (Conficker, Torpig) & malicious domain lists
Sharifnya and Abadi49 2) Intrinsic 3 (Conficker, Kraken & Murofet)
Grill et al50 2) Intrinsic 6 families
Wang et al51 2) Intrinsic 1 (Conficker)
Kwon et al52 2) Intrinsic 26 Botnets
Zhang et al53 2) Intrinsic 2 (Conficker & Kraken)
Plohmann et al54 1) Reverse-engineer 43 Families
Wang et al55 2) Intrinsic 3 (newGoZ, Ramnit & Qakbot)

left them with a set of over 18 million unique DGA domains. By studying the registration status of these DGA domains,
they were able to determine that their domain dataset can be used for both predictive blocking of C2 channels and the
accurate identification of malware families and campaigns with virtually no false positives.

Approach employing intrinsic features. More research is being conducted to identify malicious domains through
intrinsic features such as behavior and dynamics in DGA-based botnets. Yadav et al40 conducted a study that computed the
information entropy of the distribution of alphanumerics (unigram and bigram) within a group of domain names. Anton-
akakis proposed Pleiades, which focuses on NXDomain responses. Pleiades classifies the domains based on the similarity
to detect malicious domain names based on known models of DGA. The approach suggested by Guerid et al42 performs bot
grouping based on NXDomain responses in privacy-preserving manner by using Bloom filters. Zhang et al43 built the sys-
tem, detecting the DGA-based malicious domain names by taking entropy, bigram, and length into account. Haddadi and
Zincir-Heywood44 proposed a stateful-SBB classifier based on the genetic programming, which takes string domain name
as input to determine whether it is malicious. Nhauo and Sung-Ryul45 implemented a support vector machine classifier,
which only takes a domain name as input to reduce the burden of collecting and managing large amounts of metadata.
Mowbray and Hagen46 identified DGA domain names by analyzing client IP addresses with abnormal distributions of
second-level strings lengths in their DNS queries. Phoenix presented by Schiavoni et al47 labels the malicious domain
names automatically using DNS and IP-related features, which can be applied to not only groups of domains but also a
single domain. Bilge et al48 proposed a system, ie, Exposure, which utilizes four time-based, four DNS answer-based, five
TTL value-based, and two domain name-based features to detect DGA-based domains. DFBotKiller proposed by Sharifnya
and Abadi49 is a reputation-based system, which distinguishes malicious domains by considering suspicious activities
as well as DNS query failures. Grill et al50 presented a DGA-malware detection system only using NetFlow information,
an aggregation of all packets between a source IP and port pair to a destination IP and port pair on the same protocol.
Wang et al51 employs social network analysis, which divides the hosts and NXDomains into clusters and identifies them
as either benign or malicious. PsyBoG proposed by Kwon et al52 is a malicious domain name detection system that uses a
signal processing technique and power spectral density analysis. Zhang et al53 presented Botdigger, which can detect an
individual bot by gathering and analyzing the data from a single network. Wang et al55 devised BotMeter, which assesses
the populations of DGA-based botnets over large networks by analyzing the DNS lookups at upper-level DNS servers.

Comparison with previous work. While some of the previous works described earlier use NXDomain queries as a
main feature in their detection systems (eg, the work of Antonakakis et al12), none have examined their frequency and
timing in respect to when the target DGA domains are registered. Our approach is the only known method that relies
on the fact that these NXDomain queries are attributed to clock drifts in which an infected machine's DGA becomes

SPAULDING ET AL. 15 of 17

unsynchronized with their C2 server's DGA. As a result, our approach leverages the inherent patterns of NXDomain
queries prior to the actual registration of the DGA domain, which allows us to detect them with a computationally-
inexpensive classification algorithm.

9 CONCLUSION

In this paper, we presented a system called DRIFT to proactively detect algorithmically-generated malicious domain
names typically employed by botnets. We highlighted the fact that DGA domains tend to have a large number of DNS
queries prior to registration, resulting in NXDomain responses, which is then followed by a gradual overall decline. We
then devised a detection algorithm using the notion of the difference function over the number of NXDomain responses
for a given domain with a sliding time window. Using the DNS traffic gathered from certain TLDs for the precalculated
list of generated domains by the Conficker malware variants, our detection algorithm was able to achieve 99% accuracy
(on average) as early as 48 hours prior to registration.

ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation under grant CNS-1809000, by Korea National Research
Foundation under grant 2016K1A1A2912757, and by Chung-Ang University Research Grant (2018).

ORCID

Jeffrey Spaulding http://orcid.org/0000-0003-0047-5156

REFERENCES
1. Middleton P. Forecast analysis: Internet of Things–endpoints, worldwide, 2016 update. 2017. http://gtnr.it/2oRo4aN
2. OWASP. OWASP Internet of Things (IoT) Project. http://bit.ly/1k0dSrD
3. OVH. The DDoS that didn't break the camel's VAC. http://bit.ly/2D36Ufm
4. Antonakakis M, April T, Bailey M, et al. Understanding the Mirai botnet. In: Proceedings of the 26th USENIX Security Symposium; 2017;

Vancouver, Canada.
5. Wang A, Mohaisen A, Chen S. An adversary-centric behavior modeling of DDoS attacks. In: Proceedings of the 2017 IEEE 37th

International Conference on Distributed Computing Systems (ICDCS); 2017; Atlanta, GA.
6. Kountouras A, Kintis P, Lever C, et al. Enabling network security through active DNS datasets. In: Proceedings of the 19th International

Symposium on Research in Attacks, Intrusions and Defenses (RAID); 2016; Paris, France.
7. Holub A, Colford P. The future is here - assaulting the Internet with Mirai. 2017. http://bit.ly/2oSkJrU
8. Nadji Y, Antonakakis M, Perdisci R, Dagon D, Lee W. Beheading hydras: performing effective botnet takedowns. In: Proceedings of the

2013 ACM SIGSAC Conference on Computer and Communications Security (CCS); 2013; Berlin, Germany.
9. Lever C, Kotzias P, Balzarotti D, Caballero J, Antonakakis M. A lustrum of malware network communication: evolution and insights.

Paper presented at: 2017 IEEE Symposium on Security and Privacy (SP); 2017; San Jose, CA.
10. Mohaisen A, Alrawi O. Unveiling Zeus: automated classification of malware samples. In: Proceedings of the 22nd International Conference

on World Wide Web (WWW); 2013; Rio de Janeiro, Brazil.
11. Yadav S, Reddy AKK, Reddy AL, Ranjan S. Detecting algorithmically generated malicious domain names. In: Proceedings of the 10th

ACM SIGCOMM Conference on Internet Measurement (IMC); 2010; Melbourne, Australia.
12. Antonakakis M, Perdisci R, Nadji Y, et al. From throw-away traffic to bots: detecting the rise of DGA-based malware. In: Proceedings of

the 21st USENIX Conference on Security Symposium (Security); 2012; Bellevue, WA.
13. ICANN. Registrar accreditation: history of the shared registry system. 2015. http://bit.ly/1NWexTL
14. ICANN. Domain name registration process. 2017. https://go.icann.org/2ymkyN9
15. Chang W, Mohaisen A, Wang A, Chen S. Measuring botnets in the wild: some new trends. In: Proceedings of the 10th ACM Symposium

on Information, Computer and Communications Security (ASIACCS); 2015; Singapore, Singapore.
16. Wang A, Mohaisen A, Chang W, Chen S. Revealing DDoS attack dynamics behind the scenes. In: Proceedings of the International

Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA); 2015; Milan, Italy.
17. Wang A, Mohaisen A, Chang W, Chen S. Delving into Internet DDoS attacks by botnets: characterization and analysis. In: Proceedings of

the 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN); 2015; Rio de Janeiro, Brazil.
18. Chaudhuri BB. A new definition of neighborhood of a point in multi-dimensional space. Pattern Recogn Lett. 1996;17(1):11-17.

http://orcid.org/0000-0003-0047-5156
http://orcid.org/0000-0003-0047-5156
http://gtnr.it/2oRo4aN
http://bit.ly/1k0dSrD
http://bit.ly/2D36Ufm
http://bit.ly/2oSkJrU
http://bit.ly/1NWexTL
https://go.icann.org/2ymkyN9

16 of 17 SPAULDING ET AL.

19. Han E-H, Karypis G. Centroid-based document classification: analysis and experimental results. In: Proceedings of the 4th European
Conference on Principles of Data Mining and Knowledge Discovery (PKDD); 2000; Lyon, France.

20. Thomas M, Mohaisen A. Kindred domains: detecting and clustering botnet domains using DNS traffic. In: Proceedings of the 23rd
International Conference on World Wide Web (WWW); 2014; Seoul, Korea.

21. Mohaisen A, Alrawi O, Mohaisen M. AMAL: high-fidelity, behavior-based automated malware analysis and classification. Comput Secur.
2015;52:251-266.

22. Shin S, Gu G. Conficker and beyond: a large-scale empirical study. In: Proceedings of the 26th Annual Computer Security Applications
Conference (ACSAC); 2010; Austin, TX.

23. The Conficker Working Group. 2012. http://bit.ly/1kAYsJA
24. Mockapetris P. Domain names: implementation and specification (November 1987). RFC 1035. 2004.
25. Andrews M. Negative caching of DNS queries (DNS NCACHE). RFC 2308. 1998.
26. Jackson J. Why computers still struggle to tell the time. 2015. http://bit.ly/2BOW5R2
27. Porras P, Saïdi H, Yegneswaran V. A foray into Conficker's Logic and Rendezvous Points. In: Proceedings of the 2nd USENIX Conference

on Large-scale Exploits and Emergent Threats: Botnets, Spyware, Worms, and More (LEET); 2009; Boston, MA.
28. Leder F, Werner T. Know your enemy: containing Conficker. 2009. http://bit.ly/2ESrRQ1
29. NTP.org. Known operating system issues. http://support.ntp.org/bin/view/Support/KnownOsIssues
30. Malhotra A, Brakke E, Goldberg S. Attacking the network time protocol. In: Proceedings of the Network and Distributed System Security

Symposium (NDSS); 2016; San Diego, CA.
31. Khattak S, Ramay NR, Khan KR, Syed AA, Khayam SA. A taxonomy of botnet behavior Detection, and defense. IEEE Commun Surv Tutor.

2014;16(2):898-924.
32. Piscitello D. Guidance for preparing domain name orders, seizures & takedowns. Thought Paper. 2012. https://go.icann.org/2H1npLi
33. Dagon D, Lee C, Lee W, Provos N. Corrupted DNS resolution paths: the rise of a malicious resolution authority. In: Proceedings of the

Network and Distributed System Security Symposium (NDSS); 2008; San Diego, CA.
34. Chung T, Choffnes D, Mislove A. Tunneling for transparency: a large-scale analysis of end-to-end violations in the Internet. In: Proceedings

of the 2016 Internet Measurement Conference (IMC); 2016; Santa Monica, CA.
35. Heron S. Working the botnet: how dynamic DNS is revitalising the zombie army. Netw Secur. 2007;2007(1):9-11.
36. Stone-Gross B, Cova M, Cavallaro L. et al. Your botnet is my botnet: analysis of a botnet takeover. In: Proceedings of the 16th ACM

Conference on Computer and Communications Security (CCS); 2009; Chicago, IL.
37. Shin S, Gu G, Reddy N, Lee CP. A large-scale empirical study of Conficker. IEEE Trans Inf Forensics Secur. 2012;7(2):676-690.
38. Royal P. Analysis of the kraken botnet. 2008. http://www.flatland.tuxfamily.org/repo/papers_malwares/KrakenWhitepaper.pdf
39. Fu Y, Yu L, Hambolu O, et al. Stealthy domain generation algorithms. IEEE Trans Inf Forensics Secur. 2017;12(6):1430-1443.
40. Yadav S, Reddy AKK, Reddy ALN, Ranjan S. Detecting algorithmically generated domain-flux attacks with DNS traffic analysis. IEEE/ACM

Trans Netw. 2012;20(5):1663-1677.
41. Barabosch T, Wichmann A, Leder F, Gerhards-Padilla E. Automatic extraction of domain name generation algorithms from current

malware. In: Proceedings of NATO Symposium IST-111 on Information Assurance and Cyber Defense; 2012; Koblenz, Germany.
42. Guerid H, Mittig K, Serhrouchni A. Privacy-preserving domain-flux botnet detection in a large scale network. In: 2013 Fifth International

Conference on Communication Systems and Networks (COMSNETS); 2013; Bangalore, India.
43. Zhang Y, Zhang Y, Xiao J. Detecting the DGA-based malicious domain names. In: Proceedings of the International Conference on

Trustworthy Computing and Services (ISCTCS); 2013; Beijing, China.
44. Haddadi F, Zincir-Heywood AN. Analyzing string format-based classifiers for botnet detection: GP and SVM. In: Proceedings of the 2013

IEEE Congress on Evolutionary Computation (CEC); 2013; Cancun, Mexico.
45. Nhauo D, Sung-Ryul K. Classification of malicious domain names using support vector machine and bi-gram method. Int J Secur Appl.

2013;7(1):51-58.
46. Mowbray M, Hagen J. Finding domain-generation algorithms by looking at length distribution. In: Proceedings of the 2014 IEEE

International Symposium on Software Reliability Engineering Workshops (ISSREW); 2014; Naples, Italy.
47. Schiavoni S, Maggi F, Cavallaro L, Zanero S. Phoenix: DGA-based botnet tracking and intelligence. In: Proceedings of the International

Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA); 2014; Egham, UK.
48. Bilge L, Sen S, Balzarotti D, Kirda E, Kruegel C. Exposure: a passive DNS analysis service to detect and report malicious domains. ACM

Trans Inf Syst Secur. 2014;16(4):1-28. Article No 14.
49. Sharifnya R, Abadi M. DFBOtKiller: domain-flux botnet detection based on the history of group activities and failures in DNS traffic. Digit

Investig. 2015;12:15-26.
50. Grill M, Nikolaev I, Valeros V, Rehak M. Detecting DGA malware using NetFlow. In: Proceedings of the 2015 IFIP/IEEE International

Symposium on Integrated Network Management (IM); 2015; Ottawa, Canada.
51. Wang T-S, Lin C-S, Lin H-T. DGA botnet detection utilizing social network analysis. In: Proceedings of the 2016 International Symposium

on Computer, Consumer and Control (IS3C); 2016; Xi'an, China.
52. Kwon J, Lee J, Lee H, Perrig A. PsyBoG: a scalable botnet detection method for large-scale DNS traffic. Comput Netw. 2016;97:48-73.

http://bit.ly/1kAYsJA
http://bit.ly/2BOW5R2
http://bit.ly/2ESrRQ1
http://support.ntp.org/bin/view/Support/KnownOsIssues
https://go.icann.org/2H1npLi
http://www.flatland.tuxfamily.org/repo/papers_malwares/KrakenWhitepaper.pdf

SPAULDING ET AL. 17 of 17

53. Zhang H, Gharaibeh M, Thanasoulas S, Papadopoulos C. BotDigger: Detecting DGA bots in a single network. In: Proceedings of the IEEE
International Workshop on Traffic Monitoring and Analaysis (TMA); 2016; Louvain-la-Neuve, Belgium.

54. Plohmann D, Yakdan K, Klatt M, Bader J, Gerhards-Padilla E. A comprehensive measurement study of domain generating malware.
In: Proceedings of the 25th USENIX Security Symposium; 2016; Austin, TX.

55. Wang T, Hu X, Jang J, Ji S, Stoecklin M, Taylor T. BotMeter: charting DGA-botnet landscapes in large networks. In: 2016 IEEE 36th
International Conference on Distributed Computing Systems (ICDCS); 2016; Nara, Japan.

How to cite this article: Spaulding J, Park J, Kim J, Nyang D, Mohaisen A. Thriving on chaos: Proactive detec-
tion of command and control domains in internet of things-scale botnets using DRIFT. Trans Emerging Tel Tech.
2018;e3505. https://doi.org/10.1002/ett.3505

https://doi.org/10.1002/ett.3505

	Thriving on chaos: Proactive detection of command and control domains in internet of things-scale botnets using DRIFT
	Abstract
	INTRODUCTION
	Key idea
	Contributions
	Organization

	PRELIMINARIES
	DNS overview
	Functionality
	DNS resolution
	Domain name registration process

	SYSTEM OVERVIEW
	Threat model
	System overview

	ONLINE DETECTION ALGORITHM
	Rationale of feature
	Online detection
	Building feature vectors
	Building a model
	Learning labels of domains

	Detection algorithm

	DATASET AND CHARACTERISTICS
	Malware data
	NXDomain data
	Conficker NXDomain DNS

	EVALUATION
	DISCUSSION
	Synchronizing to Internet time
	Circumventing DNS
	Botnet topologies

	RELATED WORK
	Domain gorithm
	Detection of DGA-based botnet

	CONCLUSION
	REFERENCES

