
Integrating Math Units and Proof Checking for
Specification and Verification

Hampton Smith
Kim Roche

Murali Sitaraman
Clemson University

School of Computing
Clemson, SC 29634

1(864)6563444

{hamptos | kroche | murali}
@clemson.edu

Joan Krone
Denison University

Mathematics and Computer Science
Granville, OH 43023

1(740)5876484

krone@denison.edu

William F. Ogden
Ohio State University

Computer and Information Science
Columbus, OH 43210

1(614)2921517

ogden@cse.ohiostate.edu

ABSTRACT
A formal system for specification and verification of component-
based software must allow extension of the mathematical units
available for specification with new mathematical theories just as
modern programming languages allow software developers to
extend a core collection of data types with new ones by
developing reusable software components. These extensions
enrich the specification language and lead to simpler
specifications. New theory development must also include
suitable theorems so that it can be used to support automated
proofs of verification conditions (VCs) for correctness arising
from annotated implementations. We distinguish between
straightforward proofs of VCs and the more nuanced proofs for
the theorems in the mathematical units themselves, which often
cannot be automated. We explain the need to separate the
interface of a mathematical unit (précis) that will be used by
software developers and automated provers, from the proof units
that contain proofs of theorems. In addition, we describe a
mathematician-friendly language for presenting proofs and a
proof checker that we have developed to check these proofs.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
class invariants, correctness proofs, formal methods, and F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs—invariants, mechanical
verification, pre- and post- conditions

General Terms
Design, Human Factors, Standardization, Languages, Theory,
Verification.

Keywords
Specification, Verification, Proof Checking, Formal Methods

1. INTRODUCTION
The goal of automatically verifying software components with
respect to a specification presents a fundamental dilemma.
Requiring programmers to engage in a fine level of proof activity
is unlikely to lead to wide-spread verification. On the other
hand, the limitations of automated theorem proving often require
substantial human intervention. Addressing this dilemma is the
focus of this paper. We partition the problem of verification to
distinguish the roles of software developers from mathematicians
and automated provers from proof checkers.

Formal verification ultimately involves the insights of
programmers (e.g., specifying invariants), the insights of
mathematicians (e.g., discovering non-trivial theorems and
furnishing proofs to support them), and the more straightforward
task of proving verification conditions of implementation
correctness based on these insights. Some verification conditions
(VCs) correspond to checking the insights of programmers to
eliminate unsoundness that may arise from poor programmer
insights. In the scenario we envision, programmers would not be
involved in any proving activity beyond documenting their
insights. The proving activity would instead be partitioned into
two sub-tasks:

1. Proofs of verification conditions to establish the
correctness of code.

2. Proofs of supporting theorems from mathematics.

The former would be straightforward and only involve various
simplifications so that an automated prover could discharge them
without requiring human intervention. The latter would
generally require proof steps from mathematicians.

Unlike the proof of VCs arising from code, where the goal is
complete automation, the focus of extending the mathematical
library is on enabling mathematicians to improve the
expressiveness of the theories available to the specification and
verification subsystems. It is therefore not necessary that these
theorems be automatically verifiable. While a class of theorems
can be discharged automatically by automated provers [5, 7, 11,
13], in general proofs of theorems require mathematical insights
that cannot be discovered automatically. Obviously, limiting
allowable theorems to those that can be automatically proved
would in turn limit the class of programs that can be proved. To

address this problem, some current systems (e.g., Isabelle) allow
some theorems to be taken for granted without proofs, but clearly
this can only be a temporary solution.

To address the sub-problem of proving non-trivial theorems, we
have a developed a mathematician-friendly language for writing
proofs and a proof checker for checking these proofs. We intend
that these proofs will be written by mathematicians, not
programmers.

The rest of this paper is organized as follows: In Section 2, we
illustrate the need for a verification system to strike a balance
between automated theorem proving and mechanically-checked
(but user-provided) proofs. In Section 3, we discuss practical
consequences of this balance and suggest ways in which the
problem may be managed by applying traditional software design
tactics such as modularity to the proof subsystem. We support
these ideas with examples from the design of our own
verification system, RESOLVE. In Section 4, we detail the
workings of the proof language and its associated proof checker.
In Section 5, we discuss related work and summarize our
conclusions.

2. PROOFS OF VCS VS. THEOREMS
To illustrate the distinct issues in proving VCs arising from code
and proving theorems in mathematics, we consider a component
verification example. In particular, we consider an operation to
reverse a given Stack object. A specification and an
implementation of the operation are given below in RESOLVE,
an integrated specification and programming language [12]. The
issues discussed in this paper, however, are language
independent.

Specification:

Enhancement Flipping_Capability for Stack_Template;
Operation Flip(updates S: Stack);

 ensures S = Rev(#S);
end Flipping_Capability

Code:

Realization Obvious_F_C_Realiz for Flipping_Capability
of Stack_Template;

 Procedure Flip(updates S: Stack);
Var Next_Entry: Entry;
Var S_Flipped: Stack;

While (Depth(S) /= 0)
changing S, Next_Entry, S_Flipped;
maintaining #S = Rev(S_Flipped) o S;
decreasing |S|;

do
Pop(Next_Entry, S);
Push(Next_Entry, S_Flipped);

end;

S := : S_Flipped;
 end Flip;

end Obvious_F_C_Realiz;

The specification of Stack_Template on which the Flip
enhancement (called an extension operation in other systems) is
based imports the mathematical unit String_Theory and
conceptualizes a Stack object as a mathematical string. The
ensures clause, which defines the behavior of this operation, is
used for verification and thus the variables in the clause stand for
their mathematical values. In this case, #S refers to the
mathematical string that represents the value of the stack S when
this operation is called, while S refers to the mathematical string
that represents the value of the stack S when this operation exits.
Rev is a mathematical function that takes a string and returns it
in reverse order.

The While statement in the code for Flip is annotated with three
clauses that make the insights of the programmer regarding the
correctness of the code explicit. For our purposes, it doesn’t
matter whether a programmer uses tools to identify and
document such assertions (e.g., the work of [3] in identifying
loop invariants automatically) or does so herself. The changing
clause indicates those variables whose values are permitted to
change inside the loop. Implicit is that any variable not
mentioned will not change. The maintaining clause provides a
loop invariant. The “o” in this line is intended to be read as ,∘
the concatenation operator on mathematical strings. The
decreasing clause documents the progress metric, i.e., the
programmer’s rationale for why the loop would terminate.

At the end of the loop, we use the :=: operator, which swaps the
values of S and S_Flipped, thus transferring the stack
containing the reversed contents to the parameter stack S. The
motivation for using swapping and avoiding unnecessary aliasing
is the topic of [4].

When the code for Flip is analyzed, the usual syntax-checking
and type-checking is performed and, assuming it passes these
checks, the code continues to a verifier, which generates VCs
that must be proved in order for the code to be considered
correct. The VCs generated using the RESOLVE VC generator
[9] are shown in an appendix.

The verifier includes a flag to generate Isabelle-friendly
assertions (not shown in this paper). Our experience in proving
VCs automatically using Isabelle is the topic of [6]. Other
example verification benchmarks are given in [15]. All the VCs
for the present example can be discharged automatically by the
Isabelle prover. Specifically, beyond documenting loop
invariants and progress metrics, programmers are not involved at
all in verification.

The VCs correspond to checking correctness of programmer-
supplied invariants and progress metrics, checking the
preconditions of called operations (e.g., Pop), and the
postcondition of the operation that is being verified. We discuss
the automated verification of one of the VCs to distinguish
simplification from theorem proving activities. It is the third VC
from the Appendix and it corresponds to the inductive step of
establishing the correctness of the invariant. This VC (after
removing assumptions that are not necessary) is shown below:

((|S| <= Max_Depth) and (S = (Rev(?S_Flipped) o ??S) and
(|??S| /= 0 and ??S = (<?Next_Entry> o ?S))))

======================>

(Rev(?S_Flipped) o ??S) =
(Rev(<?Next_Entry> o ?S_Flipped) o ?S)

The VC is an implication. All variables in a VC are
mathematical. For example, S is a String of Entries, not a Stack.
In this VC, |S| indicates the length of the string S, <X> indicates
the string with X as its sole element, and “o” is the concatenation
operator on strings.

Variables in the VC prepended with a question mark are verifier-
generated and simply represent the values of the variables at
different points in the code. So, for instance, S represents the
initial value of the stack S, ?S represents its value at the
beginning of each loop, and ??S represents its value at the end
of each loop.

Automated provers, such as Isabelle, would begin with a
substitution in proving this VC:

 (?S_FlippedRev ??S) = ∘
 ((<?Next_Entry> ?S_Flipped)∘ Rev ?S)∘

given
 (?S_FlippedRev ∘ (<?Next_Entry> ?S)∘) =
 ((<?Next_Entry> ?S_Flipped)∘ Rev ?S)∘

by substitution

From here, the provers will rely on two important theorems from
String_Theory to complete the proof:

 Theorem 1:
 α:String of E, x:E, (α <x>)∀ ∀ ∘ Rev = (<x> α∘ Rev).

 Theorem 2:
 Is_Associative()∘

Theorem 2 uses the higher order predicate Is_Associative that is
defined in a separate math unit named
Basic_Function_Properties. This unit defines several other
related predicates and is reused by several mathematical units.

Clearly, proving the VC given these theorems is a qualitatively
different activity from proving the theorems themselves. Given
these theorems, proving the VC is a simple process of repeated
substitution. The proofs for the theorems themselves are
significantly more involved.

There are certainly automated theorem provers, particularly of
the inductive variety, that could provide proofs of Theorems 1
and 2 on their own. ACL2 [1] is one such prover, though it is
limited to first order assertions. However, there are many other
theorems where automated provers would be unable to make the
required logical leap. Indeed, we could imagine writing code
that relies on Fermat's Last Theorem for its correctness.

Providing proofs for such theorems, in general, is a process for
mathematicians. Programmers cannot be and should not be
involved in proving theorems. The simpler task of applying
these theorems as part of proving a VC is left for an automated
prover. It is our hypothesis that String_Theory can, through
careful experimentation and expansion, be fitted with sufficient
theorems to make verifying the vast majority of programming
concepts based on strings, such as Stacks, Queues, Lists, and
others, a task of repeated substitution and thus within the
capabilities of a modest automated prover.

Reusing mathematical notions such as strings to specify a wide
variety of concepts makes it possible to eliminate the need for
Larch-style theories [17] where the theory of Queues is separate
from the theory of Stacks, with each different from the theory of
Lists.

3. PRÉCIS AND PROOF UNITS
Any code verification system that is complete must provide a
mechanism by which arbitrary new theorems can be added; any
system that is to be sound must provide a mechanism for
providing and checking proofs in support of those theorems.
These results in mathematics are reusable in verifying a variety
of software artifacts and need to be proved only once. Clearly,
developing these proofs is beyond the expertise of typical
programmers and should be left to trained mathematicians. This
observation suggests a clear division of labor in which
programmers are concerned only with immediate details and
insights about proving their programs to be correct, whereas
mathematicians are involved in proving more general theorems.
Like programmers, mechanical provers of VCs need not be
concerned with proofs of these theorems.

By linking all programming objects to the mathematical world,
mathematical results become applicable in programming
contexts. This means, however, that the automated prover is no
longer the only entity that needs access to mathematical
definitions and results. Software developers also need to be
aware of them for use in specifying and verifying software
components. However, in both cases they just need to know
what the results are, but not how they were derived. Therefore,
clean, modular, and component-based techniques derived from
the world of programming must be applied to the mathematical
world of proofs. This is the motivation for separating interfaces
of math units (précis) from their corresponding proof units.

Since most readers are familiar with the preliminaries necessary
to do proofs with number theory, we use the associativity result
on the plus operator on natural numbers as our illustrative
example (instead of the string operator). Many automated∘
provers could, of course, dispatch such a theorem easily. We use
it here as an accessible example for when automated proving is
not possible.

It is easy to imagine the need for a theorem on the associativity of
plus by conceiving of a simple piece of code such as
I := (K + L) + M after which, for whatever reason, we need to
confirm that I = K + (L + M). Clearly, the validity of this code
relies on the associativity of plus on the natural numbers (in the

same way the validity of the Flip code in the previous section
relies on the associativity of on strings.) The pr∘ écis for
Natural_Number_Theory contains the definition of the set N,
symbols, such as 0 and suc, and several theorems. We list
below one definition and a theorem from this précis:

Précis Natural_Number_Theory;
uses Basic_Function_Properties,
Monogenerator_Theory...

...

Inductive Definition on i : N of (a : N) + (b) : N is
(i) a + 0 = a;
(ii) a + suc(b) = suc(a + b);

Theorem N1: Is_Associative(+);

...
end Natural_Number_Theory;

A précis is an interface for theory users (both humans and
mechanical provers). It provides a summary of the theorems in
the theory—everything required to use the theorems without any
of the details that support the theorems.

This arrangement has obvious analogues to both the header files
of C and forms of documentation such as Javadocs. However,
unlike C headers, which are primarily intended for use by the
compilation system, or Javadocs, which are intended for human
consumption, these précis are intended to aid both the
verification system and human users. The verification system
makes use of proven theorems to verify VCs, mathematicians use
them to support new theorems with established ones, and
programmers use them to to better tailor their specifications to
the available body of mathematical truth. None of these entities
need be concerned with the details of supporting proofs. The
strict separation of précis from proof unit, enforced by the
system, ensures that both documents are always available and
synchronized.

The proof for N1 is found in the proof unit
Natural_Number_Theory_Proofs. It relies on the definition of
a natural number above and reads as follows:

Proof unit Natural_Number_Theory_Proofs for
Natural_Number_Theory;
Uses ...

Proof of Theorem N1:

Goal for all k, m, n: N, k + (m + n) = (k + m) + n;
Def S1: Powerset(N) =

{ n: N, for all k, m: N, k + (m + n) = (k + m) + n };
Goal S1 = N;
Goal 0 is_in S1;
Goal for all n: S1, suc(n) is_in S1;
Goal for all n: S1, if n is_in S1 then suc(n) is_in S1;
(Base_case) Goal 0 is_in S1;
Goal for all k, m: N, k + (m + 0) = (k + m) + 0;
Goal for all k, m: N, if k is_in N and m is_in N then

k + (m + 0) = (k + m) + 0;
Supposition k, m: N;

Goal k + (m + 0) = (k + m) + 0;

k + (m + 0) = k + m
by (i) of Definition +;

k + m = (k + m) + 0
by (i) of Definition +;

Deduction if k is_in N and m is_in N then
k + (m + 0) = (k + m) + 0;

[ZeroAssociativity] For all k: N, for all m: N,
k + (m + 0) = (k + m) + 0

by universal generalization;
[ZeroInS1] 0 is_in S1

by ZeroAssociativity;
(Inductive_case) Goal for all n: N, suc(n) is_in S1;
Goal for all n: N, if n is_in S1 then suc(n) is_in S1;
Supposition n: S1;

[InductiveSupposition] For all k, m: N,
k + (m + n) = (k + m) + n

by Definition S1;
Goal suc(n) is_in S1;
Goal for all k, m: N,

k + (m + suc(n)) = (k + m) + suc(n);
Goal for all k, m: N,

if k is_in N and m is_in N then
k + (m + suc(n)) = (k + m) + suc(n);

Supposition k, m: N;
Goal k + (m + suc(n)) = (k + m) + suc(n);
k + (m + suc(n)) = k + suc(m + n)

by (ii) of Definition +;
(k + suc(m + n)) = suc(k + (m + n))

 by (ii) of Definition +;
suc(k + (m + n)) = suc((k + m) + n)

by InductiveSupposition;
suc((k + m) + n) = (k + m) + suc(n)

by (ii) of Definition +;
Deduction if k is_in N and m is_in N then

k + (m + suc(n)) = (k + m) + suc(n);
[SucNAssociativity] For all k, m: N,

k + (m + suc(n)) = (k + m) + suc(n)
by universal generalization;

suc(n) is_in S1
by SucNAssociativity;

Deduction if n is_in S1 then suc(n) is_in S1;
for all n: N, suc(n) is_in S1

by universal generalization;
0 is_in S1 and (for all n: N, suc(n) is_in S1)

by ZeroInS1 & and rule;
N = S1

by Definition Monogeneric_Pty_3 &
modus ponens;

For all k, m, n: N, k + (m + n) = (k + m) + n
by Definition S1 & universal generalization;

Is_Associative(+)
by Definition Is_Associative(+);

QED

end Natural_Number_Theory_Proofs;

The proof language uses a syntax that mimics the traditional
style of a mathematical proof. Provers such as Isabelle use a
programming language-like syntax for expressing mathematics to
enable ease of automation. Unfortunately, this very reason may
make it less intuitive for traditional mathematicians. Because we
have drawn a clear separation between automated verification of
VCs and proof checking for theorems, we can use a language for
writing proofs that is more intuitive for mathematical users. To
this end, “Goals” are comments to state what the proof will try to
do next; “Supposition/Deduction” pairs provide a mechanism for
establishing implications; “definitions” can be introduced on the
fly; and the “by” keyword introduces the rationale for the next
step. A line of the proof can be given a label in square brackets
for future reference.

This proof begins by stating a number of Goals. The proof
establishes a set, S1, which is defined to be the power set of N,
for which the property of associativity already holds. The proof
then proceeds with an induction over the natural numbers to
prove that the set S1 is the same set as N. The base case of this
induction is to prove that the natural number 0 is in S1, which is
accomplished by using the identity property inherent in the
definition of + to show that when adding zero, at least, + is
associative, and thus 0 is also in S1

To see how straight forward the task of mechanization by the
proof checker is, consider the italicized line that makes use of the
“and” rule.

0 is_in S1 and (for all n: N, suc(n) is_in S1)
by ZeroInS1 & and rule;

It is simply the conjunct of the assertion labeled ZeroInS1 with
the assertion in the previous line.

A basic tenant of this proof checker is to approach a minimal
basis of justifications to explain the transitions from step to step
within a proof. These justifications act in concert with
references to provide the rationale for a single step. A reference
names one of the following kinds of entities:

• Lemmas, which are found in math précis or locally in
a proof unit;

• Theorems, which are found in math précis;
• Suppositions that were established earlier in the proof;
• Labels that were given earlier in the proof;
• Definitions/Corollaries, which may be found inside a

theory or defined earlier in the proof.

The available justifications are split into three groups based on
the number of references they act on. The justifications requiring
two references are as follows:

• Modus ponens
• And rule
• Contradiction
• Alternative elimination
• Common conclusion

The justifications requiring one reference are:

• Equality
• Reductio ad absurdam
• Existential generalization
• Or rule
• Conjunct elimination
• Quantifier distribution
• Definition !∃
• Universal instantiation
• Existential instantiation

Finally, the only justification requiring no references is:

• Excluded middle

4.PROOF CHECKER
Each justification has a well defined meaning that allows the
proof-checker to determine if it is valid. Consider the following
example of the semantics of modus ponens:

Γ, δ [Label] B⊢
by [Reference2,] Reference1 & modus ponens
where {A, A → B} ⊆

Extract{[Reference2,] Reference1}, Γ, δ}

Γ represents the theories (with comprising theorems) currently in
scope of the proof; δ represents the derivation of the proof so far;

 is an operator indicating that the following application of a⊢
justification is valid; A and B are simply mathematical
expressions; and the Extract function returns the set of
mathematical expressions that have been assumed so far that
correspond to the given names within either Γ or δ, or that was
assumed in the immediately preceding line of the proof. Square
brackets indicate an optional part.

So, overall this line is to be read, “A justification by modus
ponens is permitted for establishing B if the given references and
the expression of the immediately preceding line are sufficient to
establish, from Γ and δ, that (A → B) and (A). In the future, the
expression B may itself be referenced as Label.”

As another example, here is the semantics of alternative
elimination:

Γ, δ [Label] A⊢
by [Reference2,] Reference1 & alternative elimination
where {B} Extract{[Reference2,] Reference1}, Γ, δ}⊆

and {A or B, B or A} ∩
Extract{[Reference2,] Reference1}, Γ, δ} ≠ ∅

This is to be read, “A justification by alternative elimination is
permitted for establishing A if the given references and the
expression of the immediately preceding line are sufficient to
establish, from Γ and δ, ¬B, and at least one of (A or B) or (B or
A) can be established in the same way. In the future, the
expression A may itself be referenced as Label.”

The current version of the proof checker is able to verify valid
proofs (including the proof of associativity provided in Section
3), though higher-order theorems such as Is_Associative are not
yet implemented. In addition, it is able to recognize and produce
appropriate error messages for attempts to apply faulty
justifications. We provide two examples of simple proofs
containing errors in logic and the output of the proof checker
when run on each.

First consider this working example:

Corollary Identity: a : N and a + 0 = a;

Proof of Theorem Nothing:
Supposition k, m: N;

(k + m) + 0 = k + m
by Corollary Identity & equality;

Deduction if k is_in N and m is_in N then
(k + m) + 0 = k + m;

QED

This proof simply establishes that given the identity property of
addition on natural numbers, if two numbers, k and m, are
natural numbers, then (k + m) + 0 = (k + m).

Now consider an invalid application of the Identity Corollary:

Supposition k, m: N;

(k + m) + 0 = m + 0 by Corollary Identity & equality;

Deduction if k is_in N and m is_in N then
(k + m) + 0 = k + m;

When run through the proof-checker, this produces the following
output:

Error: Simple.mt(10):
Could not apply substitution to the justified expression.

(k + m) + 0 = m + 0 by Corollary Identity & equality;

Next, consider an invalid choice of justification to an otherwise
valid step:

Supposition k, m: N;
(k + m) + 0 = k + m by Corollary Identity & or rule;

Deduction if k is_in N and m is_in N then
(k + m) + 0 = k + m;

When run through the proof-checker, this produces the following
output:

Error: Simple.mt(10):
Could not apply the rule Or Rule to the proof expression.
 (k + m) + 0 = k + m by Corollary Identity & or rule;

5. RELATED WORK AND CONCLUSIONS
5.1 Isabelle
Isabelle is a proof assistant implemented in Standard ML and
based on the specification language Isar [13, 16]. Its focus is on
interactive proof development. It is also able to complete proofs
automatically. Unlike earlier versions that closely resembled ML
syntax, more recent versions have begun to put more of an
emphasis on human readability of proofs. Even with these
improvements, proofs contain artifacts of programming
languages. For example, consider the following (trivial) proof
that A and B → B and A where A and B are complicated
expressions (called large_A and large_B in the proof) modified
from [14]:

lemma assumes AB: "large_A large_B"∧
shows "large_B large_A" (is "?B ?A")∧ ∧
using AB

proof
assume "?A" "?B" show ?thesis ..

qed

While penetrable, it is harder to follow for those whose
background is purely mathematical. Also, Isabelle proofs include
statements to help ease automation, often interspersed with steps
of the proof itself. By separating proofs that are merely checked

from those that are totally automated, this difficult can be
avoided.

Isabelle differs from RESOLVE as a language for proofs
primarily with respect to its syntax, which maintains a
programming language flavor. Another difference is that Isabelle
provides no specific support for syntactically separating theorems
from their proofs, though tools are provided for auto-generating
documentation that serves much the same purpose. Also,
Isabelle permits the bodies of proofs to be elided using a “sorry”
command, which may allow unsound theorems to be introduced
into the system.

5.2 Coq
Both Coq and RESOLVE share an emphasis on a small but
extensible logical core and a specification language tailored for
the tool itself (in the case of Coq, this language is called Gallina)
[5]. Coq has limited automatic proving capabilities and a syntax
more reminiscent of a programming language than a
mathematical proof. As an example, consider a proof in Coq that
A and B → B and A modified from [5]:

Variables A B C : Prop.

Lemma and_commutative : (A /\ B) -> (B /\ A).
intro.
elim H.
split.
exact H1.
exact H0.

Save.

As with Isabelle, there is no explicit syntactic mechanism for
separating theorems from their proofs; though, again, tools exist
to automatically generate documentation. Also, like Isabelle,
Coq provides a “trust me” command, which allows a proof to be
elided.

5.3 PVS
PVS exists somewhere between a proof assistant and a theorem
prover [2, 10, 11]. It uses a library of definitions and theorems to
support the SMT solver Yices for the automatic verification of
arithmetic expressions and equalities. Unlike RESOLVE, PVS
has almost no emphasis on human-readable proofs. PVS's type
checking system occasionally defers to the proof-checker to
resolve ambiguous proof conditions. This contrasts with
RESOLVE, where code, specifications, and proofs must all pass
type checking before moving on to verification.

5.4 Nuprl
Like Isabelle, Nuprl is based on ML. Unlike RESOLVE, it does
not perform type-checking on proofs [7, 8]. Nuprl relies on a
built-in set of theories such as integers, function, and sets, which
can only be extended by the use of tuples, unions, and lists. This
contrasts with RESOLVE where only a minimal set of theories is
provided (namely Boolean theory and a small portion of Set
theory) from which other theories are built.

5.5 Conclusions
Software verification is a challenging problem. To address it
effectively, a formal verification system that includes a verifying
compiler needs to bring together the insights of programmers and
mathematicians with advances in prover technology for

mechanizing straightforward proofs, and proof checking for non-
trivial theorems. Here we have presented a framework for
addressing this challenge along with a summary of our efforts in
proof checking. We plan much more experimentation with the
ideas and tools presented here in order to make progress toward
a sound and complete verification system.

6. ACKNOWLEDGMENTS
This research is funded in part by NSF grants DUE-0633506,
DMS-0701187, DMS-0811748, and CCF-0811748. We thank
the members of the RESOLVE/Reusable Software Research
Group at Clemson and Ohio State for discussions on the topics
presented in this paper. Special thanks are due to Jeremy Avigad
at CMU, and Harvey Friedman and Bruce Weide at Ohio State.
We thank the referees whose comments have helped improve the
paper. We also thank the attendees of the RESOLVE meeting
held at Clemson in 2007 when Kim Roche presented a draft
version of these ideas.

7. APPENDIX
7.1 Stack Specification

Concept Stack_Template(type Entry; evaluates Max_Depth:
Integer);
 uses Std_Integer_Fac, String_Theory;
 requires Max_Depth > 0;

 Type Family Stack is modeled by Str(Entry);
 exemplar S;
 constraint |S| <= |Max_Depth|;
 initialization ensures S = empty_string;

 Operation Push(alters E: Entry; updates S: Stack);
 requires 1 + |S| <= Max_Depth;
 ensures S = <#E> o #S;

 Operation Pop(replaces R: Entry; updates S: Stack);
 requires |S| > 0;
 ensures #S = <R> o S;

 Operation Depth(restores S: Stack): Integer;
 ensures Depth = (|S|);

 Operation Rem_Capacity(restores S: Stack): Integer;
 ensures Rem_Capacity = (Max_Depth - |S|);

 Operation Clear(clears S: Stack);

end Stack_Template;

The concept Stack_Template is parameterized by a type, Entry,
comparable to a generic in Java, and a Max_Depth that ensures
each stack never becomes deeper than some capacity.

A type, Stack, is introduced, which is modeled on a
mathematical string of Entrys. The constraints clause
introduces a class invariant: the depth of a stack may never
exceed Max_Depth. The initialization ensures clause
guarantees that all implementations of Stack will ensure that
new Stacks begin empty.

Next comes a list of the usual operations on Stacks. Each
operation has a requires clause, which states the operation's pre-
condition; and an ensures clause, which states its post-

condition. In the ensures clause, a variable like S refers to the
outgoing value of S while #S refers to the initial, incoming value
of S. In addition to a type, each parameter in an operation has a
parameter passing mode, such as alters or updates. These
modes make certain assurances about the way in which a given
parameter will be used. For instance, the alters mode indicates
that the incoming value of the parameter is meaningful (and thus
that variable may appear in the requires clause), but that the
outgoing value of that parameter is undefined (and thus referring
to the outgoing value in the ensures clause is illegal.) Updates
indicates that both the incoming and outgoing values are defined.
The others are similar.

As an example, the Pop operation takes a Stack, S, and an Entry,
R, into which to pop the top entry. The requires clause states
that there must be at least one Entry on S, and the ensures clause
states that when we have finished, prepending R onto the final
value of S will have the same value as the initial value of S.

7.2 VCs Resulting from Obvious_F_C_Realiz
Free Variables: Max_Depth:*Z, min_int:*Z, max_int:*Z,
S:*Str(*Entry), ?S:*Str(*Entry), ?Next_Entry:*Entry, ?
S_Reversed:*Str(*Entry), Next_Entry:*Entry,
S_Reversed:*Str(*Entry)

((((min_int <= 0) and (0 < max_int)) and ((min_int <= 0) and
(0 < max_int) and (Max_Depth > 0))) and (|S| <= |
Max_Depth|))
======================>
S = (Rev(empty_string) o S)

(((((min_int <= 0) and (0 < max_int)) and ((min_int <= 0)
and (0 < max_int) and (Max_Depth > 0))) and (|S| <= |
Max_Depth|)) and (S = (Rev(?S_Rev) o ?S) and |?S| /= 0))
======================>
((1 + |?S_Reversed|) <= Max_Depth)

(((((min_int <= 0) and (0 < max_int)) and ((min_int <= 0)
and (0 < max_int) and (Max_Depth > 0))) and (|S| <= |
Max_Depth|)) and (S = (Rev(?S_Reversed) o ?S) and |?S| /
= 0))
======================>
(Rev(?S_Reversed) o ?S) = (Rev((<?Next_Entry> o ?
S_Reversed)) o ?S)

(((((min_int <= 0) and (0 < max_int)) and ((min_int <= 0)
and (0 < max_int) and (Max_Depth > 0))) and (|S| <= |
Max_Depth|)) and (S = (Rev(?S_Reversed) o ?S) and |?S| /
= 0))
======================>
(|?S| < |?S|)

((((min_int <= 0) and (0 < max_int)) and ((min_int <= 0) and
(0 < max_int) and (Max_Depth > 0))) and ((|S| <= |
Max_Depth|) and (S = (Rev(?S_Reversed) o ?S) and |?S| =
0)))
======================>
?S_Reversed = Rev((Rev(?S_Reversed) o ?S))

8. REFERENCES
[1] “ACL2 Version 3.4: The User's Manual.”

http://www.cs.utexas.edu/users/moore/acl2/v3-4/acl2-
doc.html#User%27s-Manual

[2] B. Dutertre and L. de Moura, “The Yices SMT Solver,”
August 2006, http://yices.csl.sri.com/documentation.shtml./

[3] M. D. Ernst. Dynamically discovering likely program
invariants. PhD thesis, University of Washington
Department of Computer Science and Engineering, Seattle,
Washington, Aug. 2000.

[4] D. E. Harms and B. W. Weide, Copying and Swapping:
Influences on the Design of Reusable Software Components,
IEEE Transactions on Software Engineering, Vol. 17, No. 5,
May 1991, pp. 424 - 435.

[5] G. Huet, G. Kahn, and C. Paulin-Mohring, “The Coq Proof
Assistant: A Tutorial.” INRIA, 2004, pp. 3-18; 45-47.

[6] H. Kirschenbaum, K. Harton, and M. Sitaraman, A Case
Study in Automated Verification, Proceedings of CAV/AFM
Workshop, Princeton, NJ, July 2008.

[7] PRL Project, “The Nuprl Book,” September 1995,
http://www.cs.cornell.edu/Info/Projects/NuPrl/book/doc.html

[8] PRL Project, “Nuprl Basics – Nuprl Primitives,” September
2003,
http://www.cs.cornell.edu/Info/People/sfa/Nuprl/NuprlPrimit
ives/.

[9] RESOLVE Compiler and Verifier.
http://www.cs.clemson.edu/~resolve/compiler-verifier.html.

[10] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-
Calvert, “PVS Language Reference: Version 2.4.” Menlo
Park, CA: SRI International, 2001.

[11] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-
Calvert, “PVS Prover Guide: Version 2.4.” Menlo Park, CA:
SRI International, 2001, pp. 1-24; 103-110.

[12] M. Sitaraman, and B. Weide, eds., Special Feature:
Component-Based Software Using RESOLVE, Software
Engineering Notes 19, 4 (October 1994), 21-22.

[13] T. Nipkow, L. C. Paulson, M. Wenzel, “Isabelle/HOL: A
Proof Assistant for Higher-Order Logic.” New York:
Springer-Verlag, 2008, Sections 1.1, 1.2, and 2.3.

[14] T. Nipkow. “A Tutorial Introduction to Structured Isar
Proofs,”
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/d
oc/isar-overview.pdf.

[15] B. Weide, M. Sitaraman, H. K. Harton, B. Adcock, P. Bucci,
D. Bronish, W. D. Heym, J. Kirschenbaum and D. Frazier.
Incremental Benchmarks for Software Verification Tools and
Techniques. Proceedings of VSTTE 2008, Toronto, CA, Oct
2008, to appear.

[16] M. Wenzel, “Isabelle/Isar: Reference Manual”, June 2008,
www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/isa
r-ref.pdf. Section 4.4.

[17] J. M. Wing. Using Larch to specify Avalon/C++ objects.
IEEE Transactions on Software Engineering, Vol. 16, No. 9,
September 1990, pp. 1076-1088.

	1. INTRODUCTION
	2. PROOFS OF VCS VS. THEOREMS
	3. PRÉCIS AND PROOF UNITS
	4.PROOF CHECKER
	5. RELATED WORK AND CONCLUSIONS
	5.1 Isabelle
	5.2 Coq
	5.3 PVS
	5.4 Nuprl
	5.5 Conclusions

	6. ACKNOWLEDGMENTS
	7. APPENDIX
	7.1 Stack Specification
	7.2 VCs Resulting from Obvious_F_C_Realiz

	8. REFERENCES

