
Desugaring JML Method Specifications

Arun D. Raghavan and Gary T. Leavens

TR #00-03e
March 2000, Revised July, December 2000, August 2001,

July 2003, May 2005

Keywords: Behavioral interface specification language, formal specification, desugaring, semantics,
specification inheritance, refinement, behavioral subtyping, model-based specification, formal methods,
precondition, postcondition, Eiffel, Java, JML.

1999 CR Categories: D.2.4 [Software Engineering ] Software/Program Verification — Formal
methods, programming by contract, reliability, tools, JML; D.2.7 [Software Engineering ] Distribution,
Maintenance, and Enhancement — Documentation; F.3.1 [Logics and Meanings of Programs] Specifying
and Verifying and Reasoning about Programs — Assertions, pre- and post-conditions, specification
techniques;

Copyright c© 2000, 2001, 2003, 2005 by Iowa State University.
This document is distributed under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2, or (at your option) any later version.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1041, USA



Desugaring JML Method Specifications

Arun D. Raghavan and Gary T. Leavens∗

Department of Computer Science, 226 Atanasoff Hall
Iowa State University, Ames, Iowa 50011-1041 USA

arunragh@microsoft.com, leavens@cs.iastate.edu

May 27, 2005

Abstract

JML, which stands for “Java Modeling Language,” is a behavioral interface specification lan-
guage (BISL) designed to specify Java modules. JML features a great deal of syntactic sugar that
is designed to make method specifications more expressive. This paper presents a desugaring pro-
cess that boils down all of the syntactic sugars in JML method specifications into a much simpler
form. This desugaring will help one understand the meaning of these sugars, for example for use in
program verification. It may also help manipulation of JML method specifications by tools.

1 Introduction

JML [16], which stands for “Java Modeling Language,” is a behavioral interface specification language
(BISL) [30] designed to specify Java [1, 11] modules. JML features a great deal of syntactic sugar that
is designed to make method specifications more expressive [15].

Syntactic sugars are additions to a language that make it easier for humans to use. Syntactic sugar
gives the user an easier to use notation that can be easily desugared, i.e., translated, to produce a simpler
“core” syntax. Desugaring is helpful for understanding the meaning of JML method specifications, which
may also be helpful in tools [5]. One tool that uses part of this desugaring process is jmldoc [5, 26].
Jmldoc is a tool that makes browsable HTML pages from JML specifications. This tool ships with the
JML release.1

In this paper we focus mainly on method specifications, i.e., on specifications that describe methods.
Indeed, we only treat a subset of JML’s method specification syntax, because we leave for future work a
description of how the desugarings presented here interact with JML’s redundancy features and with its
refinement calculus features (model programs). JML and its tools also inherit and allow refinement of
other declarations in classes and interfaces, but those are combined in a straightforward way [9, 15, 16].
Essentially a union is used to combine inherited or refined declarations, and a union, which has the
semantics of a conjunction, is used for clauses with predicates, such as invariants and history constraints.
Hence inheritance and refinement of these other declarations is not discussed further in this document.

After some more background about JML method specifications, we describe their desugaring in
detail.

2 JML Method Specifications

This section describes method specifications, first in general terms, and then by giving their syntax.
We start with basic method specifications and then describe extending specifications. The extending

∗The work of Raghavan and Leavens was supported in part by NSF grant CCR 9803843; the work of Leavens was also
supported by NSF grants CCR-0097907, CCR-0113181, CCF-0428078, and CCF-0429567. This paper is an adaptation
of chapter 2 of Raghavan’s Master’s thesis [26], which itself was adapted from a previous version of this document. More
recent versions of this document are largely the work of Leavens, with significant contributions from David R. Cok and
others in the JML community.

1 The JML release is available from http://www.jmlspecs.org.
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specifications are considered to be syntactic sugars for basic method specifications, and their semantics
is ultimately given by desugaring them into basic method specifications.

2.1 Basic Method Specifications

In JML, a basic method specification, like those in other BISLs [30], is founded on the use of pre- and
postconditions [12]. A precondition in JML is introduced by the keyword requires, and a postcondition
is introduced by the keyword ensures. The predicates used in pre- and postconditions are written in
an extension to a subset of Java’s expression syntax, which is restricted to be side-effect free [16]. One
example of an extension is that JML allows logical implication to be written as the infix operator “==>”.
Another example is that the pre-state value of an expression, E, may be written as “\old(E)” within
a postcondition; this notation is adapted from Eiffel [24].

JML method specifications, however, include much more than just pre- and postconditions. The
example given in Figure 1 illustrates the most primitive form of a JML method specification. As shown
in this figure, the JML’s syntax uses annotation markers (/*@, @*/, and //@, see the JML Reference
Manual [18, Section 4.4]) to delimit text that only the JML tools (but not standard Java tools) see.
Annotations look like Java comments, and so are ignored by Java. JML reads the text between the
annotation markers. Furthermore, JML ignores at-signs (@) at the beginning of a line within the body
of an annotation. The annotation for a method precedes the method itself.

In Figure 1, the keyword public, which precedes behavior in the specification case, means that
this is a specification case intended for clients. Using public implies that the specification case may
not use names that have less than public visibility. The next keyword, “behavior” indicates that this
is a “heavyweight” specification case, meaning that it is intended to be complete in the sense that
omitted clauses have predefined defaults as opposed to being unknown (as in the “lightweight” form of
a specification case, where a behavior keyword is omitted) [16]. However, in this example, no clauses
are omitted.

Following the keyword “behavior” are several clauses, each of which starts with a JML-specific
keyword (forall, old, requires, etc.) and ends with a semicolon. We explain each of these in turn.
The JML Reference Manual [18], gives a more detailed explanation of each clause’s semantics.

The forall clause is used to declare universally quantified logical variables that can be used through-
out the specification case. In the example of Figure 1, the specification must hold for all values of the
int variable i. (Note that i is only used in the ensures clause in this example.)

The second clause in Figure 1 is an old variable declaration. This is used to abbreviate specification
expressions (i.e., expressions with JML extensions that are free of side-effects [18]) that can be used
throughout the rest of the specification. The values of such expressions are evaluated in the pre-state
of the method’s execution, which is the rationale for using the keyword “old”. That is, the variables
can be thought of as initialized to the values of the corresponding expressions just after parameter
passing. Like the variables declared in the forall clause, the variables declared in the old clause are
logical variables, and have a scope that extends for the rest of this specification case. In the example,
old size is initialized to the old value of the instance field size (declared at the bottom of the class in
the figure). Note that the old clause is distinct from JML’s \old() expression; the semantic connection
is that \old() expressions can be given a semantics using old declarations.

As mentioned above, the requires clause gives the method’s precondition. If the precondition
is not true in the pre-state, none of the rest of the specification case needs to be satisfied by the
implementation. In a heavyweight specification case, an omitted requires clause defaults to one with
precondition true, and hence no requirements are placed on the caller.

The diverges clause describes pre-states for which a method may go into an infinite loop, or
otherwise not return to its caller. Thus the predicate in a diverges clause is interpreted in the pre-
state (since, if it is satisfied, there need not be a post-state). In a heavyweight specification case, such as
that shown in Figure 1, the default for this clause is false, hence this clause is normally omitted from
JML method specifications. If the predicate in the diverges clause is false, as in the example, and if the
specification case’s precondition is true, then the method call must finish its execution within a finite
time (unless the Java virtual machine encounters a runtime error such as stack overflow or running out
of memory [16]). Thus if the specification has false as its diverges clause predicate, then it is a total
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//@ import org.jmlspecs.models.*;

public class NonNegStack {

/*@ public behavior
@ forall int i;
@ old int old_size = size;
@ requires 0 <= size && size < MAX_SIZE;
@ diverges false;
@ assignable size, elems[*];
@ when true;
@ working_space 0 if elem >= 0;
@ duration 20 if elem >= 0;
@ ensures \old(elem >= 0)
@ && \result == size && size == old_size + 1
@ && ((0 <= i && i < old_size) ==> elems[i] == \old(elems[i]))
@ && elems[size-1] == elem;
@ signals_only IllegalArgumentException;
@ signals (Exception e) \old(elem < 0)
@ && \not_assigned(size, elems[*]);
@*/

public int push(int elem) {
if (elem >= 0) {

elems[size++] = elem;
return size;

} else {
throw new IllegalArgumentException("negative");

}
}

public static final int MAX_SIZE = 10;
private /*@ spec_public @*/ int size = 0;
private /*@ non_null spec_public @*/ int[] elems = new int[MAX_SIZE];

}

Figure 1: An example of the core features of JML method specification cases is given in the specification
of the push method, which appears just above the code for push.
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correctness specification case.
The assignable clause gives a frame axiom [4] for a specification case. The frame axiom lists the

locations that the method may assign to. Given a specific pre-state, only locations that are mentioned
or are (perhaps indirectly) in data groups that are mentioned [19, 22], may be assigned to by the
method’s execution; all other locations may not be assigned to in such an execution of the method.
(Note that this does not say that the method must assign to the locations that it is permitted to assign
to, only that the method may assign to them.) If omitted in a heavyweight specification case, there is
no restriction on what locations the method may assign to, so it is usually important to give the frame
axiom for such specification cases.

The when clause can be used in the specification of concurrency [23, 27]. It says that, assuming that
the precondition holds, the method execution only proceeds to completion at some time when the given
condition holds; if the condition does not hold, then the method’s execution waits for a concurrent
thread to make it true, and then proceeds. (There is no guarantee that the method will proceed the
first time this condition holds, so the condition may have to hold many times before the thread may
proceed.) If omitted in a heavyweight specification case, its predicate defaults to true.

The working space clause specifies the space that the method call may need to have available on
the heap to successfully complete its work. It gives an expression, in bytes, for the maximum additional
space needed by the method’s execution, when the condition, following the keyword if, holds in the
pre-state [13]. Note that the expression may depend on post-state values (including \result), so this
expression is conceptually evaluated in the post-state, although it may use \old() to refer to pre-state
values. In the example, the method is not allowed to use extra heap space when the argument is non-
negative. If omitted, there is no restriction placed on the maximum space that a method may use from
the heap during its execution.

The duration clause specifies the time that the method call may use to successfully complete its
work. It gives an expression, in Java Virtual Machine (JVM) machine cycles, for the maximum time
available for the method’s execution, when the condition, which follows if, holds in the pre-state
[13]. As with the working space, the expression giving the duration may depend on post-state values
(including \result), and so is conceptually evaluated in the post-state. In the example, the method is
only allowed to use 20 JVM cycles when the argument is non-negative. If omitted, there is no restriction
placed on the time that a method may use during its execution.

The ensures clause gives a normal postcondition for a method. The JML semantics is that, when the
method returns normally, the relationship between the pre-state and the post-state of the method must
satisfy this normal postcondition. In the normal postcondition for a method with a non-void return
type, the notation \result denotes the result returned by the method. In a heavyweight behavior
specification case, the normal postcondition defaults to true if the ensures clause is omitted. In the
example in Figure 1, the postcondition says that when the method returns normally, it must be the
case that elem was not negative, and each element of the elems array that was previously defined has
the same value, and the new element added is elem, and the result is the post-state value of the stack’s
size. Since the argument elem must be positive for the normal postcondition to be true, the method
must not return normally when elem is negative.

The signals_only clause says what types of exceptions may be thrown by a method. The listed ex-
ceptions must all be subtypes of java.lang.Exception. When the precondition of the specification case
holds, the method may only throw instances of types that are not subtypes of Exception (typically sub-
types of java.lang.Error) or exceptions that are subtypes of those listed in the signals_only clause.
In other words, throwing any exception other than those listed in the signals_only clause is prohib-
ited. In a heavyweight specification case, the default list for an omitted signals_only clause is the list
of exceptions declared in the method’s header, or \nothing if the method’s header does not declare any
exceptions. In the example, the push method is only allowed to throw an IllegalArgumentException.

The signals clause is used to say what must be true when a method’s execution throws an exception;
it gives an exceptional postcondition for the method. In the exceptional postcondition, the exception
result (the object thrown in the exception) is denoted by the name in the parenthesized declaration
following the keyword signals. In the example in Figure 1, the exception result is named e. In
a heavyweight behavior specification case, the signals clause defaults to “signals (Exception e)
true;” if the signals clause is omitted; this permits the method to throw any exception permitted
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by the method’s signature and the signals_only clause. In the example in Figure 1, the exceptional
postcondition says that when the method throws an exception, it must be the case that elem was
negative and that both size and the elements of elems were not assigned. This implies that the
method method may not throw any exception at all when the argument is non-negative.

It is important to understand that a method call may only have one four possible outcomes in the
JML semantics. It may:

• terminate normally, in which case the relation between the pre-state and the post-state must
satisfy the normal postcondition given by the ensures clause,

• throw an exception of some subtype, ET , of java.lang.Exception, in which case the relation be-
tween the pre-state and the post-state must satisfy the exceptional postcondition in each signals
clause that names a supertype of ET (including those that name ET itself),

• not return to the caller (e.g., by looping forever or by exiting the program), in which case the
diverges clause must have held in the pre-state, or

• encounter a Java virtual machine error. (JML considers all exceptions that are instances of
java.lang.Throwable but not instances of java.lang.Exception to indicate virtual machine
errors. Usually a subtype of java.lang.Error is used for this purpose.)

In addition to these features of basic method specifications, JML has several forms of syntactic sugar
that make specifications more expressive [15, 16]. The aim of this paper is to explain these sugars by
boiling them down to the features already described in this subsection.

2.2 Extending Specifications

The most interesting and subtle kind of sugar in JML has to do with support for specification inheri-
tance and behavioral subtyping [9, 17, 15]. In brief, a method specification can be extended or refined
by other method specifications. In JML, each subtype inherits the public and protected specifications
of its supertype’s visible non-private members [9]; this inheritance includes method specifications. Be-
havioral subtyping requires that the method specifications in a subtype obey the non-private method
specifications from the supertypes that the method overrides [11, Section 8.4.6].

Besides parts of a specification split among different types in a subtyping hierarchy, JML’s refinement
constructs allow one to split a specification for a single type across several files. For example, the speci-
fications in SinglyLinkedList.refines-jml can refine the specifications in SinglyLinkedList.java.
All of the method specifications in a refinement extend the corresponding method specifications in the
file being refined, without privacy restrictions.

To make it clear to the reader whether a method specification is an extension (as opposed to a
specification of a new method) JML uses the keyword “also”. Such an extending-specification must be
used for the specification of an overriding or refining method, regardless of whether any of the methods
being overridden or refined has a specification. (Furthermore, an extending specification cannot be used
when the method does not override or refine an existing method.)

2.3 JML Grammar

Figures 2–5 give the parts of the JML grammar that are necessary for understanding the desugarings
presented below. These sections of the grammar quote a subset of the grammar from appendix A.6 of
the JML Reference Manual [18]. The JML grammar is defined using an extended BNF. The following
conventions are used in the grammar:

• Nonterminal symbols are written in italics.

• Terminal symbols appear in teletype font

• Symbols within square brackets ([ ]) are optional.
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method-specification ::= non-extending-specification | extending-specification
non-extending-specification ::= spec-case-seq
spec-case-seq ::= spec-case [ also spec-case ] . . .
spec-case ::= lightweight-spec-case | heavyweight-spec-case
extending-specification ::= also spec-case-seq

Figure 2: Top-level Method specification syntax of JML (ignoring subclassing contracts, redundant
specifications, and model programs).

lightweight-spec-case ::= generic-spec-case
generic-spec-case ::= [ spec-var-decls ] spec-header [ generic-spec-body ]

| [ spec-var-decls ] generic-spec-body
spec-header ::= requires-clause [ requires-clause ] . . .
generic-spec-body ::= simple-spec-body | ‘{|’ generic-spec-case-seq ‘|}’
generic-spec-case-seq ::= generic-spec-case [ also generic-spec-case ] . . .
simple-spec-body ::= simple-spec-body-clause [ simple-spec-body-clause ] . . .
simple-spec-body-clause ::= diverges-clause | assignable-clause | when-clause

| working-space-clause | duration-clause | ensures-clause
| signals-only-clause | signals-clause

Figure 3: Lightweight specification case syntax, which includes generic-spec-case.

• An ellipses (. . . ) indicates that the preceding nonterminal or group of optional text can be
repeated zero or more times.

Figure 2 gives the top-level syntax of method specifications in JML. Figure 3 gives the syntax of
lightweight specification cases. The lightweight specification case syntax is designed to be easy to use;
however, lightweight specification cases are not assumed to be complete. The lightweight-spec-case
syntax is also used as part of the most general form of the heavyweight specification case syntax, given
in Figure 4. A heavyweight specification case begins with one of the behavior keywords (behavior,
normal_behavior, or exceptional_behavior); heavyweight specification cases, are assumed to be
complete. Finally, the syntax for spec-var-decls is given in Figure 5.

3 Desugaring

This section describes the overall desugaring process, at the most abstract level for a method specifica-
tion.

In the following, let V stand for a visibility level, one of public, private, protected, or empty.

1. Desugar the use of non_null for argument types (see Section 3.1).

2. Desugar the use of non_null on result types (see Section 3.2).

3. Desugar the use of pure (see Section 3.3).

4. Desugar specifications that are empty to the default specification (see Section 3.4).

5. Desugar the use of nested generic-spec-case-seq , normal-spec-case-seq , and exceptional-spec-case-
seq in specifications from the inside out (see Section 3.5). This eliminates nesting.

6. Desugar lightweight specifications to V behavior, where V is the visibility level of the method
or constructor being specified. Desugar spec-cases beginning with V normal_behavior and V
exceptional_behavior to V behavior (see Section 3.6). This leaves only spec-cases that begin
with V behavior, for some visibility level V .
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heavyweight-spec-case ::= [ privacy ] behavior generic-spec-case
| [ privacy ] exceptional_behavior exceptional-spec-case
| [ privacy ] normal_behavior normal-spec-case

exceptional-spec-case ::= [ spec-var-decls ] spec-header [ exceptional-spec-body ]
| [ spec-var-decls ] exceptional-spec-body

privacy ::= public | protected | private

exceptional-spec-body ::= exceptional-spec-clause [ exceptional-spec-clause ] . . .
| ‘{|’ exceptional-spec-case-seq ‘|}’

exceptional-spec-clause ::= diverges-clause | assignable-clause
| when-clause | working-space-clause | duration-clause | signals-only-clause | signals-clause

exceptional-spec-case-seq ::= exceptional-spec-case [ also exceptional-spec-case ] . . .

normal-spec-case ::= [ spec-var-decls ] spec-header [ normal-spec-body ]
| [ spec-var-decls ] normal-spec-body

normal-spec-body ::= normal-spec-clause [ normal-spec-clause ] . . .
| ‘{|’ normal-spec-case-seq ‘|}’

normal-spec-clause ::= diverges-clause | assignable-clause
| when-clause | working-space-clause | duration-clause | ensures-clause

normal-spec-case-seq ::= normal-spec-case [ also normal-spec-case ] . . .

Figure 4: Behavior specification syntax, used for “heavyweight” specification cases.

spec-var-decls ::= forall-var-decls [ old-var-decls ] | old-var-decls
forall-var-decls ::= forall-var-decl [ forall-var-decl ] . . .
forall-var-decl ::= forall quantified-var-decl ;

old-var-decls ::= old-var-decl [ old-var-decl ] . . .
old-var-decl ::= old type-spec spec-variable-declarators ;

Figure 5: Specification variable declarations syntax.
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7. Combine each extending-specification (in a subclass or refinement) with the inherited or refined
method-specifications into a single effective method-specification (see Section 3.7).

8. Desugar each signals clause so that it refers to an exception of type Exception with a standard
name (see Section 3.8).

9. Desugar the use of multiple clauses of the same kind, such as multiple requires-clauses (see Sec-
tion 3.9).

10. For each visibility level, make all the assignable-clauses be the same by adding \only_assigns to
postconditions as needed, and make all the signals-only-clauses be the same by adding conjuncts
to the exceptional postconditions as needed (see Section 3.10).

11. Desugar the also combinations within the spec-cases. (see Section 3.11).

As a way of explaining the semantics of method specifications, one should imagine the above steps
as being run one after another. However, tools may wish to use this semantics differently. For example,
the jmldoc tool [5, 26] tries to leave specifications in their sugared form by avoiding these steps when
it can. On the other hand, while the original version of JML’s runtime assertion checker [3], used an
earlier version of these steps, the current version [6, 7] instead factors the parts of a specification into
various methods, and uses method calls to execute inherited specifications. Factoring the parts of the
specification into various methods avoids the problem of renaming to avoid incorrect variable capture
(see below).

3.1 Desugaring Non Null for Arguments

Use of non_null for arguments of a method or constructor adds a precondition that each such argument
is not null to the method or constructor’s specification. The way this desugaring is accomplished varies,
depending on whether the method has any specification.

If the method has no specification, then these preconditions are added as a lightweight specification
case, with a preceding also if the method overrides some other method. The translation is illustrated
for methods in Figure 6. This figure shows a case where only the first and third arguments are specified
as non_null; in general the translation adds a precondition for each non_null argument x, of the
form x != null. (The annotation markers and at-signs in the concrete syntax are not shown in such
desugarings; in the ISU JML tools they are taken out during lexical analysis.)

modifiers type-spec ident
(non_null T1 x1,
T2 x2,
non_null T3 x3)

method-body

⇒

requires x1 != null;

requires x3 != null;

modifiers type-spec ident
(T1 x1, T2 x2, T3 x3)

method-body

Figure 6: Desugaring for arguments marked as non null in the case where the method has no explicit
specification. If this method was an override, then the desugared specification would start with also.

However, if the method or constructor has a specification already, then the desugaring is more in-
volved. In this case, the preconditions saying that each non_null argument is not null must be added
to each individual specification case, as JML’s syntax does not allow different kinds of specification
cases to be combined into one spec-case-seq. So the desugaring uses the auxiliary function, addHeaders,
defined in Figure 29 of Appendix A. With this auxiliary function, the desugaring for non_null argu-
ments is shown schematically in Figure 7. This figure, shows what happens when the first and third
arguments use the modifier non_null and the method-specification is not an extending-specification. If
the method-specification starts with also, this also must be preserved. The desugaring for constructors
is analogous.
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spec-case1

also . . . also

spec-casen

modifiers type-spec ident
(non_null T1 x1,
T2 x2,
non_null T3 x3)

method-body

⇒

addHeaders(spec-case1, requires x1 != null;

requires x3 != null;)
also . . . also

addHeaders(spec-casen, requires x1 != null;

requires x3 != null;)
modifiers type-spec ident

(T1 x1, T2 x2, T3 x3)

method-body

Figure 7: Desugaring for arguments marked as non null, when the method has an explicit specification.

/*@ public normal_behavior
@ requires key.id != null;
@ ensures theMap.get(key)
@ == \result;
@*/

public /*@ pure non_null @*/ Object
fetch(/*@ non_null @*/ Object key);

⇒

/*@ public normal_behavior
@ requires key != null;
@ {|
@ requires key.id != null;
@ ensures theMap.get(key)
@ == \result;
@ |}
@*/

public /*@ pure non_null @*/ Object
fetch(Object key);

Figure 8: Example desugaring non null arguments.
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An example of this desugaring is given in Figure 8.
Note that non_null on arguments is not inherited, but only affects the specification cases written.
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spec-case1

also . . . also

spec-casen

modifiers non_null type-spec
method-head
method-body

⇒

addBody(spec-case1,
ensures \result != null;)

also . . . also

addBody(spec-casen,
ensures \result != null;)

modifiers type-spec
method-head
method-body

Figure 9: Desugaring for non null results for instance and static methods.

/*@ public normal_behavior
@ requires key != null;
@ {|
@ requires key.id != null;
@ ensures theMap.get(key)
@ == \result;
@ |}
@*/

public /*@ pure non_null @*/ Object
fetch(Object key);

⇒

/*@ public normal_behavior
@ requires key != null;
@ {|
@ requires key.id != null;
@ ensures \result != null;
@ ensures theMap.get(key)
@ == \result;
@ |}
@*/

public /*@ pure @*/ Object
fetch(Object key);

Figure 10: Example desugaring for non null results.

3.2 Desugaring Non Null Results

The use of non_null for a result type is similar to its use for arguments, in that it adds the normal
postcondition \result != null to a method specification. The way this desugaring is accomplished is
slightly different, depending on whether the method has any specification (thus far).

If the method has no specification, then this postcondition is added as the following lightweight
specification case (with a preceding also if the method overrides some other method).

ensures \result != null;

As a consequence of the defaults for lightweight specification cases [16, Appendix A], this lightweight
specification case will receive the default precondition of \not_specified.

On the other hand, if the method has a specification already (perhaps due to the use of non_null
for some arguments), then adding this postcondition to the method is more tricky to deal with as a
desugaring. The problem is that JML’s syntax does not provide an easy way to add a postcondition
to a specification case, and adding a new specification case that does not change the method’s effective
precondition or frame is also difficult to express. Thus we use the auxiliary function, addBody, described
in in Figures 30 and 31 of Appendix A, to add the postcondition to every existing specification case for
the method.

With this auxiliary function, the desugaring for non_null arguments is shown schematically in
Figure 9.

An example of this desugaring is shown in Figure 10.
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spec-case1

also . . . also

spec-casen

modifiers1 V pure modifiers2 type-spec
method-head
method-body

⇒

addBody(addBody(spec-case1,
assignable \nothing;),

diverges false;)
also . . . also

addBody(addBody(spec-casen,
assignable \nothing;),

diverges false;)
modifiers1 V pure modifiers2 type-spec

method-head
method-body

Figure 11: Desugaring for pure instance and static methods.

/*@ public normal_behavior
@ requires key != null;
@ {|
@ requires key.id != null;
@ ensures \result != null;
@ ensures theMap.get(key)
@ == \result;
@ |}
@*/

public /*@ pure @*/ Object
fetch(Object key);

⇒

/*@ public normal_behavior
@ requires key != null;
@ {|
@ requires key.id != null;
@ diverges false;
@ assignable \nothing;
@ ensures \result != null;
@ ensures theMap.get(key)
@ == \result;
@ |}
@*/

public /*@ pure @*/ Object
fetch(Object key);

Figure 12: Example desugaring for pure.

3.3 Desugaring Pure

For a constructor, use of pure adds the clauses

diverges false;
assignable this.*;

to each specified spec-case for the constructor. These clauses mean that a pure constructor can assign
to all instance fields of the class, including all those inherited from superclasses.

If there are no specifications given for the constructor, then the above clauses are added to the
method as a lightweight specification. (Hence, if no specifications are given, the implicit precondition
is \not_specified.)

For an instance or static method (but not for constructors), use of pure adds the clauses

diverges false;
assignable \nothing;

to each given spec-case for the method. This is illustrated in Figure 11, which considers the method-
specification is not an extending-specification. If there are no specifications given for the method, then
the above clauses are added to the method as a lightweight specification.

An example of this desugaring is shown in Figure 12.
Notice that the translation leaves the modifier pure as a modifier on the desugared specification;

this is because that modifier is needed to allow the method to be called in assertions, and because it
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plays other roles in JML’s semantics. In particular, methods that overrride a pure method are also
pure, although such overrides do not need to use the pure modifier.

Another part of JML’s semantics for pure methods and constructors is that JML adds an implicit
verification condition that is not part of the method’s specification, but which must be satisfied by each
implementation of a pure method or constructor, to the effect that it cannot diverge when called. That
is, unless a call encounters an error, it must either return normally or throw an exception, even when
such a call does not satisfy the method’s precondition. For methods, this implicit verification condition
is similar to the following specification case [16, Section 2.3.1], except that one must remember that
it is only a condition to be verified, and cannot be used be used in verifying even private calls to the
method.

private behavior
requires true;
diverges false;
assignable \nothing;

The verification condition for constructors is analogous, except that, as usual, the assignable clause
used for the constructor is “assignable this.*;” instead.

3.4 Desugaring Empty Specifications

If at this point a method or constructor has an empty specification, then the specification defaults to one
that makes minimal assumptions. For purposes of this desugaring, the specification is considered empty
if it has no specification cases, even if it has examples or implications [18]. Note that a specification
that uses either pure or non_null will not be empty.

The desugaring first has to deal with the special case of a completely omitted default constructor for
a class. Following this, we discuss empty specifications for methods and constructors that are written
in the program.

If the default (zero-argument) constructor of a class is omitted because its code is omitted, then its
specification defaults to a lightweight specification consisting of an assignable clause that allows all the
locations that the default (zero-argument) constructor of its superclass assigns—in essence a copy of
the superclass’s default constructor’s assignable clause.2 Such an assignable clause makes the default
constructor verify, since it will call the superclass’s default constructor. If some other frame is desired,
then one has to write the specification, or at least the code, explicitly.

Otherwise, if the method or constructor whose specification is empty does not override another
method, then its meaning is taken as that in which all clauses are \not_specified [16], which is the
same as the following lightweight specification.

requires \not_specified;

Tools are permitted to make their own interpretations of what \not_specified means for various
clauses; for example, ESC/Java [10, 21, 8] interprets this to be essentially the same as the lightweight
specification “requires true;”.

However, if the method whose specification is empty overrides some other method, then its meaning
is taken to be the following lightweight specification [16].

also
requires false;

This somewhat counter-intuitive specification is the unit for also-conjunction of specifications [20].
This specification is used so as not to change the meaning of the inherited specification.

2 This copying from the superclass’s constructor’s specification is not modular, but JML has no syntax for writing
such a frame axiom directly.
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/*@ requires x > 0;

@ {|

@ requires x % 2 == 1;

@ ensures \result == 3*x + 1;

@ also

@ requires x % 2 == 0;

@ ensures \result == x / 2;

@ |}

@*/

int hailstone(int x);

⇒

/*@ requires x > 0;

@ requires x % 2 == 1;

@ ensures \result == 3*x + 1;

@ also

@ requires x > 0;

@ requires x % 2 == 0;

@ ensures \result == x / 2;

@*/

int hailstone(int x);

Figure 13: An example of a nested specification, on the left, with its desugaring, on the right.

3.5 Desugaring Nested Specifications

There are several forms of specification that allow nesting. This allows one to factor out common
declarations and requires clauses. Figure 13 gives a simple example.

In general, all the clauses in the top spec-header are copied into each of the nested spec-case-seqs.
For example, in Figure 13, the outer requires clause, “requires x > 0;”, is copied into the nested
specification cases. The only problem is that one has to be careful to avoid variable capture. To
do this, first rename the specification variables declared in the nested spec-case-seq (i.e., the bound
variables) so that they are not the same as any of the free variables in the outer spec-header.

In more detail, consider the schematic normal-spec-case at the top of Figure 14, which, assuming
no renaming is needed to avoid capture, is desugared to the one at the bottom.

The same kind of desugaring applies to a generic-spec-case and to an exceptional-spec-case.
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forall quantified-var-decl0,1; . . . forall quantified-var-decl0,f0;

old old-var-decl0,1; . . . old old-var-decl0,v0;

requires P0,1; . . . requires P0,rn0;

{|

forall quantified-var-decl1,1; . . . forall quantified-var-decl1,f1;

old old-var-decl1,1; . . . old old-var-decl1,v1;

requires P1,1; . . . requires P1,rn1;

normal-spec-case-body1

also . . . also

forall quantified-var-declk,1; . . . forall quantified-var-declk,fk;

old old-var-declk,1; . . . old old-var-declk,vk;

requires Pk,1; . . . requires Pk,rnk;

normal-spec-case-bodyk

|}

⇒

forall quantified-var-decl0,1; . . . forall quantified-var-decl0,f0;

forall quantified-var-decl1,1; . . . forall quantified-var-decl1,f1;

old old-var-decl0,1; . . . old old-var-decl0,v0

old old-var-decl1,1; . . . old old-var-decl1,v1;

requires P0,1; . . . requires P0,rn0;

requires P1,1; . . . requires P1,rn1;

normal-spec-case-body1

also . . . also

forall quantified-var-decl0,1; . . . forall quantified-var-decl0,f0;

forall quantified-var-declk,1; . . . forall quantified-var-declk,fk;

old old-var-decl0,1; . . . old old-var-decl0,v0;

old old-var-declk,1; . . . old old-var-declk,vk;

requires P0,1; . . . requires P0,rn0;

requires Pk,1; . . . requires Pk,rnk;

normal-spec-case-bodyk

Figure 14: Desugaring nested specifications in a normal-spec-case; note that renaming to avoid capture
is needed, but not shown.
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3.6 Desugaring Lightweight, Normal, and Exceptional Specifications

At this point, there are no nested spec-cases. We eliminate lightweight specification cases and normal
and exceptional behavior specification cases in favor of behavior specification cases in this step.

Lightweight specifications are desugared by filling the defaults for omitted clauses [16, Appendix A]
(most of which are simply “\not_specified”), and then prefixing the result with V behavior, where
V is the same as the visibility of the method being specified. This desugars a lightweight specification
to a behavior specification. An example of this process is given in Figure 15.

Each spec-case that starts with V normal_behavior is desugared to one that starts with V behavior
by inserting a signals clause of the form “signals (Exception e) false;” which says that no
exceptions can be thrown.

Similarly, spec-cases beginning with V exceptional_behavior are desugared to V behavior by
inserting the clause “ensures false;”, which says that the method cannot return normally. This
process leaves us with a single non-nested spec-case sequence, consisting solely of spec-cases that are
heavyweight-spec-cases that use the keyword “behavior”. (It is not necessary for the desugaring to fill
in the defaults for omitted clauses in such heavyweight specification cases [16, Appendix A], although
this could be done as well.)

However, these spec-cases may have different visibility, and for later processing it is convenient to
have the specification cases grouped by visibility level. So, combine all spec-cases with the same visibility
into a single heavyweight-spec-case. For each visibility, the resulting heavyweight-spec-case has a generic-
spec-body that is a generic-spec-case-seq, which contains each of the bodies of the heavyweight-spec-cases
with that privacy level, separated by the “also” keyword. Although there is nesting of a sort here,
it is not troublesome. This is because in each such heavyweight-spec-case the spec-var-decls and spec-
header are both empty, and the generic-spec-body is either a single simple-spec-body or consists of a flat
generic-spec-case-seq. This process leaves us with a spec-case-seq of up to four heavyweight-spec-cases
with the form described above, one for each privacy level.

A simple example of this desugaring is shown in Figure 16.
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//@ requires places > 0;

public int shift(int places);
⇒

/*@ public behavior

@ requires places > 0;

@ diverges false;

@ assignable \not_specified;

@ when \not_specified;

@ working_space \not_specified;

@ duration \not_specified;

@ ensures \not_specified;

@ signals_only \nothing;

@ signals (Exception e) \not_specified;

@*/

public int shift(int places);

Figure 15: An example of desugaring a lightweight specification, on the left, into a behavior specification,
on the right, by filling in defaults.

/*@ public normal_behavior

@ requires !empty();

@ ensures \result == theElems.header();

@ also

@ public exceptional_behavior

@ requires empty();

@ signals_only EmptyException;

@*/

public Object top() throws EmptyException;

⇒

/*@ public behavior

@ {|

@ requires !empty();

@ ensures \result == theElems.header();

@ signals (Exception e) false;

@ also

@ requires empty();

@ ensures false;

@ signals_only EmptyException;

@ |}

@*/

public Object top() throws EmptyException;

Figure 16: Example desugaring of normal behavior and exceptional behavior, on the left, to
behavior, on the right, and then grouping the resulting behavior specifications.
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Inherited specification:
V behavior

{|

spec-caseA1

also . . . also

spec-caseAk

|}

Extending specification:

also

V behavior

{|

spec-caseB1

also . . . also

spec-caseBn

|}

⇒

Combined specification:
V behavior

{|

spec-caseA1

also . . . also

spec-caseAk

also

spec-caseB1

also . . . also

spec-caseBn

|}

Figure 17: Desugaring for extending specifications with also.

3.7 Desugaring Inheritance and Refinement

To desugar inheritance and refinement, we form an effective specification that combines the effects of
inheritance and refinement; the effective specification is what one would have to write to get the same
meaning without using inheritance or refinement.

Each method may refine specifications of the same name and formal argument types from the file that
the current file refines. Similarly, each instance method may inherit specifications of instance methods
with the same name and argument types in its supertypes (superclass and implemented interfaces). As
described in the previous step, for each method, each inherited effective specification has up to four spec-
cases, one for each of the four visibility levels. In the effective specification that results from combining
the extending specification with these inherited specifications there are also up to four spec-cases, one
for each visibility level, again joined together with “also”.

An extending specification starts with “also” and may have spec-cases with each of the four vis-
ibilities. For each visibility level, V , we combine the inherited specification with the corresponding
spec-case of the extending specification, as shown in Figure 17.

The rules for combining specifications from refinements are slightly different from the rules for
combining specifications that are inherited from a supertype method specification. In the case of refine-
ments, all four visibility levels of specification are inherited by the extending specification. However,
when an inherited specification comes from a supertype, the private visibility specifications are not
inherited, and the package-visibility specifications are only inherited when the subtype is in the same
package as the corresponding supertype. Thus, when the subtype is in a different Java package than
the supertype, only the public and protected specifications are inherited.

In the process of copying inherited assertions from supertypes to subtypes, various kinds of renaming
must be done, in general. For example, if a subtype shadows instance fields declared in its supertypes,
then some renaming (e.g., changing f to super.f) is needed, in general, to avoid inadvertent capture
of the supertype’s field names. Similarly, if the formal parameter names are different in the subtype’s
overriding method, then renaming must be done on the inherited specifications to substitute that
override’s formal parameter names. In a refinement, JML requires that all refining specifications for a
given method use the same formal parameter names. The JML runtime assertion checker avoids these
renaming problems by using method calls to evaluate the inherited parts of a method specification
instead of copying predicates with renaming [6, 7].
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/*@ public behavior

@ assignable theElements;

@ assignable size;

@ ensures \old(size >= 2);

@ ensures size() == \old(size - 2);

@ signals (EmptyException ee)

@ \old(empty())

@ && ee != null;

@ signals (TooSmallException tse)

@ \old(size == 1)

@ && tse != null;

@*/

public void popTwice()

throws EmptyException, TooSmallException;

⇒

/*@ public behavior

@ assignable theElements;

@ assignable size;

@ ensures \old(size >= 2);

@ ensures size() == \old(size - 2);

@ signals (Exception e)

@ (e instanceof EmptyException)

@ ==>

@ (\old(empty())

@ && ((EmptyException)e) != null);

@ signals (Exception e)

@ (e instanceof TooSmallException)

@ ==>

@ (\old(size == 1)

@ && ((TooSmallException)e) != null);

@*/

public void popTwice()

throws EmptyException, TooSmallException;

Figure 18: Example of the desugaring that standardizes signals-clauses.

3.8 Standardizing Signals Clauses

At this point, there may be several signals-clauses in each spec-case, and each of these may describe
the behavior of the method when a different exception is thrown. To standardize these signals-clauses,
we make each describe the behavior when an exception of type Exception is thrown, and add a check
for the originally declared exception’s type. We also use a standard, but fresh, name for all exceptions,
which will allow the signals-clauses to be combined in the next step. (Although the name used must
be fresh to avoid capture, we use “e” in the desugaring rules below for conciseness.) This desugaring is
done as follows:

signals (ET n) P; ⇒ signals (Exception e) (e instanceof ET) ==> ([((ET)e)/n]P );

where the notation [((ET)e)/n]P means P with the cast expression ((ET)e) substituted for free
occurrences of n.

An example of this desugaring is shown in Figure 18.
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assignable SR1,1, . . . , SR1,n;

. . .
assignable SRk,1, . . . , SRk,m;

⇒
assignable SR1,1, . . . , SR1,n, . . . , SRk,1, . . . , SRk,m;

Figure 19: Combining multiple assignable-clauses.

signals_only Exception;

signals_only StackPushException;

signals_only IllegalArgumentException, StackException;

⇒
signals_only StackPushException;

Figure 20: Combining multiple signals-only-clauses.

3.9 Desugaring Multiple Clauses of the Same Kind

We next desugar multiple requires-clauses and multiple simple-spec-body-clauses of the same kind to
produce a specification with only one of each such clause. (See Figure 3 for definitions of these nonter-
minals.)

For the assignable-clauses, this process is very simple, and consists of joining together the lists from
each clause with commas. The scheme describing how the assignable-clauses within a specification case
are combined is shown in Figure 19.

For the signals-only-clauses, this process is also simple, but has an intersection instead of a union
semantics. That is, the combination lists just those exception types, ET , such that (a) ET is mentioned
in some signals only clause and (b) for each signals only clause, the exception ET is a subtype of
some type mentioned in that clause. If this results in no exception types being listed in the result, the
result uses the list \nothing. A concrete example of how the signals-only-clauses within a specification
case are combined is shown in Figure 20, assuming that StackException is a subtype of Exception,
and that StackPushException is a subtype of StackException.

For working-space-clauses and duration-clauses, multiple clauses of the same kind are combined into
a single such clause by first converting the if syntax into a conditional expression, and then taking the
minimum of the resulting expressions, the whole expression governed by an if which is the disjunction of
the original conditions.3 For example, the duration-clauses within a specification case are combined as
shown in Figure 21. (Again, if the “if” and the following predicate are omitted after a spec-expression,
“if true” is used as a default.)

For the other clauses, this process conjoins the predicates in each clause of the same type (within
a specification case). For example, for the requires-clauses, this is shown schematically in Figure 22.
Exactly the same technique is used for the when-clauses, ensures-clauses, and diverges-clauses. For
the signals-clauses things are marginally more complex, because each signals clause has a bit of extra
syntax. However, due to the processing in the previous step, the idea is the same, and is shown in
Figure 23.

An example of this desugaring step is given in Figure 24.
After this step, each generic-spec-case in the body of each of the up to four spec-cases has only one

clause of each type, and the signals-clauses all describe the behavior of an exception of type Exception
with the same name.

3 Thanks to David Cok and Steve Edwards for suggesting that the entire expression be governed by this disjunction.
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duration E1 if DE1;

duration E2 if DE2;

. . .
duration Ek−1 if DEk−1;

duration Ek if DEk;

⇒
duration Long.min((DE1 ? E1 : Long.MAX VALUE),

Long.min((DE2 ? E2 : Long.MAX VALUE),

. . .
Long.min((DEk−1 ? Ek−1 : Long.MAX VALUE),

(DEk ? Ek : Long.MAX VALUE) ) . . . ))

if ((DE1) || (DE2) . . . || (DEk−1) || (DEk));

Figure 21: The combination of multiple duration-clauses; the combination of working-space-clauses is
similar.

requires P1; . . . requires Pn; ⇒ requires (P1) && . . . && (Pn);

Figure 22: Combining multiple requires-clauses; the combination of ensures-clauses, diverges-clauses,
and when-clauses is similar.

signals (Exception e) P1; . . . signals (Exception e) Pn;

⇒
signals (Exception e) (P1) && . . . && (Pn);

Figure 23: Combining multiple signals-clauses.
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/*@ public behavior

@ assignable theElements;

@ assignable size;

@ duration 2*MC if MC>0;

@ duration 50*CT;

@ ensures \old(size >= 2);

@ ensures size() == \old(size - 2);

@ signals_only Exception;

@ signals_only EmptyException,

@ TooSmallException;

@ signals (Exception e)

@ (e instanceof EmptyException)

@ ==>

@ (\old(empty())

@ && ((EmptyException)e) != null);

@ signals (Exception e)

@ (e instanceof TooSmallException)

@ ==>

@ (\old(size == 1)

@ && ((TooSmallException)e) != null);

@*/

public void popTwice()

throws EmptyException, TooSmallException;

⇒

/*@ public behavior

@ assignable theElements, size;

@ duration Long.min(

@ (MC>0 ? 2*MC, Long.MAX_VALUE),

@ (true ? 50*CT, Long.MAX_VALUE))

@ if ((MC>0) || true);

@ ensures \old(size >= 2)

@ && size() == \old(size - 2);

@ signals_only EmptyException,

@ TooSmallException;

@ signals (Exception e)

@ ((e instanceof EmptyException)

@ ==>

@ (\old(empty())

@ && ((EmptyException)e) != null))

@ &&

@ ((e instanceof TooSmallException)

@ ==>

@ (\old(size == 1)

@ && ((TooSmallException)e) != null));

@*/

public void popTwice()

throws EmptyException, TooSmallException;

Figure 24: Example of the desugaring that eliminates multiple clauses of the same kind within a
specification case.
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/*@ public behavior

@ {|

@ requires elem >= 0;

@ assignable size, elems[*];

@ ensures \result == size

@ && size == old_size + 1

@ && ((0 <= i && i < old_size)

@ ==> elems[i] == \old(elems[i]))

@ && elems[size-1] == elem;

@ signals_only \nothing;

@ also

@ requires elem < 0;

@ assignable \nothing;

@ ensures false;

@ signals_only IllegalArgumentException;

@ |}

@*/

public Object push(int elem);

⇒

/*@ public behavior

@ {|

@ requires elem >= 0;

@ assignable size, elems[*];

@ ensures

@ \only_assigned(size, elems[*])

@ && (\result == size

@ && size == old_size + 1

@ && ((0 <= i && i < old_size)

@ ==> elems[i] == \old(elems[i]))

@ && elems[size-1] == elem);

@ signals_only IllegalArugmentException;

@ signals (Exception e) false;

@ also

@ requires elem < 0;

@ assignable size, elems[*];

@ ensures \only_assigned(\nothing)

@ && (false);

@ signals_only IllegalArgumentException;

@ |}

@*/

public Object push(int elem);

Figure 25: Example of making all assignable-clauses have the same frame, and all signals-only-clauses
have the same list of exceptions.

3.10 Make Assignable and Signals Only Clauses the Same

Before proceeding to the next step of combining spec-cases at each visibility level, we must have all
spec-cases have the same assignable-clauses (frames) [20]. If this were not done, the semantics of the
frames would not be preserved.

For very similar reasons, at this step we also make all the signals only clauses have the same list of
exceptions that may be thrown.

An example of this step is given in Figure 25.
The general process is described in Figure 26. Let SR be the union of all the lists of store-ref s in

the assignable clauses of the generic-spec-cases. (In taking unions, the store-ref-list \everything is the
universal set, and \nothing is the empty set.) Then each assignable clause in each generic-spec-case is
replaced by “assignable SR;”. Furthermore, for each i the normal and exceptional postcondition in
the ith generic-spec-case has \only_assigned(SRi) conjoined to it. This predicate records the original
intent of the frame for that specification case.

In this figure, let ETL be the union of all the lists of reference-types in the generic-spec-cases. Then
each signals only clause in each generic-spec-case is replaced by “signals only ETL;”. Furthermore,
for each i the exceptional postcondition in the ith generic-spec-case has false conjoined to it if the ith

signals-only-clause is “signals_only \nothing;” and otherwise, if the the ith signals-only-clause is

signals_only ETi,1, . . . , ETi,j;

then the ith exceptional postcondition has the predicate we write as “e instanceof ETLi,” conjoined
to it. This predicate stands for the disjunction

(e instanceof ETi,1 || · · · || e instanceof ETi,j)

This predicate records the original intent of the signals only clause for that specification case.
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V behavior

{|

forall-var-decls1

old-var-decls1

requires P1;

diverges T1;

assignable SR1;

when W1;

working space WSE1 if W1;

duration DE1 if D1;

ensures Q1;

signals only ETL1;

signals (Exception e) EX1;

also . . . also

forall-var-declsk

old-var-declsk

requires Pk;

diverges Tk;

assignable SRk;

when Wk;

working space WSEk if Wk;

duration DEk if Dk;

ensures Qk;

signals only ETLk;

signals (Exception e) EXk;

|}

⇒
V behavior

{|

forall-var-decls1

old-var-decls1

requires P1;

diverges T1;

assignable SR;

when W1;

working space WSE1 if W1;

duration DE1 if D1;

ensures \only_assigned(SR1) && (Q1);

signals only ETL;
signals (Exception e) \only_assigned(SR1) && (e instanceof ETL1) && (EX1) ;

also . . . also

forall-var-declsk

old-var-declsk

requires Pk;

diverges Tk;

assignable SR;

when Wk;

working space WSEk if Wk;

duration DEk if Dk;

ensures \only_assigned(SRk) && (Qk);

signals only ETL;
signals (Exception e) \only_assigned(SRk) && (e instanceof ETLk) && (EXk;

|}

Figure 26: Making assignable-clauses have the same frame. Here SR is the union of SR1 through SRk

and ETL is the union of ETL1 through ETLk.
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3.11 Desugaring Also Combinations

At this point, there is a effective single method specification, with at most one spec-case for each
visibility level. Within each visibilty level, the spec-cases in each generic-spec-case-seq have the same
frame and same signals only clause. So now, within each visibility level, we can desugar an internal
generic-spec-case-seq to eliminate the use of “also” (and hence the vestigial nesting) as shown in
Figure 27. This process disjoins the preconditions of the various specification cases within a visibility
level, and uses implications between each precondition (wrapped in “\old( )” where necessary) and
the corresponding predicate, so that each precondition only governs the behavior when it holds [31, 15].

There is one additional detail that needs to be mentioned about Figure 27 — when the specification
variable declarations are combined, there is the possibility of variable capture. To avoid capture, one
must do renaming in general.

An example of this desugaring is given in Figure 28.

4 Conclusion

We have defined a desugaring of JML’s method specification syntax into a semantically simpler form.
The end point of this desugaring is suitable for further formal study.

One area for future work is to disentangle the various desugaring steps, so that tools could use them
in any order. For example, one should be able to desugar multiple clauses of the same kind by using
the conjunction rule illustrated in Section 3.9 at any time. Allowing different orderings brings up the
possibility that applying the desugaring steps in different orders might produce different results; we
should try to prove that this cannot happen.

JML also has several redundancy features [15], for example, ensures_redundantly clauses, and the
implies_that and for_example sections in method specifications. These have no impact on most kinds
of semantics for JML, and instead serve to highlight conclusions for the reader. They can, however,
be used in debugging specifications [28, 29], and the conditions needed to check them also need to
be formally stated (as has been done to some extent for Larch/C++ [14, 15]). More to the point,
similar kinds of desugaring apply to at least the implies_that and for_example sections in method
specifications, and these should be investigated more systematically.

More challenging is giving a semantics to JML’s model programs, which are derived from the refine-
ment calculus [25, 2].
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for comments on earlier drafts.

A Definition of addHeaders and addBody

This section defines the auxiliary functions addHeaders and addBody, which are used to add precondi-
tions and body clauses to specification cases.

The addHeaders function is fairly simple, and just has to distinguish the 4 different kinds of speci-
fication cases, as shown in Figure 29.
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V behavior

{|

forall-var-decls1

old-var-decls1

requires P1;

diverges T1;

assignable SR;

when W1;

working space WSE1 if W1;

duration DE1 if D1;

ensures Q1;

signals only ETL;
signals (Exception e) EX1;

also . . . also

forall-var-declsk

old-var-declsk

requires Pk;

diverges Tk;

assignable SR;

when Wk;

working space WSEk if Wk;

duration DEk if Dk;

ensures Qk;

signals only ETL;
signals (Exception e) EXk;

|}

⇒
V behavior

forall-var-decls1 . . . forall-var-declsk

old-var-decls1 . . . old-var-declsk

requires (P1) || (P2) . . . || (Pk);
diverges ((P1) ==> T1) && . . . && ((Pk) ==> Tk);
assignable SR;

when (\old(P1) ==> W1) && . . . && (\old(Pk) ==> Wk);
working space Integer.min((\old(P1 && W1) ? WSE1 : Integer.MAX VALUE),

. . . , (\old(Pk && Wk) ? WSEk : Integer.MAX VALUE) . . . )
if ((P1 && W1) || . . . || (Pk && Wk));

duration Long.min((\old(P1 && D1) ? DE1 : Long.MAX VALUE),
. . . , (\old(Pk && Dk) ? DEk : Long.MAX VALUE) . . . )

if ((P1 && D1) || . . . || (Pk && Dk));

ensures (\old(P1) ==> Q1) && . . . && (\old(Pk) ==> Qk);
signals only ETL;
signals (Exception e) (\old(P1) ==> EX1) && . . . && (\old(Pk) ==> EXk);

Figure 27: Desugaring also combinations
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/*@ public behavior

@ {|

@ requires !empty();

@ ensures \result == theElems.header();

@ signals (Exception e) false;

@ also

@ requires empty();

@ ensures false;

@ signals (Exception e)

@ (e instanceof EmptyException)

@ ==> true;

@ |}

@*/

public Object top() throws EmptyException;

⇒

/*@ public behavior

@ requires (!empty()) || (empty());

@ ensures

@ (\old(!empty())

@ ==> \result == theElems.header())

@ && (\old(empty())

@ ==> false);

@ signals (Exception e)

@ (\old(!empty())

@ ==> false)

@ && (\old(empty())

@ ==> ((e instanceof

@ EmptyException)

@ ==> true));

@*/

public Object top() throws EmptyException;

Figure 28: Example of the desugaring that eliminates also.

addHeaders : spec-case× spec-header→ spec-case
addHeaders(V behavior generic-spec-case, R) =

V behavior R {| generic-spec-case |}
addHeaders(V exceptional_behavior exceptional-spec-case, R) =

V exceptional_behavior R {| exceptional-spec-case |}
addHeaders(V normal_behavior normal-spec-case, R) =

V normal_behavior R {| normal-spec-case |}
addHeaders(generic-spec-case, R) =

R {| generic-spec-case |}

Figure 29: Definition of addHeaders.

The addBody function is a bit more complex, as it has to recurse into the nested structure of
specification cases to find places where a simple-spec-body-clause may occur. It is defined in Figures 30
and 31.
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addBody : spec-case× simple-spec-body-clause→ spec-case
addBody(V behavior generic-spec-case, C) = V behavior addBody(generic-spec-case, C)
addBody(V exceptional_behavior exceptional-spec-case, C) =

if C is an ensures-clause
then V exceptional_behavior exceptional-spec-case
else V exceptional_behavior addBody(exceptional-spec-case, C)

addBody(V normal_behavior normal-spec-case, C) =
if C is a signals-clause
then V normal_behavior normal-spec-case
else V normal_behavior addBody(normal-spec-case, C)

addBody(generic-spec-case, C) = addBody(generic-spec-case, C)

Figure 30: First part of the definition of addBody, which is overloaded for different kinds of specification
case syntax.

28



addBody : generic-spec-case× simple-spec-body-clause→ generic-spec-case
addBody(spec-var-decls spec-header generic-spec-body, C) =

spec-var-decls spec-header addBody(generic-spec-body, C)
addBody(spec-var-decls spec-header, C) = spec-var-decls spec-header C
addBody(spec-header, C) = spec-header C
addBody(spec-header generic-spec-body, C) = spec-header addBody(generic-spec-body, C)
addBody(spec-var-decls generic-spec-body, C) = spec-var-decls addBody(generic-spec-body, C)
addBody(generic-spec-body, C) = addBody(generic-spec-body, C)

addBody : generic-spec-body× simple-spec-body-clause→ generic-spec-body
addBody(simple-spec-body, C) = C simple-spec-body
addBody({| generic-spec-case1 . . . generic-spec-casen |}, C) =

{| addBody(generic-spec-case1, C) . . . addBody(generic-spec-casen, C) |}

addBody : normal-spec-case× simple-spec-body-clause→ normal-spec-case
addBody(spec-var-decls spec-header normal-spec-body, C) =

spec-var-decls spec-header addBody(normal-spec-body, C)
addBody(spec-var-decls spec-header, C) = spec-var-decls spec-header C
addBody(spec-header, C) = spec-header C
addBody(spec-header normal-spec-body, C) = spec-header addBody(normal-spec-body, C)
addBody(spec-var-decls normal-spec-body, C) = spec-var-decls addBody(normal-spec-body, C)
addBody(normal-spec-body, C) = addBody(normal-spec-body, C)

addBody : normal-spec-body× simple-spec-body-clause→ normal-spec-body
addBody(normal-spec-clause1 . . .normal-spec-clausen, C) =

C normal-spec-clause1 . . .normal-spec-clausen

addBody({| normal-spec-case1 . . .normal-spec-casen |}, C) =
{| addBody(normal-spec-case1, C) . . . addBody(normal-spec-casen, C) |}

addBody : exceptional-spec-case× simple-spec-body-clause→ exceptional-spec-case
addBody(spec-var-decls spec-header exceptional-spec-body, C) =

spec-var-decls spec-header addBody(exceptional-spec-body, C)
addBody(spec-var-decls spec-header, C) = spec-var-decls spec-header C
addBody(spec-header, C) = spec-header C
addBody(spec-header exceptional-spec-body, C) = spec-header addBody(exceptional-spec-body, C)
addBody(spec-var-decls exceptional-spec-body, C) = spec-var-decls addBody(exceptional-spec-body, C)
addBody(exceptional-spec-body, C) = addBody(exceptional-spec-body, C)

addBody : exceptional-spec-body× simple-spec-body-clause→ exceptional-spec-body
addBody(exceptional-spec-clause1 . . . exceptional-spec-clausen, C) =

C exceptional-spec-clause1 . . . exceptional-spec-clausen

addBody({| exceptional-spec-case1 . . . exceptional-spec-casen |}, C) =
{| addBody(exceptional-spec-case1, C) . . . addBody(exceptional-spec-casen, C) |}

Figure 31: Second part of the definition of addBody.
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