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The integration of various technologies with our daily lives, such as smartwatches, smartphones, smart TVs, etc. has proven beneficial.

However, the HCI community is still in search for more intuitive text entry methods for smart devices. In this study, we explore

a new text entry method—AcousticType for smart devices where a smartwatch is leveraged to infer what a user is typing on a

physical keyboard while wearing the smartwatch employing the acoustic signals as a secondary input mechanism. To address various

environment-related challenges that prevent the direct use of the acoustic signals for inferring typed keys, AcousticType employs four

modules: Noise Cancelling, Keystroke Detection, Key Identification andWord Correction, where several digital signal processing, machine

learning, and natural language processing techniques are utilized to produce the final inference. Our results show that an acoustic

emanation of a physical keyboard captured by a smartwatch recovers up to 98% of the typed text. We also showed that utilizing the

noise cancellation, AcousticType is robust to the changes in the environment, which further boosts the practicality of AcousticType.

The findings are promising and call for further investigation into new types of text entry methods that utilize acoustic signals to cope

with the usability issues in smart devices.
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1 INTRODUCTION

Due to the easy access and all the conveniences the new technologies offer, our daily lives are getting more and

more entwined with smart devices. According to an annual Internet report by Cisco [2], Machine to Machine (M2M)

connections, which are mostly utilized by smart devices, are the fastest-growing device and connection category. Cisco

also reports that smartphones, Smart TVs, media streaming devices (Fire TV, Chromecast, etc.) are the next growing

categories after M2M. Despite the growing interest in smart devices, more intuitive text entry methods are still an

open problem. Most smart TVs and media streaming devices are still utilizing QWERTY keyboards that are navigated

through the remote controller. Text entry in smartwatches is also challenging due to the limited interaction space. This

problem is also prevalent in smart glasses, such as Magic Leap 1, Microsoft Hololens, and Vuzix Blade.

Smartwatches have skyrocketed in popularity for their mobility features, which brings a lot of convenience. According

to a recent market report [1], the year-over-year growth of the smartwatch market is expected to be 14.5% for 2020—2025
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and IoT-driven smartwatches are a key trend. Another study [22] suggests that smartwatches are used more frequently

than smartphones nowadays. To keep up with the ever-growing user expectations, smartwatches are equipped with

different I/O mechanisms, e.g., motion sensors, touch screen, heart rate sensor, thermometer, microphone, speaker, etc.

Such wide range of I/O mechanisms pave the way for utilizing smartwatches for cross-device applications [5, 10].

In this work, we demonstrate a proof-of-concept to utilize smartwatches to facilitate new cross-device text input

methods. Figure 1 shows an example use case where the user types on a keyboard to input text to smart TV which

typically allows entering text only via remote controller. The biggest advantage of our system is that the keyboard is

not required to be connected/linked/paired with the smart TV in any way for our input method. Such use cases can

be elaborated with numerous smart devices that can be connected to smartwatch via Bluetooth, WiFi, etc. or even to

augment the input capabilities of the smartwatch itself. For example, the input capabilities of smartwatches are quite

limited due to their small screen sizes, and our method offers a convenient option for entering text on smartwatches

through a secondary source. Stand-alone smartwatches have Internet connection capabilities, thus users can utilize

them for e-mailing and instant messaging (IM). With our method, a user can compose an e-mail or a quick IM using a

keyboard that is not connected/linked/paired to the smartwatch in any way. Another use case could be text entry on

augmented reality (AR) head mounted displays (HMD), where the current text entry methods are limited in terms of

usability. For instance, most of the AR HMD keyboards are operated by remote controller, head movements + gestures,

gaze + gestures, and hand tracking + gestures. Although the usability scores are improving with the new advancements,

they are still not close to that of the conventional physical keyboards. Our method can be utilized for AR HMDs to

facilitate input entry. For example, users can start a typing session on their smartwatch and use their wired/wireless

keyboard connected to an office computer to quickly reply to a personal e-mail on an AR HMD.

Our aim is AcousticType, an inference framework utilizing keyboard acoustic emanations captured by a smartwatch

microphone. The goal is to recover characters typed by a user using the keyboard acoustic emanations captured by the

user’s smartwatch. We develop and demonstrate a smartwatch application that offers seamless cross-device interaction

as illustrated in Figure 2. The application uses user-tailored inference models or generic inference models for each

physical keyboard model. Users select the physical keyboard model and the target smart device in the setup stage, and

start typing on the keyboard. Such application utilizing AcousticType is capable of converting conventional wired,

wireless or legacy keyboards to Bluetooth keyboards through smartwatches.

Contributions. In this study, we make the following unique contributions. (1) We propose an inference framework,

AcousticType, that can be utilized in a smartwatch application as a secondary text input mechanism. AcousticType

identifies keystrokes using the acoustic emanations captured by smartwatches. (2) We highlight that in a trusted setting,

AcousticType enables new text entry mechanisms for smart devices. (3) We build a four-stage pipeline: Noise Cancelling,

Keystroke Detection, Key Identification and Word Correction. The noise cancelling stage allows us to neutralize the

environmental changes that is never considered in previous studies. With the representative audio features and learning

techniques, we identify the keystrokes. On top of the baseline performance, which is already promising, we employ

state-of-the-art natural language processing techniques to improve AcousticType’s accuracy by word correction. (4) We

present an extensive set of experiments showing that AcousticType can recover up to 98% of the text. (5) We collected

three types of test datasets to examine how our inference framework performs under different types of use patterns.

Reproducibility. All artifacts associated with our work are available at our Git Repository.
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Fig. 1. An example use case. User starts a typing session on smartwatch that is connected to smart TV. Then, user types on any
keyboard that is not capable of connecting the smart TV. The acoustic emanations are processed by the smartwatch running
AcousticType and the text input feed are forwarded to smart TV.
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Fig. 2. An example GUI guiding through the application setup. First, the application performs noise profiling for the current typing
session. Then, the user selects the device which the keyboard inputs will be forwarded. Next, the user selects the keyboard model.
Once the application prepares the associated model, it starts listening for keystroke events.

2 METHODOLOGY

Our inference framework has four stages as illustrated in Figure 3:Noise Cancelling,Keystroke Detection,Key Identification,

andWord Correction. The framework takes the raw signal as input and outputs the final prediction.

2.1 Noise Cancelling

Since the recording devices record every sound that exists in the environment, they record the background noises. The

alternations of the background noise significantly affect the performance of the identification. Therefore, as a first step,

we prepare the data by cleaning any background noise. Two types of background noise exist: (i) the white noise and

(ii) other ambient noise in the environment, e.g., street noises, computer fan noise, etc. For both types of background

noises, our noise cancelling algorithm utilizes the Fourier analysis where the fingerprint of the static background noise

is structured using the spectrum of the pure tones in the quiet parts of the recording. The fingerprinting is a crucial step,

since cleaning the frequency bands of the noise directly from the recording also cleans the actual keystroke acoustics.

After fingerprinting the noise, it is cancelled from the raw signal and the clean signal is forwarded to Keystroke Detection.
Manuscript submitted to ACM
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Fig. 3. AcousticType consists of four main stages. Noise Cancelling takes the raw signal, cancels any ambient background noise or
white noise (hiss) from the signal, and returns the clean signal. Keystroke Detection takes the clean signal and returns 200 ms windows
encapsulating the keystroke events. Key Identification takes the windows and predicts the associated characters.Word Correction
takes the predictions and corrects the misspelled words.
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Fig. 4. Keystroke detection pipeline. (a) A 10 ms window is slid over the clean signal. The spectrum energy, 𝐸𝑎 , of each 10 ms windows
𝑤𝑎 is calculated. (b) The window-energy tuples, (𝑤𝑎, 𝐸𝑎 ), are sorted in terms of the energy. (c) Starting from the most powerful 10
ms window, 200 ms windows,𝑊𝑎 , encapsulating keystroke events are created. Whenever a new window is created, the subsequent 10
ms windows (𝑤𝑎+𝜖 ) , which are less powerful and overlaps with it, are suppressed. (d) The maximum number of keystrokes, 𝑛, is
computed considering the length of the clean signal coming from Noise Cancelling stage. The 𝑛-most powerful 200 ms windows are
fetched and sorted in time. (e) Keystroke Detection returns a set of windows encapsulating the keystroke events.

In practice, to fingerprint the noise profile, the smartwatch will ask the user to stay silent for a few seconds and

analyze the background noises to create the fingerprint as illustrated in Figure 2. For the smartwatches utilizing the

emergent hardware-level noise cancelling technologies, such as the microphone in the latest-generation Apple Watch,

this stage can be skipped to further improve the responsiveness by reducing the latency.

2.2 Keystroke Detection

In this stage, we locate the keystroke events in the clean signal based on two observations: (i) a keystroke event lasts

typically 200 ms and yields two peaks, a hit peak and a release peak; (ii) the hit peak is more powerful than the release

peak. Thus, we simplify the keystroke detection problem to locating the hit peak in a keystroke event which typically

lasts 10 ms. As illustrated in Figure 4, we slide a 10 ms window, over the clean signal and calculate the spectrum energy

along the way. As we expect a high energy in case of a hit peak, we sort the 10 ms windows according to their energies

and encapsulate them with 200 ms windows. Then, we calculate the maximum number of keystrokes, 𝑛, considering the

typical duration of a keystroke (200 ms), the pause (500 ms) between keystrokes, and the total length of the recording.

Finally, we return the top 𝑛 non-overlapping 200 ms windows as the keystroke events.

As we do not have access to the live stream of acoustics from smartwatch in this proof-of-concept work, we performed

Keystroke Detection offline. However, this task can be performed in real-time, once a typing session is initiated on the

smartwatch application. In a typing session, the application will be listening for keystroke events and will perform

Keystroke Detection every 500 ms—which contains at most two keystrokes as illustrated in Figure 4.
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2.3 Key Identification

This stage consists of two parts: (i) feature extraction and (ii) classification.

To decide the feature extraction method, we experimented with the most successful audio features and compared

the average true positive rates (TPR) they produce. We considered Fast Fourier Transform (FFT) coefficients (0.07),

Cepstrum coefficients (0.7), Mel-Frequency Cepstral Coefficients (MFCC) (0.85), and Chroma (0.37) features. Based on

the empirical results, we decided to use MFCC as our audio features.

Similarly, for the classification, we experimented on various classification techniques and compared their TPR. We

considered logistic regression (0.83), support vector machines (0.85), multi-layer perceptron (0.73), and convolutional

neural-network (0.73). Based on the results, we decided to use support vector machine, which is also favorable as SVM

yields a lightweight model that can be easily used in smartwatches or smartphones that smartwatches are paired with.

2.4 Word Correction

Key Identification stage may produce misspelled word predictions due to the signal similarities, especially between the

keys in close proximity. To further improve the prediction, we added Word Correction stage where we evaluated three

methods: Simple Spell Checker, Machine Translation, and Next Word Prediction.

In Simple Spell Checker (SSC), an algorithm based on the Levenshtein distance is used to find permutations within

an edit distance of 2 from the original word [17]. Levenshtein distance [13] is a string metric that measures the distance

between two strings. It counts the minimum number of single-character edits, such as insertion, deletion, or substitution

required to make two strings identical. After finding all candidates within Levenshtein distance of 2, all permutations

are compared to known words in a word frequency list. Those words that are found more often in the frequency list are

more likely the correct results.

Machine Translation (MT) utilizes one of the most advanced approaches in NLP: Transformers. With transformers,

we convert the spell correction task to machine translation task. We consider the misspelled words and the correct

words as the associated translation and trained the network. Then, we use the model to correct the misspelled words.

For MT, we used xfspell tool developed by Hagiwara.

In Key Identification, we observed that some predictions are not misspelled but do not align with the context of the

sentence. For such cases, we use Next Word Prediction (NW) to predict the next word given the context of a sentence.

NW utilizes state-of-the-art GPT-2 [19] language model to replace the out-of-context words. We feed the word in the

sentence sequentially and get the next word predictions. Then, we replace the original word and compare the sentence

score. If the score does not improve, we keep the original word.

We note that, as smartphones have user-tailored language models for text entries, the smartwatch application that is

paired with a smartphone can directly use that language model to correct words. Such specifically trained language

models would further improve the performance.

3 EVALUATION AND DISCUSSION

In this section, we outline the data collection process and discuss our findings from two sets of evaluations: User

Profiling and Generic Profiling.
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3.1 Data Collection

For evaluations, we collected training and testing data using Samsung Galaxy Watch Active 2 smartwatch as the

recording device and MacBook Air 2020 (MBA) and Magic Keyboard (MK) as the target keyboards. We collected data

from two users where they wore the watch and positioned the keyboard however they felt comfortable. For training

data, first user typed 45 pangrams to train the key identification model. For testing data, we collected three types of data

from both users: (i) a randomly selected e-mail from Enron e-mail dataset [12] (E-mail), (ii) 32 randomly generated

passwords of length 8 (Random), (iii) 20 randomly selected passwords from RockYou password dataset (Selected).

3.2 Evaluation Metrics

For our experiments, we used four metrics: (i) cross-entropy, (ii) character-wise true positive rate (TPR), (iii) string-wise

true positive rate (TPR), and (iv) normalized Levenshtein distance.

Cross-Entropy. Cross-entropy measures the difference between two probability distributions for a given random

variable. To evaluate the performance of our classifier, we used the cross-entropy of the predicted probability distribution,

𝑓 , relative to the actual distribution, 𝑝 . The cross-entropy is calculated as follows:

𝐻 (𝑝, 𝑓 ) = −
∑
𝑖

𝑝(𝑥𝑖 ) log(𝑓 (𝑥𝑖 ) + 𝜖) (1)

The 𝜖 value in (1) is used to avoid the undefined values yielded by log(0). For our evaluations, we calculated (i)

the cross-entropy between the probability distribution that our model estimates and that of the actual distribution,

𝐻 (𝑝, 𝑓SVM), (ii) the cross-entropy between the character distribution of the associated dataset and the actual distribution,

𝐻 (𝑝, 𝑓𝑢 ), and (iii) the cross-entropy between the actual distribution and itself representing the ideal cross-entropy,

𝐻 (𝑝, 𝑝). 𝐻 (𝑝, 𝑝) is calculated as a reference point for all other cross-entropy calculations, which is negligible.

Character-wise TPR. As each key on the keyboard represents a class in the classifier, we use character-wise TPR to

measure the performance of Key Identification stage. We report the TPR for each alphanumeric key on the keyboard.

String-wise TPR.We utilize string-wise TPR to compare the predicted strings with their associated ground truths.

Normalized Levenshtein Distance (NLD). As briefly mentioned above, LD is a string metric that measures the

difference between two strings. It measures the minimum number of edits (insertion, deletion, or substitution) to

make the strings identical. For our experiments, we used its normalized variant as a string comparison metric. NLD is

calculated by dividing the LD between two strings (predicted and target) by the length of the target string.

For string-wise TPR and NLD, we also consider their one-hop variations due to the fact that some of the mispredicted

letters are within the one-hop distance from the actual key. This is reasonable as the acoustics from the keys that are

close are similar to one another.

3.3 User Profiling

In this set of experiments, we used the training and testing data collected from the first user. This evaluation assumes

that the user will train the model to capture the unique typing style.

Character-wise Evaluations. Figure 5 shows the character-wise TPR for each keyboard. The TPR values range from

0.75 to as high as 1.00, which demonstrates the success of AcousticType on the MBA keyboard. Figure 5a also shows the

location of each key and the colors emphasize the finger that presses that key. The most successful predictions, with an

Manuscript submitted to ACM
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1 2 3 4 5 6 7 8 9 0

Z X MNBVC

Q W POIUYTRE

A S LKJHGFD

1.00 0.890.92 0.85 1.00 1.00 0.89 1.00 1.00 1.00

0.86 1.001.00 0.86 0.96 1.00 0.95 0.86 0.91 0.92

0.98 1.000.85 0.75 1.00 0.82 1.00 0.94 0.97

1.00 0.751.00 1.00 1.00 0.88 0.94

(a) MacBook Air

1 2 3 4 5 6 7 8 9 0

Z X MNBVC

Q W POIUYTRE

A S LKJHGFD

0.89 1.000.62 0.69 1.00 0.80 1.00 0.79 0.93 0.67

1.00 0.720.85 0.62 0.78 0.79 0.95 0.73 0.55 0.92

0.60 0.810.77 0.81 1.00 0.81 1.00 0.75 0.79

0.67 0.561.00 0.70 0.67 0.91 0.61

(b) Magic Keyboard

Fig. 5. Character-wise TPR obtained in Key Identification stage for user profiling. The key colors encode the hand and finger used.

Table 1. User profiling results for Key Identification and Word Correction. Word Correction results are written in italic. Word Correction
is only applicable for E-mail dataset as other datasets do not include English words. TPR1 and NLD1 stand for one-hop variations of
string-wise TPR and NLD.

MacBook Air Magic Keyboard
TPR TPR1 NLD NLD1 TPR TPR1 NLD NLD1

E-mail 0.918 0.988 0.065 0.009 0.796 0.918 0.164 0.065

SSC 0.970 0.988 0.023 0.009 0.877 0.930 0.023 0.009
MT 0.953 0.994 0.037 0.004 0.970 0.988 0.023 0.009
NW 0.866 0.936 0.112 0.053 0.872 0.953 0.103 0.037

Random 0.972 0.992 0.025 0.007 0.812 0.921 0.177 0.073

Selected 0.878 0.939 0.110 0.055 0.679 0.834 0.290 0.150

average of 0.96, are done on the keys pressed with the left little finger, left index finger, right ring finger, and right little

finger. The least successful predictions are recorded with the left middle finger with an average of 0.86.

Figure 5b shows the character-wise TPR for the MK keyboard. The results range from 0.55 to 1.00. For the MK

keyboard, the highest TPR, an average of 0.85, was observed with the left index finger. The smallest TPR is observed

with the right middle finger, with an average of 0.70. When the used hands are considered, the TPR for the right hand

(MBA→ 0.94, MK→ 0.81 ) is slightly higher than that of the left hand (MBA→ 0.93, MK→ 0.78 ). This behavior is

reasonable, because the smartwatch is worn to the left wrist, and the microphone stays still when the right hand is used.

String-wise Evaluations. Table 1 shows the user profiling results. As word correction is language-specific (i.e., English

in our case), it is only evaluated for the E-mail dataset. With user profiling, we can infer 97% of the typed text. Considering

one-hop variations, TPR goes up to 99%. The average increase of 10% with the one-hop variations supports our claim:

some of the mispredicted characters are within the one-hop distance from the actual keys on the keyboard.

When we consider Word Correction results, SSC and MT improved TPR in all cases. However, NW is shown to

decrease the TPR in some cases. The reason is that NW may replace the misspelled word (e.g., “nusiness” for “business”)

with another word (e.g., “work”) fitting in the sentence context. Such replacement may decrease the TPR in some cases,

leaving some room for improvements.

3.4 Generic Profiling

In this set of experiments, we used the training data collected from the first user to train our model and the testing data

from the second user for the evaluations. Unlike user profiling, we use a generic model to infer the typed text.
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1 2 3 4 5 6 7 8 9 0

Z X MNBVC

Q W POIUYTRE

A S LKJHGFD

0.89 0.560.85 0.69 1.00 0.64 0.67 1.00 0.50 0.82

0.86 0.900.92 0.78 0.85 0.80 0.75 0.77 0.77 0.83

0.77 0.930.38 0.62 0.70 0.81 1.00 0.94 0.97

0.92 0.690.50 0.80 0.70 0.41 0.94

(a) MacBook Air

1 2 3 4 5 6 7 8 9 0

Z X MNBVC

Q W POIUYTRE

A S LKJHGFD

1.00 0.890.85 0.77 0.88 0.90 1.00 0.86 1.00 0.33

0.86 0.830.62 0.65 0.67 0.89 0.95 0.86 0.50 0.67

0.70 0.870.58 0.75 0.80 0.90 0.40 0.94 0.62

0.75 0.881.00 0.50 0.33 0.75 0.78

(b) Magic Keyboard

Fig. 6. Character-wise TPR obtained in Key Identification stage for generic profiling.

Table 2. Generic profiling results for Key Identification andWord Correction.Word Correction results are written in italic.Word Correction
is only applicable for E-mail dataset as other datasets do not include English words. TPR1 and NLD1 stand for one-hop variations of
string-wise TPR and NLD.

MacBook Air Magic Keyboard
TPR TPR1 NLD NLD1 TPR TPR1 NLD NLD1

E-mail 0.680 0.877 0.258 0.098 0.761 0.930 0.192 0.056

SSC 0.790 0.918 0.169 0.066 0.848 0.959 0.122 0.032
MT 0.709 0.883 0.234 0.093 0.709 0.883 0.234 0.093
NW 0.734 0.878 0.214 0.098 0.734 0.878 0.214 0.098

Random 0.792 0.949 0.195 0.047 0.769 0.921 0.217 0.073

Selected 0.758 0.912 0.210 0.070 0.762 0.933 0.215 0.060

Table 3. Cross-entropy results for User Profiling and Generic Profiling.

Baseline User Profiling Generic Profiling

Ideal Frequency MacBook Air Magic Keyboard MacBook Air Magic Keyboard
E-mail 𝜖 14.02 0.66 0.65 1.19 1.29

Random 𝜖 3.58 0.40 0.33 1.29 1.12

Selected 𝜖 18.98 0.86 0.80 1.09 1.18

Figure 6 demonstrates the character-wise TPR for generic profiling. When we compare the results in Figure 5 and

Figure 6, we observe a slight decrease in the overall TPRs for the MK (0.798 → 0.764) and a relatively large decrease for

the MBA (0.937 → 0.776). The decrease is expected since User Profiling tailors the classifier to capture unique typing

style of the user. On the other hand, Generic Profiling only models the acoustic emanations of the keyboard.

Table 2 shows the results for the generic profiling. With the generic profiling, we are able to infer up to ∼85% of the

typed text. When we compare Table 1 and Table 2, we observe a decrease in the prediction in TPR. However, the rate of

decrease is smaller when we consider the one-hop variations. This shows that most of the mispredicted characters

are within the one-hop distance of the correct character. This observation gives some hints about the mispredicted

characters, which further reduces the search space for the corrected version of the typed text.

3.5 Cross-Entropy

To evaluate how much our inference reduces the entropy, we computed the cross-entropy between the actual probability

distribution, which is a one-hot vector (1 on the correct class, 0 for others), and the probability distribution returned by
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Table 4. A summary of the related work. The detection is measured by TPR (True Positive Rate). UP in training column stands for
User Profiling, and HM in the exploited medium column stands for Hand Movement. Blank proximity and detection indicate that
those values are not provided in the corresponding study.

Reference Year Exploited Medium Proximity Training? Performance
Asonov et al. [3] 2004 Keyboard acoustics 1m Yes (UP) 79% (top-1 key)

Berger et al. [4] 2006 Differences of keyboard acoustics - No 73% (top-50 word)

Zhuang et al. [25] 2009 Bootstrapped keyboard acoustics - No 90% (top-1 word)

Halevi et al. [7] 2014 Keyboard acoustics - Yes 64% (top-1 key)

Wang et al. [24] 2015 Dislocation of hand Smartwatch Yes 30% (top-5 word)

Liu et al. [14] 2015 HM+Acoustic emanations Smartwatch Yes 55% (top-5 word)

Maiti et al. [16] 2016 HM+Acoustic emanations Smartwatch Yes 51% (top-10 word)

Wang et al. [23] 2016 Hand movement Smartwatch No 80% (top-1 PIN)

Compagno et al. [6] 2016 Acoustics via VoIP Remote Yes (UP) 83% (top-1 key)

AcousticType 2021 Acoustics via Smartwatch Smartwatch Yes (UP) 98% (top-1 key)

AcousticType 2021 Acoustics via Smartwatch Smartwatch Yes 85% (top-1 key)

the classifier. Table 3 shows the cross-entropy results for both user profiling and generic profiling. The perfect match

with the actual distribution (“Ideal” column in Table 3) is a negligible value 𝜖 . The Frequency column in Table 3 shows

different cross-entropy values for the different datasets considering the character frequency for the corresponding

domain. For the E-mail dataset, Frequency column shows the cross-entropy with the character probability distribution

of the English language. For the “Selected” dataset, it shows the cross-entropy with the character probability distribution

against the RockYou leaked password dataset. For the “Random” dataset, it shows the cross-entropy against the uniform

distribution. The entropy loss introduced for both UP and GP demonstrates the effectiveness of our inference mechanism.

4 RELATEDWORK

In this section, we discuss the literature that is related to AcousticType across various dimensions.

Keylogging. In away, and despite the split environment as a result of the envisioned application of AcousticType

where the input is seen on a keyboard and the effect is realized on another separated device through inference, our

work exhibits some similarities with the literature of keylogging. The previous keylogging studies draw attention to the

adversarial usage of acoustics and smartwatches. Although the context differs, the end goal of all studies is the same:

inferring what a user is typing on a keyboard.

Table 4 compares AcousticType with other works. When we compare the studies utilizing acoustics [3, 4, 6, 7, 25],

our inference pipeline outperforms other methods. However, we should note that the evaluation methods employed in

these studies do not consider the effect of environmental changes, i.e., background noises, which we address.

Considering the studies that utilizes smartwatches but different features [14, 16, 23, 24], we note they use different

evaluation metrics. For instance, the top-𝑥 word means that the study matches words instead of keys, since they are

matching the hand movement patterns with the corresponding words. The top-𝑥 PIN means that the study matches

only numerical keys. When we assume that an average word length is 5, our top-1 word accuracy becomes 90% and our

method again outperforms their identification accuracy.

Smartwatch-Enabled Cross-Device Interactions. The cross-device interaction strategies are explored for wide

range of devices. Houben and Marquardt [10] developed a toolkit utilizing smartwatches for cross-device interaction.

The toolkit offer various interaction methods with smartwatches such as on the watch, above the watch, etc. to be used

in cross-device interactions. Chen et al. [5] introduced Duet where they leveraged the smartwatches to capture certain
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gestures which further improve the interaction space on smartphones. Schmidth et al. [20] proposed PhoneTouch where

users can use their phones to interact with surfaces. In Stitching, Hinkley et al. [8] developed a new interaction method

that combines pen-enabled devices with wireless networking through pen gestures.

Usable Smartwatch Keyboard Designs. The research community has spent extensive efforts on usable keyboard

designs for smartwatches. Although we briefly discuss selected previous works in this domain, we refer the reader to

an extensive literature review by Luna et al. [15] who comprehensively study the text entry methods on smartwatches.

Jang et al. [11] developed a one-page smartwatch keyboard that is optimized for rectangle smartwatches. It uses only

one page to minimize navigation while typing on a smartwatch. They reduce the 26 alphabetic keys to 13 large keys

with dual input. With ZoomBoard, Oney et al. [18] introduced a QWERTY keyboard design for small devices including

smartwatches. They implemented iterative zooming to enlarge keys on the keyboard for comfortable and accurate

typing. Hong et al. [9] solved the fat fingers problem with SplitBoard, which splits the keyboard on watch-sized screens.

VelociTap [21] employs a probabilistic model and sentence-based encoding to decide which key is pressed.

5 LIMITATIONS AND FUTUREWORK

Despite the very promising results in this work, which show the successful execution of AcousticType, this research

direction is in its infancy, and is subject to several limitations. Some of those limitations are a direct result of constraints

we had while executing this work, while others are general, and are worth further considerations by the community. In

the following, we outline those limitations and associated future works for completeness.

First, due to COVID-19 restrictions, this study had to be performed on a limited number of test subjects. In the

future, we are going to perform the experiments on multiple subjects to show the applicability at scale—guided by

the robustness of the features employed, and the subject generalization results provided in this study, we expect that

the results will hold on a large number of subjects. Second, although we reported the performance across different

widely used keyboards, the variety of the recording devices and keyboard models are limited. In our future work, we

will utilize different smartwatch and keyboard models, specifically the ones that are widely used. Third, similar to

the previous studies, the data is collected in a relatively quiet environment (i.e., in a room with a wall adjacent to a

public street), when compared to a recording while actually on the street, or at a café. Therefore, the effect of excessive

background noise is not considered in this study, which will be explored in the future. Finally, in our experiments we

performed the inferences offline as a proof-of-concept. While those results are very promising, and demonstrate the

technical insight and practical potential of the ideas employed for coming up with AcousticType, they are limited by

the narrow deployment. In our future work, we will develop the introduced smartwatch application which internally

utilizes AcousticType and measure its usability in the wild with metrics other than accuracy, e.g., across response time.

6 CONCLUSION

In this work, we demonstrate a proof-of-concept for a new input mechanism for smart devices. For our inference

framework, AcousticType, we leverage the acoustic emanations of conventional physical keyboards captured by a

smartwatch. By neutralizing the environmental changes, we lay a foundation for a robust identification framework which

address challenges unique to the environment, are never considered before. We performed two types of experiments on

popular devices: user profiling and generic profiling, where we recover up to 98% and 85% of the typed text, respectively.

We believe the high accuracy and the practicality of AcousticType, using quite challenging settings, will pave the way

for investigation of new text entry methods for smart devices.
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