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ABSTRACT
Push-button automation is an important milestone for ver-
ification systems and a likely requirement for mainstream
acceptance of the notion of “verified software”. Multiple,
logically-equivalent specifications may differ widely from the
standpoint of their ability to contribute to verifiable client
code. Using the types of problems considered at the VSTTE
2010 competition as motivation, we explore the specification
of the same programming concept (lists) using completely
different mathematical models. In each case we examine the
provability of client code based on that concept. Initial re-
sults from an experimental exploration are presented along
with some hypotheses for best-practices for specification de-
sign.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—Mechanical
Verification

General Terms
Experimentation, Theory, Verification

Keywords
mathematical modeling, mechanical verification, proofs

1. INTRODUCTION
A central problem in the ongoing quest for verified soft-

ware [10] is the difficulty verifying correctness of software
components automatically. There are indeed several success
stories of formal verification of non-trivial software (e.g., OS
kernel verification [13, 2],) in which proofs are developed
interactively with years of manual effort. Systems that al-
low for mechanical verification have nontrivial annotation
overhead per line of code and require manual guidance of
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the back-end prover to a verification proof (see, for exam-
ple, [1], [26], [17]). While some assertions in the form of,
for example, loop invariants, are mostly unavoidable, until
programmers are able to write code without large overtures
to the back-end prover, fully verified software development
processes are unlikely to gain widespread acceptance.

Specification abstractions are a key component in any ver-
ification system, providing the vocabulary of the specifica-
tion to the computer just as an idiom like “stack” or “dictio-
nary” provides the vocabulary of a specification to a human
programmer. This vocabulary is then used as the basis for
all operation specifications, program reasoning, and proofs.
However, multiple equivalid abstractions exist for any given
data structure and thus the choice of which abstraction to
use represents a design decision on the part of the specifier.

We seek to demonstrate that the same design decisions
that result in specifications that are readable and under-
standable to a human being also contribute to client code
that is easy to mechanically verify. We contrast this with
much of the literature, where these decisions seem to have
been made based on what yielded easy-to-prove implementa-
tions. While this is perhaps understandable since the focus
to date has been on verifying components, it is ultimately
the ease of client code verification that is most critical, since
verified software will be implemented only once but reused
many times.

In a modular verification system, only the specifications
(not the implementations) of subcomponents are used in ver-
ification of client systems. Given the prominent role of spec-
ification in such a modular verification system, the way in
which specifications are expressed has a major impact on
the provability of client code. Since modularity is main-
tained, verification effort put into a component need not be
repeated: a verified component is verified for all contexts.
Because a component need only be verified once but will
be used in many client contexts, where it will contribute to
the verifiability of that client, the component’s specification
must have broad utility. That is: effort spent verifying a
component is wasted if the specification of the component is
not generally useful as part of a verifiable client. This paper
therefore focuses on ways in which specifications contribute
(or fail to contribute) to the verifiability of clients.

The choice of specification style will impact proof obliga-
tions arising from client code independent of specification
language, programming paradigm, or proof logic. While de-
tails may change, there is no existing verification system
for which component specifications would not impart their
particular flavor on resulting proof obligations.



As our specific example, and the target of our preliminary
investigation, we have chosen a variant of two of the list-
based problems proposed at the VSTTE 2010 competition
[23] and we will present our examples using the RESOLVE
verification system [20].

Section 2 of the paper discusses background information
and contains a summary of the VSTTE 2010 competition
problems relevant for this paper. Section 3 presents the ba-
sic set up of the experiment. Section 4 discusses the metrics
used to quantify ease of provability. Section 5 presents the
concrete example and results with discussion. Section 6 dif-
ferentiates the effect of a component’s specification on client
code and the effect of a component’s specification on its
ability to be implemented. Section 7 considers related work
along with some of the solutions to the problems presented
at the competition. Section 8 contains our conclusions and
directions for continued research.

2. BACKGROUND

2.1 Technical Background
Formal verification systems follow a well established

pipeline. The primary inputs of the system are code in a
programming language and relevant specifications in a for-
mal specification language1. Many specification languages
exist. Some, like Z [25], are general purpose and applied
to many programming languages. Some, like JML [16] are
built on top of existing, industrial languages (in this case,
Java). Others like Dafny [17], Spark[3], and RESOLVE are
integrated. A detailed discussion of the RESOLVE system
along with a comparison with several others may be found
in [20].2

To verify the correctness of the code, a number of proof
obligations will need to be met. Obviously, the postcondi-
tion of the code that is under verification needs to be proved.
In addition, each operation call with a precondition must be
checked; invariants must be enforced; and termination must
be established. In data abstraction verification, representa-
tion invariants must be verified. Each of these proof obliga-
tions is transformed into a mathematical assertion called a
Verification Condition (VC). A VC takes the form of an im-
plication. In this paper we’ll present them in the following
format:

A and

B and

C

======================>

D

This should be read “Given A and B and C, prove D.”
Finally, VCs may be discharged either by hand, with the

use of a proof assistant such as Coq [18], or by an auto-
mated prover like Yices [6]. Automated provers come in
two primary flavors: SMT solvers, which operate very effi-
ciently on pre-defined, finite, first-order logics; and algebraic

1Along with definitions and results from mathematical de-
velopments that form the basis for these specifications.
2We contrast these systems, which are capable of full func-
tional specification, with model checking systems, which are
primarily focussed on verification of restricted properties of
software. Because the latter generally do not require ab-
stractions for full behavioral specification, they are less af-
fected by this design choice.

provers, which mimic human proving and are more flexi-
ble, but slower. Languages such as RESOLVE that support
higher order logics require provers of the latter flavor3.

The prover (whether human or computer) is supported
by mathematical theorems organized into theories. There
might be a theory of Integers, Sequences, and others, each
containing hundreds of individual theorems. If a system is
to remain sound, these theorems must themselves be proved,
either by automatic means, or by a user-supplied, mechani-
cally checked proof [22].

2.2 Experiment Background
At the VSTTE 2010 conference, a competition was held

allowing teams to submit verified solutions to a set of prob-
lems. The problems and proposed solutions are available
at [23]. Among these are two problems that involved client
code using a linked list. Problem 3 involved searching a
linked list for an element with a given value, while problem
5 involved implementing an amortized queue built on top
of two linked lists. Verification in both these cases requires
some mathematical conceptualization of lists.

Our goal in this paper is to consider several different
models of the same data abstraction, Cursor_List, which
conceptualizes a singly linked list, and analyze how these
models—all of which are logically-equivalent—affect the prov-
ability of client code, such as that used at the VSTTE 2010
competition.

3. SPECIFICATION ABSTRACTIONS
A specification abstraction (which goes by many other

names including conceptual model and formal idiom) is sim-
ply a mapping of the programmatic realities of a data struc-
ture like a dictionary or a stack to a mathematical abstrac-
tion such as a function or a set. The specification of op-
erations is then given in terms of this abstraction. While
verification systems differ in the level of rigor afforded to
these abstractions and the degree to which these abstrac-
tions are separated from programmatic constructs, all mod-
ern systems use this technique.

We wanted to explore the choice of abstraction and its im-
pact on the resultant VCs, so we chose a single data struc-
ture and specified it using multiple equivalent abstractions.
For our data structure, we chose a list of elements, param-
eterized by type, with a movable cursor representing the
insertion point. We will refer to this data structure as a
Cursor_List.

The first abstraction we will consider is the most complex.
Much of the separation logic literature chooses to maintain
details such as pointer reasoning in the specification of data
structures. As a baseline, we therefore include a specification
of a Cursor_List as a linked list, including all details of
pointer logic.

Two more abstractions seem immediately plausible. The
first is to abstract the cursor list as a pair of mathematical
sequences: one containing those elements before the cur-
sor and another containing those after. As the cursor is
advanced, elements are transferred from the latter to the
former. Insertion simply adds an element to the front of the
sequence containing those elements after the cursor. The
other representation is to abstract the list as a single math-

3They could, of course, be equipped with less general solvers
where those are adequate, as explained in [20].



ematical sequence and an integer that indicates before which
index the cursor resides. Now advancing is viewed simply
as increasing the cursor position integer and insertion cuts
the sequence in two at the indicated index, inserts the new
element, and glues the full sequence back together.

Finally, we take an abstraction used in a recent result from
the data structure verification literature. In [26] the Jahob
team discusses verifying linked data structures implemented
in Java using the Jahob system. Among the verified struc-
tures is a Cursor_List, which is available from their website,
in which a pair of sequences is used for the abstraction: one
containing all of the elements and the other containing only
those after the cursor4.

Figure 1 provides a graphical representation of each of
these abstractions. As our platform for experimentation,
we have chosen to use the RESOLVE verification system.
However, we note that each abstraction could be specified
in any specification language for any system and that in
any of these systems, changing the specification abstraction
would have comprehensive impact on the resulting VCs.

4. VC METRICS
To date when verification efforts have been compared in

the literature, the most common metric has been time. Un-
fortunately, time is dependent on both the system on which
the verification is run and the conditions of the individual in-
stantiation. In addition, it can only be used to compare ver-
ification efforts that terminate. Nothing can be said about
theorems that are clearly true but unable to be proved by a
particular system. Finally, time does not permit a compar-
ison between different systems. While it’s a fine metric if
we seek to better understand the performance of automated
provers, it does not meet our requirements if, as in this pa-
per, we seek to draw general conclusions about the objective
qualities of a theorem in a prover-independent way.

Little work is available that explores any other metric.
In [12], VC complexity is measured based on two dimen-
sions: number of antecedents required as part of the proof
(recall that VCs are mathematical implications) and the
scope of any outside theorems required (whether basic theo-
rems from logic, definitions provided in the specification, or
programmer-supplied theorems).

Unfortunately, for our purposes this metric is not as use-
ful: in particular, as we do not permit definitions to be used
in proofs, one of the three classes becomes empty, and be-
cause we hardcode only the barest minimum of logic, the
distinction between “basic logic” and “programmer-supplied
logic” becomes extremely cloudy.

We have explored other metrics that provide objective in-
formation about the difficulty of a VC. For example: a VC
can be given a value representing the reusability of the theo-
rems used to prove it. VCs that require only theorems that
many other VCs also require may be considered easier as
they ultimately require less theory development. Similarly,
the number of proof steps required gives some meaningful in-
formation about the complexity of the required proof search.

The former metric, while interesting, requires a large cor-
pus of data to be meaningful. Because this work is only
preliminary, we have instead focussed on the latter: number

4The reality of the model is significantly more complex and
for the full details we direct the reader to [11]. However,
this simplification suffices for our purposes here.

of proof steps required.
Clearly all three of these alternative metrics are most in-

dicative of the likely success of algebraic-style provers. Met-
rics more suited for SMT solvers would likely include number
of unique variables and complexity of involved definitions.

We choose to focus on algebraic complexity for two rea-
sons: first, for an extensible system, higher-order definitions
and theorems, as well as user-defined mathematical types,
are a must, and SMT solvers are ill-suited in these situations;
second, many existing systems that rely on SMT solvers ei-
ther incorporate algebraic simplification as a pre-processing
step (like Z3) or use a myriad back-end provers, some of
which include algebraic provers (like Jahob). We are hope-
ful that deeper understand of how algebraic proof-strategies
can inform specification design will net wide-ranging bene-
fits, even for systems that primarily use SMT solvers.

5. EXPERIMENTS
Our experiments focused on a Cursor_List, a list into

which the client is provided a cursor that can be moved
forward (but not backward) and reset to the beginning. In-
serts and deletes occur at the cursor location. As our client
code example, we used a recursive reversal implementation
(a subproblem of problem 5 in the VSTTE competition).
We then analyzed the effect of Cursor_List’s mathemati-
cal model on ease of verification using the RESOLVE [21]
system.

Because the Reverse() implementation remained constant,
the same eight VCs were generated each time, corresponding
to the same eight proof obligations. However, the nature of
these VCs differed based on the Cursor_List specification
that had been used to generate them.

Armed with multiple versions of the Reverse() VCs, the
final step was to prove them by hand5 and draw some con-
clusions about their relative difficulty.

To control for the fact that there is a significant amount
of subjectivity in deciding what constitutes a “step” in a
proof—after all, each VC could simply be stated as a the-
orem, making each proof length 1—we established the fol-
lowing guidelines for our theorems:

Be atomic. A theorem should not be considered a single
step if it could be decomposed into multiple smaller theo-
rems, unless doing so avoids breaking the next guideline:

Do not introduce functions unnecessarily. While it is cer-
tainly true that all of the mathematics expressed in the VCs
could be reduced via theorems to set theory or the lambda
calculus, then manipulated in that most basic theory, it
stands to reason that VCs are best viewed at the level of
abstraction that generated them. Consider these theorems:

Theorem:

For all E : Entry, |<E>| = 1;

Theorem:

For all S, T : String(Entry),

|S o T| = |S| + |T|;

We could certainly use these along the path to proving
a fact like |S o <E>| > |S|, but by this guideline it would
be acceptable to include this fact itself as a theorem, since

5Most of the resulting VCs are easily dispatched by an au-
tomated prover. However, few provers are equipped to find
the shortest such proof, a key part of this experiment.



Figure 1: Equivalent specification abstractions for a Cursor_List. (a) As a set of linked nodes with a pointer
to the node before the insertion point. (b) As two sequences, one containing elements before the cursor and
the other after. (c) As a single sequence and an index to the element before the insertion point. (d) As two
sequences, one containing all the elements, and the other containing those after the cursor.

it it the most atomic way of expressing that idea without
introducing the + function.

5.1 Pointer Model
First, we present abstraction (a) from Figure 1, which rep-

resents a Cursor_List as in much of the verification litera-
ture: using pointers. We use a theory of abstract Locations,
where each location takes a value from a set with a cardi-
nality that parallels memory capacity. We do not use Z
to model our pointers (a typical alternative) as we seek to
disallow pointer arithmetic. The resulting concept is an ex-
ample where the mathematical modeling in a specification
is influenced by implementation internals.

Concept Location_Based_List_Template(

type Entry);

uses Std_Integer_Fac, Function_Theory,

Location_Theory;

(* Some definitions elided for brevity. *)

Definition Void: Location;

Var Entries: Location -> Entry;

Var Target: Location -> Location;

Var Is_Used: Location -> B;

constraints not Is_Used(Void);

initialization

for all L: Location,

Target(L) = Void and

((L /= Void) implies not Is_Used(L));

Type Family List is modeled by (

First, Cursor, Last: Location);

exemplar L;

constraints

Is_Reachable_from(

L.First, L.Cursor) and

Is_Reachable_from (

L.Cursor, L.Last) and ...

(* other constraints elided *)

initialization

ensures L.First = Void and

L.Cursor = Void and L.Last = Void;

(* finalization clause elided *)

Operation Advance(updates L: List);

preserves Entries, Target, Is_Used;

requires Target(L.Cursor) /= Void;

ensures If L.Cursor /= L.First then

L.First = #L.First and

L.Last = #L.Last and

L.Cursor =

#Target(#L.Cursor) and ...

(* further ensures elided *)

Operation Insert(alters E: Entry;

updates L: List);

updates Entries, Target, Is_Used;

ensures

If L.First /= Void then

(there exists New_Pt: Location,

not #Is_Used(New_Pt) and

Is_Used(New_Pt) and

Entries(New_Pt) = #E and

L.Cursor = #L.Cursor and

L.Last = #L.Last and

L.First = #L.First and

Function_Same_Except_at(

Entries, #Entries, {New_Pt}) and

Target(New_Pt) = #Target(L.Cursor) and

Target(L.Cursor) = New_Pt and

Function_Same_Except_at(Target,

#Target, {L.Cursor, New_Pt} and ...

(* further ensures elided *)

(* Other operations elided for brevity. *)

end;

In a RESOLVE specification, types are introduced in the
context of a Concept, which provides the conceptualizations
of those types and the specifications for related operations
but no implementing code. Note that this concept is pa-
rameterized by a type called Entry, comparable to a generic
in Java. A Family introduces a conceptual type which may
have multiple concrete realizations. The clause exemplar L;

simply introduces a name for the prototypical Cursor_List



used in the assertions of the Family definition. #L.First is
RESOLVE notation for the value of L.First at the begin-
ning of the function call. Also on display are RESOLVE’s
parameter passing modes, which summarize the effect an
implementation is permitted to have on each parameter—
parameters that are updated will have meaningful incoming
values and may be changed in a meaningful way by the op-
eration, parameters that are cleared will have meaningful
incoming values, but will be changed to an initial value by
the end of the call, and parameters that are replaced have
their input values ignored and overwritten with result val-
ues.

For the purposes of this paper, in the specification of the
Insert operation it is irrelevant whether the inserted entry
is specified to be preserved (meaning it remains the same),
cleared, or altered (meaning the result value is unspecified).
The motivation for avoiding copying (and thus preserving)
generic type objects is discussed in [8].

One other principle in [8], however, is relevant: in RE-
SOLVE, swapping, not reference or value assignment, is the
basic data moving operation and is available on all objects
implicitly. So by design, the question of specifying or rea-
soning about copying a list by reference assignment does not
arise in the discussions in this paper.

In the specification above, we define a specific, named
Location, Void, which will serve as the null location. The
state space shared by lists is directly modeled in the spec-
ification using three shared, conceptual variables, Entries,
Target, and Is_Used. The variable Is_Used is modeled as
a predicate and it indicates whether or not a location is al-
ready in use. The variable Target is a mapping to the “next
linked” location and the variable Entries maps a location
to the entry. Note that the constraints disallow Void from
ever becoming allocated and the initialization ensures that
all links by default point to Void. For more details, we direct
the interested reader to [14].

This specification is not fully abstract [24]. The specifica-
tion of the Advance operation, which interestingly leaves the
entire frame unchanged, is straightforward. The specifica-
tions of the Insert and Remove operations are more involved
and must include frame-related properties because the con-
ceptual state space is selectively affected. The specification
expressions can be simplified with separation logic [19], data
refinement [7], or some equivalent. However, verification will
still require appropriate frame properties to be proved for
the user code. We have not attempted to compare the proof
of VCs arising from using this specification with others, be-
cause it is much more complex. The existential quantifier,
at a minimum, is a hindrance to automated verification, un-
less user code is documented with suitable witnesses in some
form.

In general, introduction of conceptual or shared space
adds a non-trivial complexity to specification and corre-
sponding verification. For this reason, it is more appropriate
to abstract programming objects along the lines discussed in
the next three models, encapsulating these kinds of details
inside implementations.

5.2 Before and After Model
Next, we examine abstraction (b) from Figure 1: a before

and after sequence. In RESOLVE, a String captures pre-
cisely the particulars of what is most commonly meant by
“sequence”.

As an example of the style of specification, here is a snip-
pet of the (String * String) version:

Concept Two_Strings_Cursor_List_Template(

type Entry);

uses Std_Integer_Fac, String_Theory;

Family Cursor_List is modeled by

Cart_Prod

Before, After: String(Entry);

end;

exemplar P;

initialization

ensures P.Before = empty_string and

P.After = empty_string;

Operation Advance(updates L : Cursor_List);

requires L.After /= empty_string;

ensures L.Before =

#L.Before o <First(#L.After)> and

L.After = All_But_First(#L.After);

Operation Insert(clears New_Entry : Entry;

updates L : Cursor_List);

ensures L.Before = #L.Before and

L.After = <#New_Entry> o #L.After;

Operation Remove(

replaces Entry_Removed : Entry;

updates L : Cursor_List);

requires L.After /= empty_string;

ensures L.Before = #L.Before and

L.After = All_But_First(#L.After) and

Entry_Removed = First(#L.After);

(* Further operations elided for brevity *)

end;

The o operator is string concatenation. <e> indicates the
string containing the sole element e.The high-level defini-
tions All_But_First and First have the obvious meanings.

An implementation of Reverse on lists was created using
this list specification. Here is the specification and an im-
plementation:

Operation Reverse(updates S : Cursor_List);

requires S.Before = empty_string;

ensures S.Before = Rev(#S.After) and

S.After = empty_string;

Procedure Reverse(updates S : Cursor_List);

decreasing |S.After|;

Var temp: Entry;

if After_Length(S) > 0 then

Remove(temp, S);

Reverse(S);

Insert(temp, S);

Advance(S);

end;

end;



Note that the procedure contains a decreasing clause: RE-
SOLVE demonstrates total correctness using progress met-
rics such as these. Rev() is a mathematical function for
reversing a string; it is a definition only and is not backed
up by any kind of executable code.

After compiling this with the RESOLVE VC generator, 8
VCs are created, corresponding to the various proof obliga-
tions in the code. As an example, consider this VC arising
from establishing the postcondition of Reverse (for one path
through the code) at the end of the procedure:

((((((min_int <= 0) and

(0 < max_int)) and

S.Before = empty_string) and

P_val = |S.After|) and

(|S.After| > 0)) and

Entry.is_initial(First(S.After)))

==================>

(Rev(All_But_First(S.After)) o

<First((<First(S.After)> o

empty_string))>) =

Rev(S.After)

The consequent of this implication reduces to:

(Rev(All_But_First(S.After)) o <First(S.After)>) =

Rev(S.After)

Which is simply a tautology. We may thus dispatch this
VC simply using a few well-designed theorems. The remain-
ing VCs are, for the most part, simpler than this one.

5.3 List and Position Indicator Model
Now we tackle abstraction (c) from Figure 1: a single

sequence with an integer index. This (String * Z) model
leads to a specification of the same operations from before
like this:

Concept Integer_Pointer_Cursor_List_Template(

type Entry);

uses Std_Integer_Fac, String_Theory;

Family Cursor_List is modeled by

Cart_Prod

Entries : String(Entry);

Insertion_Point : Z;

end;

exemplar P;

constraint

P.Insertion_Point <= |P.Entries| and

0 <= P.Insertion_Point;

initialization

ensures P.Entries = empty_string and

P.Insertion_Point = 0;

Operation Advance(updates L : Cursor_List);

requires L.Insertion_Point < |L.Entries|;

ensures L.Entries = #L.Entries and

L.Insertion_Point =

#L.Insertion_Point + 1;

Operation Insert(clears New_Entry : Entry;

updates L : Cursor_List);

ensures L.Entries = Left_Substring(

#L.Entries, #L.Insertion_Point) o

<#New_Entry> o Right_Substring(

#L.Entries, #L.Insertion_Point) and

L.Insertion_Point = #L.Insertion_Point;

Operation Remove(

replaces Entry_Removed : Entry;

updates L : Cursor_List);

requires L.Insertion_Point < |L.Entries|;

ensures L.Entries =

Left_Substring(

#L.Entries, #L.Insertion_Point) o

Right_Substring(

#L.Entries,

#L.Insertion_Point + 1) and

Entry_Removed =

Element_At(

#L.Entries, #L.Insertion_Point) and

L.Insertion_Point = #L.Insertion_Point;

(* Further operations elided for brevity *)

end;

Here, |S| denotes the length of the string S. The defini-
tion Left_Substring(s, x) returns the first x elements of s,
Right_Substring(s, x) returns the substring of s starting
at element x and continuing to the end, and Element_At(x)

returns the element at index x.
First, note that the change in specification does not

impact any implementation—a working implementation of
Cursor_List is still a working implementation under either
the specification from Section 5.2 or the one in this section.

It is also interesting to note that the model from Section
5.2 leads to a much more succinct specification of at least the
Remove() operation, while the model in this section leads to
a somewhat more succinct Advance() operation.

Because the model has changed, the specification of
Reverse() (but not its implementation6) must change to
follow suit. Here is what the specification looks like under
this new model:

Operation Reverse(updates S : Cursor_List);

requires S.Insertion_Point = 0;

ensures S.Entries = Rev(#S.Entries) and

S.Insertion_Point = |#S.Entries|;

Given these two different mathematical models of a list,
we are able to compare how easily they contribute to a ver-
ified Reverse operation. The number of steps required for a
proof are shown in Table 1.

Clearly, the (String * Z) model consistently requires
more steps than the (String * String) one. For the cul-
prit, consider VC 27 (which happens to correspond to estab-
lishing termination of Reverse()’s recursion), as generated
using the former model:

6Save for the progress metric, which is a mathematical as-
sertion embedded in the implementation.
7Irrelevant conjuncts have been removed from this and fu-
ture VCs for brevity.



Table 1: Proof steps for (String * String) model vs.
(String * Z) model.

Steps
(S * S) (S * I)

VC 1 3 3
VC 2 3 9
VC 3 1 1
VC 4 2 9
VC 5 5 10
VC 6 2 2
VC 7 4 4
VC 8 3 3

(|S.Entries| - 0) > 0

==================>

((|Left_Substring(S.Entries, 0) o

Right_Substring(S.Entries, (0 + 1))| - 0) <

(|S.Entries| - 0))

A full four of the nine required steps are devoted to elim-
inating spurious zeros and another two determining that
the concatenation of Left_Substring(S.Entries, 0) adds
nothing to the final sequence. Nonetheless, these obvious
steps must be taken by the prover to reveal an otherwise
straight-forward proof.

5.4 List and Remaining Model
Finally, we explore abstraction (d) from Figure 1: two se-

quences of elements, the first representing all the elements
and the second representing those elements after the cursor.
This model was taken from [26], where presumably it was
chosen because it corresponds closely to their linked list im-
plementation. The list starting at the head and continuing
to the end could be mapped directly to the “all elements”
sequence, while the list starting at the cursor position and
continuing to the end could be mapped directly to the “ele-
ments after the cursor” sequence.

Choosing an abstraction because it eases implementation
verification is not, in and of itself, an invalid strategy if com-
ponent verification is the sole goal. However, we hypothe-
size that more constrained models will complicate a verified
component’s ability to be used as part of client code that
is itself verifiable, an essential property in any verification
system that is to scale [21].

In particular, notice that this abstraction places a number
of implicit constraints on the relationship between the two
sequences. The sequence of remaining elements must be a
subsequence of the sequence of all elements. Additionally,
this subsequence must continue until the end of the sequence
of all elements.

To explore the effects of such an implicitly contrained
model, we created a similarly specified Cursor_List using
RESOLVE, yielding this specification:

Concept Jahob_Cursor_List_Template(

type Entry);

uses Std_Integer_Fac, String_Theory;

Family Cursor_List is modeled by

Cart_Prod

All, Remaining: String(Entry);

end;

Table 2: Proof steps for unconstrained
(String * String) model vs. constrained.

Steps
Unconstrained Constrained

VC 1 3 3
VC 2 3 3
VC 3 1 4
VC 4 2 2
VC 5 5 8
VC 6 2 2
VC 7 4 4
VC 8 3 3

exemplar P;

initialization

ensures P.All = empty_string and

P.Remaining = empty_string;

Operation Advance(updates L : Cursor_List);

requires L.Remaining /= empty_string;

ensures L.All = #L.All and

L.Remaining =

All_But_First(#L.Remaining);

Operation Insert(clears New_Entry : Entry;

updates L : Cursor_List);

ensures L.Remaining =

<#New_Entry> o #L.Remaining and

L.All = Left_Substring(#L.All,

|#L.All| - |#L.Remaining|) o

<#New_Entry> o #L.Remaining;

Operation Remove(

replaces Entry_Removed : Entry;

updates L : Cursor_List);

requires L.Remaining /= empty_string;

ensures L.Remaining =

All_But_First(#L.Remaining) and

L.All = Left_Substring(#L.All,

|#L.All| - |#L.Remaining|) o

All_But_First(#L.Remaining) and

Entry_Removed = First(#L.Remaining);

(* Further operations elided for brevity *)

end;

As before, this necessitates reconceiving our Reverse()

specification:

Operation Reverse(updates S : Cursor_List);

requires S.All = S.Remaining;

ensures S.All = Reverse(#S.All) and

S.Remaining = empty_string;

The difficulty of proving each VC resulting from using
this model with the Reverse() client code is summarized in
Table 2 against the results for our original, unconstrained,
(String * String) model.

Consistent with our intuition, the constrained version re-
quires significantly more steps for two of the VCs (VC 3
and VC 5, corresponding to establishing the precondition



on the recursive call to Reverse() and establishing the final
correctness of Reverse() on non-empty input, respectively.)

For purposes of discussion, consider VC 5 from the con-
strained model, reproduced here:

...

==================>

(Left_Substring(S.Remaining,

(|S.Remaining| - |S.Remaining|)) o

All_But_First(S.Remaining)) =

All_But_First(S.Remaining)

First notice that this is simply a tautology.
The entire Left_Substring(...) clause reduces
to empty_string, which can then be eliminated,
leaving us with All_But_First(S.Remaining) =

All_But_First(S.Remaining).
This VC corresponds to the precondition on the recursive

call to Reverse(), which states that the cursor must be at
the beginning of the list. In the case of the unconstrained
version, the rationale is straightforward: when the outer call
to Reverse() occurred, the precondition held, and nothing
has happened that might change S.Before, so it still holds.
Here, however, we cannot reason directly about those things
before the cursor, so we are left reconstructing the value of
S.All, then comparing it to S.Remaining, leading to the
increase in complexity of the VC.

While this small experiment is insufficient to draw any
broad conclusions, we find some support to warrant further
investigation.

6. IMPLEMENTATION VERIFICATION
Ultimately, list implementations themselves have to be

verified against the list specification, regardless of how it is
conceptualized. Assuming that a list is represented inter-
nally in a form close to the mathematical modeling given in
section 5.1 (with a structure that includes first, cursor, and
last pointers), it may be easy to verify it against the“pointer”
modeled specification. To verify against other specifica-
tions, abstraction functions (or relations) that relate the in-
ternal representations with the abstract models would be
necessary. Verification of such data abstraction implemen-
tations, in general, will involve multiple mathematical the-
ories. However, such verification needs to happen only once
for a component implementation. Verification of much soft-
ware will be at the client end—the focus of the paper—so
the specifications should be tuned to ease that verification
task.

The complexity of the list specification in version 5.1 should
be ideally moved down to the specification of a pointer con-
cept, as explained in [14]; once such a pointer concept and a
suitable mathematical specification of lists (such as those in
Sections 5.2, 5.3, or 5.4) are available, then it becomes pos-
sible to implement the list concept using the pointer concept
and contain the verification complexity to that component.

7. RELATED WORK
While, to our knowledge, this is the first experimental

exploration of alternative specification formulations in the
literature, Hatcliff et al. [9] evaluate multiple specification
systems (i.e., choices made at the language level) with re-
spect to frame properties. This work includes interesting

general discussion comparing the systems. Each is eval-
uated in terms of three criteria: abstraction, which mea-
sures to what degree heap properties are given in a device-
independent way; reasoning, the degree to which clean, au-
tomatic reasoning is encouraged; and framing, the degree to
which disjoint state spaces affected by code may be identi-
fied and expressed. Examples are provided for each style in
a different language that exemplifies that specification style,
and general discussion follows.

Among the systems discussed in detail [9] are Dafny[17]
and Spec#[5], both of which are built on Boogie[4]. The
former is an experimental research language, while Spec# is
a superset of C# augmented with a specification language.

Another system mentioned in this paper is Jahob: an at-
tempt to verify programs written in the Java language, cap-
turing all Java complexity. It targets a large range of prover
backends. Perhaps most relevant to this paper are the ex-
citing result from the Jahob team in [26], in which linked
data structures were fully verified using automatic means.
However, by contrast to the goals of our research, sizable
annotations and significant reasoning about the back-end
provers were required on the part of the programmer in or-
der to accomplish this.

The motivation for specifying linked list behavior with an
abstraction is the topic of [15]. Though it does not contain
a specification such as the one in Section 5.1, it illustrates
potential difficulties in specifying a splice procedure and its
invariant. The recent work in [7] contains a detailed dis-
cussion of client-end reasoning difficulties in the presence of
pointers, but the (partial) solution proposed there concerns
how client programs need to be written and not how math-
ematical models may be used for abstract specification.

8. CONCLUSION
The results of this preliminary experiment have sparked

our interest in continuing with a comprehensive evaluation
over multiple concept specifications. For this small result, it
seems the reality is consistent with intuition, though much
more work is needed to determine if this is generally true for
different kinds of components and client procedures.

For future work, we would like to experiment with speci-
fication differences that are not limited to choice of abstrac-
tion. For example, the same facts can be encoded in func-
tional or implicit style, which is likely to have an impact on
client provability.

In addition, much of the complication inherent in experi-
ments such as this one arise from the necessity to prove VCs
by hand. In the future, we hope to develop RESOLVE’s
integrated prover so that it is able to categorize VCs me-
chanically.

Ultimately, we hope to arrive at programming-independent
specification design guidelines for software component devel-
opers, so that avoidable obstacles to automated verification
are systematically eliminated.
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