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Abstract—Most mainstream specification languages primarily
deal with a program’s functional behavior. However, for many
common problems, besides the system’s functionality, it is nec-
essary to be able to express its temporal properties, such as
the necessity of calling methods in a certain order. We have
developedtemporaljmlc, a tool that performs runtime assertion
checking of temporal properties specified in an extension of the
Java Modeling Language (JML). The benefit oftemporaljmlc is
that it allows succinct specification of temporal properties that
would otherwise be tedious and difficult to specify.
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I. I NTRODUCTION

Programmers use specification languages to help write cor-
rect programs by facilitating program verification and dynamic
checking of a software implementation with respect to its
specifications. They also aid in providing better documenta-
tion, especially to programmers who are extending the work
of others and who only have access to the system’s API, but
not its implementation.

Design-by-contract (DBC) techniques [1], popularized by
Bertrand Meyer in the language Eiffel, are widely employed
for the specification and checking of computer programs. The
DBC approach helps make programs more modular in that
they provide a level of “separation of concerns”, by allow-
ing the programmer to focus mainly on the implementation,
whereas the contract-checking tool handles the responsibility
of enforcing programmer-defined specifications.

Most current program specification techniques, such as
DBC, are primarily used to describe a system’s functional
behavior. However, for many programs, there is a natural need
to provide a temporal description of the system along with its
functional behavior. For example, consider the specification:

After an account is opened and then activated, either
its balance is always positive or it must, at some
point, be designated as a swissType account, unless
it is marked for suspension.

A program that checks this specification at runtime can be
written by setting and unsetting of flags for the expected
“events” (i.e. the successful opening and activation of the

accounts and the request for account suspension). However,
its specification can be expressed in a more intuitive manner
if temporal specificationconstructs are also available in a
specification language.

In modern programming techniques, a specific task is typ-
ically performed by sending a message to an object (i.e. by
calling a method). Such method invocations form the basis of
our definition oftemporal events. The calling and termination
of methods are, therefore, our temporal control points. In
addition, we distinguish between the normal termination (i.e.
without throwing an exception) and exceptional termination
of a method. By temporal specification, we refer to the way
program properties are expected to hold, as delimited by
temporal events.

We have implementedtemporaljmlc, a tool that allows the
specification of a certain class of temporal properties of pro-
grams and checks them at runtime. Our primary contribution
is that temporaljmlc provides an integrated way of specifying
both functional and temporal properties of programs without
the need for separating these two kinds of constraints.

Instead of model checking temporal properties, in this paper
we describe an approach that checks temporal properties
dynamically, using runtime assertion checking. One reasonfor
this is that runtime assertion checking is an important and
commonly used technique for checking JML specifications.
Runtime assertion checking is also a useful compliment to
model checking, since it does not suffer from state space
explosion problems.

In Section II we discuss the temporal logic background
required for introducing the temporal extension to the JML.
The approach used in the implementation oftemporaljmlc is
described in SectionIII . This is followed by a case study
(§IV) with programs showing both temporal and regular JML
specifications of a bank account class. Next, we describe the
process of converting temporal specifications written intempo-
ralJML into finite automata (§V). This is the main theoretical
contribution of our research. We then discuss certain issues
regarding the semantics oftemporalJML (§VI). SectionVII
compares our work with related work in the area. Section
VIII discusses limitations of our implementation and scope
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Listing 1: JML Invariant specification
1 //@ protected invariant 0 <= hour && hour <= 23;

Listing 2: JML method contracts
1 //@ requires true;
2 //@ ensures 0 <= \result && \result <= 23;
3 public /*@ pure @*/ int getHour() { return hour; }

for future work and is followed by the conclusion (§IX).

II. T EMPORAL LOGIC AND SPECIFICATIONS

Temporal logic is used extensively in the area of spec-
ification and verification of computer programs, especially
concurrent programs [2], to prove properties such as deadlock-
avoidance. An example is the model checker SPIN [3], which
uses Linear Temporal Logic (LTL) to specify the properties
that a system needs to respect. Another example is the Bandera
Specification Language (BSL) [4], [5] which is used by the
Bandera project [6], [7] as an input language for temporal
specifications. The BSL uses temporal specification patterns
[8] to express properties that the programmer wishes to
express.

Temporal logics such LTL, Computational Tree Logic
(CTL) or the µ-calculus are powerful, general logics which
are not tied to any specific system or application. However, we
consider them overly mathematical for the average program-
mer. Therefore, in our extention of JML, we follow Trentleman
and Huisman [9] in using Bandera-style patterns [10], [8] to
describe temporal specifications.

The problem we address in this paper is to specify and
dynamically check temporal properties of sequential programs.
Our specifications can express temporal properties over a se-
quence of method-related events. Extending this to concurrent
programs is left as future work (§VIII ).

Temporal logic extension to the Java Modeling Language

The Java Modeling Language (JML) [11], [12], [13] is
a behavioral interface specification language which allows
specifications to be written as annotation to Java code.

Invariants (Listing 1) allow the imposition of restrictions
on class data members invisible states(i.e. post object-
construction, except inside method bodies).

Listing 2 shows an example of a JML specification of a
method contract. It essentially represents the Hoare triple
{P}S{Q}, where P is the precondition (requires), Q the
postcondition (ensures) and S the piece of code (method
getHour). Any JML compiler must ensure that ifS is exe-
cuted whenP holds, then in the normal post-state ofS, Q must
be true. Here, the contract specifies thatgetHour can always
be called; however, the value returned bygetHour must be
between 0 and 23 (both inclusive).

Consider again the temporal constraint regarding a bank
account class mentioned in the Introduction (§I). Currently,

there’s no obvious way to specify such properties in JML. We
can specify this using a complicated set of JML annotations,
like ghost and model fields and model methods. Excerpts from
a file with the specification of a bank account class in JML are
shown inListing 3. The setting and unsetting of JML’s ghost
variables1 is used to simulate a finite state machine.

Listing 3: BankAC Specification using JML
1package org.jmlspecs.temporalspec.bankac_casestudy;
2import java.util.ArrayList;
3

4public class RegularSpecBankAC {
5 //@ public ghost static ArrayList

listOfInstances = new ArrayList();
6 //@ public model JMLDataGroup bank_spec;
7 //@ public represents bank_spec =

JMLDataGroup.IT;
8

9 //@ public ghost boolean openAC_normal; in
bank_spec;

10 //@ public ghost boolean openAC_called; in
bank_spec;

11 //@ public ghost boolean openAC_exceptional; in
bank_spec;

12

13 //@ public ghost boolean activateAC_normal; in
bank_spec;

14 //@ public ghost boolean activateAC_called; in
bank_spec;

15 //@ public ghost boolean
activateAC_exceptional; in bank_spec;

16

17 //@ public ghost boolean suspendAC_normal; in
bank_spec;

18 //@ public ghost boolean suspendAC_called; in
bank_spec;

19 //@ public ghost boolean suspendAC_exceptional;
in bank_spec;

20

21 //@ public model boolean is_swissType; in
bank_spec;

22 //@ private represents is_swissType = swissType;
23

24 //@ public model boolean is_balancePositive;
in bank_spec;

25 //@ private represents is_balancePositive =
(balance>0);

26

27

28 private boolean tp_bal; //@in bank_spec;
29

30 private boolean tp_swiss; //@in bank_spec;
31 private boolean never_called_update_tp_swiss;

//@in bank_spec;
32

33

34 //@ public model boolean check_condition; in
bank_spec;

35 //@ private represents check_condition =
(tp_bal || tp_swiss);

36

37 /*@ private model void update_tp() {
38 if (openAC_normal && activateAC_normal &&

!suspendAC_called) {
39 update_tp_bal();
40 update_tp_swiss();
41 }
42 }
43 @*/

1A ghost variable is a specification-only variables which canbe used to
add state; its value can be set using the JMLset statement.
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44

45 //@ assignable bank_spec;
46 //@ private model void update_tp_bal() {
47 //@ if (!tp_bal)
48 //@ return;
49 //@
50 //@ if (!is_balancePositive) {
51 //@ tp_bal = false;
52 //@ }
53 //@
54 //@}
55

56 //@ assignable bank_spec;
57 //@ private model void update_tp_swiss() {
58 //@ if (never_called_update_tp_swiss) {
59 //@ never_called_update_tp_swiss = false;
60 //@ tp_swiss = false;
61 //@}
62 //@
63 //@ if (is_swissType) {
64 //@ tp_swiss = true;
65 //@ }
66 //@
67 //@}
68

69 //@ ensures (check_condition == true);
70 /*@ public model pure boolean final_check() {
71 return check_condition;
72 }
73 @*/
74

75 //@ assignable bank_spec;
76 //@ private model void init_temporal() {
77 //@ listOfInstances.add(this);
78 //@ tp_bal = true;
79 //@ tp_swiss = true;
80 //@ never_called_update_tp_swiss = true;
81 //@}
82

83 /*@ public static model boolean
all_final_check() {

84 for (int i = 0; i < listOfInstances.size();
i++) {

85 RegularSpecBankAC obj = (RegularSpecBankAC)
listOfInstances.get(i);

86 if (!obj.final_check())
87 System.out.println("Temporal exception: "

+ obj.toString());
88 }
89 return true;
90 }
91 @*/
92

93 //@ assignable bank_spec;
94 public RegularSpecBankAC() {
95 //@ debug init_temporal();
96 }
97

98 private int balance = 0;
99 private boolean swissType = false;

100

101 public void openAC() {
102 //@ set openAC_normal = false;
103 //@ set openAC_exceptional = false;

In order to express temporal specifications,temporaljmlc
uses an extension of the JML, which we calltemporalJML.
One of our main contributions is the ability oftemporaljmlc to
automatically generate this finite state machine for any given
temporal specification written intemporalJML; and thus avoid
its manual specification using ghost variables. The grammar
for temporalJML (Table I) is based on the extension to JML

proposed by Trentelman and Huisman [9] whose work is
inspired by the SanTos Specification Patterns project [10].

Patterns and Scopes:In the Specification Patterns project,
a pattern is defined over one of fivetemporal scopes: global,
before, after, between, and after-until [14]. temporalJML also
usesoccurrence specification patterns[15] in order to allow
the user to describe temporal behavior. These occurrence
specification patterns are: Absence (\never), Universality
(\always), Existence (\eventually) and Bounded Existence
(\atmost).

Q R Q

After Q until R

Time

Global

After R

Before R

Q R Q

Q R Q

Between Q & R

R R

RR

After Q unless R

Fig. 1: Temporal Property Specification Scopes use a modified
semantics of the Bandera project scopes, [14]

Our implementation of temporal specification constructs is
based on a modified semantics (Figure 1) of these temporal
pattern scopes.Global scope refers to the entire timeline. The
After Rscope refers to the the part of the timeline after the first
occurrence of event R. TheBefore Rscope refers to the part of
the timeline before the first occurrence of event R. The scope
described byBetween Q and Ris equivalent to the temporal
fomula after Q unless R; in particular, the scope includes the
part of the timeline where Q has occurred, but R has not (yet)
occurred. The scope described byAfter Q until Rdescribes the
part of the timeline between event Q and R, where the event
R must occur.

Note from the grammar (Table I) that trace propertiesare
used to describe the functional properties of a system over a
given occurrence pattern. Atemporal formulacan contain a
trace property and is used to describe the temporal behavior
of a system constrained by the occurrence of temporal events.

III. T HE PROBLEM AND APPROACHUSED

The problem is to augment JML with constructs that enable
the specification of temporal properties of a program. This
involves all the phases of compiler construction followingthe
defined semantics ([9, §5.1],[16, §4.1]) for temporal specifi-
cations, including generating runtime assertion checkingcode
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TABLE I: The temporalJML grammar (which is based on the
temporal logic extension to JML suggested in [9])

〈TempForm〉 ::= ( \after 〈Events〉 ; 〈TempForm〉 )
| ( \before 〈Events〉 ; 〈TraceProp〉 )
| 〈TraceProp〉 \until 〈Events〉
| 〈TraceProp〉 \unless 〈Events〉
| ( \between 〈Events〉 ; 〈Events〉 〈TraceProp〉 )
| ( \atmost 〈Nat〉 〈Events〉 )
| 〈TraceProp〉

〈TraceProp〉 ::= \always 〈StateProp〉
| \eventually 〈StateProp〉
| \never 〈StateProp〉
| 〈TraceProp〉 & 〈TraceProp〉
| 〈TraceProp〉 | 〈TraceProp〉

〈Events〉 ::= 〈Event〉 | 〈Event〉, 〈Events〉
〈Event〉 ::= \call ( 〈method〉 )

| \normal ( 〈method〉 )
| \exceptional ( 〈method〉 )
| \terminates ( 〈method〉 )

〈StateProp〉 ::= 〈JMLProperty〉
| \enabled (〈method〉)
| \not_enabled ( 〈method〉 )
| 〈StateProp〉 & 〈StateProp〉
| 〈StateProp〉 | 〈StateProp〉
| !〈StateProp〉

which performs the actual dynamic checking of these temporal
specifications on executing the program.

The JML runtime assertion checker (RAC),jmlc, is built
on top of the Multijava compiler,mjc [17]. The temporaljmlc
tool has been implemented by extendingjmlc, enhancing it
with temporal specification capabilities by adding temporal
specification constructs (Table I). The current implementation
of temporaljmlc is based on the JML2 compiler codebase.2

For a detailed description of the semantics of the grammar on
which temporalJML is based, see [9, §5].

The basic approach used to generate RAC code for temporal
specifications is to create one finite state machine, with accept-
ing and non-accepting states, per temporal specification. When
the JML-augmented Java code is compiled usingtemporaljmlc,
code is produced to construct instances of the finite state
machine at runtime. The transitions of these finite state ma-
chines are the temporal events or method control points (viz.
\call, \normal, \exceptional and\terminates for any
method).

For every temporal specification, there is a variable rep-
resenting each of its basic trace properties (i.e. those that
do not contain one of the temporal state properties viz.
\enabled and\not_enabled, or the & and | operators). The
temporal state machine causes these variables to be updated
as appropriate. The values of the variables representing the
trace property of each temporal specification are checked, on
program termination, to decide if a trace-property violation
error is to be reported, because certain specification violations

2The source code can be accessed fromhttp://jmlspecs.cvs.sourceforge.net/
viewvc/jmlspecs/JML2/under the tagfarazhussain_temporalspecsor directly
from:
http://jmlspecs.cvs.sourceforge.net/viewvc/jmlspecs/JML2/?
pathrev=farazhussain_temporalspecs.

(e.g.,\eventually properties) cannot be ascertained before
the program completes execution. Also, each machine’s final
state is checked to see if its an accepting state; if not, an
error is reported. This is used as the checking mechanism for
constructs like an\until temporal formula and\enabled
and\not_enabled state properties.

We follow the approach used in Yoonsik Cheon’s PhD thesis
by inserting code inwrapper methods[18, §4.3] in order to
check temporal specifications. For any methodm, the original
method is renamedorig$m and a wrapper for it is created
with the namem. The main template of such wrapper methods
is shown inListing 4.

The checks for temporal specification are on lines 2, 4,
9, 20 and 26. The call to the original methodm is on
line 8. The temporal eventm$called is deemed to have
occurred as soon as we enter the wrapper method. Temporal
specifications are checked (line 4) before the call to the
original renamed method, just like the check for invariants
(line 3). On normal method termination, the eventm$normal

is added to the event list (line 9), before the check for method
postconditions. In case the method throws an exception, the
event m$exceptional is added to the even list (line 20),
before the check for the method’s exceptional postcondition.
In both cases (i.e. normal or exceptional method termination),
temporal specifications are checked (line 26) before leaving
the wrapper, similar to the checks for invariants and history
constraints (lines 25 and 27 respectively).

IV. CASE STUDY: SPECIFICATION OF ABANK ACCOUNT

CLASS

Consider the temporal specification of a bank account class
using temporalJML shown in Listing 5. It seeks to impose
the contraint that once a bank account has been opened and
activated, either its balance must always remain positive or that
it must, at some point, be designated as aswissTypeaccount,
unless the account itself has been suspended.3

Compare thistemporalJML specification with the excerpts
from a bank account class inListing 3 which contains the
equivalent specification in plain JML.4 Note how complicated5

this specification is compared to the one which usestempo-
ralJML. Essentially, the specifications inListing 3 had to be
written such that ghost variables were used to keep track of the
appropriate “state” the bank account object is in. It uses the
values of the flags to determine when to check the functional
properties and also to evaluate if any of them has been
violated. This requires the cumbersome use of model methods,
ghost and model fields, and even adding new fields (viz.
tp_bal, tp_swiss, never_called_update_tp_swiss) to
the class to aid specification and checking of trace properties.
On the other hand, code written usingtemporalJML (Listing 5)
can perform this task with a single line of specification.

3Complete code available at:http://www.cs.ucf.edu/∼fhussain/temporaljml/
TemporalSpecBankAC.java.

4Complete code available at:http://www.cs.ucf.edu/∼fhussain/temporaljml/
RegularSpecBankAC.java.

5The file containing the specification of the bank account class in plain
JML is 4 times larger than the one which usestemporalJML.
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Listing 4: The wrapper method approach [18, §4.3] used for
checking temporal specifications
1 T m(T1 x1, : : :, Tn xn) {
2 temporalEventList.add(m$called);
3 checkInv$S();
4 checkTemporalForumlas();
5 checkPre$m$S(x1, : : :, xn);
6 T rac$result;
7 try {
8 rac$result = orig$m(x1, :::, xn);
9 temporalEventList.add(m$normal);

10 checkPost$m$S(x1, : : :, xn,
rac$result);

11 return rac$result;
12 }
13 catch (JMLEntryPreconditionError rac$e) {
14 throw new

JMLInternalPreconditionError(rac$e);
15 }
16 catch (JMLAssertionError rac$e) {
17 throw rac$e;
18 }
19 catch (Throwable rac$e) {
20 temporalEventList.add(m$exceptional);
21 checkXPost$m$S(x1, : : :, xn,

rac$e);
22 }
23 finally {
24 if (/*no postcondition

violation?*/) {
25 checkInv$S();
26 checkTemporalFormulas();
27 checkHC$S();
28 }
29 }
30 }

Listing 5: BankAC temporal specification
1 //@ public temporal (\after \normal (openAC);

(\after \normal (activateAC); (\always
(balance>0) | \eventually (swissType)) \unless
\call (suspendAC)) );

The main drawback of the plain-JML specification of the
bank account class is that we had to manually create a finite
state machine to represent the temporal properties. Its state
transitions were simulated by changing the values of the ghost
variables. Model methods were used to check the functional
properties when the machine entered an appropriate state on
program execution. These values were checked at program
completion to indicate property violations.

A. Generated code and RAC for the Bank Account class

The runtime assertion checking of temporal specifications
builds on the technique described in Yoonsik Cheon’s Ph.D.
thesis [18]. We earlier described (§III ) how the wrapper
method approach (Listing 4) has been used to also generate
code for checking temporal specifications. For a detailed

Listing 6: Constructor in the generated code for temporal bank
account class (Also seeListing 7)

1 public TemporalSpecBankAC() {

2

...
3 internal$$init$();

4

...
5 finally {
6 listOfInstances$temporalspec.add(this);
7 init$instance$temporalspecs
8 $RuntimeTemporalMachines();

9

...
10 }

explanation of the code generated6 by temporaljmlc see [16,
§3].

In the rest of this section, we use the code generated by
temporaljmlc for the bank account class to demonstrate how
we check temporal specifications.

B. Temporal State Machine

A state machine is created for each temporal specification.
In fact, for a non-static temporal specification, there is one
machine per object and we therefore mantain a list of all
objects created (Listing 6). In the code generated by the
runtime assertion checker, these temporal machines are rep-
resented by the typeJMLRuntimeTemporalStateMachine
([16, §A.5]). The machines are generated after parsing of
temporal specifications.

The RAC code for initialization of the temporal state
machine is shown inListing 7. Machine initialization is
realized using a rudimentary implementation of theOb-
server Pattern[19], which is required for appropriate calls
to trace property update methods. Essentially, thethis ob-
ject (which is of typeTemporalSpecBankAC) becomes an
observer(line 5 in Listing 7) of the runtime temporal state
machine represented bytsm$temporalspec$TF0. The file
TemporalSpecBankAC.java has only one temporal speci-
fication (Listing 5) and the corresponding machine is repre-
sented by the variabletsm$temporalspec$TF0.

Temporal events are recorded using wrapper meth-
ods (Listing 4). These events are fed to the machines
so that they make appropriate transitions. If the ma-
chine is in a trace-property-checking-state, the observer’s
update$temporalspec method is called, which in turn calls
updater methods for all basic trace properties comprising that
particular temporal formula’s trace property.

The finite state machine generated bytemporaljmlc on
compiling the bank account class with the given temporal
specification (Listing 5) is pictorially depicted inFigure 2.
The code generated for the construction of this machine is
shown inListing 7. The start state (State0) is shown by an

6The code generated bytemporaljmlc for the bank account class
containing the temporal specification is available at:http://www.cs.ucf.edu/
∼fhussain/temporaljml/TemporalSpecBankAC.java.gen

5
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Listing 7: Runtime Temporal State Machine initialization
1 public void
2 init$instance$temporalspecs$RuntimeTemporalMachines()
3 {
4 //------Code for temporal formula 0---------
5 tsm$temporalspec$TF0 = new

JMLRuntimeTemporalStateMachine(this, 0 );
6 ArrayList listOfStatesForMachineNumber0 = new

ArrayList();
7 listOfStatesForMachineNumber0.add(new

TemporalState(0,false,true,"null",false) );
8 listOfStatesForMachineNumber0.add(new

TemporalState(1,false,true,"null",false) );
9 listOfStatesForMachineNumber0.add(new

TemporalState(2,true,true,"null",false) );
10 listOfStatesForMachineNumber0.add(new

TemporalState(3,false,true,"null",false) );
11 tsm$temporalspec$TF0.setStateList(
12 listOfStatesForMachineNumber0);
13 tsm$temporalspec$TF0.setStartState(0);
14 tsm$temporalspec$TF0.addTransition(2,
15 "suspendACLParenRParenV$temporalspec$called",3);
16 tsm$temporalspec$TF0.addTransition(1,
17 "activateACLParenRParenV$temporalspec$normal",2);
18 tsm$temporalspec$TF0.addTransition(3,
19 "activateACLParenRParenV$temporalspec$normal",2);
20 tsm$temporalspec$TF0.addTransition(0,
21 "openACLParenRParenV$temporalspec$normal",1);
22 //------End of temporal formula 0---------
23 }

activateAC$normal

openAC$normal State1State0

State3 State2*

ac
tiv

at
eA

C
$n

or
m

al

suspendAC$called

Fig. 2: BankAC Temporal State Machine Automaton

incoming arrow. The accepting states7 (State0, State1,

State2, State3) are marked by a double frame box. The
(only) temporal trace property checking state (State2) is
colored blue and also marked by an asterisk (*). The long
arrows with the arrowheads touching some state represent
transitions from the state touching the arrow tail to the state
touching the arrow head.

7If, at program termination, the temporal state machine is not inone the
accepting states, an exception is generated.

Listing 8: Runtime machine’s temporal checks
public void performTemporalChecks() {
if(this.currentState.isTracePropertyCheckingState())
this.myObserver.update$temporalspec(this, null);

}

C. Verifying temporal specifications: Checking trace proper-
ties

A list of temporal events is maintained in order to check
temporal specifications. The wrapper method RAC code now
also contains calls to check temporal specifications, in addition
to regular JML specification checking, at method control
points (Listing 4). These methods feed the temporal events that
have occurred to the runtime temporal state machine. After
making all necessary transitions depending on the temporal
events that have occurred, the machine performs temporal
specification checks (Listing 8), when appropriate.

As per thetemporalJML grammar (Table I) a given temporal
specification formula can have only one trace property. How-
ever, this trace property can be a conjunction/disjunctionof
multiple basic trace properties(i.e. \always, \eventually,
\never). Each basic temporal trace property needs to be
checked when the temporal state machine is in the trace
property checking state. For a given temporal specification
formula, there is a variable associated with eachbasic trace
property.

The trace property in the temporal specification inListing 5
is a disjunction of two the two basic trace properties
\always(balance > 0) and \eventually(swissType).
Method performTemporalChecks (Listing 8) calls theob-
server’s update$temporalspec if the machine is cur-
rently in a trace property checking state. The observer’s
temporalspec$update method calls update methods for
updating the values of the the variables representing both basic
trace properties. The methods check the value ofbalance>0

and swissType and appropriately update the corresponding
corresponding basic trace property variables.

D. Temporal State machine post final state checking

Like jmlc, temporaljmlc generates a wrapper method for
each method in the class, with calls to specification checking
methods before the call and after the (normal or exceptional)
return to the renamed original method, [18]. However, for
main, temporaljmlc additionally generates code in thepost-
state which it doesn’t for any other method. At this point
it is clear that the original (renamed)main has completed
execution, with or without throwing an exception. The wrapper
for main will now call the appropriate method to check the
final status of the trace properties of temporal specifications.

Furthermore, themain wrapper calls a method to check
if the temporal state machine representing each specification
is in an accepting state; if not, an exception thrown, which
indicates the reason that the specification was violated.
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Listing 9: Bank account main driver –1
public static void main(String[] args) {

TemporalSpecBankAC ac1 = new
TemporalSpecBankAC();

ac1.openAC();
ac1.setBalance(-100);
ac1.setBalance(200);
ac1.activateAC();
ac1.setBalance(-300);
//ac1.setSwissType(true);
ac1.suspendAC();

}

The generated code for the bank account class with the
temporal specification written usingtemporalJML can be
accessed fromhttp://www.cs.ucf.edu/∼fhussain/temporaljml/
TemporalSpecBankAC.java.gen.

Sample runs of the BankAccount class

Consider the main driver inListing 9 for the bank account
class. The output produced (Figure 3) shows that the trace
property for the temporal specification was violated. This
occurred since the balance was negative even after the account
was activated and the account was never changed to be of
swissType.

$ temporaljmlrac TemporalSpecBankAC

Exception in thread "main"
org.jmlspecs.jmlrac.runtime.JMLTemporalSpecificationError:
Temporal Trace Property at location
<File "TemporalSpecBankAC.java", line 7, character 24>
violated:

at TemporalSpecBankAC.checkTraceProperties$instance
(TemporalSpecBankAC.java:116)

at TemporalSpecBankAC.checkTraceProperties$instances
(TemporalSpecBankAC.java:126)

at TemporalSpecBankAC.main(TemporalSpecBankAC.java:1443)

$

Fig. 3: Runningtemporaljmlrac on Bank Account class driver-1
causes an exception

Now consider the main driver inListing 10 for the bank
account class. No output (in particular, no temporal specifi-
cation violation exception) is produced bytemporaljmlc. This
behavior is expected because the trace property is not violated
anymore since the flagswissType is set totrue by the driver
(Listing 10).

Post final state checking:To demonstrate the necessity of
checking if the state machine’s final state is an accepting state,
consider the bank accont class with the original specification
(Listing 5) modified to use an\until formula (Listing 11).

For the same driver as used before (Listing 10), which
showed no output earlier, an exception is now thrown
(Figure 4) which indicates that a required event did not occur.
Note that it is not possible to throw this exception until after
main has completed execution because only then can we be
sure that the expected event (\call suspendAC) did not
occur at all. Hence the requirement for the extra temporal
specification check inmain’s post-state.

Listing 10: Bank account main driver –2
public static void main(String[] args) {

TemporalSpecBankAC ac1 = new
TemporalSpecBankAC();

ac1.openAC();
ac1.setBalance(-100);
ac1.setBalance(200);
ac1.activateAC();
ac1.setBalance(-300);
ac1.setSwissType(true);
ac1.suspendAC();

}

Listing 11: BankAC temporal specification
//@ public temporal (\after \normal (openAC);

(\after \normal (activateAC);(\always
(balance>0) | \eventually (swissType)) \until
\call (suspendAC)) );

$jmlrac2 TemporalSpecBankAC

Exception in thread "main"
org.jmlspecs.jmlrac.runtime.JMLTemporalSpecificationError:
Temporal Specification at location
<File "TemporalSpecBankAC.java", line 7, character 24>
violated: Temporal Formula TF0 contains a
TemporalUntilExpression: Expecting one of the
following temporal events: [suspendAC]: at
TemporalSpecBankAC.checkTemporalMachineFinalState$instance
(TemporalSpecBankAC.java:281) at
TemporalSpecBankAC.checkTemporalMachineFinalState$instances
(TemporalSpecBankAC.java:290) at
TemporalSpecBankAC.main(TemporalSpecBankAC.java:1453)

$

Fig. 4: Running temporaljmlrac on the Bank Account class
driver-2 with the specification inListing 11 causes an excep-
tion

V. TRANSLATION OF TEMPORAL SPECIFICATIONS INTO

STATE MACHINES

We present here our method of convertingtemporalJML tem-
poral formulas (Table I) into finite state machines. Note that a
\before temporal formula can be converted into an\after-
\until temporal formula, a\between temporal formula can
be written as an\after-\unless temporal formula and an
\atmost temporal formula can be written as an\after
temporal formula ([9, §4]). Therefore, it is sufficient to show
how to translate\unless (Figure 5), \until (Figure 6) and
\after (Figure 7, Figure 8, Figure 9, Figure 10) temporal
specifications into finite automata.

States in which trace properties are checked (§IV-C) are
marked with an asterisk. Temporal events, represented bye,
e1 ande2 in these figures, may refer to either a single temporal
event or a sequence of temporal events. Nodes which represent
accepting states are shown with two concentric circles; should
the machine be in a non-accepting state at the end of program
execution, a temporal specification error is thrown (§IV-D).

For a simple\unless formula of the form “<TraceProp>
\unless e”, the state machine (Figure 5) starts with a trace

7

http://www.cs.ucf.edu/~fhussain/temporaljml/TemporalSpecBankAC.java.gen
http://www.cs.ucf.edu/~fhussain/temporaljml/TemporalSpecBankAC.java.gen


property checking state. If the event occurs, a transition
is made toState A. Both states are accepting states. The
automaton representing the formula “<TraceProp>\until e”
(Figure 6) is similar, with the only difference that the initial
trace property checking state is non-accepting, because the
semantics of an\until formula states that the given event
must occur.

Fig. 5: <TraceProp>\unless e

* A
e

Fig. 6: <TraceProp>\until e

* A
e

The case for\after specifications is more complicated
because this is the only kind of temporal formula which
may contain other temporal formulas inside it. From the
temporalJML grammar (Table I) and the simplification rules for
temporal formulas ([9, §4]) discussed earlier in this section, we
divide specifications of the form “\after e ; <TempForm>"
into the following four disjoint parts, based on what kind of
temporal formula they contain:

• \after formulas containing only a trace property
• \after formulas containing another\after formula
• \after formulas containing an\unless formula
• \after formulas containing an\until formula

Consider the\after specification, “\after e; <Trace-
Prop>”, which contains only a trace property. Its automaton
(Figure 7) consists of two accepting states. The automaton
transitions to the trace property checking state when the event
e occurs.

Fig. 7: (\after e; <TraceProp>)

A *
e

Next, consider an\after specification such that its con-
tained temporal formula is another\after formula. An
example of the kind of automaton produced is shown in
Figure 8. The machine starts inState A. The figure shows the
automaton for the contained formula “\after e2; <Temp-
Form>” in the outer rectangle. The inner rectangle represents
the automaton for “<TempForm>”. The temporal evente2

causes the machine to transition fromState Bto the initial
state (not shown here) of the automaton for “<TempForm>”.
On occurrence ofe1, the machine moves toState B(which
is the initial state of the automaton representing “(\after

e2; <TempForm>)”). Essentially, we are able to construct an
automaton for a temporal specification of the form “(\after

e1; (\after e2; <TempForm>) )”, by taking the automaton

for the enclosed\after formula, namely (\after e2;
<TempForm>), adding a new state,State A(which becomes
the new initial state), and adding a transition fromState Ato
the initial state of the original automaton (State B).

Fig. 8: (\after e1; (\after e2; <TempForm>) )

A

(\after e2; <TempForm>)

B

(<TempForm>)

e1 e2

Now, consider the temporal specification “\after e1;
<TraceProp>\unless e2”. This is translated into an automa-
ton with three states: the initialState A, a trace property check-
ing state (marked with an asterisk), andState B(Figure 9).
The machine transitions fromState Ato the trace property
checking state on occurrence ofe1, and from this state to
State Bon occurrence ofe2. What is worthy of note is that
there is anǫ-transition fromState Bto State A. Therefore, the
trace property is checked each timee1 occurs, as long ase2
does not occur. All states here are accepting states.

Fig. 9: (\after e1; (<TraceProp>\unless e2))

A * B
e1 e2

ǫ

Fig. 10: (\after e1; (<TraceProp>\until e2))

A * B
e1 e2

ǫ

The automaton for “\after e1; <TraceProp>\until e2”
(Figure 10) is similar, except that the trace property checking
state (marked with an asterisk) is a non-accepting state because
the semantics of the specification “<TraceProp>\until e2”
is that the trace property must hold as long ase2 doesn’t occur,
but thate2 mustoccur at some point during execution.

Thus, we have shown how an arbitrarytemporalJML speci-
fication can be converted into a finite state machine.

VI. N OTES ONSEMANTICS

Note from the grammar (Table I), that a trace property can
only describe functional properties over occurrence patterns
(\always, \eventually and\never). However, a temporal
formula can describe complete temporal properties because
they can be used to specify trace properties delimited by
temporal events.
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General notes about temporal formula subrules:A
\before formula specification is equivalent to an\always-
\until specification. Note that a\before formula is fun-
damentally different from an\after formula in that it
cannot contain another top-level temporal formula, but only
a temporal trace property, as specified in thetemporalJML
grammar (Table I). An \until formula is a realization of
the temporal logicstrong untiloperator and is used to specify
that one of the the following temporal eventsmustoccur. An
\unless formula is a realization of the temporal logicweak
until operator and is used to specify that none of the following
temporal events should occur for the formula to be true, in
which case the\unless formula holds if the underlying trace
property holds.

Attempted specification of an internal state:Consider the
following specification:

(\after \call(m); (\before \normal(m);
\always(P)));

This seemingly innocuous temporal specification hides a
subtle semantics issue. Between the two temporal events
described in this specification, there is no state in which
temporal formula specifications can be checked, since they
are checked using wrapper methods, just before a\call event
and just after a\normal or \exceptional event. Therefore,
this specification essentially is an attempt to describe the
program in an internal state, which cannot be done because the
runtime assertion checking is done only at the method control
points (i.e. the invocation and termination of methods). Inthis
case, the only temporal formula check happens in the wrapper
method right whenm is called, so the success or failure of
this temporal formula depends on whetherP holds right at
the point of the invocation ofm. temporaljmlc has the correct
semantics in this case by performing the temporal formula
check only at that point.

The semantics of\atmost formulas: According to thetem-
poralJML grammar (Table I), the \atmost formula describes
the number of times an event can happen using a natural
number. We follow the convention where natural numbers
include zero, so an\atmost formula can be used to prohibit
the occurrence of a temporal event (or a list of such events).

For a state-based semantics of the temporal logic extension
on which temporalJML is based, see [9, §5.1].

VII. R ELATED WORK

The grammar fortemporalJML is based on the temporal
logic extension to JML suggested by Trentelman and Huisman
[9]. They also propose translating a subset (viz. the formulas
which expresssafety properties) of the new constructs of their
temporal extension of JML back into standard JML expres-
sions [9, §5.2]. Groslambert et. al. [20] propose a method for
the verification ofliveness propertiesin the temporal extension
of JML in [9]. The JML Annotation Generator (JAG) [21]
translates formulas expressed in the extension described in [9]
into JML annotations. Although the translation mechanisms
we use are similar, these approaches differs from our work

becausetemporaljmlc translates the Java code annotated with
temporal (and normal JML) specifications into regular Java.

Cheon and Perumandla propose a JML extension that allows
the specification of sequences of method calls (protocols)
[22]. They use regular-expression like syntax (acall sequence
clause) to define the permitted sequences of method calls.
Ying Jin has suggested the use of context free grammars
(CFG) to represent the possible method call sequences of a
Java program, thus allowing static verification of properties
by inserting protocol checking into the CFG implementation
[23]. This technique helps in specifying protocol properties of
Java types. Their approach provides (and demands) separation
of temporal properties (protocols) from functional behavior
whereas our approach allows integration of the two using
Bandera-style patterns to describe temporal behavior and trace
properties to specify functional behavior.

Temporal Rover [24] is a verification tool that allows
specifications written in an extension of LTL and Metric
Temporal Logic (MTL) to be annotated to code written in C,
C++, Java, Verilog and VHDL. This tool, developed by Time-
Rover Software generates code from the written specifications
which is linked to the application that its part of. However,
it requires the programmer be well versed in formal temporal
specification languages like LTL.

Java with Assertions (Jass) [25] is a Java extension which
translates Java code annotated with specifications into pure
Java and checks compliance with the specifications dynami-
cally. It supports specification oftrace assertionsthat describe
the ordering of method calls. However, as pointed out in [9,
§1], Jass trace assertions cannot be integrated with functional
specifications.

The Bandera Specification Language [4] is a “source-level,
model-checker independent language” that allows writing tem-
poral specifications by avoiding logics like CTL and LTL.
It is different from our approach in that its based on model
checking, whereas we follow primarily a design by contract
approach [1]. We consider temporal property specifications in
the above mentioned logics as overly formal for most program-
mers and want to also avoid the state-explosion problem that
often arises when large applications are to be represented as a
mathematical structure which is required for model checking.
Moreover, BSL does not allow specifications which describe
properties of exceptions, as noted in [9, §1].

VIII. L IMITATIONS AND FUTURE WORK

Currently, the newly added temporal state properties, (viz
\enabled and \not_enabled), by default assume that the
state property is part of an\always trace property and
the mixing of the temporal state operators\enabled and
\not_enabled is currently disallowed.

As further work, we plan to extend the tool to handle tem-
poral specifications written in interfaces and provide support
for temporal specification inheritance. Future work may also
involve allowing temporal specifications of concurrent Java
programs.
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IX. CONCLUSION

Our contribution is the addition of temporal specification
capability using Bandera-style patterns to JML, which we
call temporalJML, and an implementation oftemporalJML by
integrating it with the JML toolset. This augmented JML tool
(built on top of the JML runtime assertion checker,jmlc) is
called temporaljmlc.

Unlike traditional program specification constructstempo-
ralJML allows specifications using multiple program control
points in a single specification. Also, our implementation
differs from certain other attempts at the temporal specification
of programs, like method call sequences, becausetemporalJML
allows the integration of temporal and functional specifica-
tions.
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Robby, and H. Zheng, “Bandera: Extracting finite-state models
from java source code,” inInternational Conference on Software
Engineering, 2000, pp. 439–448. [Online]. Available:citeseer.ist.psu.
edu/corbett00bandera.html

[8] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns inproperty
specifications for finite-state verification,” Kansas StateUniversity,
University of Massachusetts, University of Hawai‘i, Tech.Rep.
UM-CS-1998-035, , 1998. [Online]. Available:citeseer.ist.psu.edu/
dwyer99patterns.html

[9] K. Trentelman and M. Huisman, “Extending JML specifications with
temporal logic,” inAMAST ’02: Proceedings of the 9th International
Conference on Algebraic Methodology and Software Technology. Lon-
don, UK: Springer-Verlag, 2002, pp. 334–348.

[10] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Property specification
patterns for finite-state verification,” inFMSP ’98: Proceedings of the
second workshop on Formal methods in software practice. New York,
NY, USA: ACM, 1998, pp. 7–15.

[11] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll, “Beyond Assertions:
Advanced Specification and Verification with JML and ESC/Java2,” in
FMCO, 2005, pp. 342–363.

[12] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G.T.
Leavens, K. R. M. Leino, and E. Poll, “An overview of JML toolsand
applications,”International Journal on Software Tools for Technology
Transfer (STTT), vol. 7, no. 3, pp. 212–232, Jun. 2005. [Online].
Available: http://dx.doi.org/10.1007/s10009-004-0167-4

[13] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary design of JML:
A behavioral interface specification language for Java,” Iowa State
University, Department of Computer Science, Tech. Rep. 98-06-rev29,
Jan. 2006, alsoACM SIGSOFT Software Engineering Notes, 31(3):1-38,
March 2006. [Online]. Available:ftp://ftp.cs.iastate.edu/pub/techreports/
TR98-06/TR.pdf

[14] http://patterns.projects.cis.ksu.edu/documentation/patterns/scopes.shtml.
[15] http://patterns.projects.cis.ksu.edu/documentation/patterns/occurrence.shtml.
[16] F. Hussain, “Enhancing a behavioral interface specification language

with temporal logic features,” Master’s thesis, Department of
Computer Science, Iowa State University, Ames, IA, Apr. 2009.
[Online]. Available: http://archives.cs.iastate.edu/documents/disk0/00/
00/06/00/index.html

[17] C. Clifton, T. Millstein, G. T. Leavens, and C. Chambers,“MultiJava:
Design rationale, compiler implementation, and applications,” vol. 28,
no. 3, pp. 517–575, May 2006. [Online]. Available:ftp://ftp.cs.iastate.
edu/pub/techreports/TR04-01/TR.pdf

[18] Y. Cheon, “A runtime assertion checker for the java modeling language,”
Ph.D. dissertation, Apr. 2003, technical Report 03-09, Department of
Computer Science, Iowa State University.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design patterns:
Elements of reusable object-oriented software. Addison-Wesley Pro-
fessional, 1995.

[20] F. Bellegarde, J. Groslambert, M. Huisman, O. Kouchnarenko, and
J. Julliand, “Verification of liveness properties with JML,” INRIA, Tech.
Rep. RR-5331, 2004.

[21] A. Giorgetti and J. Groslambert, “JAG: JML Annotation Generation for
verifying temporal properties,” inFASE’2006, Fundamental Approaches
to Software Engineering, ser. LNCS, vol. 3922. Vienna, Austria:
Springer, Mar. 2006, pp. 373–376. [Online]. Available:http://dx.doi.
org/10.1007/11693017_27

[22] Y. Cheon and A. Perumandla, “Specifying and checking method call
sequences of Java programs,”Software Quality Journal, vol. 15, no. 1,
pp. 7–25, Mar. 2007.

[23] Y. Jin, “Formal verification of protocol properties of sequential Java pro-
grams,” inCOMPSAC ’07: Proceedings of the 31st Annual International
Computer Software and Applications Conference - Vol. 1- (COMPSAC
2007). Washington, DC, USA: IEEE Computer Society, 2007, pp.
475–482.

[24] D. Drusinsky, “The Temporal Rover and the ATG rover,” inProceedings
of the 7th International SPIN Workshop on SPIN Model Checking and
Software Verification. London, UK: Springer-Verlag, 2000, pp. 323–
330.

[25] D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim, “Jass – Java with
Assertions,” inElectronic Notes in Computer Science, K. Havelund and
G. R. su, Eds., vol. 55(2). Elsevier Science BV, 2001.

10

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&amp;path=ASIN/0321228626
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&amp;path=ASIN/0321228626
citeseer.ist.psu.edu/498244.html
citeseer.ist.psu.edu/corbett00bandera.html
citeseer.ist.psu.edu/corbett00bandera.html
citeseer.ist.psu.edu/dwyer99patterns.html
citeseer.ist.psu.edu/dwyer99patterns.html
http://dx.doi.org/10.1007/s10009-004-0167-4
ftp://ftp.cs.iastate.edu/pub/techreports/TR98-06/TR.pdf
ftp://ftp.cs.iastate.edu/pub/techreports/TR98-06/TR.pdf
http://archives.cs.iastate.edu/documents/disk0/00/00/06/00/index.html
http://archives.cs.iastate.edu/documents/disk0/00/00/06/00/index.html
ftp://ftp.cs.iastate.edu/pub/techreports/TR04-01/TR.pdf
ftp://ftp.cs.iastate.edu/pub/techreports/TR04-01/TR.pdf
http://dx.doi.org/10.1007/11693017_27
http://dx.doi.org/10.1007/11693017_27

	Introduction
	Temporal Logic and Specifications
	The Problem and Approach Used
	Case Study: Specification of a Bank Account class
	Generated code and RAC for the Bank Account class
	Temporal State Machine
	Verifying temporal specifications: Checking trace properties
	Temporal State machine post final state checking

	Translation of Temporal Specifications into State Machines
	Notes on Semantics
	Related Work
	Limitations and Future Work
	Conclusion
	Acknowledgment
	References

