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ABSTRACT
A formal system for specification and verification of component-
based software must  allow extension of the mathematical  units 
available for specification with new mathematical theories just as 
modern  programming  languages  allow  software  developers  to 
extend  a  core  collection  of  data  types  with  new  ones  by 
developing  reusable  software  components.   These  extensions 
enrich  the  specification  language  and  lead  to  simpler 
specifications.   New  theory  development  must  also  include 
suitable  theorems so that  it  can be used  to support  automated 
proofs  of verification  conditions  (VCs)  for  correctness  arising 
from  annotated  implementations.    We  distinguish  between 
straightforward proofs of VCs and the more nuanced proofs for 
the theorems in the mathematical units themselves, which often 
cannot  be  automated.   We  explain  the  need  to  separate  the 
interface  of a  mathematical  unit  (précis)  that  will  be  used  by 
software developers and automated provers, from the proof units 
that  contain  proofs  of  theorems.   In  addition,  we  describe  a 
mathematician-friendly  language  for  presenting  proofs  and  a 
proof checker that we have developed to check these proofs.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
class  invariants,  correctness proofs,  formal methods,  and F.3.1 
[Logics and Meanings of  Programs]: Specifying and Verifying 
and  Reasoning  about  Programs—invariants,  mechanical  
verification, pre- and post- conditions

General Terms
Design,  Human  Factors,  Standardization,  Languages,  Theory, 
Verification.

Keywords
Specification, Verification, Proof Checking, Formal Methods

1. INTRODUCTION
The  goal  of automatically verifying software  components  with 
respect  to  a  specification  presents  a  fundamental  dilemma. 
Requiring programmers to engage in a fine level of proof activity 
is  unlikely to  lead  to  wide-spread  verification.   On the  other 
hand, the limitations of automated theorem proving often require 
substantial human intervention.  Addressing this dilemma is the 
focus of this paper.   We partition the problem of verification to 
distinguish the roles of software developers from mathematicians 
and automated provers from proof checkers.

Formal  verification  ultimately  involves  the  insights  of 
programmers  (e.g.,  specifying  invariants),  the  insights  of 
mathematicians  (e.g.,  discovering  non-trivial  theorems  and 
furnishing proofs to support them), and the more straightforward 
task  of  proving  verification  conditions  of  implementation 
correctness based on these insights.  Some verification conditions 
(VCs)  correspond  to  checking  the  insights  of programmers  to 
eliminate  unsoundness  that  may arise  from poor  programmer 
insights.  In the scenario we envision, programmers would not be 
involved  in  any  proving  activity  beyond  documenting  their 
insights.  The proving activity would instead be partitioned into 
two sub-tasks:

 

1. Proofs  of  verification  conditions  to  establish  the 
correctness of code. 

2. Proofs of supporting theorems from mathematics.

The former would be straightforward  and only involve various 
simplifications so that an automated prover could discharge them 
without  requiring  human  intervention.   The  latter  would 
generally require proof steps from mathematicians.

Unlike  the  proof of VCs arising from code,  where  the  goal  is 
complete  automation,  the  focus of extending  the  mathematical 
library  is  on  enabling  mathematicians  to  improve  the 
expressiveness of the theories available to the specification and 
verification subsystems.   It is therefore not necessary that these 
theorems be automatically verifiable.  While a class of theorems 
can be discharged automatically by automated provers [5, 7, 11, 
13], in general proofs of theorems require mathematical insights 
that  cannot  be  discovered  automatically.   Obviously,  limiting 
allowable  theorems  to  those  that  can  be  automatically proved 
would in turn limit the class of programs that can be proved.  To 



address this problem, some current systems (e.g., Isabelle) allow 
some theorems to be taken for granted without proofs, but clearly 
this can only be a temporary solution.  

To address the sub-problem of proving non-trivial theorems, we 
have a developed a mathematician-friendly language for writing 
proofs and a proof checker for checking these proofs.  We intend 
that  these  proofs  will  be  written  by  mathematicians,  not 
programmers.

The rest of this paper is organized as follows:  In Section 2, we 
illustrate  the need for a verification system to strike  a balance 
between  automated  theorem proving and  mechanically-checked 
(but  user-provided)  proofs.   In Section  3,  we  discuss  practical 
consequences  of  this  balance  and  suggest  ways  in  which  the 
problem may be managed by applying traditional software design 
tactics such as modularity to the proof subsystem.   We support 
these  ideas  with  examples  from  the  design  of  our  own 
verification  system,  RESOLVE.   In  Section  4,  we  detail  the 
workings of the proof language and its associated proof checker. 
In  Section  5,  we  discuss  related  work  and  summarize  our 
conclusions.

2. PROOFS OF VCS VS. THEOREMS
To illustrate the distinct issues in proving VCs arising from code 
and proving theorems in mathematics, we consider a component 
verification example.  In particular, we consider an operation to 
reverse  a  given  Stack  object.   A  specification  and  an 
implementation of the operation are given below in RESOLVE, 
an integrated specification and programming language [12].   The 
issues  discussed  in  this  paper,  however,  are  language 
independent.

Specification:

Enhancement Flipping_Capability for Stack_Template;
Operation Flip( updates S: Stack );

 ensures S = Rev(#S);
end Flipping_Capability

Code:

Realization Obvious_F_C_Realiz for Flipping_Capability 
of Stack_Template;

  Procedure Flip( updates S: Stack );
Var Next_Entry: Entry;
Var S_Flipped: Stack;

While ( Depth( S ) /= 0 )
changing S, Next_Entry, S_Flipped;
maintaining #S =  Rev(S_Flipped) o S;
decreasing |S|;

do
Pop( Next_Entry, S );
Push( Next_Entry, S_Flipped );

end;

S := : S_Flipped;
       end Flip;

end Obvious_F_C_Realiz;

The  specification  of  Stack_Template  on  which  the  Flip 
enhancement (called an extension operation in other systems) is 
based  imports  the  mathematical  unit  String_Theory  and 
conceptualizes  a  Stack object  as  a  mathematical  string.   The 
ensures clause, which defines the behavior of this operation, is 
used for verification and thus the variables in the clause stand for 
their  mathematical  values.   In  this  case,  #S refers  to  the 
mathematical string that represents the value of the stack S when 
this operation is called, while S refers to the mathematical string 
that represents the value of the stack S when this operation exits. 
Rev is a mathematical function that takes a string and returns it 
in reverse order.  

The While statement in the code for Flip is annotated with three 
clauses that make the insights of the programmer regarding the 
correctness  of the  code explicit.   For  our  purposes,  it  doesn’t 
matter  whether  a  programmer  uses  tools  to  identify  and 
document  such  assertions  (e.g.,  the  work  of [3] in  identifying 
loop invariants automatically) or does so herself.  The changing 
clause  indicates  those variables  whose  values  are  permitted  to 
change  inside  the  loop.   Implicit  is  that  any  variable  not 
mentioned will not change.  The maintaining clause provides a 
loop invariant.  The “o” in this line is intended to be read as ,∘  
the  concatenation  operator  on  mathematical  strings.   The 
decreasing clause  documents  the  progress  metric,  i.e.,  the 
programmer’s rationale for why the loop would terminate.  

At the end of the loop, we use the :=: operator, which swaps the 
values  of  S and  S_Flipped,  thus  transferring  the  stack 
containing the reversed contents to the parameter stack  S.  The 
motivation for using swapping and avoiding unnecessary aliasing 
is the topic of [4].

When the code for  Flip  is  analyzed,  the  usual  syntax-checking 
and  type-checking  is  performed  and,  assuming  it  passes  these 
checks,  the  code continues  to a  verifier,  which  generates  VCs 
that  must  be  proved  in  order  for  the  code  to  be  considered 
correct.  The VCs generated using the RESOLVE VC generator 
[9] are shown in an appendix.  

The  verifier  includes  a  flag  to  generate  Isabelle-friendly 
assertions (not shown in this paper).  Our experience in proving 
VCs  automatically  using  Isabelle  is  the  topic  of  [6].   Other 
example verification benchmarks are given in [15].  All the VCs 
for the present example can be discharged automatically by the 
Isabelle  prover.   Specifically,  beyond  documenting  loop 
invariants and progress metrics, programmers are not involved at 
all in verification.

The  VCs  correspond  to  checking  correctness  of  programmer-
supplied  invariants  and  progress  metrics,  checking  the 
preconditions  of  called  operations  (e.g.,  Pop),  and  the 
postcondition of the operation that is being verified.  We discuss 
the  automated  verification  of  one  of  the  VCs  to  distinguish 
simplification from theorem proving activities.  It is the third VC 
from the Appendix and it  corresponds  to the  inductive step  of 
establishing  the  correctness  of the  invariant.   This  VC (after 
removing assumptions that are not necessary) is shown below:



((|S| <= Max_Depth) and (S = (Rev(?S_Flipped) o ??S) and 
(|??S| /= 0 and ??S = (<?Next_Entry> o ?S))))

======================>

(Rev(?S_Flipped) o ??S) = 
(Rev(<?Next_Entry> o ?S_Flipped) o ?S)

The  VC  is  an  implication.   All  variables  in  a  VC  are 
mathematical.  For example, S is a String of Entries, not a Stack. 
In this VC, |S| indicates the length of the string S, <X> indicates 
the string with X as its sole element, and “o” is the concatenation 
operator on strings.

Variables in the VC prepended with a question mark are verifier-
generated  and  simply represent  the  values  of the  variables  at 
different  points  in  the  code.  So, for instance,  S represents  the 
initial  value  of  the  stack  S,  ?S represents  its  value  at  the 
beginning of each loop, and  ??S represents its value at the end 
of each loop.

Automated  provers,  such  as  Isabelle,  would  begin  with  a 
substitution in proving this VC:

      (?S_FlippedRev  ??S) = ∘
            ((<?Next_Entry>  ?S_Flipped)∘ Rev  ?S)∘

given
      (?S_FlippedRev  ∘ (<?Next_Entry>  ?S)∘ ) =
            ((<?Next_Entry>  ?S_Flipped)∘ Rev  ?S)∘

by substitution

From here, the provers will rely on two important theorems from 
String_Theory to complete the proof:

      Theorem 1:
      α:String of E, x:E,  (α  <x>)∀ ∀ ∘ Rev = (<x>  α∘ Rev).

      Theorem 2:
      Is_Associative(  )∘

Theorem 2 uses the higher order  predicate Is_Associative that is 
defined   in   a  separate  math  unit  named 
Basic_Function_Properties.   This  unit  defines  several  other 
related  predicates and is reused by several mathematical units.

Clearly, proving the VC given these theorems is a qualitatively 
different activity from proving the theorems themselves.  Given 
these theorems, proving the VC is a simple process of repeated 
substitution.   The  proofs  for  the  theorems  themselves  are 
significantly more involved.

There  are  certainly automated  theorem provers,  particularly of 
the  inductive variety,  that  could provide proofs of Theorems 1 
and 2 on their  own.  ACL2 [1] is one such prover, though it is  
limited to first order assertions.  However, there are many other 
theorems where automated provers would be unable to make the 
required  logical  leap.   Indeed,  we  could imagine  writing  code 
that relies on Fermat's Last Theorem for its correctness.

Providing proofs for such theorems,  in general,  is a process for 
mathematicians.  Programmers  cannot  be  and  should  not  be 
involved  in  proving  theorems.   The  simpler  task  of  applying 
these theorems as part of proving a VC is left for an automated 
prover.   It  is  our  hypothesis  that  String_Theory can,  through 
careful experimentation and expansion, be fitted with sufficient 
theorems  to  make  verifying the  vast  majority of programming 
concepts  based  on strings,  such as  Stacks,  Queues,  Lists,  and 
others,  a  task  of  repeated  substitution  and  thus  within  the 
capabilities of a modest automated prover.

Reusing mathematical  notions such as strings to specify a wide 
variety of concepts makes  it  possible  to eliminate  the need for 
Larch-style theories [17] where the theory of Queues is separate 
from the theory of Stacks, with each different from the theory of 
Lists.

3. PRÉCIS AND PROOF UNITS
Any code verification  system that  is  complete  must  provide  a 
mechanism by which arbitrary new theorems can be added; any 
system  that  is  to  be  sound  must  provide  a  mechanism  for 
providing  and  checking  proofs  in  support  of  those  theorems. 
These results in mathematics are reusable in verifying a variety 
of software artifacts and need to be proved only once.  Clearly, 
developing  these  proofs  is  beyond  the  expertise  of  typical 
programmers and should be left to trained mathematicians.  This 
observation  suggests  a  clear  division  of  labor  in  which 
programmers  are  concerned  only  with  immediate  details  and 
insights  about  proving  their  programs  to  be  correct,  whereas 
mathematicians are involved in proving more general  theorems. 
Like  programmers,  mechanical  provers  of  VCs  need  not  be 
concerned with proofs of these theorems.

By linking all  programming objects to the mathematical  world, 
mathematical  results  become  applicable  in  programming 
contexts.  This means, however, that the automated prover is no 
longer  the  only  entity  that  needs  access  to  mathematical 
definitions  and  results.  Software  developers  also  need  to  be 
aware  of  them  for  use  in  specifying  and  verifying  software 
components.   However,  in  both  cases  they just  need  to  know 
what the results are, but not how they were derived.  Therefore, 
clean,  modular,  and  component-based  techniques  derived  from 
the world of programming must be applied to the mathematical 
world of proofs.  This is the motivation for separating interfaces 
of math units (précis) from their corresponding proof units.

Since most readers are familiar with the preliminaries necessary 
to do proofs with number theory, we use the associativity result 
on  the  plus  operator  on  natural  numbers  as  our  illustrative 
example  (instead  of the  string   operator).   Many automated∘  
provers could, of course, dispatch such a theorem easily.  We use 
it here as an accessible example for when automated proving is 
not possible.

It is easy to imagine the need for a theorem on the associativity of 
plus  by  conceiving  of  a  simple  piece  of  code  such  as 
I := (K + L) + M after  which,  for whatever  reason,  we  need to 
confirm that  I = K + (L + M).  Clearly,  the validity of this  code 
relies on the associativity of plus on the natural numbers (in the 



same way the validity of the  Flip  code in the  previous section 
relies  on  the  associativity  of   on  strings.)   The  pr∘ écis  for 
Natural_Number_Theory contains  the  definition  of  the  set  N, 
symbols,  such  as  0 and suc,  and  several  theorems.   We list 
below one definition and a theorem from this précis:

Précis Natural_Number_Theory;
uses  Basic_Function_Properties,
Monogenerator_Theory...

...

Inductive Definition on i : N of (a : N) + (b) : N is
(i) a + 0 = a;
(ii) a + suc(b) = suc(a + b);

Theorem N1:  Is_Associative( + );

...
end Natural_Number_Theory;

A  précis  is  an  interface  for  theory  users  (both  humans  and 
mechanical  provers).  It provides  a summary of the theorems in 
the theory—everything required to use the theorems without any 
of the details that support the theorems.

This arrangement has obvious analogues to both the header files 
of C and forms of documentation such as Javadocs.   However, 
unlike  C headers,  which are  primarily intended  for use  by the 
compilation system, or Javadocs, which are intended for human 
consumption,  these  précis  are  intended  to  aid  both  the 
verification  system and  human  users.   The  verification  system 
makes use of proven theorems to verify VCs, mathematicians use 
them  to  support  new  theorems  with  established  ones,  and 
programmers use them to to better  tailor their  specifications to 
the available body of mathematical truth.  None of these entities 
need  be concerned  with  the  details  of supporting proofs.   The 
strict  separation  of  précis  from  proof  unit,  enforced  by  the 
system,  ensures  that  both  documents  are  always  available  and 
synchronized.

The  proof  for  N1 is  found  in  the  proof  unit 
Natural_Number_Theory_Proofs.  It relies on the definition of 
a natural number above and reads as follows:

Proof unit Natural_Number_Theory_Proofs for
Natural_Number_Theory; 
Uses ... 

Proof of Theorem N1: 

Goal for all k, m, n: N, k + (m + n) = (k + m) + n; 
Def S1: Powerset(N) = 

{ n: N, for all k, m: N, k + (m + n) = (k + m) + n }; 
Goal S1 = N; 
Goal 0 is_in S1; 
Goal for all n: S1, suc(n) is_in S1; 
Goal for all n: S1, if n is_in S1 then suc(n) is_in S1; 
(Base_case) Goal 0 is_in S1; 
Goal for all k, m: N, k + (m + 0) = (k + m) + 0; 
Goal for all k, m: N, if k is_in N and m is_in N then 

k + (m + 0) = (k + m) + 0; 
Supposition k, m: N; 

Goal k + (m + 0) = (k + m) + 0; 

k + (m + 0) = k + m 
by (i) of Definition +; 

k + m = (k + m) + 0
by (i) of Definition  +; 

Deduction if k is_in N and m is_in N then 
k + (m + 0) = (k + m) + 0; 

[ZeroAssociativity] For all k: N, for all m: N, 
k + (m + 0) = (k + m) + 0

by universal generalization; 
[ZeroInS1] 0 is_in S1

by ZeroAssociativity; 
(Inductive_case) Goal for all n: N, suc(n) is_in S1; 
Goal for all n: N, if n is_in S1 then suc(n) is_in S1; 
Supposition n: S1; 

[InductiveSupposition] For all k, m: N, 
k + (m + n) = (k + m) + n    

by Definition S1;
Goal suc(n) is_in S1; 
Goal for all k, m: N, 

k + (m + suc(n)) = (k + m) + suc(n); 
Goal for all k, m: N, 

if k is_in N and m is_in N then 
k + (m + suc(n)) = (k + m) + suc(n); 

Supposition k, m: N; 
Goal k + (m + suc(n)) = (k + m) + suc(n); 
k + (m + suc(n)) = k + suc(m + n)     

by (ii) of Definition +;
(k + suc(m + n)) = suc(k + (m + n))    

 by (ii) of Definition +;
suc(k + (m + n)) = suc((k + m) + n) 

by InductiveSupposition;
suc((k + m) + n) = (k + m) + suc(n)     

by (ii) of Definition +;
Deduction if k is_in N and m is_in N then 

k + (m + suc(n)) = (k + m) + suc(n);
[SucNAssociativity] For all k, m: N, 

k + (m + suc(n)) = (k + m) + suc(n)     
by universal generalization;

suc(n) is_in S1     
by SucNAssociativity;

Deduction if n is_in S1 then suc(n) is_in S1; 
for all n: N, suc(n) is_in S1     

by universal generalization;
0 is_in S1 and (for all n: N, suc(n) is_in S1)    

by ZeroInS1 & and rule;
N = S1     

by Definition Monogeneric_Pty_3 &
modus ponens;

For all k, m, n: N, k + (m + n) = (k + m) + n     
by Definition S1 & universal generalization;

Is_Associative( + )
by Definition Is_Associative( + );

QED

end Natural_Number_Theory_Proofs;

The  proof language  uses  a  syntax  that  mimics  the  traditional 
style  of a  mathematical  proof.   Provers  such as  Isabelle  use  a 
programming language-like syntax for expressing mathematics to 
enable ease of automation.  Unfortunately, this very reason may 
make it less intuitive for traditional mathematicians. Because we 
have drawn a clear separation between automated verification of 
VCs and proof checking for theorems, we can use a language for 
writing proofs that is more intuitive for mathematical users.  To 
this end, “Goals” are comments to state what the proof will try to 
do next; “Supposition/Deduction” pairs provide a mechanism for 
establishing implications; “definitions” can be introduced on the 
fly; and the “by” keyword introduces the rationale  for the next 
step.  A line of the proof can be given a label in square brackets 
for future reference.



This  proof  begins  by stating  a  number  of  Goals.   The  proof 
establishes a set,  S1, which is defined to be the power set of N, 
for which the property of associativity already holds.  The proof 
then  proceeds  with  an  induction  over  the  natural  numbers  to 
prove that the set S1 is the same set as N.  The base case of this 
induction is to prove that the natural number 0 is in S1, which is 
accomplished  by  using  the  identity  property  inherent  in  the 
definition  of +  to  show that  when  adding  zero,  at  least,  +  is 
associative, and thus 0 is also in S1

To see  how straight  forward  the  task  of mechanization  by the 
proof checker is, consider the italicized line that makes use of the 
“and” rule.  

0 is_in S1 and (for all n: N, suc(n) is_in S1)
by ZeroInS1 & and rule; 

It is simply the conjunct of the assertion labeled   ZeroInS1 with 
the assertion in the previous line.

A basic  tenant  of this  proof checker  is  to approach a minimal 
basis of justifications to explain the transitions from step to step 
within  a  proof.   These  justifications  act  in  concert  with 
references to provide the rationale for a single step.  A reference 
names one of the following kinds of entities:

• Lemmas, which are found in math précis or locally in 
a proof unit;

• Theorems, which are found in math précis;
• Suppositions that were established earlier in the proof;
• Labels that were given earlier in the proof;
• Definitions/Corollaries, which may be found inside a 

theory or defined earlier in the proof.

The available  justifications are split  into three groups based on 
the number of references they act on.  The justifications requiring 
two references are as follows:

• Modus ponens
• And rule
• Contradiction
• Alternative elimination
• Common conclusion

The justifications requiring one reference are:

• Equality
• Reductio ad absurdam
• Existential generalization
• Or rule
• Conjunct elimination
• Quantifier distribution
• Definition !∃
• Universal instantiation
• Existential instantiation

Finally, the only justification requiring no references is:

• Excluded middle

4.PROOF CHECKER
Each justification  has  a  well  defined  meaning  that  allows  the 
proof-checker to determine if it is valid. Consider the following 
example of the semantics of modus ponens:

Γ, δ   [Label] B⊢
by [Reference2, ] Reference1 & modus ponens
where {A, A → B} ⊆

Extract{[Reference2, ] Reference1}, Γ, δ}

Γ represents the theories (with comprising theorems) currently in 
scope of the proof; δ represents the derivation of the proof so far; 

 is  an  operator  indicating that  the  following application  of a⊢  
justification  is  valid;  A and  B are  simply  mathematical 
expressions;  and  the  Extract  function  returns  the  set  of 
mathematical  expressions  that  have  been  assumed  so  far  that 
correspond to the given names within either Γ or δ, or that was 
assumed in the immediately preceding line of the proof.  Square 
brackets indicate an optional part.

So,  overall  this  line  is  to  be  read,  “A justification  by  modus  
ponens is permitted for establishing B if the given references and 
the expression of the immediately preceding line are sufficient to 
establish, from Γ and δ, that (A → B) and (A).  In the future, the 
expression B may itself be referenced as Label.”

As  another  example,  here  is  the  semantics  of  alternative  
elimination:

Γ, δ   [Label] A⊢
by [Reference2, ] Reference1 & alternative elimination
where {B}  Extract{[Reference2, ] Reference1}, Γ, δ}⊆

and {A or B, B or A} ∩ 
Extract{[Reference2, ] Reference1}, Γ, δ} ≠ ∅

This is to be read, “A justification by alternative elimination is 
permitted  for  establishing  A  if  the  given  references  and  the 
expression  of the  immediately preceding  line  are  sufficient  to 
establish, from  Γ and δ, ¬B, and at least one of (A or B) or (B or 
A)  can  be  established  in  the  same  way.   In  the  future,  the 
expression A may itself be referenced as Label.”

The current  version of the proof checker  is able  to verify valid 
proofs (including the proof of associativity provided in  Section 
3), though higher-order theorems such as Is_Associative  are not 
yet implemented.  In addition, it is able to recognize and produce 
appropriate  error  messages  for  attempts  to  apply  faulty 
justifications.   We  provide  two  examples  of  simple  proofs 
containing errors  in  logic  and  the  output  of the  proof checker 
when run on each.

First consider this working example:

Corollary Identity: a : N and a + 0 = a;

Proof of Theorem Nothing:
Supposition k, m: N;

(k + m) + 0 = k + m 
by Corollary Identity & equality;

Deduction if k is_in N and m is_in N then
(k + m) + 0 = k + m;

QED



This proof simply establishes that given the identity property of 
addition  on  natural  numbers,  if  two  numbers,  k and  m,  are 
natural numbers, then (k + m) + 0 = (k + m).

Now consider an invalid application of the Identity Corollary:

Supposition k, m: N;

(k + m) + 0 = m + 0 by Corollary Identity & equality;

Deduction if k is_in N and m is_in N then
(k + m) + 0 = k + m;

When run through the proof-checker, this produces the following 
output:

Error: Simple.mt(10):
Could not apply substitution to the justified expression.

(k + m) + 0 = m + 0 by Corollary Identity & equality;

Next, consider an invalid choice of justification to an otherwise 
valid step:

Supposition k, m: N;
(k + m) + 0 = k + m by Corollary Identity & or rule;

Deduction if k is_in N and m is_in N then
(k + m) + 0 = k + m;

When run through the proof-checker, this produces the following 
output:

Error: Simple.mt(10):
Could not apply the rule Or Rule to the proof expression.
            (k + m) + 0 = k + m by Corollary Identity & or rule;

5. RELATED WORK AND CONCLUSIONS
5.1 Isabelle 
Isabelle  is  a  proof assistant  implemented  in  Standard  ML and 
based on the specification language Isar [13, 16].  Its focus is on 
interactive proof development.  It is also able to complete proofs 
automatically.  Unlike earlier versions that closely resembled ML 
syntax,  more  recent  versions  have  begun  to  put  more  of  an 
emphasis  on  human  readability  of  proofs.   Even  with  these 
improvements,  proofs  contain  artifacts  of  programming 
languages.   For example,  consider  the following (trivial)  proof 
that  A and B → B and A where  A  and  B  are  complicated 
expressions (called large_A and large_B in the proof) modified 
from [14]:

lemma assumes AB: "large_A  large_B"∧
shows "large_B  large_A" ( is "?B  ?A")∧ ∧
using AB

proof
assume "?A" "?B" show ?thesis ..

qed

While  penetrable,  it  is  harder  to  follow  for  those  whose 
background is purely mathematical.  Also, Isabelle proofs include 
statements to help ease automation, often interspersed with steps 
of the proof itself.  By separating proofs that are merely checked 

from  those  that  are  totally  automated,  this  difficult  can  be 
avoided.

Isabelle  differs  from  RESOLVE  as  a  language  for  proofs 
primarily  with  respect  to  its  syntax,  which  maintains  a 
programming language flavor.  Another difference is that Isabelle 
provides no specific support for syntactically separating theorems 
from their proofs, though tools are provided for auto-generating 
documentation  that  serves  much  the  same  purpose.   Also, 
Isabelle permits the bodies of proofs to be elided using a “sorry” 
command, which may allow unsound theorems to be introduced 
into the system.

5.2 Coq 
Both  Coq  and  RESOLVE  share  an  emphasis  on  a  small  but 
extensible  logical core and a specification language tailored for 
the tool itself (in the case of Coq, this language is called Gallina) 
[5].  Coq has limited automatic proving capabilities and a syntax 
more  reminiscent  of  a  programming  language  than  a 
mathematical proof.  As an example, consider a proof in Coq that 
A and B → B and A modified from [5]:

Variables A B C : Prop.

Lemma and_commutative : (A /\ B) -> (B /\ A). 
intro. 
elim H. 
split. 
exact H1. 
exact H0. 

Save.

As with  Isabelle,  there  is  no explicit  syntactic  mechanism for 
separating theorems from their proofs; though, again, tools exist 
to  automatically  generate  documentation.   Also,  like  Isabelle, 
Coq provides a “trust me” command, which allows a proof to be 
elided.

5.3 PVS 
PVS exists somewhere between a proof assistant and a theorem 
prover [2, 10, 11].  It uses a library of definitions and theorems to 
support  the  SMT solver  Yices for the  automatic  verification of 
arithmetic expressions and equalities.   Unlike RESOLVE, PVS 
has almost no emphasis on human-readable proofs.  PVS's type 
checking  system  occasionally  defers  to  the  proof-checker  to 
resolve  ambiguous  proof  conditions.   This  contrasts  with 
RESOLVE, where code, specifications, and proofs must all pass 
type checking before moving on to verification.

5.4 Nuprl 
Like Isabelle, Nuprl is based on ML.  Unlike RESOLVE, it does 
not perform type-checking on proofs [7,  8].   Nuprl  relies  on a 
built-in set of theories such as integers, function, and sets, which 
can only be extended by the use of tuples, unions, and lists.  This 
contrasts with RESOLVE where only a minimal set of theories is 
provided  (namely  Boolean  theory and  a  small  portion  of  Set 
theory) from which other theories are built.

5.5 Conclusions
Software  verification  is  a  challenging problem.   To address  it 
effectively, a formal verification system that includes a verifying 
compiler needs to bring together the insights of programmers and 
mathematicians  with  advances  in  prover  technology  for 



mechanizing straightforward proofs, and proof checking for non-
trivial  theorems.   Here  we  have  presented  a  framework  for 
addressing this challenge along with a summary of our efforts in 
proof checking.  We plan much more experimentation with the 
ideas and tools presented here in order to make progress toward 
a sound and complete verification system.
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7. APPENDIX
7.1 Stack Specification

Concept Stack_Template(type Entry; evaluates Max_Depth: 
Integer);
    uses Std_Integer_Fac, String_Theory;
    requires Max_Depth > 0;

    Type Family Stack is modeled by Str(Entry);
        exemplar S;
        constraint |S| <= |Max_Depth|;
        initialization ensures S = empty_string;

    Operation Push(alters E: Entry; updates S: Stack); 
        requires 1 + |S| <= Max_Depth;
        ensures  S = <#E> o #S;

    Operation Pop(replaces R: Entry; updates S: Stack);
        requires |S| > 0;
        ensures #S = <R> o S;

    Operation Depth(restores S: Stack): Integer;
        ensures Depth = (|S|);

    Operation Rem_Capacity(restores S: Stack): Integer;
        ensures Rem_Capacity = (Max_Depth - |S|);

    Operation Clear(clears S: Stack);

end Stack_Template;

The concept Stack_Template is parameterized by a type, Entry, 
comparable to a generic in Java, and a Max_Depth that ensures 
each stack never becomes deeper than some capacity.

A  type,  Stack,  is  introduced,  which  is  modeled  on  a 
mathematical  string  of  Entrys.   The  constraints  clause 
introduces  a  class  invariant:  the  depth  of  a  stack  may never 
exceed  Max_Depth.   The  initialization  ensures  clause 
guarantees  that  all  implementations  of  Stack  will  ensure  that 
new Stacks begin empty.

Next  comes  a  list  of  the  usual  operations  on  Stacks.   Each 
operation has a requires clause, which states the operation's pre-
condition;  and  an  ensures  clause,  which  states  its  post-

condition.  In the ensures clause, a variable like S refers to the 
outgoing value of S while #S refers to the initial, incoming value 
of S.  In addition to a type, each parameter in an operation has a 
parameter  passing  mode,  such  as  alters  or updates.   These 
modes make certain assurances about the way in which a given 
parameter will be used.  For instance, the alters mode indicates 
that the incoming value of the parameter is meaningful (and thus 
that  variable  may appear  in  the  requires  clause),  but  that  the 
outgoing value of that parameter is undefined (and thus referring 
to the outgoing value in the ensures clause is illegal.)  Updates 
indicates that both the incoming and outgoing values are defined. 
The others are similar.

As an example, the Pop operation takes a Stack, S, and an Entry, 
R, into which to pop the top entry.   The requires  clause states 
that there must be at least one Entry on S, and the ensures clause 
states  that  when we have finished,  prepending R onto the final 
value of S will have the same value as the initial value of S.  

7.2 VCs Resulting from Obvious_F_C_Realiz
Free Variables: Max_Depth:*Z, min_int:*Z, max_int:*Z, 
S:*Str(*Entry), ?S:*Str(*Entry), ?Next_Entry:*Entry, ?
S_Reversed:*Str(*Entry), Next_Entry:*Entry, 
S_Reversed:*Str(*Entry)

((((min_int <= 0) and (0 < max_int)) and ((min_int <= 0) and 
(0 < max_int) and (Max_Depth > 0))) and (|S| <= |
Max_Depth|))
======================>
S = (Rev(empty_string) o S)

(((((min_int <= 0) and (0 < max_int)) and ((min_int <= 0) 
and (0 < max_int) and (Max_Depth > 0))) and (|S| <= |
Max_Depth|)) and (S = (Rev(?S_Rev) o ?S) and |?S| /= 0))
======================>
((1 + |?S_Reversed|) <= Max_Depth)

(((((min_int <= 0) and (0 < max_int)) and ((min_int <= 0) 
and (0 < max_int) and (Max_Depth > 0))) and (|S| <= |
Max_Depth|)) and (S = (Rev(?S_Reversed) o ?S) and |?S| /
= 0))
======================>
(Rev(?S_Reversed) o ?S) = (Rev((<?Next_Entry> o ?
S_Reversed)) o ?S)

(((((min_int <= 0) and (0 < max_int)) and ((min_int <= 0) 
and (0 < max_int) and (Max_Depth > 0))) and (|S| <= |
Max_Depth|)) and (S = (Rev(?S_Reversed) o ?S) and |?S| /
= 0))
======================>
(|?S| < |?S|)

((((min_int <= 0) and (0 < max_int)) and ((min_int <= 0) and 
(0 < max_int) and (Max_Depth > 0))) and ((|S| <= |
Max_Depth|) and (S = (Rev(?S_Reversed) o ?S) and |?S| = 
0)))
======================>
?S_Reversed = Rev((Rev(?S_Reversed) o ?S))
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