
ABSTRACT 
Tako is an object-oriented language similar in many respects to 
Java, but is designed to support alias avoidance and thereby 
simplify both formal and informal reasoning. Aliasing in Java 
occurs mainly due to reference assignment, which Tako replaces 
with alternative data assignment mechanisms such as copying, 
swapping, and initializing transfer. Though the changes are 
syntactically minor, their effect on component design and design 
patterns is not. This paper examines a non-trivial program 
designed and implemented in Tako, and discusses how and where 
the design differs from a typical Java program. We look at how 
the design impacts specification and reasoning. We found that 
while many design decisions were unaffected by the emphasis on 
alias avoidance, there were certain design issues that Java 
programmers would need to adjust to. A key component in the 
example program is a tree data structure that would likely be 
implemented using a composite pattern in Java. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features. 

Keywords 
Alias avoidance, design patterns 

1. INTRODUCTION 
Tako is an object-oriented language with Java-like syntax that 
supports alias avoidance, thereby simplifying both formal and 
informal reasoning [1]. Though most alias-avoidance languages, 
including Tako, do support limited aliasing, they differ from alias-
control languages in that aliasing is the exception rather than the 
rule. Tako’s main use to date has been as an instructional tool to 
help teach students how to reason formally about their code. The 
students are taught how to read and write specifications, and how 
to use those specifications to trace through code based on specific 
input. They also learn how to construct symbolic reasoning tables 
– generalized, user-friendly, tracing tables that can be used to 
generate the verification conditions needed for correctness proofs. 
Tako simplifies writing specifications and reasoning about code 
because programmers do not need to keep track of the indirection 
that pervades traditional object-oriented languages. 

Many of the alias-avoidance techniques found in Tako have their 
origins in the Resolve language [2, 3]. Resolve is an integrated 
programming and specification language intended to support full, 
heavyweight program verification. Central to the approach of both 
Resolve and Tako to facilitate alias avoidance is the use of 
alternative data assignment operators such as swapping. Some 
researchers have raised concerns about whether the paradigm 

associated with this approach “can mesh well with mainstream 
object-oriented programming techniques” [4, 5]. 

This paper examines a non-trivial program designed and 
implemented in Tako, and discusses how and where the design 
differs from a typical Java program. We found that while many 
design decisions were unaffected by the swapping paradigm and 
the emphasis on alias avoidance, there were certain design issues 
that Java programmers would need to adjust to. 

Section 2 gives a brief overview of the Tako language, 
emphasizing how it differs from Java. Section 3 describes the 
architecture of the program we designed – a simple text-based 
adventure game. Section 4 describes and partially specifies a key 
data structure used in the program, an indexed tree, which has the 
features of both a tree and a map. Section 5 describes how the 
indexed tree is used in the program and demonstrates how to trace 
through a portion of code based on the indexed tree specification. 
Section 6 raises other design issues that distinguish Tako from 
Java. Section 7 provides some concluding thoughts on the subject. 

2. OVERVIEW OF TAKO 
The main difference between Tako and Java is that Tako includes 
alias avoidance features. This allows programmers to view 
variables directly as objects rather than as references to objects. 
The following subsections give a few important differences. 

2.1 No primitive types 
In Java, there are two kinds of types: primitive types and reference 
types. Primitive types are built-in to the language and their 
variables denote values. Some reference types are built-in to the 
language, but most are user-defined. Variables of a reference type 
denote references to objects. In Tako, all types are value types. 
Some are built-in and others are not, but variables in Tako always 
represent objects, no matter what type they are from. In addition, 
no two variables ever represent the same object. 

In Tako, as in Java, some types that are built-in to the language 
have special syntax. These include Booleans, Integers, Strings, 
and Arrays. In general, if a type has special syntax in Java, its 
corresponding type in Tako will probably have it also. 

Sometimes we talk about replicable types in Tako. A type is 
replicable if it has a replica operation. Some common types like 
Booleans, Integers, and Strings, already include a replica 
operation. Programmers can make any type replicable by simply 
adding a replica operation themselves. 

2.2 Initial values 
In Java, the compiler will report an error if you try to use a 
variable before you have initialized it. In Tako, all variables get 
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initial values when they are declared. Tako uses the default 
constructor for this purpose. As in Java, Tako programmers are 
encouraged to provide default constructors for all objects. If no 
default constructor exists for a type, a newly declared variable of 
that type will get a null value. Since null values are not consistent 
with viewing variables directly as objects, omitting a default 
constructor is discouraged. 

2.3 Alternative data assignment 
Java’s assignment operator introduces aliasing because it copies 
references. Tako is designed to avoid aliasing, so it requires 
alternative mechanisms to assign objects to variables. Here is a 
brief overview of the alternatives. 

2.3.1 Swapping 
Swapping is the primary means of data assignment in Tako. When 
two variables are swapped, the variables simply exchange objects. 
Swapping does not introduce aliasing because if the variables 
denote distinct objects before the operation, they still denote 
distinct objects after the operation. Swapping is also a constant 
time operation, because the compiler implements it by swapping 
memory locations. However, swapping is a symmetric operation, 
so both variables need to have the same type before they can be 
swapped. 

2.3.2 Initializing transfer 
The initializing transfer operation in Tako “<–” transfers an object 
from one variable to another and gives the first variable an initial 
value. The transfer operation is fairly efficient, but if the variable 
receiving the object already had a different one, its original object 
will become garbage and will have to be deallocated eventually. 

2.3.3 Function assignment 
Another way of getting an object into a variable is by assigning 
the result of an function to the variable. The function assignment 
operator in Tako “:=” always expects a variable on its left-hand 
side and an expression on its right. If the compiler sees anything 
other than a variable on the left-hand side, it will complain. If it 
sees a variable rather than an expression on the right-hand side, as 
in “max := n”, the compiler tries to replicate the variable, as in 
“max := n.replica()”. If no replica operation is found, it reports an 
error. 

2.4 In-out parameter passing 
By default, parameter passing in Tako is in-out. In other words, 
argument values are transferred to the formal parameters, the 
method is executed, and formal parameter values are transferred 
back to the arguments. 

In-out parameter passing allows Tako programmers to keep 
functions and procedures distinct. A function has a return type 
(non-void) and a procedure does not. By convention, functions 
should not have side-effects. A function has side-effects if it 
changes the value of a variable. An example of a side-effecting 
function is a pop method in a Java stack, as in the assignment x = 
s.pop(). It is a function because it returns a value, and it has a side-
effect because it changes the current stack object. If a Tako 
programmer wants an operation to change the state of the 
program, they should write it as a procedure rather than a 
function, so that it would be called as “s.pop(x)”. 

2.5 Result variable 
In Tako functions (non-void methods), the result of the function is 
returned through a special result variable. This guarantees that the 
object returned is unique and is not an alias to any existing object. 
The result variable has the same type as the return type of the 
function. The compiler treats the result variable as if its 
declaration is the first statement of the method. So a getter method 
for a private attribute length would be written as “public Integer 
getLength( ) { result := length; }” and interpreted by the compiler 
as “public Integer getLength( ) { Integer result; result := length; }”. 
The result variable is initialized when it is declared, so even a 
function with no statements would return an initial value. 

2.6 Pointer component 
Despite the fact that the design of Tako is focused on avoiding 
general aliasing, we understand that there are circumstances when 
programmers will need pointers and references to efficiently 
implement certain classes. For this purpose, Tako has a pointer 
component that is specifically designed to aid in the 
implementation of linked data structures such as lists and trees. 

3. ADVENTURE GAME ARCHITECTURE 
To experience first hand the paradigm shifts involved in 
programming a non-trivial application in Tako, we undertook the 
development of a text-based adventure game. The game was 
initially developed in Java, but with the intent that it would 
eventually be ported to Tako. Figure 1 shows the general 
architecture of the application in the form of a UML class 
diagram. It is loosely based on traditional text-based adventure 
game development systems such as Inform [6] and TADS [7]. 

 
Figure 1. Adventure game architecture  



The game accepts text inputs from the player, which are usually 
simple imperative sentences, such as “take the chess piece” or 
“put the red queen on the chess board”. A Parser component 
parses the input based on a supplied grammar and dictionary of 
game objects. A Resolver component tries to determine what 
game object is intended when the player enters ambiguous text. 
The GameWorld component tracks the state of the game. It is a 
cross between a tree-like data structure and a database that stores 
all the game objects. When the player inputs a command, the 
application updates the GameWorld accordingly and generates a 
text response. 

The program contains about 50 classes and consists of over 4,000 
lines of code. It required approximately 85 man hours to code the 
game in Tako based on the Java version of the game. Table 1 
gives process metrics for the conversion from Java to Tako. The 
time spent on the conversion is shown during and after the 
translation process. During the translation process, most of the 
time went into translating statements that used reference copying 
into statements that used swapping. Part of this process involved 
direct substitution of the reference copy operator with the swap 
operator. Part of it also involved swapping objects from 
containers. In both cases, there was the possibility that objects had 
to be swapped back, as illustrated in section 5. A fair amount of 
time was also spent in converting methods with return values to 
their equivalent in Tako. If the methods had side-effects, then they 
where changed to procedures (methods without return values) in 
Tako, and the return value was passed out through a parameter. If 
the methods did not have side-effects, then the methods where 
changed to appropriate functions (methods with return values) in 
Tako. In Tako functions, the distinguished result variable is used 
to store the return value. Some time was also spent for converting 
Java enumeration types to static integer variables. Enum types are 
supported in Java 1.5 but not in Tako. The remaining time was 
spent in copying and pasting code from one language to another. 
This was possible due to the similarities in Java and Tako syntax. 

Table 1. Process metrics for conversion from Java to Tako 

Description Hours 

Time spent during translation 

Conversion of Enum types to static integer variables 2 
Converting side-effecting functions 10 
Converting non-side-effecting functions 5 
Translating code with aliasing to swapping methodology 15 
Simple translations (copy and paste) 5 

Time spent after translation 

Debugging errors due to erroneous translation 30 
Debugging errors already present in Java version 18 

Debugging code after the translation took up the majority of time. 
The debugging process metrics were divided into two parts: time 
spent in debugging errors that occurred due to erroneous 
translation, and time spent in errors that where present in the 
original version of the Java code. Nearly 30 hours were spent in 
debugging the translation errors. We had expected this part of the 
process would take the most time since this was our first attempt 
at such a translation. The other 18 hours spent in debugging could 
have been avoided if the original Java version had been tested 
thoroughly. 

4. INDEXED TREE COMPONENT 
The two most sophisticated components in the adventure game are 
the Parser and the GameWorld. The Parser takes an imperative 
sentence typed by the player and converts it to a four-part 
command. The parser as implemented in Tako is not very 
different from the parser as implemented in Java. This is probably 
due to the fact that the Parser is designed to essentially 
encapsulate a single, though complex, method – parse. The Tako 
GameWorld component does have significant differences with the 
Java GameWorld component. Therefore, we spend this section 
and the next discussing it. The GameWorld component is based 
on a custom data-structure called an IndexedTree. 

 
Figure 2. Tree methods 

The elements of an indexed tree are organized as an ordered 
tree [8]. An ordered tree contains a root node, which is the 
ancestor of all the other nodes in the tree. Every node except for 
the root has a parent. Nodes with the same parent are siblings. In 
an ordered tree, the siblings are ordered. There is a first, or eldest, 
sibling; and there is a last, or youngest, sibling. The indexed tree 
data structure is traversable. That is, a tree has a conceptual 
location known as the cursor position. We conceptualize the 
cursor position as a distinguished node in the ordered tree. The 
tree component provides various cursor movement methods that 
can be used to easily change the cursor’s location in the tree. 
Insertion and removal of nodes from a tree occurs to the right of 
the cursor. The component is called an indexed tree because all 
tree nodes are indexed, or labeled, with a unique identifier. This 
allows individual nodes to be accessed directly. 

Figure 2 gives a graphical representation of various states of an 
indexed tree object and shows the method calls that cause the 
transitions from one state to another. The first tree in this figure 
represents an initialized tree. It is the tree that is created when the 
default constructor is called. It has two nodes – a root node and a 
cursor. The cursor is the child of the root. The call insert(DEN, 
den_obj) inserts a new node to the right of the cursor. The new  
node is the cursor’s younger sibling. The new node DEN is 
associated with the object den_obj. A second call to insert with 



label TOM and object tom_object inserts a new node to the right of 
the cursor, just before the DEN node. The call advance() advances 
the cursor past its next node, TOM, and enter() causes the cursor to 
enter the subtree induced by its next node, DEN. A somewhat more 
sophisticated method call, moveSubtreeToCursor(TOM), causes the 
subtree induced by TOM to be moved just to the right of the cursor. 
It requires that the TOM be in the tree and that the cursor is not a 
descendent of TOM. 

4.1 Mathematical Model for Indexed Tree 
Figure 3 gives the mathematical model for the indexed tree 
component. It contains four model variables that specify how an 
indexed tree object is modeled [9]. The first three variables are 
based on the mathematical model for ordered trees given in 
Cormen et al. [8], in which graphs are modeled as two sets – a 
vertex set and an edge set – and a tree is an acyclic, undirected, 
connected graph. The keyword model indicates that a variable is 
part of the mathematical model. The variable nodes denotes the 
vertex set, and edges denotes the edge set. The vertex pairs in the 
edge set are unordered, so edge (3, 1) is the same as edge (1, 3). 
The variable order denotes the order for children of the same 
parent from eldest to youngest. The order of the eldest child is 1, 
the second eldest child is 2, and so on. The final model variable, 
contents, maps nodes to objects. 

public interface IndexedTree {  
 model nodes:  set of Enum; 
 model edges:  set of pair of Enum; 
 model order:  function from Enum to Integer; 
 model contents: function from Enum to Object; 
 defines ROOT, CSR: nodes; 

constraints /* no cycles */ 
 

public IndexedTree( ); 
 ensures nodes = { ROOT, CSR } and  

edges = { (ROOT, CSR) } and 
order = { (ROOT, 1), (CSR, 1) } and  
contents = { (ROOT, null), (CSR, null) }; 

Figure 3. Model and constructor for indexed tree 
The defines clause defines two distinguished variables that belong 
to the set nodes. Conceptually, ROOT is the root node, and CSR is 
the cursor. A class invariant (given by the constraints clause) 
asserts that no cycles exists in the undirected graph represented by 
the nodes and the edge set. The assertion is given here informally. 

The constructor creates an indexed tree with ROOT and CSR as 
nodes, and an edge connecting ROOT to CSR. Both root and cursor 
have an order of 1 and map to null objects.  

4.2 Cursor Movement Methods 
A key feature of the tree data structure is the flexibility of cursor 
movement. Figure 3 specifies some selected cursor movement 
methods. For the other cursor movement methods, see [10]. 

The advance method advances the cursor to the next node on the 
same level. It requires that the cursor have a younger sibling to 
advance past. In the ensures clause, a variable with a hash, such as 
#nodes, refers to its original (or old) value, and a variable without 
a hash refers to its current (or new) value. The only change in the 
state is that the cursor and its immediate younger sibling, 
#next(CSR), get their orders swapped. 

public void advance(); 
requires hasYoungerSibling(CSR); 
ensures nodes = #nodes and edges = #edges and 

order(x) = ( #order(x) – 1 if x = #next(CSR); 
#order(x) + 1 if x = CSR; 
#order(x)   otherwise ) and  

contents = #contents; 
 

public void enter(); 
requires hasYoungerSibling(CSR); 
ensures nodes = #nodes and 

   edges = #edges minus { (#parent(CSR), CSR) } 
union { (#next(CSR), CSR) } and 

order(x) = ( 1      if x = CSR; 
#order(x) – 1 if #isYoungerSibling(x, CSR); 

    #order(x) + 1 if #isChild(x, #next(CSR)); 
#order(x)   otherwise ) and 

   contents = #contents; 
 

public void moveBefore(restores Enum key); 
  requires key in nodes; 
  ensures nodes = #nodes and 

edges = #edges  minus { (#parent(CSR), CSR) } 
          union { #parent(key), CSR) } and 

order(CSR) = ( 
#order(#key) – 1 if #isYoungerSibling(key, CSR); 
#order(#key)  otherwise ) and 

order(key) = ( 
 #order(#key)  if #isYoungerSibling(key, CSR); 

#order(#key) + 1 otherwise ) and 
order(x ≠ CSR, key) = ( 

#order(x) – 1  if #isYoungerSibling(x, CSR) and  
not #isYoungerSibling(#key, x);  

#order(x) + 1  if #isYoungerSibling(x, #key) and  
not #isYoungerSibling(CSR, x); 

#order(x)     otherwise ) and  
   contents = #contents; 

Figure 4. Cursor movement methods 
The enter method makes the cursor the first child of its next node. 
It requires that the cursor have a younger sibling. The nodes and 
contents remain unchanged. The original edge involving the 
cursor is replaced by an edge from the cursor’s original next 
sibling to the cursor. The original younger siblings of the cursor 
get their orders decremented. The cursor advances to the next 
level and becomes the eldest child of its new parent, so its order 
is 1, and the cursor’s new younger siblings get their orders 
incremented. 

The moveBefore method takes key as an argument. It requires that 
key be in the node set. It ensures that the cursor will be moved 
directly before key. That is, the cursor will become key’s 
immediate older sibling. The node set does not change. The 
original edge to the cursor is replaced by an edge from key’s 
parent to the cursor. If the cursor is the younger sibling of key, the 
cursor’s order becomes one less than the original order of key and 
key’s order stays the same. Otherwise, the cursor’s order becomes 
the original order of key and key’s order is incremented. For all 
other nodes, the order of the cursor’s younger siblings are 
decremented, and the order of key’s younger siblings are 
incremented. However, if a node is a younger sibling of both the 
cursor and key, its order remains unchanged. The contents map 
remains unchanged. The restores parameter mode for key 
indicates that the value of key remains unchanged, even though 
this is not explicitly stated in the ensures clause. 



4.3 Insert and SwapValue Methods 
Inserting elements into and removing elements from data 
structures affects how programs are designed in Java and Tako. In 
Java, updating an element inside a data structure means getting a 
handle to the element and updating the handle. This updates the 
element inside the data structure because the handle is an alias to 
it. In Tako, such aliasing is avoided. Therefore, the element must 
be removed from the data structure, updated, and put back into the 
data structure in the same place it was at originally. 

public void insert(restores Enum key, clears Object val); 
  requires key not_in nodes; 

ensures nodes = #nodes union { key } and 
edges = #edges union { (#parent(CSR), #key) } and 
order(x) = ( 

#order(CSR) + 1 if x = #key; 
#order(x) + 1   if #isYoungerSibling(x, CSR); 
#order(x)     otherwise ) and 

contents = #contents union { (#key, #val) }; 
 

public void swapValue(updates Object val); 
requires hasYoungerSibling(CSR); 
ensures nodes = #nodes and  

edges = #edges and order = #order and 
contents = #contents override { (#next(cursor), #val) } and 

 val = #contents(#next(cursor)); 

Figure 5. Insert and swap methods 
The methods shown in Figure 5 modify the tree by inserting nodes 
and swapping values from it. We do not discuss how to remove 
nodes, but a description can be found in [10].  

The insert method inserts a node into the tree as the immediate 
younger sibling of the cursor. key becomes the new node, and val 
is the contents of that node. The method requires that key is not 
already in the indexed tree. key is added to the node set, and an 
edge to key is added to the edge set. The order of key is one more 
than the order of the cursor, and the order of the nodes following 
key are incremented. The clears parameter mode for val indicates 
that val has an initial value after the call. Since the val object is 
inserted into the tree, the val parameter must hold a different 
object after the call. Were it to have a restores parameter mode, 
like key, it would force the implementer to perform a deep copy of 
val, which could be a potentially expensive operation. The key 
object is also inserted into the tree, but key is a small object (an 
Enum) so copying it is inexpensive. 

The swapValue method swaps the contents of cursor’s next node 
with val. It requires that the cursor have a younger sibling. It 
ensures that the node set, edge set and order map remain 
unchanged. The existing contents of the node gets the original 
object in val, and val gets the original contents of the node. The 
updates parameter mode indicates that the value of val is updated. 

5. USING THE INDEXED TREE 
5.1 The GameWorld and its GameObjects 
The IndexedTree component is used in the implementation of the 
GameWorld component. The game world is an indexed tree 
whose nodes are identifiers that are mapped to game objects. A 
game object inherits from the GameObject class. The GameObject 
class includes two fields: one for a unique identifier, and another 
for a set of properties, as shown in Figure 6. Both ObjectID and 
Property are enumeration types. 

public interface GameObject { 
 model id:     ObjectID; 
 model properties:  set of Property; 
 
 public GameObject( ) 
  ensures id = VOID and properties = { }; 
 
 public void addProperty(restores Property p) 
  ensures properties = #properties union { #p }; 
 

/* other operations */ 
} 

Figure 6. GameObject specification 
An object identified by DEN of type Room might include the 
property LIGHT so that players can see objects in the room. An 
object identified by TOM of type Actor might include the property 
PERSON so that the player can talk to it, and the property MALE so 
that the game’s printer knows what pronoun to use when referring 
to the object. An object identified by BOX might include the 
property BIN so that players can place other objects inside it. If it 
has the property OPEN a player may be able to see its contents. 

public class GameWorld { 
 model nodes:  set of ObjectID; 
 model edges:  set of pair of ObjectID; 
 model order:  function from ObjectID to Integer; 
 model contents: function from ObjectID to GameObject; 
 defines ROOT: nodes; 

constraints /* no cycles */ 
 

/* gameTree maps ObjectID to GameObject */ 
 private IndexedTree gameTree; 
 
 correspondence 

conc.ROOT = ROOT and 
conc.nodes = gameTree.nodes – { CSR } and 
conc.edges = gameTree.edges – 

{ (parent(CSR), CSR) } and 
forall x in conc.nodes, 

conc.order(x) = ( 
 gameTree.order(x) – 1 if isYoungerSibling(x, CSR); 

gameTree.order(x)   otherwise ) and 
conc.contents = gameTree.contents – 

{ (CSR, gameTree.contents(CSR)) } 
 
 public void setObjectProperty( restores ObjectID obj, 

restores Property prop) 
  requires obj is_in nodes; 
  ensures nodes = #nodes and  

edges = #edges and order = #order and 
   contents = #contents override  

{ (#obj, [ #contents(#obj).id, 
#contents(#obj).property union {#prop} ] } 

{ 
GameObject rec; 
gameTree.moveBefore(obj); 
gameTree.swapValue(rec); 
rec.addProperty(prop); 
gameTree.swapValue(rec); 

} 
 

/* other operations */ 
} 

Figure 7. GameWorld class 



The game world component is implemented with an indexed tree. 
During game play, each game object is represented by node in the 
tree. Commands input by the player can potentially update the 
game world, either by updating the configuration of the tree, or 
updating the properties of the game objects inside the tree. A 
portion of the GameWorld class is shown in Figure 7. 

The conceptual model of the game world shares the same model 
variables as the indexed tree, but where the indexed tree is 
modeled using generic Enums and Objects, the game world uses 
ObjectID and GameObject types. Also, the game world model 
does not require a cursor node. 

GameWorld contains a single field, the game tree, which is an 
indexed tree assumed to contain game object identifiers as keys 
and game objects as values. The correspondence clause, also 
known as the abstraction relation, describes how to derive the 
state of the conceptual game world from the state of the internal 
game tree. The game world is very similar to the game tree except 
that there is no cursor node and no edge involving the cursor. The 
order of all younger siblings of the cursor in the game tree are 
decremented to get their new orders in the game world. The 
contents are the same except that there is no mapping involving 
the cursor. 

The method setObjectProperty is used in the game to add 
properties to game objects. It ensures that the structure of the 
game tree – the nodes, edges, and order – remains unchanged. The 
new property addition is reflected in the change to the contents 
variable. The next subsection traces through a particular call to the 
method, showing how the implementation meets its specification 
for a particular input. 

 
Figure 8. Pre-state and post-state of setObjectProperty call 

5.2 Tracing Through a Method 
Figure 8 shows a pre-state and the resulting post-state for the call 
to setObjectProperty(BOX, OPEN). Two views are shown: The 
implementer view and the client view. The implementer view 

shows the game tree, which includes a cursor, and the client view 
shows the game world, in which no cursor is present. Properties 
for each game object are given next to their corresponding nodes 
in the trees. 

The tracing table in Table 2 shows the state of the program while 
stepping through the statements in the implementation of the 
setObjectProperty method. The initial state, state 0, describes the 
game tree that corresponds to the implementer view of the pre-
state in Figure 8. The game tree has five nodes: ROOT, CSR, DEN, 
TOM, and BOX; and four edges, corresponding to those shown in 
Figure 8. The order mapping gives the appropriate sibling ranking 
of the nodes. The contents mapping maps nodes to game objects. 
In the tracing table, we represent game objects as sets of 
properties, omitting the redundant identifiers for brevity. The last 
line of each fact contains the values of the formal parameters and 
local variables. State 0 begins after the local variable rec is 
declared. 

Table 2. Trace of setObjectProperty (implementer view) 

St Facts 

0 nodes = { ROOT, CSR, DEN, TOM, BOX } 
edges = { (ROOT, CSR), (ROOT, DEN), (DEN, TOM), (DEN, BOX) } 
order = { (ROOT, 1), (CSR, 1), (DEN, 2), (TOM, 1), (BOX, 2) } 
contents = { (ROOT, { }), (CSR, { }), (DEN, {LIGHT}), 
 (TOM, {PERSON, MALE}), (BOX, {BIN}) } 
obj = BOX and prop = OPEN and rec = { } 

gameTree.moveBefore(obj); 

1 nodes = { ROOT, CSR, DEN, TOM, BOX } 
edges = { (ROOT, DEN), (DEN, TOM), (DEN, CSR), (DEN, BOX) } 
order = { (ROOT, 1), (DEN, 2), (TOM, 1), (CSR, 2), (BOX, 3) } 
contents = { (ROOT, { }), (CSR, { }), (DEN, {LIGHT}), 
 (TOM, {PERSON, MALE}), (BOX, {BIN}) } 
obj = BOX and prop = OPEN and rec = { } 

gameTree.swapValue(rec); 

2 nodes = { ROOT, CSR, DEN, TOM, BOX } 
edges = { (ROOT, DEN), (DEN, TOM), (DEN, CSR), (DEN, BOX) } 
order = { (ROOT, 1), (DEN, 2), (TOM, 1), (CSR, 2), (BOX, 3) } 
contents = { (ROOT, { }), (CSR, { }), (DEN, {LIGHT}), 
 (TOM, {PERSON, MALE}), (BOX, { }) } 
obj = BOX and prop = OPEN and rec = {BIN} 

rec.addProperty(prop); 

3 nodes = { ROOT, CSR, DEN, TOM, BOX } 
edges = { (ROOT, DEN), (DEN, TOM), (DEN, CSR), (DEN, BOX) } 
order = { (ROOT, 1), (DEN, 2), (TOM, 1), (CSR, 2), (BOX, 3) } 
contents = { (ROOT, { }), (CSR, { }), (DEN, {LIGHT}), 
 (TOM, {PERSON, MALE}), (BOX, { }) } 
obj = BOX and prop = OPEN and rec = {BIN, OPEN} 

gameTree.swapValue(rec); 

4 nodes = { ROOT, CSR, DEN, TOM, BOX } 
edges = { (ROOT, DEN), (DEN, TOM), (DEN, CSR), (DEN, BOX) } 
order = { (ROOT, 1), (DEN, 2), (TOM, 1), (CSR, 2), (BOX, 3) } 
contents = { (ROOT, { }), (CSR, { }), (DEN, {LIGHT}), 
 (TOM, {PERSON, MALE}), (BOX, {BIN, OPEN}) } 
obj = BOX and prop = OPEN and rec = { } 

 

The statement gameTree.moveBefore(obj) moves the cursor to the 
position just before BOX. To check if the operation is permissible, 
we must look at the requires clause of the indexed trees 



moveBefore method given in Figure 4. It requires that key (the 
formal parameter that corresponds to obj) be in the node set. Here, 
key = BOX, which is in the node set in state 0 just before the call is 
made, so the precondition is satisfied. To get the facts in state 1, 
we apply the ensures clause of moveBefore to the facts in state 0. 

From the ensures clause for moveBefore we know that the only 
variables in the program state that change are edges and order. 
The edge from ROOT to CSR is replaced by an edge from DEN to 
CSR. BOX is not a younger sibling of CSR, so the order of CSR 
becomes 2 (the old order of BOX), and BOX’s order is incremented. 
DEN is originally a younger sibling of CSR, so its order is 
decremented. The order of all other nodes is unchanged. The 
effects of the other statements are reasoned about similarly.  

To verify that the implementation is correct with respect to the 
specification for this particular start state, we need to translate the 
first and last states from the implementer view to the client view 
using the correspondence clause, and then see if they conform to 
the specification of setObjectProperty. Table 3 is a tracing table 
for setObjectProperty after this translation. State 0 in Table 3 is 
derived from state 0 in Table 2 and state 1 is derived from state 4. 
Applying the ensures clause of setObjectProperty to the facts in 
state 0 results in the facts in state 1, so the implementation is 
correct in this instance. 

Table 3. Trace of setObjectProperty (client view) 

St Facts 

0 conc.nodes = { ROOT, DEN, TOM, BOX } 
conc.edges = { (ROOT, DEN), (DEN, TOM), (DEN, BOX) } 
conc.order = { (ROOT, 1), (DEN, 2), (TOM, 1), (BOX, 2) } 
conc.contents = { (ROOT, { }), (DEN, {LIGHT}), 
 (TOM, {PERSON, MALE}), (BOX, {BIN}) } 

setObjectProperty(BOX, OPEN); 

1 conc.nodes = { ROOT, DEN, TOM, BOX } 
conc.edges = { (ROOT, DEN), (DEN, TOM), (DEN, BOX) } 
conc.order = { (ROOT, 1), (DEN, 2), (TOM, 1), (BOX, 2) } 
conc.contents = { (ROOT, { }), (DEN, {LIGHT}), 
 (TOM, {PERSON, MALE}), (BOX, {BIN, OPEN}) } 

6. OTHER DESIGN ISSUES 
6.1 Singleton Design Pattern 
A design pattern that was used extensively in the Java version of 
the game, but could not be reproduced in the Tako version was the 
singleton pattern, whose intent, according to the patterns book of 
Gamma et al. [11], is to “Ensure that a class only has one instance, 
and provide a global point of access to it” (p. 127). Note that the 
statement says nothing about references and nothing about 
aliasing. However, a typical implementation of the singleton 
permits aliasing everywhere, as shown in Figure 9.  

In this implementation, every singleton variable is a reference to 
the same object. In practice, however, there is never more than 
one singleton variable in a class, and there is no benefit from 
sharing the same object through references over using the object 
itself. One way to use the same object without aliases is through a 
global variable. Gamma et. al. note that global variables provide 
access but criticize global variables for two reasons: They do not 
prevent multiple instances, and they pollute the global namespace. 
The first criticism can easily be addressed in Java using the 

singleton class in Figure 10 in which the constructor is only 
usable from inside the class itself. The second criticism seems to 
imply that it is more difficult to reason about the singleton client 
in Figure 10 than the singleton client in Figure 9 because global 
variables make reasoning difficult. But this criticism seems odd to 
us since aliased variables require reasoning about the global heap, 
a structure as complicated as any variable in a typical program. 

The current Tako compiler does not implement static import 
variables, so a class whose sole purpose was to hold global 
variables was constructed, and we were disciplined about not 
declaring instances of, for example, GameWorld, anywhere but 
inside that class. Clearly this is not a satisfactory solution, so the 
next version of the Tako compiler will have the ability to 
implement the singleton as illustrated in Figure 10. 

class GameWorld {  
    GameWorld world = new GameWorld();  
    private GameWorld() { /* constructor body */ }  
    public static GameWorld getInstance () { return world; }  
    /* remainder of class */  
} 
 
import GameWorld;  
class Resolver {  
    GameWorld world = GameWorld.getInstance();  
    /* class body uses ʻworldʼ variable */  
} 

Figure 9. Typical singleton implementation 
 
class GameWorld {  
    public static GameWorld world = new GameWorld();  
    private GameWorld() { /* constructor body */ }  
    /* attributes and methods */  
}  
 
import static GameWorld.world;  
class Resolver {  
    /* class body uses global ʻworldʼ variable */  
} 

Figure 10. Singleton implemented with single instance global 

6.2 Tako-Java Integration 
Tako is syntactically similar to Java, and the current Tako 
compiler translates to Java, so the current version of Tako is 
closely tied to the Java language. Given this, we want to ensure 
that Tako and Java are as compatible as possible. The Tako 
implementation of the adventure game uses Java Swing 
components for its graphical user interface. Our initial experience 
in integrating Java and Tako components helped us come up with 
a few basic rules, some of which have been applied in the current 
adventure game, and some of which will have to wait for the next 
version of the Tako compiler. 

A Tako class can use a Java class. Currently, a Tako class simply 
imports the Java class, but future versions of the compiler should 
require a special import statement such as “import java”. The 
Tako compiler should translate the Java method call as is. A Java 
method should not take non-Java arguments. If a Tako variable x 
is found, the compiler will view it as the function call 
x.toJava_TypeName() where TypeName is the name of the Java 
type expected. Obviously, such a function will return a value of 
type TypeName. 



If a programmer wants to write a Java class that uses Tako code, 
they should write a Java interface and implement that interface 
with a Tako class. Java methods should have Java parameters and 
return Java values. Tako classes will need to access Tako types 
that can convert to and from the Java types needed in the interface 
methods. For example, if there is a Java method whose signature 
is String processText(String x), then the Tako Text class should 
have a method String toJava_String() and a constructor 
Text(String x). 

7. DISCUSSION AND CONCLUSION 
A typical Java version of the adventure game might use the 
composite design pattern to implement the game world. While the 
composite pattern can be implemented in Tako, the recursive type 
structures involved raise the possibility that null references will be 
assigned to variables, which, in general, is something we prefer to 
avoid. The design of the Tako program uses the game world as a 
point of centralized access and control for the tree structure and 
all of its contents. Many object-oriented programmers prefer 
designs using distributed control rather than centralized 
control [12]. The Tako language does not preclude designs with 
distributed control, but formally reasoning about designs can be a 
challenge. We plan to more explore this topic more thoroughly in 
future research. 

Since all the game objects are stored in a tree like data structure, 
accessing these objects in Tako meant swapping them out of the 
structure, examining them, and then swapping them back in. In 
the Java version, programmers modify a game object through a 
handle or reference to the object. The swapping in Tako initially 
lead to errors while inserting them back in the tree as the 
conceptual cursor position in the tree was unexpectedly modified. 
The error was easily fixed, but it represents one example of an 
error that would not occur in Java as the object is never removed 
in the first place.   

In the Java version of the game, the container classes like stacks, 
hash maps, queues, and lists were already provided by the 
java.util package. But in the Tako version, these util classes where 
implemented from scratch using the pointer component. The 
pointer component was only used in these low level classes; while 
the higher design level classes did not require the use of the 
pointer component. This supported our conjecture that the 
programmer, at higher level of design, can make do without using 
references.   

In this particular program the distinction between object identity 
and name identity did not play a major role. We used hash maps 
to store the game objects and each game object had a unique key 
associated with it. In both the Java and Tako version, it was these 
unique keys rather than the language dependent object identity 
that was used for uniquely identifying the objects.  

Overall, we found that the paradigm shifts involved were not very 
difficult to adjust to though they required some alertness in terms 
of the swapping paradigm. This experience is consistent with that 
of Hollingsworth et al., who discuss a sizeable commercial 
application developed in C++ using the Resolve discipline [13]. In 

their report, they concluded that swapping worked well with most 
object-oriented techniques. 

We would like to implement the adventure game in Java (or 
perhaps Tako) using the composite design pattern to further 
explore the benefits and drawbacks of using a tree data structure 
rather than a composite pattern. Ultimately, we would like to 
bootstrap the Tako compiler using a design based on formally 
specified data types. The source code for the current Tako 
compiler and for the adventure game can be found in the 
takocompiler project on Sourceforge [14]. 
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