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ABSTRACT
A novel programming language construct, restrictions, pro-
vides a mechanism to document abstract invariants of pro-
gram variables and also may simplify program correctness
proofs of the use of components. Examples illustrating the
use and utility of restrictions are presented.

1. INTRODUCTION
It has long been claimed in some circles that software profes-
sionals cannot be expected to write mathematically rigorous
descriptions of their code such as formal specifications and
loop invariants [1]. This contention arguably underestimates
the capabilities of software professionals—after all, most of
them have not been taught either why or how to write such
annotations, so it is not surprising they are currently un-
equipped to do so. Nonetheless, the perception has led to
exploration of some promising mitigating techniques that
might be useful under a verified software paradigm. One
approach involves inferring invariants (e.g., loop invariants)
either by dynamic or static analysis of code [2, 3, 4, 5, 6].
A complementary approach involves minimizing what needs
to be written in mathematical language by providing spe-
cial syntax for certain situations: syntax that looks more
familiar and code-like to software developers. For instance,
rather than demanding that the post-condition of an opera-
tion include a clause like x’ = x, x = old(x) or x = #x to
specify that the value of x does not change, most specifi-
cation languages have tailor-made syntax for documenting
this. JML [7] uses a modifies clause to list operation pa-
rameters whose values the parameters point to might be
changed during the operation body. RESOLVE [8] offers
(among others) a restores parameter “mode” to state that
an operation parameter, while it might change temporarily
during the body of the operation, has the same value at the
end of the operation body as it had at the beginning.

Such mechanisms incrementally reduce the mathematical
annotation burden for the software professional. It is not
yet clear how effective the invariant-inference approach will

be under a verified software paradigm for component-based
software; when automated verification does not succeed, it
will be critical for a human to understand these invariants
in order to repair the code, the annotation or both. This
means that inferred invariants should be not only techni-
cally correct but also comprehensible to the software profes-
sional, who will ultimately be responsible for at least reading
and likely for modifying formal mathematical descriptions of
software behavior. Some human input into writing invari-
ants and other assertions therefore seems unavoidable.

This paper describes a modest advance down the special-
syntax path: providing language constructs to reduce the
annotation burden. It focuses on relationships between ab-
stract invariant properties of individual variables that hold
during an entire code segment and loop invariants within
that segment. We observe that two kinds of properties must
be included in a loop invariant to verify software. The first
kind arise from the desire to treat a loop as a single state-
ment in straight-line code for verification and reasoning pur-
poses. These document the behavior of the loop by stating
what it does not change; they are intimately tied to the loop
and are local to it. The second kind arise from the need to
maintain continuity of abstract invariants on variable val-
ues. These properties are often incidental to a particular
loop yet are critical pieces of the loop invariant. For exam-
ple, when using memoization to avoid re-computation of a
function with a Java Map, one abstract invariant on the Map’s
value is that if a key is defined then the value associated with
that key is the function applied to the key. This informa-
tion must be in the loop invariant for any loop involving the
Map, because this property is true before the loop is encoun-
tered, is maintained by the loop, and might be intended to
persist after the loop has terminated. This restricted set
of Map values is known a priori by the software developer
independently of any loops, and it can and should be doc-
umented. If the documentation is formal, its connection to
the code can be verified. In other words, this documentation
not only records the software developer’s reasoning but—in
a verified software paradigm—also can be used to check that
the reasoning is correct.

The contribution of this paper is a programming language
construct, restrictions, that can be used to document ab-
stract invariant properties of individual variables over seg-
ments of imperative code without introducing new program-
matic types. This construct allows for reuse of these in-
variants. Moreover, it implicitly provides guidance to the



verifier by “factoring” potentially complicated verification
conditions (VCs) into conceptually simpler VCs. The over-
abundance of assumptions in VCs has been reported [9, 10]
as a problem for back-end provers.

Restrictions are presented in the context of the RESOLVE
programming language, a research language designed for
verifiability. Specifically, RESOLVE has clean semantics,
and provides syntactic slots for contracts and mathemati-
cal annotations of various kinds. However, the restriction
construct should be adaptable to other programming lan-
guages with little change, so long as the specification lan-
guage language can express and ensure frame properties,
such as JML [7] or Dafny [11].

The paper is structured as follows. Section 2 presents a sim-
ple motivating example (in C++ rather than RESOLVE).
Section 3 includes a summary of the features and syntax of
RESOLVE needed to explain restrictions. An introduction
to restrictions in Section 4 features an in-depth example us-
ing sorting. Related work is discussed in Section 5, with
conclusions in Section 6.

2. MOTIVATING EXAMPLE
Consider code that computes xp where x is a double and
p is a positive integer; see Figure 1(a). It computes xp by

first computing x2k where k is the largest natural number
that satisfies 2k ≤ p and then making a recursive call to
finish the job. In this particular implementation, q always

equals 2k′
where k′ is some non-negative integer, and this

property holds both as a loop invariant and, more generally,
as an invariant on q throughout the code. We argue that
this invariant can and should be documented.

One method a software professional can use to document
the invariant on q is to add extra assertions in the code.
At every line where the invariant holds, she asserts the in-
variant. Frame properties allow one to limit the number of
such statements needed, by using them only after a modi-
fication to a variable under consideration. This documents
the invariant on q, but it is rather clumsy and the annota-
tion burden is high. Restrictions (Section 4) are a construct
to document the claims for this code more clearly and to
reduce the annotation burden. Figure 1(b) shows what the
code might look like in this situation. The loop invariant is
simplified and the invariant on q is explicit.

3. RESOLVE OVERVIEW
As mentioned in the introduction, RESOLVE is an impera-
tive and component-based research language designed for
verifiability, performance and understandability [8]. The
language has reference semantics with the following criti-
cal qualification that is enforced as a consequence of the
language primitives: no aliasing of references across compo-
nent boundaries is possible, i.e., there is no inter-component
aliasing. Practically speaking, aliasing even within a sin-
gle component implementation is rarely used except in im-
plementations of a few low-level library components. This
language restriction, a frame property, provides the illusion
or effect of value semantics for any client usage (i.e., code
written by users) of any component. Each component has
a mathematical model of its behavior described in a con-

double Power (double x , int p)
{

double r e s u l t = x ;
int q = 1 ;
while ( q <= p/2)
/∗ !

updates re su l t , q
maintains

r e s u l t = x ˆ q and
q <= p and
there e x i s t s k : in t eger

( q = 2 ˆ k )
decreases

p − q
! ∗/
{

q ∗= 2;
r e s u l t ∗= r e s u l t ;

}
i f (p − q > 0)
{

r e s u l t ∗= Power (x , p−q ) ;
}
return r e s u l t ;

}
(a) Original version

double Power (double x , int p)
{

double r e s u l t = x ;
int q = 1 ;
/∗ ! r e s t r i c t q to be a power of 2 ! ∗/
while ( q <= p/2)
/∗ !

updates re su l t , q
maintains

r e s u l t = x ˆ q and
q <= p

decreases
p − q

! ∗/
{

q ∗= 2;
r e s u l t ∗= r e s u l t ;

}
i f (p − q > 0)
{

r e s u l t ∗= Power (x , p−q ) ;
}
return r e s u l t ;

}
(b) Documented with a restriction

Figure 1: Code to compute xp

tract, as illustrated in Figure 2 by a Queue contract. The
mathematical model is explicit in the type declaration. Each
operation has a formal description of behavior in terms of
the mathematical model via standard requires and ensures

clauses. The control return type is used within if/while
conditions. One more restriction simplifies verifiability: all
program function operations must behave as mathematical
functions and must restore their arguments. This is super-
ficially similar to the restriction that functions be “pure” in
JML [7] or Dafny [11]. The difference is that RESOLVE
program functions still may not be used in specifications
because RESOLVE rigorously separates and distinguishes
mathematical entities (including definitions of mathemat-
ical functions) from programming entities (including pro-
gram operations, i.e., program functions, that happen to
have functional behavior).

Behavioral extensions to abstract components, such as the
Concatenate extension in Figure 2, are specified via con-



contract QueueTemplate ( type Item )

uses UnboundedIntegerFac i l i ty

math subtype QUEUE MODEL i s string of Item

type Queue i s modeled by QUEUE MODEL
exemplar q
i n i t i a l i za t ion ensures

q = empty string

procedure Enqueue (updates q : Queue ,
clears x : Item )

ensures
q = #q ∗ <#x>

procedure Dequeue (updates q : Queue ,
replaces x : Item )

requires
q /= empty string

ensures
#q = <x> ∗ q

function IsEmpty
( restores q : Queue ) : control

ensures
IsEmpty = (q = empty string )

end QueueTemplate

contract Concatenate enhances QueueTemplate

procedure Concatenate (updates p : Queue ,
clears q : Queue )

ensures
p = #p ∗ #q

end Concatenate

Figure 2: QueueTemplate contract and Concatenate ex-
tension

tracts and ordinarily implemented by layering on other com-
ponents’ contracts. Another extension of a Queue type is the
operation Sort. Sorting has been studied by the computer
science community since the field’s inception; in the past
few years there has been significant work on inferring loop
invariants [2, 3, 4, 5, 6] among other work on verification of
sorting algorithms. For the purposes of demonstrating the
utility of restrictions, sorting therefore serves as an appro-
priate standard benchmark that naturally involves variables
with abstract invariants beyond any of the generic abstract
data type (ADT) invariants of its variables.

3.1 Sort Specification
Since the QueueTemplate component is generic, i.e., param-
eterized by a type Item, the contract of a Sort operation
should also be generic. Figure 3 shows the requisite restric-
tion on the ordering relation ARE_IN_ORDER to be used in
sorting, namely that ARE_IN_ORDER is a total pre-order.

Figure 3 shows the mathematical definitions used to specify
sorting, given ARE_IN_ORDER. OCCURS_COUNT is a mathemat-
ical function that returns the number of times a given Item

appears in a string; it is used to construct the other math-
ematical definitions. This allows the contract to be specific
about the value of the outgoing Queue: not only are the
values of items in the outgoing Queue the same as in the
incoming queue, but the number of times each appears is
the same. IS_PRECEDING is a binary predicate and holds on

two strings if and only if every item in the first string is
related by ARE_IN_ORDER to every item in the second string;
intuitively, every item in the first string is “no larger” than
every item in the second. IS_NON_DECREASING is a unary
predicate that is true if and only if every consecutive pair
of Items in the string are related by ARE_IN_ORDER. Finally,
IS_PERMUTATION is a binary predicate on strings that is true
if and only if the number of occurrences of every Item is the
same in the first string and in the second.

contract Sort (
definit ion ARE IN ORDER (x : Item ,

y : Item ) : boolean
sa t i s f i e s
for a l l z : Item

( (ARE IN ORDER (x , y ) or
ARE IN ORDER (y , x ) ) and

( i f (ARE IN ORDER (x , y ) and
ARE IN ORDER (y , z ) )

then ARE IN ORDER (x , z ) ) ) )
enhances QueueTemplate

definit ion OCCURS COUNT (
s : string of Item ,
i : Item

) : integer
s a t i s f i e s

i f s = empty string
then OCCURS COUNT ( s , i ) = 0
else

there exists x : Item ,
r : string of Item

( ( s = <x> ∗ r ) and
( i f x = i
then OCCURS COUNT ( s , i ) =

OCCURS COUNT ( r , i ) + 1
else OCCURS COUNT ( s , i ) =

OCCURS COUNT ( r , i ) ) )

definit ion IS PRECEDING (
s1 : string of Item ,
s2 : string of Item

) : boolean
i s for a l l i , j : Item

where (OCCURS COUNT ( s1 , i ) > 0 and
OCCURS COUNT ( s2 , j ) > 0)

(ARE IN ORDER ( i , j ) )

definit ion IS NON DECREASING (
s : string of Item

) : boolean
i s for a l l a , b : string of Item

where ( s = a ∗ b)
(IS PRECEDING (a , b ) )

definit ion IS PERMUTATION (
s1 : string of Item ,
s2 : string of Item

) : boolean
i s for a l l i : Item

(OCCURS COUNT ( s1 , i ) =
OCCURS COUNT ( s2 , i ) )

procedure Sort (updates q : Queue )
ensures

IS PERMUTATION (q , #q) and
IS NON DECREASING(q )

end Sort

Figure 3: Sort extension to QueueTemplate

The contract specification of a Sort operation is given in
Figure 3. The Sort operation takes a Queue and returns
with the property that the outgoing string q is a permuta-



tion of the incoming string and the outgoing string is non-
decreasing with respect to ARE_IN_ORDER.

3.2 Quicksort Implementation
We present an implementation of the Sort operation using
quicksort in Figure 4. Our implementation partitions a non-
empty incoming queue into two queues (q and qBig) and
a partitioning element (partitionElement) with the prop-
erty that every Item in q is in order with partitionEle-

ment and partitionElement is in order with every item
in qBig. Each of the smaller queues is sorted recursively
and q, partitionElement, and qBig are all concatenated to
obtain the final, sorted queue. Besides the loop invariant
and other mathematical annotations, this code is similar to
code in most other languages. The loop invariant documents
the insight of the algorithm, namely the ordering relation-
ships among the variables partitionElement, q and qBig, as
expressed formally via IS_PRECEDING and IS_PERMUTATION.
The programmer’s justification for termination is given by
the decreases clause (i.e., progress metric).

A local operation Partition is used to split a queue accord-
ing to the quicksort algorithm. The :=: operator is the
“swap ” operator [12, 13]. This exchanges the values of its
two arguments, and is a key aspect of avoiding aliasing while
preserving efficiency.

4. INTRODUCTION TO THE SYNTAX AND
SEMANTICS OF RESTRICTIONS: SORT-
ING EXAMPLE

First we examine the issues involved in defining of restric-
tions (the new programming language construct), and then
the issues in the usage of restrictions in client code. Code
presented in this section is analogous to the code in sec-
tion 3.1 except it uses restrictions.

4.1 Restrictions
We create three restrictions for this example, one for each
different abstract invariant maintained by specific uses of
Queues in quicksort. The first invariant is that a Queue is
sorted, i.e., it is an OrderedQueue. The other invariants
relate the Items in a Queue to another Item. These invari-
ants arise during the Partition implementation and simply
relate qSmall to p and qBig to p by ARE_IN_ORDER; more
specifically every Item in qSmall is in order with p and p is
in order with every Item in qBig. For each operation that
is called on any Queue that satisfies one of these properties,
the programmer reasons that the abstract invariant is not
broken by the operation call. The proof boils down to the
question: if the operation is executed, does the new value
of the variable still satisfy the restriction? With this in-
tuition in mind, we show the contracts for the restrictions
corresponding to these ideas in Figure 5.

A restriction is declared relative to one or more existing con-
tracts, e.g., QueueTemplate. Operations of the underlying
contract may be given additional requires and ensures.
The restriction is given by a predicate where parameters
are of the specified types. Since functions may not “break”
the invariant—they cannot change the abstract value of any
argument—they are always available to be used with a pro-
gram type in any restriction.

real ization QuickSort (
function AreInOrder ( restores i : Item ,

restores j : Item ) : control
ensures

AreInOrder = ARE IN ORDER ( i , j )
) implements Sort for QueueTemplate

uses Concatenate for QueueTemplate

local procedure P a r t i t i o n (updates qSmall : Queue ,
replaces qBig : Queue ,
restores p : Item )

ensures
IS PERMUTATION ( qSmall ∗ qBig , #qSmall )
and IS PRECEDING(<qSmall , <p>)
and IS PRECEDING(<p>, qBig )

variable tmp : Queue
Clear ( qBig )
loop

updates qSmall , qBig , tmp
maintains

IS PERMUTATION ( qSmall ∗ qBig ∗ tmp ,
#qSmall ∗ #qBig ∗ #tmp)

and IS PRECEDING(tmp , <p>)
and IS PRECEDING(<p>, qBig )

decreases | qSmall |
while not IsEmpty ( qSmall ) do

variable x : Item
Dequeue ( qSmall , x )
i f AreInOrder (x , p) then

Enqueue (tmp , x )
else

Enqueue ( qBig , x )
end i f

end loop
qSmall :=: tmp

end P a r t i t i o n

procedure Sort (updates q : Queue )
decreases | q |

i f not IsEmpty (q ) then
variable part i t i onElement : Item
variable qBig : Queue

Dequeue (q , par t i t i onElement )
P a r t i t i o n (q , qBig , par t i t i onElement )
Sort ( q )
Sort ( qBig )

Enqueue (q , par t i t i onElement )
Concatenate (q , qBig )

end i f
end Sort

end QuickSort

Figure 4: Quicksort implementation of Sort exten-
sion to QueueTemplate



contract OrderedQueueTemplate
restr icts QueueTemplate

restr ict ion OrderedQueue (q : Queue )
i s (IS NON DECREASING(q ) )

procedure Enqueue (q : Queue , x : Item )
under restr ict ion

OrderedQueue (q )
also requires

IS PRECEDING (q,<x>)

procedure Dequeue (q : Queue , x : Item )
under restr ict ion

OrderedQueue (q )
also ensures

IS PRECEDING (<x>, q )
end OrderedQueueTemplate

contract SmallValueQueueTemplate
restr icts QueueTemplate

restr ict ion SmallValueQueue (q : Queue ,
max : Item )

i s (IS PRECEDING(q , <max>))

procedure Enqueue (updates q : Queue ,
clears x : Item )

under restr ict ion
SmallValueQueue (q , max)

also requires
ARE IN ORDER(x , max)

procedure Dequeue (updates q : Queue ,
replaces x : Item )

under restr ict ion
SmallValueQueue (q , max)

also ensures
ARE IN ORDER(x , max)

end SmallValueQueueTemplate

contract LargeValueQueueTemplate
restr icts QueueTemplate

restr ict ion LargeValueQueue (q : Queue ,
min : Item )

i s (IS PRECEDING( <min>, q ) )

procedure Enqueue (updates q : Queue ,
clears x : Item )

under restr ict ion
LargeValueQueue (q , min )

also requires
ARE IN ORDER(min , x )

procedure Dequeue (updates q : Queue ,
replaces x : Item )

under restr ict ion
LargeValueQueue (q , min )

also ensures
ARE IN ORDER(min , x )

end SmallValueQueueTemplate

Figure 5: OrderedQueue, SmallValueQueue and
LargeValueQueue restrictions

Conceptually, the also requires clauses are conjoined with
the original requires clauses for the operation. These are
used by the programmer to ensure both that the restriction
is maintained by the operation, and to document conditions
under which it is safe to call the operation while still main-
taining the invariant. The also ensures clauses strengthen
the previous postconditions. In the OrderedQueue contract,
Dequeue’s also ensures clause gives information about how
the dequeued item relates to items that remain in the Or-

deredQueue.

Since programmers may need some help in making sure that
their reasoning process is correct, the compiler should gen-
erate VCs corresponding to the correctness of the restriction
contract. The contract’s correctness condition is that if an
operation is invoked in a state satisfying the variable re-
strictions and the requires clause, and the operation com-
pletes successfully, then the restriction is still satisfied by
the updated variables; any also ensures clauses must also
be satisfied. More concretely, each operation’s invocation
can be assumed to occur in a state in which the restric-
tion, the original requires clause, and the also requires

clause hold. By a process similar to datatype induction,
these VCs are generated just once for the contract. (Notice
that this construction leaves the initialization of restrictions
to a client-side activity and is discussed in Section 4.2.) The
general form of the generated VCs, where s is a variable of
the mathematical model of the restriction, args is the list of
arguments to the operation, and ′ indicates a fresh variable,
is given by:

restriction(s′) ∧ requiresoriginal(s
′, args′)∧

requiresalso(s′, args′)∧
ensuresoriginal(s

′, args′, s, args)

=⇒ restriction(s) ∧ ensuresalso(s′, args′, s, args)

4.2 Client Usage of Restrictions
The updated Sort contract, shown in Figure 6, is almost
the same as the original contract. The difference is that the
Queue formal parameter q is restricted to satisfy the restric-
tion OrderedQueue when the operation returns. The formal
parameter q must be of type Queue; when Sort returns, q
conforms to the restriction OrderedQueue (checked as a proof
obligation). We can omit the IS_NON_DECREASING(q) from
the ensures clause, since it is subsumed by the restriction.

contract Sort (
. . .

procedure Sort (updates q : Queue )
establishes restr ict ion

OrderedQueue (q )
ensures

IS PERMUTATION (q , #q)

end Sort

Figure 6: Sort extension to QueueTemplate using re-
strictions

This reduces the mathematical annotation burden on the
programmer. The restriction annotation in the formal
parameters need not be checked by the static type system.
It is equivalent to having the type restriction in the ensures

clause for that variable. We examine this issue in more depth
in the discussion of the Sort operation.

Figure 7 shows an additional operation Concatenate defined
on Queues that is used by OrderedQueues. The also re-

quires restriction slot is used in this contract to indicate



that two variables, q1 and q2 satisfy the OrderedQueue re-
striction.

contract OrderedQueueConcatenate
restr icts Concatenate for QueueTemplate

procedure Concatenate (updates q1 : Queue ,
clears q2 : Queue )

under restr ict ion
OrderedQueue ( q1 ) and
OrderedQueue ( q2 )

also requires
IS PRECEDING( q1 , q2 )

end OrderedQueueConcatenate

Figure 7: OrderedQueueConcatenate Restriction

The Partition operation uses the SmallValueQueue and
LargeValueQueue restrictions. The code for performing the
partition operation is given in Figure 8. In the contract of
Partition, the ensures clause and loop invariant are sim-
plified by the use of the establishes restriction annota-
tion. Otherwise, the code is similar to the original version
in Section 3.1.

Recall that in the contracts of restrictions, there were no
VCs generated for initialization; that piece is left to the
clients or users of the restriction. So, when a variable of
a particular type, say Queue, has a new restriction, say
a LargeValueQueue, a VC is generated to make sure that
that variable satisfies that restriction. For example, con-

firm restriction LargeValueQueue(qBig, p) generates a
VC whose goal is IS_PRECEDING(<p>, qBig) and whose as-
sumptions are those facts known at that point in the code,
e.g., resulting from path conditions, loop invariants, and
contracts of other operations called. We note that not only
is the specification of Partition simpler, but the loop in-
variant has been significantly simplified as well.

Figure 8 also shows the Sort implementation using restric-
tions and the modified Partition local operation. Except
for the confirm restriction annotation, the code is ex-
actly the same as the original version. The loop invariant is
simplified as two conjuncts may be removed as the restric-
tions implicitly ensures the loop invariant.

Finally, to finish an earlier discussion about the implementa-
tion of the expects restriction or establishes restric-

tion annotation in an operation parameter, one can imple-
ment the annotation by automatically translating it into a
requires or ensures clause, respectively, in the operation
contract. On every client use of the operation, the verifica-
tion system adds a confirm restriction annotation after
the call to reassert the restriction, generating one additional
(simple) VC. This process can be invisible to the user, but
simplifies the information needed for restrictions by avoiding
carrying it across operation boundaries.

4.3 Evaluation
Appropriate use of restrictions may also help simplify proofs
of VCs by making the VCs easier to prove. We examine the
impact of restrictions on the difficulty of VCs as defined by
[14]. In that work, VCs are categorized according to the
number of hypotheses (H0, H1,...) and whether only logical

real ization QuickSort (
. . . .
uses OrderedQueueConcatenate for QueueTemplate

local procedure P a r t i t i o n
(updates qSmall : Queue ,
replaces qBig : Queue ,
restores p : Item )

ensures
IS PERMUTATION ( qSmall ∗ qBig ,

#qSmall )
establishes restr ict ion

LargeValueQueue ( qBig , p) and
SmallValueQueue ( qSmall , p )

variable tmp : Queue
confirm restr ict ion SmallValueQueue (tmp , p)
Clear ( qBig )
confirm restr ict ion LargeValueQueue ( qBig , p)
loop

updates qSmall , qBig , tmp
maintains

IS PERMUTATION ( qSmall ∗ qBig ∗ tmp ,
#qSmall ∗ #qBig ∗ #tmp)

decreases | qSmall |
while not IsEmpty ( qSmall ) do

variable x : Item
Dequeue ( qSmall , x )
i f AreInOrder (x , p) then

Enqueue (tmp , x )
else

Enqueue ( qBig , x )
end i f

end loop
confirm restr ict ion SmallValueQueue ( qSmall , p )
qSmall :=: tmp

end P a r t i t i o n

procedure Sort (updates q : Queue )
decreases | q |

variable qtmp : Queue
qtmp :=: q
confirm restr ict ion OrderedQueue (q )
i f not IsEmpty (qtmp) then

variable part i t i onElement : Item
variable qBig : Queue

Dequeue (qtmp , par t i t i onElement )
P a r t i t i o n (qtmp , qBig ,

par t i t i onElement )
Sort (qtmp)
Sort ( qBig )

Enqueue (qtmp , part i t i onElement )
Concatenate (qtmp , qBig )
q :=: qtmp

end i f
end Sort

end QuickSort

Figure 8: Quicksort implementation of Sort using
restrictions

rules (L), theory-specific knowledge (M) or local mathemat-
ical definitions (D) are needed to prove a VC. VCs that use
fewer assumptions or require less mathematical knowledge
are considered less difficult. The metrics are summarized in
Figure 9.

The code presented in Section 3 without restrictions was
compared to the code in this section with restrictions. The
original quicksort implementation’s most difficult VC was
categorized as MH6, while the restrictions version has VCs
of difficulty at most MH3. The MH6 VC is particularly
difficult; it arises from proving the second conjunct in the



Label What is needed in the proof
L Rules of mathematical logic
Hn At most n hypotheses from

the VC (n > 0)
M Knowledge of mathematical

theories used in the
specifications

D Knowledge of
programmer-supplied
definitions based on
mathematical theories above

(a) VC classification

L

M

DLH1

MH1

DH1LH2

MH2

DH2

(b) Lattice of the VC classification

Figure 9: VC classification and diagram of category
relationships (adapted from [14])

ensures clause of Sort:

1: is initial(partitionElement2)
2: ∧ IS PERMUTATION(q5 ∗ qBig5, q4)
3: ∧ IS PRECEDING(q5, 〈partitionElement4〉)
4: ∧ IS PRECEDING(〈partitionElement4〉, qBig5)
5: ∧ IS PERMUTATION(q6, q5)
6: ∧ IS NON DECREASING(q6)
7: ∧ IS PERMUTATION(qBig7, qBig5)
8: ∧ IS NON DECREASING(qBig7)
9: ∧ is initial(partitionElement8)
10: ∧ 〈partitionElement4〉 ∗ q4 6= Λ

→ IS NON DECREASING(q6∗
〈partitionElement4〉 ∗ qBig7)

The proof requires hypotheses 3 through 8, and is fairly in-
volved; mathematical lemmas are needed, for instance, to
conclude that hypotheses 3, 5 and 6 imply
IS PRECEDING(q6, 〈partitionElement4〉). The correspond-
ing VCs from restrictions are easier. The direct analog of
the above VC, in particular, is in category LH1, i.e., the goal
is one of the hypotheses. The proof of a VC arising from the
call to Concatenate in the body of Sort is the most difficult:
it is in the category MH3.

Another VC in MH3 arises from the also requires clause
for Concatenate:

1: IS PRECEDING(q1original, q2original)
2: ∧ IS NON DECREASING(q1original)
3: ∧ IS NON DECREASING(q2original)

→ IS NON DECREASING(q1original ∗ q2original)

The one-time, reusable proof of this VC is also in MH3.
However, it is a relatively easy proof to discharge; it is an

algebraic lemma of string theory. This is the essence of the
proof of the original VC. Proving these VCs with Isabelle [15]
using a version of RESOLVE’s string theory in an automatic
mode [10] confirms that the MH6 VC is hard to prove—
Isabelle does not prove it automatically. The two MH3 VCs
are proved automatically. For this example, restrictions are
able to simplify the code annotations and reduce the maxi-
mum difficulty of VCs generated from the resulting code.

We expect this empirical result to generalize; restrictions
have the effect of adding “way-points” in the proofs of the
VCs from code using restrictions. These way-points are cre-
ated from input from the programmer; the requires and
ensures clause are both modified to preserve the requisite
invariant, thus ensuring that the way-point is useful for the
justification of correctness. Moreover, the VCs generated
from the declaration of a restriction should be syntactically
simple with few assumptions and highly targeted—excellent
candidates for proofs from general, reusable theorems.

We also expect that many restrictions will be reusable. For
example, OrderedQueue may be used for any sorting algo-
rithm implementation or client. Restrictions presented in
this paper could be generalized to be usable in selection
problems, e.g., via a predicate parameter to SmallValue-

Queue. Even if we assume that restrictions turn out to not
be reusable, there is still value in using them; restrictions
document the reasoning behind why a particular block of
code is correct, and, as such, aid readability by humans.

5. RELATED WORK
The idea of restrictions is similar to a core idea expressed in
predicate subtypes, dependent types, refinement types and
contract types [16, 17] (PDRCT). Depending on the exact
setup of PDRCT used, proof obligations may be generated
(such as Type Correctness Conditions (TCCs) in PVS) when
converting from a type to a predicate subtype. In other se-
tups the type checking system can infer many of the req-
uisite properties. These ideas have been applied both to
mathematical and programmatic domains. In any case, a
restriction is different in that it entails modifying pre/post-
conditions of operations to maintain the user-supplied in-
variant. Moreover, no new executable code need be emitted
as a result of a restriction, which documents invariants and
simplifies proofs of resulting VCs rather than defining a new
type; a restriction is not a new type. However, the type
inference and other algorithms used in contract and refine-
ment types are largely absent; these could be added in the
future using some of the existing work to alleviate some of
the annotation burden on programmers.

The Jahob system [9] uses annotated Java source code as
its source language. The annotation language has support
for a proof language, with essentially full first-order prover
functionality. There are first order proof commands, such as
applying modus ponens, along with commands to perform
local proofs. Invariants can be expressed as well. While Ja-
hob’s proof language is powerful, the proof commands are
not natural for a software professional. Rather than learn-
ing a proof system, software professionals using restrictions
think in terms of contracts and component invariants, con-
cepts that are used in the normal course of programming.



Behavioral subtyping [18] uses a set of rules to ensure that
a subtype can always be used in place of a supertype with-
out violating a behavioral property of the client program.
Contractually, the preconditions of any subtype operation
may not be strengthened, postconditions may not be weak-
ened, and invariants must be preserved. Restrictions impose
different requirements; in particular, preconditions may be
strengthened. The goal of restrictions is not to allow for
substitution, but rather to indicate that during specific code
segments (i.e., not necessarily for the entire lifetimes of vari-
ables) stronger abstract invariants hold for specific variables.

Object invariants [19] are defined over the concrete repre-
sentation of the object; they denote consistency or other
properties that relate specific fields or ownership of a partic-
ular field or object. Restrictions instead are over the abstract
state of the objects, their cover story as represented in math-
ematics, rather than over any particular representation of
the object’s abstract state space. This feature ensures that
restrictions can be used with any correct implementation of
their underlying type, making them more reusable.

6. CONCLUSION
We have presented a programming language construct, re-
strictions, that helps address a limitation in current verifi-
cation languages, namely the clumsiness of formally docu-
menting client code, especially with loops. This construct,
when applied to code similar to that shown in Section 4, pro-
vides a mechanism to separate out two uses of loop invari-
ants, namely an abstraction of the behavior of a loop and
a mechanism to maintain abstract invariants on variables.
This approach not only can simplify VCs generated in client
code, but also can result in reasoning reuse. This reuse hap-
pens both when restrictions are reused across clients, and
even when there are multiple calls to a single restriction op-
eration by a particular client.
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