temporaljmlc: A JML Runtime Assertion Checker Extension for
Specification and Checking of Temporal Properties

Faraz Hussain and Gary T. Leavens

CS-TR-10-08
July 2010

To appear in SEFM 2010.

(©2010 IEEE. Personal use of this material is permitted. Hawngyermission to reprint/republish this material for atigeng
or promotional purposes or for creating new collective vgoftr resale or redistribution to servers or lists, or to ecasy
copyrighted component of this work in other works must beamtgtd from the IEEE.

Keywords: Temporal Logic, LTL, verification, specification languagsepecification patterns, Hoare logic.

2010 CR Categories:D.2.1 [Software EngineerifjgRequirements/Specifications — languages, methodolp¢pets; D.2.4
[Software EngineerirjgSoftware/Program Verification — assertion checkers, fdrmethods, programming by contract; D.3.3
[Programming Languagéd4 anguage Constructs and Features — abstract data typestyges and structures, patterns; F.3.1
[Logics and Meanings of ProgramSpecifying and Verifying and Reasoning about Programs -seidi®ns, invariants, logics

of programs, pre- and post-conditions, specification teghes; F.4.1 Theory of Computatignvathematical Logic and Formal
Languages — Temporal logic.

Department of Electrical Engineering and Computer Science
4000 Central Florida Blvd.
University of Central Florida
Orlando, FL 32816, USA

temporaljmic: A JML Runtime Assertion Checker
Extension for Specification and Checking of
Temporal Properties

Faraz Hussain Gary T. Leavens
School of Electrical Engineering and Computer ScienceSchool of Electrical Engineering and Computer Science
University of Central Florida, Orlando, FL, USA. University of Central Florida, Orlando, FL, USA.
Email: fhussain@eecs.ucf.edu Email: leavens@eecs.ucf.edu

Abstract—Most mainstream specification languages primarily accounts and the request for account suspension). However,
deal with a program’s functional behavior. However, for many jts specification can be expressed in a more intuitive manner

common problems, besides the system's functionality, it is nec- it tamporal specificatiorconstructs are also available in a
essary to be able to express its temporal properties, such as e
specification language.

the necessity of calling methods in a certain order. We have . . o .
developedtemporaljmlic, a tool that performs runtime assertion In modern programming techniques, a specific task is typ-
checking of temporal properties specified in an extension of the ically performed by sending a message to an object (i.e. by

Java Modeling Language (JML). The benefit oftemporaljmic is calling a method). Such method invocations form the basis of
that it allows succinct specification of temporal properties that o, gefinition oftemporal eventsThe calling and termination
would otherwise be tedious and difficult to specify. .
S _ _ _ of methods are, therefore, our temporal control points. In
Keywords-temporal specification; runtime assertion checking; addition, we distinguish between the normal terminatioe. (i
specification patterns; Java Modeling Language; temporaljmic. \ithout throwing an exception) and exceptional terminatio
of a method. By temporal specification, we refer to the way

o _ program properties are expected to hold, as delimited by
Programmers use specification languages to help write CRfporal events.

rect programs by facilitating program verification and dyi2 \ye have implementetemporalimic, a tool that allows the
checking of a software implementation with respect 1o ii§yecification of a certain class of temporal properties of pr
specifications. They also aid in providing better_docurmantiiams and checks them at runtime. Our primary contribution
tion, especially to programmers who are extending the WORK {hattemporaljmic provides an integrated way of specifying
of others and who only have access to the system's API, iy, functional and temporal properties of programs withou
not its implementation. _ _ the need for separating these two kinds of constraints.
Design-by-contract (DBC) techniques][popularized by | siead of model checking temporal properties, in this pape
Bertrand Meyer in the language Eiffel, are widely employedle gescrine an approach that checks temporal properties

for the specification and checking of computer programs. T'ﬂ?namically, using runtime assertion checking. One redson
DBC approach helps make programs more modular in thg

)] : ; fs is that runtime assertion checking is an important and
they provide a level of “separation of concerns’, by allowgommonly used technique for checking JML specifications.

ing the programmer to focus mainly on the implementatioy nime assertion checking is also a useful compliment to
whereas the contract-checking tool handles the respditysibi,qe checking, since it does not suffer from state space
of enforcing programmer-defined specifications. explosion problems.

Most current program specification techniques, such as|y gectionil we discuss the temporal logic background
DBC, are primarily used to describe a system's functionglqired for introducing the temporal extension to the JML.
behaw(_)r. However, for many programs, there is a natura_ﬂ Nefhe approach used in the implementationtehporaljmic is
to provide a temporal description of the system along W ifjescribed in Sectionll. This is followed by a case study
functional behavior. For example, consider the specificati (8IV) with programs showing both temporal and regular JML

After an account is opened and then activated, either specifications of a bank account class. Next, we describe the

its balance is always positive or it must, at some process of converting temporal specifications writteteinpo-

point, be designated as a swissType account, unless ra|JML into finite automatagV). This is the main theoretical

it is marked for suspension. contribution of our research. We then discuss certain &ssue
A program that checks this specification at runtime can lbegarding the semantics eémporalJML (8VI). Section VIl
written by setting and unsetting of flags for the expectezbmpares our work with related work in the area. Section
“events” (i.e. the successful opening and activation of thélll discusses limitations of our implementation and scope

I. INTRODUCTION

[

3

Listing 1: JML Invariant specification

/Il @protected invariant 0 <= hour && hour <= 23;

Listing 2: JML method contracts

there’s no obvious way to specify such properties in JML. We
can specify this using a complicated set of JML annotations,
like ghost and model fields and model methods. Excerpts from
a file with the specification of a bank account class in JML are
shown inListing 3. The setting and unsetting of JML's ghost
variables is used to simulate a finite state machine.

/1 @requires true;
/Il @ensures 0 <= \result &% \result <= 23;

Listing 3: BankAC Specification using JML

public /*@pure @/ int getHour() { return hour; }

3

public

for future work and is followed by the conclusioBIX).)

Il. TEMPORALLOGIC AND SPECIFICATIONS 3
Temporal logic is used extensively in the area of spec-,
ification and verification of computer programs, especiallys
concurrent programg’], to prove properties such as deadlock-
avoidance. An example is the model checker SPINWhich
uses Linear Temporal Logic (LTL) to specify the propertiesn:
that a system needs to respect. Another example is the Bander
Specification Language (BSLY], [5] which is used by the
Bandera projectd], [7] as an input language for temporal
specifications. The BSL uses temporal specification patterri#
[8] to express properties that the programmer wishes tq
express.

Temporal logics such LTL, Computational Tree Logic
(CTL) or the u-calculus are powerful, general logics which *'
are not tied to any specific system or application. However, was
consider them overly mathematical for the average program-
mer. Therefore, in our extention of JML, we follow Trentlema *°
and Huisman §] in using Bandera-style patterns(], [8] t0 2
describe temporal specifications. 2

The problem we address in this paper is to specify ang,
dynamically check temporal properties of sequential paow. 2
Our specifications can express temporal properties over a s
guence of method-related events. Extending this to coaotirr
programs is left as future worl8VIII).

10

25

26
Temporal logic extension to the Java Modeling Language -
The Java Modeling Language (JML)LT, [12], [13] is zz
a behavioral interface specification language which allows
specifications to be written as annotation to Java code. o
Invariants [isting 1) allow the imposition of restrictions ,
on class data members wisible states(i.e. post object- =
construction, except inside method bodies). ¥
Listing 2 shows an example of a JML specification of a
method contract. It essentially represents the Hoareetripl
{P}S{ @, where P is the precondition rlequi res), Q the z‘j
postcondition ¢nsures) and S the piece of code (method
get Hour). Any JML compiler must ensure that § is exe-
cuted wherP holds, then in the normal post-state$fQ must jz
be true. Here, the contract specifies that Hour can always ,;
be called; however, the value returned d¢wt Hour must be
between 0 and 23 (both inclusive). 3

1

package org.j nl specs.tenporal spec. bankac_casest udy;
iport java.util.ArraylList;

cl ass Regul ar SpecBankAC {

/'l @public ghost static Arrayli st
listOf I nstances = new ArraylList();

/1 @public mdel JM.DataG oup bank_spec;

/'l @public represents bank_spec =

JM.Dat aG oup. I T;

/' @public ghost
bank_spec;

/' @public ghost
bank_spec;

/1 @public ghost
bank_spec;

bool ean openAC normal; in

bool ean openAC cal l ed; in

bool ean openAC exceptional ;

/1 @public ghost bool ean
bank_spec;

/1 @public ghost
bank_spec;

/'l @public ghost bool ean
activat eAC excepti onal ;

activat eAC_nor mal ;

bool ean activat eAC cal | ed;

in bank_spec;

/1 @public ghost bool ean suspendAC nornal; in
bank_spec;

/' @public ghost bool ean suspendAC call ed;
bank_spec;

/'l @public ghost bool ean suspendAC exceptional ;
in bank_spec;

in

/1 @public nodel
bank_spec;
/Il @private represents is_sw ssType =

bool ean is_swi ssType; in

Sw ssType;

/1l @public nodel
in bank_spec;

/|l @private represents is_bal ancePositive =
(bal ance>0) ;

bool ean i s_bal ancePosi tive;

private boolean tp_bal; //@n bank_spec;
private boolean tp_swiss; //@n bank_spec;
private bool ean never_call ed_update_tp_sw ss;

/1 @n bank_spec;

/1 @public nodel bool ean check_condition; in

bank_spec;
// @private represents check_condition =
(tp_bal || tp_swi ss);

/+@private nodel void update_tp() {
if (openAC_nornal && activateAC nornal
I suspendAC cal | ed) {
update_t p_bal ();
update_tp_swi ss();
}
}
@/

&&

Consider again the temporal constraint regarding a banl‘iA ghost variable is a specification-only variables which ¢@nused to

account class mentioned in the Introductidii)(Currently,

add state; its value can be set using the J8#t statement.

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

84

85

86
87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

/| @ assi gnabl e bank_spec;

/'l @private nodel void update_tp_bal () {
/T@if (!tp_bal)

/1@ return;

1@

/1@ if (!'is_balancePositive) {

/1@ tp_bal = fal se;

1@ }

/1@

1@

/| @ assi gnabl e bank_spec;

/'l @private nodel void update_tp_sw ss() {
/1@ if (never_called_update_tp_sw ss) {

Il @ never called_update_tp_sw ss = fal se;
1@ tp_sw ss = fal se;

1@
1@
1@
1@
e }
1@
1@

/'l @ensures (check_condition == true);
/+@public nodel pure boolean final_check() {
return check_condition;
}
@/

if (is_swi ssType) {
tp_swiss = true;

/| @assi gnabl e bank_spec;

/1 @private nodel void init_tenporal () {
/1@ listOflnstances. add(this);

/1@ tp_bal = true;

/1@ tp_swiss = true;

/1 @ never_cal |l ed_update_t p_sw ss = true;

1@

/+@public static nodel
al | _final _check() {
for (int i =0; i < listOlnstances.size();
i++) {
Regul ar SpecBankAC obj = (Regul ar SpecBankAC)
l'istOf I nstances. get(i);
if (!obj.final_check())
System out . println("Tenporal
+ obj.toString());

bool ean

exception:

}

return true;
}
@/

/| @assi gnabl e bank_spec;

publ i ¢ Regul ar SpecBankAC() {
/'l @debug init_tenporal ();

}

private int bal ance = 0;
private bool ean sw ssType = fal se;

public void openAC() {
/| @set openAC nornal = false;
/| @set openAC exceptional = fal se;

In order to express temporal specificatiotsnporaljmic
uses an extension of the JML, which we caimporalJML.
One of our main contributions is the ability tfmporaljmic to

proposed by Trentelman and Huisma#] whose work is

inspired by the SanTos Specification Patterns projedt [
Patterns and Scopedn the Specification Patterns project,

a pattern is defined over one of fitemporal scopesglobal,

before, after, between, and after-until]. temporalJML also

usesoccurrence specification patterrig5] in order to allow

the user to describe temporal behavior. These occurrence

specification patterns are: Absencendver), Universality

(\al ways), Existence event ual | y) and Bounded Existence

(\at nost).

Global

R R

Before R

After Q unless R

- After Q until R

Time

Fig. 1. Temporal Property Specification Scopes use a modified
semantics of the Bandera project scopés] [

Our implementation of temporal specification constructs is
based on a modified semantidsiqure) of these temporal
pattern scopesslobal scope refers to the entire timeline. The
After Rscope refers to the the part of the timeline after the first
occurrence of event R. Th&efore Rscope refers to the part of
the timeline before the first occurrence of event R. The scope
described byBetween Q and s equivalent to the temporal
fomula after Q unless Rin particular, the scope includes the
part of the timeline where Q has occurred, but R has not (yet)
occurred. The scope describedAfger Q until Rdescribes the
part of the timeline between event Q and R, where the event
R must occur.

Note from the grammarTable) that trace propertiesare
used to describe the functional properties of a system over a
given occurrence pattern. femporal formulacan contain a
trace property and is used to describe the temporal behavior
of a system constrained by the occurrence of temporal events

I1l. THE PROBLEM AND APPROACHUSED
The problem is to augment JML with constructs that enable

automatically generate this finite state machine for angmivthe specification of temporal properties of a program. This
temporal specification written itemporalJML; and thus avoid involves all the phases of compiler construction followihg

its manual specification using ghost variables. The gramnaefined semantics {[85.1],[L6, 84.1]) for temporal specifi-
for temporalJML (Table)) is based on the extension to JMLcations, including generating runtime assertion checkiodge

TABLE I: The temporalJML grammar (which is based on theg g \event ual I'y properties) cannot be ascertained before

temporal logic extension to JML suggested &) [the program completes execution. Also, each machine’s final
state is checked to see if its an accepting state; if not, an

(TempFormy == (\after (Eventy; (TempForn)) : . ; .
| (\bef ore (Events ; (TraceProp) error is repqrted. This is used as the checking mechanism for
| (TraceProp \unti | (Events constructs like anuntil temporal formula andenabl ed
| (TraceProp \unl ess (Events and\not _enabl ed state properties.
| (\between (Eventy ; (Events (TraceProp) | e follow the approach used in Yoonsik Cheon’s PhD thesis
| (\at nost (Nat) (Events) by i : d bp hod$18. §4.3] i d
| (TraceProp y inserting code invrapper method$18, 84.3] in order to
(TraceProp = \al ways (StateProp check temporal specifications. For any methmgdhe original
| \eventual I'y (StateProp method is renamedri g$m and a wrapper for it is created
l };‘r‘zgfgroésgagf’;ggprop with the namen The main template of such wrapper methods
| (TraceProp | (TraceProp is shown inListing 4.
(Events$:= (Even | (Even, (Events The checks for temporal specification are on lines 2, 4,
(Evenp = \Cg:)'rm(ifme‘hodﬂ)] 9, 20 and 26. The call to the original method is on
Rexcepti g,ﬂn;le ((’%ethod) line 8. (;I’he temporal evennt:tsc?rI‘I ed is deemig go _Ir_1ave |
| \term nates ((method) occurred as soon as we enter the wrapper method. Tempora
(StateProp ::= (JMLProperty specifications are checked (line 4) before the call to the
:sﬁgf‘bgﬁgbl«ggth(‘)?%ethod) original renamed method, just like the check for invariants
| (StateProp & (StateProp (line 3). On normal method termination, the evesihor nal
| (StateProp | (StateProp is added to the event list (line 9), before the check for maitho
| {{StateProp postconditions. In case the method throws an exception, the

event nsexcept i onal is added to the even list (line 20),
before the check for the method’s exceptional postconditio
which performs the actual dynamic checking of these temipot both cases (i.e. normal or exceptional method termingtio
specifications on executing the program. temporal specifications are checked (line 26) before leavin
The JML runtime assertion checker (RAG) c, is built the wrapper, similar to the checks for invariants and hjstor
on top of the Multijava compilemj ¢ [17]. The temporalimic ~ constraints (lines 25 and 27 respectively).
tool has been implemented by extending c, enhancing it |y, Case STuDY: SPECIFICATION OF ABANK ACCOUNT
with temporal specification capabilities by adding tempora CLASS
specification constructséble). The current implementation
of temporaljmic is based on the JML2 compiler codebdse

For a detailed description of the semantics of the grammar en, - -weint that once a bank account has been opened and

which temporalJML is based, see’[§5]. activated, either its balance must always remain positivbat
The basic approach used to generate RAC code for tempgy ust, at some point, be designated aswassTypeccount,

specifications is to create one finite state machine, witetec unless the account itself has been suspefded
ing and non-accepting states, per tempgral sp'ecificati.orenNh Compare thistemporalJML specification with the excerpts
the JML-augmented Java code is compiled usemgporalimic, 4 4 hank account class ibisting 3 which contains the

code is produced to construct instances of the finite Stalg, ;i ajent specification in plain JMLNote how complicated
machine at runtime. The transitions of these finite state Mais specification is compared to the one which usespo-
chines are the temporal events or method control points (Viz;y Essentially, the specifications iristing 3 had to be
\Calhl ,\normal , \exceptional and\terminates forany isen such that ghost variables were used to keep tradheof t
method). . . . appropriate “state” the bank account object is in. It uses th
For every temporal spe_CIflcatlon, there s a_varlable ®Ralues of the flags to determine when to check the functional
resenting eac_h of its basic trace properties (i.e. th_ose t_ perties and also to evaluate if any of them has been
do not contain one of the temporal staté properties Vig|ateqd. This requires the cumbersome use of model methods
\enabl ed and\not _enabl ed, or the & and | operators). The 5ot and model fields, and even adding new fields (viz.
temporal state machine causes these variables to be updg al ,tp_swiss, never _call ed_update_t p_swiss) to
as appropriate. The values of the variables representieg {fig cjass to aid specification and checking of trace progserti

trace property of each temporal specification are checked, §, the other hand, code written usitegnporalJML (Listing 5)
program termination, to decide if a trace-property Vi@lati ., nerform this task with a single line of specification.
error is to be reported, because certain specification tidols

Consider the temporal specification of a bank account class
using temporalJML shown in Listing 5. It seeks to impose

3Complete code available atttp://www.cs.ucf.edlY fhussain/temporaljml/
2The source code can be accessed ftdtp://jmispecs.cvs.sourceforge.net/TemporalSpecBankAC java
viewvc/jmlspecs/IML2under the tagarazhussain_temporalspeos directly 4Complete code available dtttp://www.cs.ucf.edur fhussain/temporaljml/
from: RegularSpecBankAC.java
http://jmlspecs.cvs.sourceforge.net/viewvc/imispedsl? 5The file containing the specification of the bank accountsciasplain
pathrev=farazhussain_temporalspecs JML is 4 times larger than the one which ugemporalJML.

http://jmlspecs.cvs.sourceforge.net/viewvc/jmlspecs/JML2/
http://jmlspecs.cvs.sourceforge.net/viewvc/jmlspecs/JML2/
http://jmlspecs.cvs.sourceforge.net/viewvc/jmlspecs/JML2/?pathrev=farazhussain_temporalspecs
http://jmlspecs.cvs.sourceforge.net/viewvc/jmlspecs/JML2/?pathrev=farazhussain_temporalspecs
http://www.cs.ucf.edu/~fhussain/temporaljml/TemporalSpecBankAC.java
http://www.cs.ucf.edu/~fhussain/temporaljml/TemporalSpecBankAC.java
http://www.cs.ucf.edu/~fhussain/temporaljml/RegularSpecBankAC.java
http://www.cs.ucf.edu/~fhussain/temporaljml/RegularSpecBankAC.java

[

Listing 4: The wrapper method approach3] 84.3] used for Listing 6: Constructor in the generated code for temporakba

checking temporal specifications account class (Also sdesting 7)
1 T m(T1 x1, @ : :, Tn xn) { 1 public Tenporal SpecBankAC() {
2 t enpor al Event Li st . add(nfcal | ed) ; .
3 checkl nv$S(); 2 :
4 checkTenpor al Forunl as() ; 3 internal $$init$();
5 checkPrenS(x1, : : :, xn); .
6 T rac$resul t; 4 .
7 try { s finally {
3 rac$result = orig$m(x1, :::, xn); 6 |'i st Of I nst ances$t enpor al spec. add(t hi s);
9 t enpor al Event Li st . add(nnor mal) ; 7 i nit$inst an98$t enpor al specs
10 checkPost nS(x1, : : :, xn, 8 $Runt i meTenpor al Machi nes();
rac$resul t);
1 return rac$resul t; 9
12 } 10 }
13 catch (JM.EntryPreconditionError rac$e) {
14 t hrow new
JM.I nt ernal Precondi tionError(rac$e);
12 }Catch (JM.AssertionError rac$e) { explanation of the code generatedy temporaljmic see [.6,
17 t hrow rac$e; 83].
1 } In the rest of this section, we use the code generated by
19 catch (Throwabl e rac$e) {]
0 t enpor al Event Li st . add(nexceptional); temporaljmic for the bank account class to demonstrate how
21 checkXPost $nBS(x1, @ @ @, xn, we check temporal specifications.
racse);
22 } B. Temporal State Machine
23 finall . . " .
2 ?/f{(/*no post condi ti on A state machine is created for each temporal specification.
violation?+/) { In fact, for anon-statictemporal specification, there is one
25 checkl nv3S() ; _ machine per object and we therefore mantain a list of all
26 checkTenporal Fornmul as(); . .
27 checkHC$S() ; objects created L{sting 6). In the code generated by the
28 } runtime assertion checker, these temporal machines are rep
zz) } resented by the typ@M_Runt i meTenpor al St at eMachi ne

([16, 8A.5]). The machines are generated after parsing of
temporal specifications.

The RAC code for initialization of the temporal state
machine is shown inListing 7. Machine initialization is

Listing 5: BankAC temporal specification .) X ,)
: D P realized using a rudimentary implementation of tkb-

/1 @public tenmporal (\after \normal (openAC);

(\after \normal (activateAC); (\always server Pattern[19], which is required for appropriate calls
(bal ance>0) | \eventually (swi ssType)) \unless to trace property update methods. Essentially, tthes ob-
\call (suspendAQ))); ject (which is of typeTenpor al SpecBankAC) becomes an

observer(line 5 in Listing 7) of the runtime temporal state
machine represented kysnst enpor al spec$TFO. The file
Tenpor al SpecBankAC. j ava has only one temporal speci-
The main drawback of the plain-JML specification of théication (isting 5) and the corresponding machine is repre-
bank account class is that we had to manually create a finsented by the variablesnt enpor al spec$TFO.
state machine to represent the temporal properties. Ite sta Temporal events are recorded using wrapper meth-
transitions were simulated by changing the values of thesgho@ds (isting 4). These events are fed to the machines
variables. Model methods were used to check the functiorsd that they make appropriate transitions. If the ma-
properties when the machine entered an appropriate statechime is in a trace-property-checking-state, the obskrver
program execution. These values were checked at prograptat e$t enpor al spec method is called, which in turn calls
completion to indicate property violations. updater methods for all basic trace properties compridiag t
particular temporal formula’s trace property.
The finite state machine generated bmporaljmic on
A. Generated code and RAC for the Bank Account class compiling the bank account class with the given temporal
specification I(isting 5) is pictorially depicted inFigure 2
The runtime assertion checking of temporal specificatiofiie code generated for the construction of this machine is
builds on the technique described in Yoonsik Cheon’s Ph.phown inListing 7. The start states at e0) is shown by an

thesis [L8]. We earlier described§(ll) how the wrapper ,
The code generated byemporaljmlc for the bank account class

method approaghL(sting 4) has bee.r? usled to also gener?'t@ontaining the temporal specification is available f&tp://www.cs.ucf.edu/
code for checking temporal specifications. For a detailedthussain/temporaljml/TemporalSpecBankAC java.gen

http://www.cs.ucf.edu/~fhussain/temporaljml/TemporalSpecBankAC.java.gen
http://www.cs.ucf.edu/~fhussain/temporaljml/TemporalSpecBankAC.java.gen

Listing 7: Runtime Temporal State Machine initialization

Listing 8: Runtime machine’s temporal checks

1 public void

2 i nit$i nstance$t enpor al specs$Runt i neTenpor al Machi nes()

s {
4
5

6

10

11
12
13
14
15
16
17
18
19
20
21
22

23 }

[]------ Code for tenporal formula O0---------
t snit enpor al spec$TFO = new

JMLRunt i neTenpor al St at eMachi ne(this, 0);
ArraylLi st |istOf StatesForMachi neNunber0 = new

ArraylList();
i st OF St at esFor Machi neNunber 0. add(new

Tenporal State(0, fal se,true,"null",false));
|'i st OF St at esFor Machi neNunber 0. add(new

Tenporal State(1,false,true,"null",false));
i st Of St at esFor Machi neNunber 0. add(new

Tenporal State(2,true,true,"null", false));
i st OF St at esFor Machi neNunber 0. add(new

Tenporal State(3,false,true,"null", false));

t snit enpor al spec$TFO. set St at eLi st (
I'i st Of St at esFor Machi neNunber 0) ;

t snibt enpor al spec$TFO. set Start St at e(0);
t st enpor al spec$TFO. addTransi tion(2,

"suspendACLPar enRPar enV$t enpor al spec$cal | ed", 3);
t snibt enpor al spec$TFO. addTransi tion(1,

"act i vat eACLPar enRPar enV$t enpor al spec$nor mal ", 2) ;
t snt enpor al spec$TFO. addTr ansi ti on(3,

"act i vat eACLPar enRPar enV$t enpor al spec$nor mal ", 2) ;
t st enpor al spec$TFO. addTransi ti on(O0,

"openACLPar enRPar enV$t enpor al spec$nornal ", 1) ;
[l------ End of tenporal

— »| | StateO openAC$normal » | Statel

activateAC$normal

Y

3 State2*

activateAC$normal

State3

suspendAC$called

Fig. 2: BankAC Temporal State Machine Automaton

incoming arrow. The accepting state¢st at e0, Statel,
State2, State3) are marked by a double frame box. Themi n, temporaljmic additionally generates code in thpost-

(only) temporal trace property checking stat& 4t e2) is

public void perfornlenporal Checks() {

if(this.currentState.isTracePropertyChecki ngState())
this. nyCbserver. updat e$t enpor al spec(this, null);

}

C. Verifying temporal specifications: Checking trace pmpe
ties

A list of temporal events is maintained in order to check
temporal specifications. The wrapper method RAC code now
also contains calls to check temporal specifications, iritiaed
to regular JML specification checking, at method control
points (isting 4). These methods feed the temporal events that
have occurred to the runtime temporal state machine. After
making all necessary transitions depending on the temporal
events that have occurred, the machine performs temporal
specification checks {sting 8), when appropriate.

As per thetemporalJML grammar {able) a given temporal
specification formula can have only one trace property. How-
ever, this trace property can be a conjunction/disjunctbn
multiple basic trace propertiegi.e. \al ways, \event ual | y,
\never). Each basic temporal trace property needs to be
checked when the temporal state machine is in the trace
property checking state. For a given temporal specification
formula, there is a variable associated with eaelsic trace
property.

The trace property in the temporal specificatioristing 5
is a disjunction of two the two basic trace properties
\al ways(balance > 0) and \eventual | y(sw ssType).
Method per f or nTenpor al Checks (Listing 8) calls theob-
server's updat e$t enpor al spec if the machine is cur-
rently in a trace property checking state. The observer's
t enpor al spec$updat e method calls update methods for
updating the values of the the variables representing battb
trace properties. The methods check the valubadfance>0
and swi ssType and appropriately update the corresponding
corresponding basic trace property variables.

D. Temporal State machine post final state checking

Like j m c, temporaljmlc generates a wrapper method for
each method in the class, with calls to specification checkin
methods before the call and after the (normal or exceptjonal
return to the renamed original method,g[. However, for

state which it doesn't for any other method. At this point

colored blue and also marked by an asterisk (*). The longis clear that the original (renamedigi n has completed
arrows with the arrowheads touching some state represerécution, with or without throwing an exception. The wrapp
transitions from the state touching the arrow tail to thetestafor mai n will now call the appropriate method to check the
touching the arrow head.

7If, at program termination, the temporal state machine is nairia the

accepting states, an exception is generated.

final status of the trace properties of temporal specifioatio
Furthermore, themai n wrapper calls a method to check
if the temporal state machine representing each speaificati
is in an accepting state; if not, an exception thrown, which
indicates the reason that the specification was violated.

Listing 9: Bank account main driver —1 Listing 10: Bank account main driver —2

public static void main(String[] args) { public static void main(String[] args) {

Tenpor al SpecBankAC acl = new Tenpor al SpecBankAC acl = new
Tenpor al SpecBankAC() ; Tenpor al SpecBankAC() ;

acl. openAC(); acl. openAC();
acl. set Bal ance(-100); acl. set Bal ance(-100);
acl. set Bal ance(200); acl. set Bal ance(200);
acl. activateAC(); acl. activateAC();
acl. set Bal ance(-300); acl. set Bal ance(-300);
/lacl. set Swi ssType(true); acl. set Sw ssType(true);
acl. suspendAC(); acl. suspendAC();

} }

The generated code for the bank account class with the Listing 11: BankAC temporal specification

temporal specification written usingemporalJML can be //@public tenmporal (\after \normal (openAC);

. ; ; (\after \nornal (activateAQ); (\always
accessed fromhttp://www.cs.ucf.eddf fhussain/temporaljml/ (bal ance>0) | \eventual ly (swissType)) \until

TemporalSpecBankAC.java.gen \cal | (suspendAQ)));

Sample runs of the BankAccount class

Consider the main driver iqisting 9 for the bank account § m rac2 Tempor al SpecBankAC
class. The output producedrigure 3 shows that the trace|exception in thread " main"

property for the temporal specification was violated. Th{®rg-in specs.jnirac.runtime. JM.Tenporal SpecificationError:
. . Tenporal Specification at |ocation
occurred since the balance was negative even after the @CCOUr | e * Tenpor al SpecBankAC. j ava”, line 7, character 24>

was activated and the account was never changed to bg vof! ated: Tenporal Formula TFO contains a
. Tenpor al Unti | Expressi on: Expecting one of the
swissType foll owi ng tenporal events: [suspendAC]: at
Tenpor al SpecBankAC. checkTenpor al Machi neFi nal St at e$i nst ance
(Tenpor al SpecBankAC. j ava: 281) at

$ tenporal jmrac Tenporal SpecBankAC Tenpor al SpecBankAC. checkTenpor al Machi neFi nal St at e$i nst ances
Exception in thread "main" (Tenpor al SpecBankAC. j ava: 290) at
org.jmspecs.jnirac.runtime. JM.Tenpor al Speci ficationError: Tenpor al SpecBankAC. mai n(Tenpor al SpecBankAC. j ava: 1453)
Tenporal Trace Property at |ocation $
<Fi | e "Tenporal SpecBankAC. java", line 7, character 24>
vi ol at ed: i . i ;
at Tenpor al SpecBankAC. checkTraceProperti es$i nstance Flg' 4 Rgnnlngtempo_rgljm!rac _OI’.1 t_he Bank Account class
(Tenpor al SpecBankAC. j ava: 116) driver-2 with the specification ilisting 11 causes an excep-
at Tenpor al SpecBankAC. checkTr aceProperti es$i nst ances tion
(Tenpor al SpecBankAC. j ava: 126)
at Tenpor al SpecBankAC. mai n(Tenpor al SpecBankAC. j ava: 1443)
$

1 V. TRANSLATION OF TEMPORAL SPECIFICATIONS INTO

Fig. 3: Runningemporaljmirac on Bank Account class driver-
STATE MACHINES

causes an exception
We present here our method of convertiagporalJML tem-

Now consider the main driver ihisting 10 for the bank poral formulas (able) into finite state machines. Note that a
account class. No output (in particular, no temporal specifibef or e temporal formula can be converted into \af t er -
cation violation exception) is produced lmporaljmic. This \unti | temporal formula, §bet ween temporal formula can
behavior is expected because the trace property is notetlabe written as anaf t er-\unl ess temporal formula and an
anymore since the flagwi ssType is set tot r ue by the driver \at nbst temporal formula can be written as amfter
(Listing 10). temporal formula (§, 84]). Therefore, it is sufficient to show

Post final state checkingTo demonstrate the necessity ohow to translatdunl ess (Figure 9, \unti| (Figure § and
checking if the state machine’s final state is an acceptiaig st \af ter (Figure 7 Figure § Figure 9 Figure 1Q temporal
consider the bank accont class with the original specificati specifications into finite automata.

(Listing 5) modified to use anunti| formula (isting 11). States in which trace properties are check8t/-C) are

For the same driver as used beforgs{ing 10), which marked with an asterisk. Temporal events, represented, by
showed no output earlier, an exception is now throwsl ande2 in these figures, may refer to either a single temporal
(Figure 4 which indicates that a required event did not occuevent or a sequence of temporal events. Nodes which represen
Note that it is not possible to throw this exception untileaft accepting states are shown with two concentric circlesiisho
mai n has completed execution because only then can we the machine be in a non-accepting state at the end of program
sure that the expected eventcél | suspendAC) did not execution, a temporal specification error is throvghiv(D).
occur at all. Hence the requirement for the extra temporalFor a simple\unl ess formula of the form “<TraceProp>
specification check imai n’ s post-state. \unl ess ¢”, the state machineF{gure 5 starts with a trace

http://www.cs.ucf.edu/~fhussain/temporaljml/TemporalSpecBankAC.java.gen
http://www.cs.ucf.edu/~fhussain/temporaljml/TemporalSpecBankAC.java.gen

property checking state. If the event occurs, a transitidar the enclosed\after formula, namely Yafter e2;
is made toState A Both states are accepting states. TheTempForm>), adding a new stat8tate A(which becomes
automaton representing the formula “<TracePraprti | e” the new initial state), and adding a transition fr@tate Ato
(Figure 9 is similar, with the only difference that the initial the initial state of the original automatoBtéte B.

trace property checking state is non-accepting, because th

semantics of anuntil formula states that the given event Fig. 8: (\after el; (\after e2; <TempForm>))

must occur.
(\after e2; <TempForm>)
Fig. 5: <TraceProp>unl ess ¢

(<TempForm>)

&
oLrorIm
Fig. 6: <TracePropxuntil e

Now, consider the temporal specificationafter el;
<TraceProp3unl ess ¢2”. This is translated into an automa-

ton with three states: the inititate A a trace property check-

The case fonafter specifications is more complicateding state (marked with an asterisk), agtate B(Figure 9.
because this is the only kind of temporal formula whicilthe machine transitions frorBtate Ato the trace property
may contain other temporal formulas inside it. From thehecking state on occurrence ef, and from this state to
temporalJML grammar {able) and the simplification rules for State Bon occurrence ot2. What is worthy of note is that
temporal formulas (, 84]) discussed earlier in this section, wehere is are-transition fromState Bto State A Therefore, the
divide specifications of the form\after e ; <TempForm>" trace property is checked each tirae occurs, as long as2
into the following four disjoint parts, based on what kind ofioes not occur. All states here are accepting states.
temporal formula they contain:

. \after formulas containing only a trace property Fig. 9: (\after el; (<TraceProp>unl ess ¢2))

o \after formulas containing anotheafter formula

o \after formulas containing afunl ess formula

o \after formulas containing afuntil formula

Consider the\after specification, \after e; <Trace-
Prop>", which contains only a trace property. Its automaton
(Figure 7 consists of two accepting states. The automaton
transitions to the trace property checking state when teatev
e occurs.

Fig. 10: (after el; (<TraceProp>until e2))

Fig. 7: (\after e; <TraceProp>)

o
The automaton for\af t er el; <TraceProp3until e2”

(Figure 10 is similar, except that the trace property checking

Next, consider anafter specification such that its con-state (marked with an asterisk) is a non-accepting statzusec
tained temporal formula is anotheafter formula. An the semantics of the specification “<TracePropmtil ¢2”
example of the kind of automaton produced is shown i that the trace property must hold as long:2asloesn't occur,
Figure 8 The machine starts iState A The figure shows the but thate2 mustoccur at some point during execution.
automaton for the contained formulaafter e2; <Temp- Thus, we have shown how an arbitragmporalJML speci-
Form>" in the outer rectangle. The inner rectangle reprsseffication can be converted into a finite state machine.
the automaton for “<TempForm>". The temporal eveft
causes the machine to transition frddtate Bto the initial
state (not shown here) of the automaton for “<TempForm>". Note from the grammarTg@ble |), that a trace property can
On occurrence ot1, the machine moves t8tate B(which only describe functional properties over occurrence padte
is the initial state of the automaton representingaft er (\al ways, \eventual Iy and\never). However, a temporal
e2; <TempForm>)"). Essentially, we are able to construct dormula can describe complete temporal properties because
automaton for a temporal specification of the formaf(t er they can be used to specify trace properties delimited by
el; (\after e2; <TempForm>))", by taking the automatontemporal events.

VI. NOTES ONSEMANTICS

General notes about temporal formula subrule®d becauseemporaljmic translates the Java code annotated with
\bef ore formula specification is equivalent to aal ways- temporal (and normal JML) specifications into regular Java.
\until specification. Note that &bef ore formula is fun- Cheon and Perumandla propose a JML extension that allows
damentally different from amafter formula in that it the specification of sequences of method cafisotpcolg
cannot contain another top-level temporal formula, butyon[27]. They use regular-expression like syntaxc@l sequence
a temporal trace property, as specified in thmporalJML clausg to define the permitted sequences of method calls.
grammar {able). An \until formula is a realization of Ying Jin has suggested the use of context free grammars
the temporal logicstrong untiloperator and is used to specify(CFG) to represent the possible method call sequences of a
that one of the the following temporal evemtsistoccur. An Java program, thus allowing static verification of propeti
\unl ess formula is a realization of the temporal logieeak by inserting protocol checking into the CFG implementation
until operator and is used to specify that none of the followin@3]. This technique helps in specifying protocol propertiés o
temporal events should occur for the formula to be true, Java types. Their approach provides (and demands) separati
which case th&unl ess formula holds if the underlying trace of temporal propertiespfotocolg from functional behavior

property holds. whereas our approach allows integration of the two using
Attempted specification of an internal stat€onsider the Bandera-style patterns to describe temporal behaviorracé t
following specification: properties to specify functional behavior.
(\after \cal | (m); (\bef ore \normal (m); Temporal Rover §4] is a verification tool that allows
\al ways(P))); specifications written in an extension of LTL and Metric

This seemingly innocuous temporal specification hides Tsmporal Logic (MTL) to be annotated to code written in C,
subtle semantics issue. Between the two temporal evefits+, Java, Verilog and VHDL. This tool, developed by Time-
described in this specification, there is no state in whidRover Software generates code from the written specificatio
temporal formula specifications can be checked, since thefich is linked to the application that its part of. However,
are checked using wrapper methods, just beforeahil event it requires the programmer be well versed in formal temporal
and just after anor mal or\exceptional event. Therefore, specification languages like LTL.
this specification essentially is an attempt to describe theJava with Assertions (Jass)d is a Java extension which
program in an internal state, which cannot be done becaesetifanslates Java code annotated with specifications inte pur
runtime assertion checking is done only at the method cbntd@ava and checks compliance with the specifications dynami-
points (i.e. the invocation and termination of methods)his cally. It supports specification aface assertionshat describe
case, the only temporal formula check happens in the wrapplee ordering of method calls. However, as pointed outdin [
method right whenm is called, so the success or failure o81], Jass trace assertions cannot be integrated with @unadti
this temporal formula depends on wheth@rholds right at specifications.
the point of the invocation ofn temporaljmic has the correct The Bandera Specification Languag# i a “source-level,
semantics in this case by performing the temporal formutaodel-checker independent language” that allows writémg-t
check only at that point. poral specifications by avoiding logics like CTL and LTL.

The semantics ofat most formulas: According to theem- It is different from our approach in that its based on model
poralJML grammar Table |), the \at most formula describes checking, whereas we follow primarily a design by contract
the number of times an event can happen using a naturgproach []. We consider temporal property specifications in
number. We follow the convention where natural numbetbe above mentioned logics as overly formal for most program
include zero, so ahat nost formula can be used to prohibitmers and want to also avoid the state-explosion problem that
the occurrence of a temporal event (or a list of such event)ften arises when large applications are to be represestad a

For a state-based semantics of the temporal logic extensfoathematical structure which is required for model chegkin
on whichtemporalJML is based, seed[§5.1]. Moreover, BSL does not allow specifications which describe

properties of exceptions, as noted i) B1].
VIl. RELATED WORK

. VIII. L IMITATIONS AND FUTURE WORK
The grammar fortemporalJML is based on the temporal

logic extension to JML suggested by Trentelman and HuismanCurrently, the newly added temporal state properties, (viz
[9]. They also propose translating a subset (viz. the formulagnabl ed and \not _enabl ed), by default assume that the
which expressafety propertiesof the new constructs of their state property is part of anal ways trace property and
temporal extension of JML back into standard JML expreghe mixing of the temporal state operatoisnabl ed and
sions P, 85.2]. Groslambert et. al2[] propose a method for \not _enabl ed is currently disallowed.

the verification ofiveness propertiem the temporal extension As further work, we plan to extend the tool to handle tem-
of JML in [9]. The JML Annotation Generator (JAGP]] poral specifications written in interfaces and provide supp
translates formulas expressed in the extension describdl i for temporal specification inheritance. Future work mayals
into JML annotations. Although the translation mechanisnisvolve allowing temporal specifications of concurrent alav
we use are similar, these approaches differs from our waqokograms.

IX. CONCLUSION [10]

Our contribution is the addition of temporal specification
capability using Bandera-style patterns to JML, which we
call temporalJML, and an implementation aémporalJML by [11]
integrating it with the JML toolset. This augmented JML tool
(built on top of the JML runtime assertion checkend c) is [12]
called temporaljmic.

Unlike traditional program specification constructsnpo-
ralJML allows specifications using multiple program control
points in a single specification. Also, our implementatioR3!
differs from certain other attempts at the temporal spetific
of programs, like method call sequences, becaraporalJML
allows the integration of temporal and functional specifica
tions. [14]
[15]
ACKNOWLEDGEMENT [16]

The authors would like to thank Marieke Huisman for
clarifications regarding the semantics of the JML temporal
extension proposed irf] and the anonymous reviewers for
very helpful comments. The work of both the authors was’]
supported in part by NSF grants CNS 08-08913 and CCF-

0916350.
[18]
REFERENCES

(1]
(2]

B. Meyer, Object-oriented Software ConstructionPrentice Hall, 1988.
E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic ifieation
of finite-state concurrent systems using temporal logic $pations,”
ACM Trans. Program. Lang. Systiol. 8, no. 2, pp. 244-263, 1986.
[8] G. J. Holzmann, The SPIN Model Checker Primer
and Reference Manual Addison-Wesley Professional, September
2003. [Online]. Available:http://www.amazon.ca/exec/obidos/redirectq]21]
tag=citeulike09-20&path=ASIN/0321228626

J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby, “Exssing
checkable properties of dynamic systems: The Bandera Speific
Language,"STTT vol. 4, no. 1, pp. 34-56, 2002.

Robby, “Bandera Specification Language: A specificatianguage
for software model checking,” 2000, master’s thesis, KanstageS
University. [Online]. Availablecciteseer.ist.psu.edu/498244.html

J. Hatcliff and M. B. Dwyer, “Using the Bandera tool setrtmdel-check [23]
properties of concurrent Java software,”"@ONCUR '01: Proceedings

of the 12th International Conference on Concurrency Theokpndon,

UK: Springer-Verlag, 2001, pp. 39-58.

J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. Sasireanu,
Robby, and H. Zheng, “Bandera: Extracting finite-state mede[24]
from java source code,” ininternational Conference on Software
Engineering 2000, pp. 439-448. [Online]. Availablesiteseer.ist.psu.
edu/corbettOObandera.html

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patternsgroperty
specifications for finite-state verification,” Kansas Staleiversity,
University of Massachusetts, University of Hawai'i, TeclRep.
UM-CS-1998-035, , 1998. [Online]. Availableciteseer.ist.psu.edu/
dwyer99patterns.html

K. Trentelman and M. Huisman, “Extending JML specificagowith
temporal logic,” inAMAST '02: Proceedings of the 9th International
Conference on Algebraic Methodology and Software Teclgyold_on-
don, UK: Springer-Verlag, 2002, pp. 334-348.

(19]

[20]

(4]

[5] [22]

(6]

(7]
(8]

[25]

(9]

10

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Properfyesification
patterns for finite-state verification,” IRMSP '98: Proceedings of the
second workshop on Formal methods in software practidéew York,
NY, USA: ACM, 1998, pp. 7-15.

P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll, “BegbAssertions:
Advanced Specification and Verification with JML and ESCAZg¥in
FMCO, 2005, pp. 342-363.

L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G.
Leavens, K. R. M. Leino, and E. Poll, “An overview of JML toasd
applications,”International Journal on Software Tools for Technology
Transfer (STTT)vol. 7, no. 3, pp. 212-232, Jun. 2005. [Online].
Available: http://dx.doi.org/10.1007/s10009-004-0167-4

G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary dgsof JML:

A behavioral interface specification language for JavayvadoState
University, Department of Computer Science, Tech. Rep. 982089,
Jan. 2006, als&CM SIGSOFT Software Engineering Not8$(3):1-38,
March 2006. [Online]. Availablettp://ftp.cs.iastate.edu/pub/techreports/
TR98-06/TR.pdf
http://patterns.projects.cis.ksu.edu/documeoidgiatterns/scopes.shtml.
http://patterns.projects.cis.ksu.edu/documenitépiatterns/occurrence.shtml.
F. Hussain, “Enhancing a behavioral interface spedifim language
with temporal logic features,” Master's thesis, Departmerit o
Computer Science, lowa State University, Ames, IA, Apr. 2009.
[Online]. Available: http://archives.cs.iastate.edu/documents/disk0/00/
00/06/00/index.html

C. Clifton, T. Millstein, G. T. Leavens, and C. ChambeéfslultiJava:
Design rationale, compiler implementation, and applicatfonsl. 28,
no. 3, pp. 517-575, May 2006. [Online]. Availablip://ftp.cs.iastate.
edu/pub/techreports/TR04-01/TR.pdf

Y. Cheon, “A runtime assertion checker for the java matglanguage,”
Ph.D. dissertation, Apr. 2003, technical Report 03-09, &&pent of
Computer Science, lowa State University.

E. Gamma, R. Helm, R. Johnson, and J. Vlissidessign patterns:
Elements of reusable object-oriented softwareédddison-Wesley Pro-
fessional, 1995.

F. Bellegarde, J. Groslambert, M. Huisman, O. Kouchnewgrand
J. Julliand, “Verification of liveness properties with JIMINRIA, Tech.
Rep. RR-5331, 2004.

A. Giorgetti and J. Groslambert, “JAG: JML Annotation i@&eation for
verifying temporal properties,” iIFASE'2006, Fundamental Approaches
to Software Engineeringser. LNCS, vol. 3922. Vienna, Austria:
Springer, Mar. 2006, pp. 373-376. [Online]. Availabletp://dx.doi.
0rg/10.1007/11693017_27

Y. Cheon and A. Perumandla, “Specifying and checking wetball
sequences of Java programSgftware Quality Journalvol. 15, no. 1,
pp. 7-25, Mar. 2007.

Y. Jin, “Formal verification of protocol properties ofcgeential Java pro-
grams,” iInCOMPSAC '07: Proceedings of the 31st Annual International
Computer Software and Applications Conference - Vol. 1-NIBSAC
2007) Washington, DC, USA: IEEE Computer Society, 2007, pp.
475-482.

D. Drusinsky, “The Temporal Rover and the ATG rover,Rroceedings
of the 7th International SPIN Workshop on SPIN Model Cheglkind
Software Verification London, UK: Springer-Verlag, 2000, pp. 323—
330.

D. Bartetzko, C. Fischer, M. Méller, and H. Wehrheim,$da- Java with
Assertions,” inElectronic Notes in Computer Sciendé Havelund and
G. R. su, Eds., vol. 55(2). Elsevier Science BV, 2001.

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0321228626
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0321228626
citeseer.ist.psu.edu/498244.html
citeseer.ist.psu.edu/corbett00bandera.html
citeseer.ist.psu.edu/corbett00bandera.html
citeseer.ist.psu.edu/dwyer99patterns.html
citeseer.ist.psu.edu/dwyer99patterns.html
http://dx.doi.org/10.1007/s10009-004-0167-4
ftp://ftp.cs.iastate.edu/pub/techreports/TR98-06/TR.pdf
ftp://ftp.cs.iastate.edu/pub/techreports/TR98-06/TR.pdf
http://archives.cs.iastate.edu/documents/disk0/00/00/06/00/index.html
http://archives.cs.iastate.edu/documents/disk0/00/00/06/00/index.html
ftp://ftp.cs.iastate.edu/pub/techreports/TR04-01/TR.pdf
ftp://ftp.cs.iastate.edu/pub/techreports/TR04-01/TR.pdf
http://dx.doi.org/10.1007/11693017_27
http://dx.doi.org/10.1007/11693017_27

	Introduction
	Temporal Logic and Specifications
	The Problem and Approach Used
	Case Study: Specification of a Bank Account class
	Generated code and RAC for the Bank Account class
	Temporal State Machine
	Verifying temporal specifications: Checking trace properties
	Temporal State machine post final state checking

	Translation of Temporal Specifications into State Machines
	Notes on Semantics
	Related Work
	Limitations and Future Work
	Conclusion
	Acknowledgment
	References

