
Model Programs for Preserving Composite Invariants

Steve M. Shaner
Iowa State University

smshaner@cs.iastate.edu

Hridesh Rajan
Iowa State University

hridesh@cs.iastate.edu

Gary T. Leavens
University of Central Florida
leavens@eecs.ucf.edu

ABSTRACT
We describe a solution for the SAVCBS challenge problem: a tech-
nique for specifying and verifying invariants for objects designed
using the Composite design pattern. The solution presents a grey-
box specification technique using JML’s model program feature.
We show that model program specifications function as exemplars
for capturing helper method calls in a way that preserves modular-
ity and encapsulation.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification —
Class invariants, correctness proofs, formal methods, programming
by contract; D.2.7 [Software Engineering]: Distribution, Main-
tenance, and Enhancement — Documentation; D.2.11 [Software
Engineering]: Software Architectures — Information hiding, Lan-
guages, Patterns; D.3.3 [Programming Languages]: Language
Constructs and Features — classes and objects, inheritance; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs — Assertions, invariants, logics of
programs, pre- and post-conditions, specification techniques.

General Terms
Verification

Keywords
Greybox specification, verification, model program, composite de-
sign pattern, JML language.

1. INTRODUCTION
Invariants in formal specification languages, such as the Java Mod-
eling Language (JML) [5, 7, 8] describe relationships that hold
in each visible object state. They both document intended rela-
tionships and impose proof obligations on code for each object.
Our solution to the 2008 SAVCBS challenge problem describes a
methodology for verifying invariants of objects designed using the
Composite pattern [6, pp. 163]. We demonstrate how model pro-
gram specifications can be used to enforce a simple invariant for
Composite objects [9, Section 4.1].

Copyright 2008 by Steve M. Shaner, Hridesh Rajan, and Gary T. Leavens

A model program [16] is JML’s realization of the greybox speci-
fication technique [4]. A model program is thus a hybrid between
program code and specification, and can be thought of as an ab-
stract algorithm [1, 2, 3, 11, 12]. The algorithm is abstract in the
sense that it may suppress many implementation details, only spec-
ifying their effects using specification statements. This allows the
specifier to hide some details, while showing others to the reader. In
the refinement calculus, code satisfies an abstract algorithm speci-
fication if the code refines the specification [1, 12, 11]. However,
JML currently limits refinement of model program by requiring all
exposed code to match the implementation exactly [16].

A major benefit of JML’s model programs is that they can be used
to specify functional dependencies among objects in a straightfor-
ward way—by exposing code that maintains the dependencies. In
this paper we show how this technique works within the Compos-
ite class of the Composite design pattern. For complex object struc-
tures like those seen in the Composite design pattern, a set of helper
methods can be defined that exploit the object structure to establish
the invariant. Writing model programs that show how all meth-
ods that may affect the invariant invoke these helper methods and
then showing that these model programs individually preserve the
invariant is our recommended methodology. We demonstrate this
methodology in our solution to the challenge problem.

2. JML MODEL PROGRAMS
Model program specifications in JML, like their counterpart in
Büchi and Weck’s greybox specifications [4], are algorithmic ab-
stractions of concrete functionality. They selectively expose only
the desired parts of a method’s concrete behavior. In particular
they can specify calls of certain methods in specified states; we call
such specified method calls “mandatory” calls [16].

Model program specifications have two major benefits:

1. A suitable model program specification allows more expres-
sive invariants on the concrete behavior compared to a be-
havioral specification, and

2. Such invariants do not depend upon hidden implementa-
tion details, thus they improve information-hiding modular-
ity [15] compared to exposing all of the implementation for
the purpose of writing invariants.

Figure 1 shows an example JML specification for the class
ElementCollection. In the special JML comments, the pri-
vate field inner is declared to be public for specification pur-
poses using spec_public. The model program specification for



the addAll method for ElementCollection class is shown
in Figure 1 on lines 4–13. This specification has two parts: a
behavioral specification statement on lines 5–10 and a white-box
specification on lines 11 and 12. Behavioral specification state-
ments all begin with the normal_behavior keyword and this
one contains a precondition (the requires clause), a frame ax-
iom (assignable clause), and two postconditions (ensures
clauses). In postconditions the operator \old is used to refer to
the previous state. The normal_behavior keyword that starts
specification statements selects a total correctness specification that
allows no exceptions to be thrown; i.e., if execution starts in a state
that satisfies the precondition, then it must terminate normally in a
state that satisfies both the frame axiom and the postconditions.

1 class ElementCollection extends Collection {
2 private /*@ spec_public @*/
3 Collection inner;
4 /*@ public model_program {
5 @ normal_behavior
6 @ requires inner != null;
7 @ assignable this.inner;
8 @ ensures c.size() == \old(c.size());
9 @ ensures this.inner.size() ==

10 @ \old(this.inner.size());
11 @ for (Element e : c)
12 @ this.add(e);
13 @ } @*/
14 public void addAll(ElementCollection c) {
15 /*@ refining normal_behavior
16 @ requires inner != null;
17 @ assignable this.inner;
18 @ ensures c.size() == \old(c.size());
19 @ ensures this.inner.size() ==
20 @ \old(this.inner.size()); @*/
21 { /* resize array if necessary */ }
22 for (Element e : c)
23 this.add(e);
24 } }

Figure 1: An example JML model program specification.

The behavioral specification describes invariants maintained by the
parts of the concrete implementation that are not visible in the spec-
ification. This hides changeable implementation details from the
client code. The white-box specification exposes part of the con-
crete implementation to allow clients to write more expressive in-
variants. A simple example of such increased expressiveness would
be the guarantee that all invariants maintained by the method add
for class ElementCollection (not shown) will also be pre-
served by the method addAll. Thus, for example if the method
add maintains a count of all elements in the collection, such count
would be accurate event if elements are added in bulk using the
method addAll.

Such model program specifications are only valid for use in reason-
ing if the concrete implementations refines them [1, 11, 12]. For
JML model program specifications instead of adopting a general
notion of refinement, a more pragmatic approach based on struc-
tural refinement is adopted. A concrete implementation refines a
model program specification if it is structurally the same as the
specification, up to the code implementing the black-box specifi-
cation behaviors. In Figure 1 the concrete implementation declares
that the elided code on line 21 refines the black-box specification
on lines 15–20 using the refining keyword. Each refining
statement must have the same specification part and a body (be-
tween the braces and outside the special JML comments) that satis-

fies that specification. This makes verifying refinements easier. The
rest of the method implementation (lines 22 and 23) is identical to
its counterpart in the specification (lines 11 and 12). The details of
the refinement technique are described in detail by Shaner, Leavens
and Naumann [16].

In addition to the semantics described above [16], in this paper we
also require that a correct implementation of a specification state-
ment must not call any methods that are explicitly called in the
whitebox (executable) code portion of the model program. We will
see why this is needed below.

Since each refining statement contains a specification, writing
model program specifications separate from the concrete imple-
mentation is often verbose and redundant. To reduce annotation
burden and the cost of keeping model programs consistent with
respect to the concrete implementation, JML also provides an addi-
tional syntactic sugar extract for extracting such specifications.
An example of this feature is shown in Figure 2.

1 class ElementCollection extends Collection {
2 private /*@ spec_public @*/
3 Collection inner;
4 public /*@ extract @*/
5 void addAll(ElementCollection c) {
6 /*@ refining normal_behavior
7 @ requires inner != null;
8 @ assignable this.inner;
9 @ ensures c.size() == \old(c.size());

10 @ ensures this.inner.size() ==
11 @ \old(this.inner.size()); @*/
12 { /* resize array if necessary */ }
13 for (Element e : c)
14 this.add(e);
15 } }

Figure 2: Extracting Model Program Specifications.

In this version of the method addAll the extract keyword is
used on line 4. This results in an automatic generation of the model
program specification during verification. The automatic extraction
of model program specification proceeds by suppressing the bodies
of refining statements, replacing them with the specifications
they contain as specification statements. The extracted model pro-
gram specification for our example is the normal_behavior
statement found on lines 6-11 in Figure 1, followed by the for-
loop exactly as it appears in the code.

3. COMPOSITE’S SPECIFICATION
Our solution, given in Figure 3 and Figure 4, contains a combina-
tion of model programs, helper methods and pure methods.

The class Component is specified in Figure 3. As in previous
example, the two protected fields parent and total are declared
to be public for specification purposes using spec_public. The
invariant in this figure is not the one we are mainly concerned with.

The subclass Composite is specified in Figure 4. It has 2 fields:
an array components and an integer count. Lines 8–11 give the
invariant we are mainly concerned with for the challenge problem;
it states that total is one more than the sum of the values of the
total fields of each object in the components array.

The two methods in Figure 4 have model program specifica-



1 class Component {
2 protected /*@ spec_public nullable @*/
3 Composite parent;
4 protected /*@ spec_public @*/ int total = 1;
5 //@ protected invariant 1 <= total;
6 }

Figure 3: Specification of Component.

tions: addComponent and addToTotal. The model pro-
gram for method addComponent is given explicitly on lines
13–24 (preceeding that method’s header), while the model pro-
gram for addToTotal is implicit in the body of the method
addToTotal, as indicated by the keyword extract [16].
The automatically extracted model program specification, for the
method addToTotal is shown in Figure 5.

3.1 Specification
We now describe how the model programs of Figure 4 specify that
Composite instances preserve the invariant on lines 8–11.

Consider method addComponent. The primary responsibility of
this method is to modify the representation array components
and appropriately update the total field. The invariant adds a
subtle complexity to this update by requiring that the value of each
subcomponents’ total field is included in the value of its parent’s
total field. Thus a correct implementation of addComponent
must capture the structural relationship between the composite and
its subcomponents and use this information when updating the
total fields.

In our example, this structural relationship is captured by the def-
inition of method addToTotal. It both modifies this instance’s
total field and asks that the parent (if one exists) be modified as
well. This has the useful effect of re-establishing the invariant for
all instances for which the invariant might have been violated, pro-
vided addToTotal is called only once, and with the appropriate
argument.

For this problem, we have written a model program for
addComponent that exposes its call to addToTotal. Re-
call that, due to the restricted notion of refinement in our tech-
nique, correct implementations of addComponent must call
addToTotal after changing both parent and child, as described
by the model program. It is this notion of “structural similarity” that
makes the call to addToTotal “mandatory” [16]. In proving that
a model program for addComponent is refined by its implemen-
tation, we show structural similarity between the model program
and the implementations of addComponent in all subclasses of
Composite. Thus, if the model program preserves the invariant
for all Composite objects, then the invariant will be preserved by
all subclasses, since they must also refine the model program in the
same sense.

As noted above, we require that specifcation statements must
not call any methods that are explicitly called in model pro-
gram. For the specifications in Figure 4, this means that the bod-
ies of the refining statements inside the implementation of
addComponent are prohibited from calling addToTotal.

1 class Composite extends Component {
2 private /*@ spec_public @*/
3 Component[] components = new Component[5];
4 //@ in objectState;
5 //@ maps components[*] \into objectState;
6 private /*@ spec_public @*/ int count = 0;
7 //@ in objectState;
8 /*@ protected invariant total
9 @ == 1 + (\sum int i;

10 @ 0 <= i && i < count;
11 @ components[i].total); @*/

13 /*@ public model_program {
14 @ normal_behavior
15 @ requires c.parent == null;
16 @ assignable this.components;
17 @ ensures this.components.length
18 @ > this.count;
19 @ normal_behavior
20 @ assignable c.parent, this.objectState;
21 @ ensures c.parent == this;
22 @ ensures this.hasComponent(c);
23 @ addToTotal(c.total);
24 @ } @*/
25 public void addComponent(Component c) {
26 /*@ refining normal_behavior
27 @ requires c.parent == null;
28 @ assignable this.components;
29 @ ensures this.components.length
30 @ > this.count; @*/
31 { /* resize components, if necessary */ }
32 /*@ refining normal_behavior
33 @ assignable c.parent, this.objectState;
34 @ ensures c.parent == this;
35 @ ensures this.hasComponent(c); @*/
36 {
37 components[count] = c;
38 count++;
39 c.parent = this;
40 }
41 addToTotal(c.total);
42 }
43 private /*@ helper extract @*/
44 void addToTotal(int p) {
45 /*@ refining normal_behavior
46 @ requires 0 <= p;
47 @ assignable this.total;
48 @ ensures this.total
49 @ == \old(this.total) + p; */
50 { total += p; }
51 Component aParent = this.parent;
52 while (aParent != null) {
53 /*@ refining normal_behavior
54 @ assignable aParent.total, aParent;
55 @ ensures aParent.total
56 @ == \old(aParent.total) + p;
57 @ ensures aParent
58 @ == \old(aParent.parent); @*/
59 {
60 aParent.total += p;
61 aParent = aParent.parent;
62 } } }
63 /*@ pure @*/ boolean hasComponent(Component c) {
64 // ...
65 } }

Figure 4: JML model program specification for Composite,
based on Leavens, Leino, and Müeller’s specification [9, Figure
10].



1 /*@ public model_program {
2 @ normal_behavior
3 @ requires 0 <= p;
4 @ assignable this.total;
5 @ ensures this.total
6 @ == \old(this.total) + p;
7 @ Component aParent = this.parent;
8 @ while (aParent != null) {
9 @ normal_behavior

10 @ assignable aParent.total, aParent;
11 @ ensures aParent.total
12 @ == \old(aParent.total) + p;
13 @ ensures aParent = aParent.parent;
14 @ }
15 @ } @*/
16 void addToTotal(int p);

Figure 5: Extracted specification for addToTotal.

4. PROBLEMS & SOLUTIONS
The model programs of Figure 4 assist reasoning with invariants
in two scenarios of interest: handling argument exposure for Com-
posite clients, and when defining Composite subclass methods. We
break the latter problem down into two mutually exclusive sub-
problems, the overriding of existing methods and the introduction
of new ones.

4.1 Argument Exposure in Client Reasoning
Argument exposure occurs when an invariant, such as the one in
Figure 4, depends on objects that are not under control of the ob-
ject’s methods [14]. In that figure, the invariant of Composite
depends on the components in the components array. The chal-
lenge is how to maintain such an invariant when clients may change
objects on which the invariant depends without calling methods di-
rectly on the object.

Let us consider how our specification in Figure 4 and the greybox
approach (JML’s model program technique) deal with this problem.
In essence our solution is a special case of the visibility technique
for maintaining invariants [9, 13]. To see this, note that the fields
total, components, and count cannot be written by classes
that do not see the invariant in Figure 4, because these fields are
protected and private and the invariant is protected. Hence the in-
variant can be maintained in each subclass of Composite, by re-
quiring all these subclasses to maintain it each time they change
one of these three fields.

The key point of our specification is that the model program and
the code it requires follow the chain of parent links upwards, and
adjusting each total of each parent object. Since the precondition
of addComponent requires that c.parent be null, no cyclic or
aliased structure can be created using addComponent, thus there
is always at most one parent for each Component c.

To see how this is done, consider the client code in Figure 6. This
sets up the problematic case of a Composite object, root, that
contains another Composite object, child, which itself contains
the component comp. If addComponent maintains the invari-
ant, then the assertion at the end of the figure should hold, even
though line 12 modifies child without calling a method on its
parent root. The invariant should apply when reasoning about
the resulting heap structure, regardless of the order in which the
components get added to each other.

1 Composite root = new Composite();
2 Composite child = new Composite();
3 Component comp = new Component();

5 //@ assume root.total == 1;
6 //@ assume child.total == 1;
7 //@ assume comp.total == 1;
8 //@ assume root.parent == null;
9 //@ assume child.parent == null;

10 //@ assume comp.parent == null;
11 root.addComponent(child);
12 child.addComponent(comp);
13 //@ assert root.total == 3;

Figure 6: Clients reason by instantiating invariants for concrete
contexts like this one, in which a tree of three components is
built.

The model programs described in Figures 4 and 5 are used in ver-
ification by substituting the model program’s body for the call site
of the method it specifies (with actuals replacing formals and care
taken to avoid capture). In Figure 6, this means substituting in
lines 14–23 of Figure 4 for each call to addComponent, renam-
ing occurrences of the formals c and this to the appropriate in-
stances. Furthermore, each of these substitutions exposes a call to
addToTotal, so its model program body can be substituted sim-
ilarly.

The resulting code resembles Figure 7. In this figure, lines 11–
34 are the model program for addComponent substituted for the
call on line 11 of Figure 6. Similarly, lines 35–58 are for the call
on line 12 in the original. From this text and a Hoare-style proof
system, we can verify that the closing assertion holds. This proof
is straightforward after assuming the proof rules given in previous
work [16] with a standard extension to handle while loops.

4.2 Overriding Composite’s Methods
In subclasses of Composite, a developer might incorrectly try
to override its methods addComponent or addToTotal in a
way that violates the invariant or a model program specification.
However, such an override would be incorrect in our technique, be-
cause not only are invariants inherited by subtypes in JML [7], but
subtypes also inherit model program specifications. Thus methods
inheriting a model program are subject to the same structural con-
straints as the overridden method. Though subclass implementors
are free to refine the bodies of refining statements as long as
they satisfy the contract behavior, all other exposed code must ap-
pear as it does in the model program. In this fashion, as long as the
original model program preserves the invariant, subclass overrides
of those methods cannot violate the invariant.

4.3 Extending Composite with New Methods
Subtypes also pose problems when they introduce new methods
that do not override methods in their supertype(s). Such methods
must preserve the inherited invariants, as would be the case in our
example, but our technique does not yet provide direct support for
this situation.

In our example, the way in which Composite’s invariant is main-
tained depends heavily on two assumptions: (a) addComponent
is the only method that adds components to a composite, and (b)
addComponent has a precondition that requires the parent of the
added component to be null. An added method could violate these



1 Composite root = new Composite();
2 Composite child = new Composite();
3 Component comp = new Component();

5 //@ assume root.total == 1;
6 //@ assume child.total == 1;
7 //@ assume comp.total == 1;
8 //@ assume root.parent == null;
9 //@ assume child.parent == null;

10 //@ assume comp.parent == null;
11 normal_behavior
12 requires child.parent == null;
13 assignable root.components;
14 ensures root.components.length
15 > root.count;
16 normal_behavior
17 assignable child.parent, root.objectState;
18 ensures child.parent == root;
19 ensures root.hasComponent(child);
20 {
21 normal_behavior
22 requires 0 <= child.total;
23 assignable root.total;
24 ensures root.total
25 == \old(root.total) + child.total;
26 Component aParent = root.parent;
27 while (aParent != null) {
28 normal_behavior
29 assignable aParent.total, aParent;
30 ensures aParent.total
31 == \old(aParent.total) + c.total;
32 ensures aParent = aParent.parent;
33 }
34 }
35 normal_behavior
36 requires comp.parent == null;
37 assignable components;
38 ensures child.components.length
39 > child.count;
40 normal_behavior
41 assignable comp.parent, child.objectState;
42 ensures comp.parent == child;
43 ensures child.hasComponent(comp);
44 {
45 normal_behavior
46 requires 0 <= comp.total;
47 assignable child.total;
48 ensures child.total
49 == \old(child.total) + comp.total;
50 Component aParent = child.parent;
51 while (aParent != null) {
52 normal_behavior
53 assignable aParent.total, aParent;
54 ensures aParent.total
55 == \old(aParent.total) + comp.total;
56 ensures aParent = aParent.parent;
57 }
58 }
59 //@ assert root.total == 3;

Figure 7: The client code of Figure 6 after substituting
the bodies of the model programs for addComponent and
addToTotal and renaming field references to the appropri-
ate instances.

assumptions, allowing aliased Composite structures to be created
that our proof does not handle. Since the invariant about lack of
aliasing is not stated explicitly in our specification, it is not clear
how this part of our argument would apply to subtypes. To avoid
this problem, one would have to write a static (i.e., global) invari-

ant that described the required lack of aliasing. But this fix seems
specific to the Composite design pattern, and it is not clear how our
technique could be generalized to handle it.

5. DISCUSSION
At the class level, our example model programs describe the set
of methods that are responsible for maintaining the representation
invariant. They provide an abstract overview of where and how
the invariant is maintained. The only way subcomponent mem-
bership can change is by calling addComponent and the only
way total is updated is by a call to addToTotal. No calls to
addComponent occur within this class, but if they did, a model
program exposing that call could be written.

Model programs enable modular descriptions of the internal struc-
ture of code in ways that are useful for client reasoning. By
choosing model programs to control the static structure of sub-
class implementations, our solution relies on the mechanical
textual matching described in our previous work [16]. JML’s
refining statements clearly identify which specification state-
ments are refined where inside of an implementation, while the
normal_behavior specification statements use pure methods
to hide specific representation details.

This is not to say that the working definitions used by our solu-
tion are perfect. Adding nondeterministic loops, conditionals and
other constructs to the model program syntax would increase flex-
ibility when matching implementations against a model program
specification. Also, work on this paper highlighted a number of
visibility issues for model programs that have not previously been
investigated [10]. A basic issue is defining rules that respect visibil-
ity for model program specifications. There is also a complication
posed by extract, which may pull out specifications and code
that are legal within a method, but which may refer to private data.
If the extracted model program is to be public, then such private
data is not understandable by all clients, and so should be disal-
lowed. We finessed this problem in our example by declaring all
fields as spec_public, but this is certainly an area where more
work is needed.

6. CONCLUSION
We have described how model program specifications can be used
to specify and verify invariants in complex heap data structures cre-
ated using the Composite design pattern. Our solution is a fruitful
combination of the visibility technique for invariants with the grey-
box specification technique. The combination is fruitful because
the greybox technique allows specifiers to describe exactly how a
method must update all invariants that might be violated. In our
example, addComponent is specified to update all of the total
fields of all parents. This detail is crucial in maintaining the invari-
ant for all Composite objects.

Acknowledgments
The authors were supported in part by the NSF grant CNS-06-
27354 and CNS 08-08913.

7. REFERENCES
[1] R.-J. Back and J. von Wright. Refinement Calculus: A

Systematic Introduction. Graduate Texts in Computer
Science. Springer-Verlag, 1998.

[2] R. J. R. Back. A calculus of refinements for program
derivations. Acta Inf., 25(6):593–624, 1988.



[3] R. J. R. Back and J. von Wright. Refinement calculus, part i:
sequential nondeterministic programs. In REX workshop:
Proceedings on Stepwise refinement of distributed systems:
models, formalisms, correctness, pages 42–66, New York,
NY, 1990. Springer-Verlag.

[4] M. Büchi and W. Weck. The greybox approach: When
blackbox specifications hide too much. Technical Report
297, Turku Center for Computer Science, August 1999.

[5] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An overview of
JML tools and applications. International Journal on
Software Tools for Technology Transfer, 7(3):212–232, June
2005.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
patterns: elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1995.

[7] G. T. Leavens. JML’s rich, inherited specifications for
behavioral subtypes. In Z. Liu and H. Jifeng, editors, Formal
Methods and Software Engineering: 8th International
Conference on Formal Engineering Methods (ICFEM),
volume 4260 of Lecture Notes in Computer Science, pages
2–34, New York, NY, Nov. 2006. Springer-Verlag.

[8] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design
of JML: a behavioral interface specification language for
java. SIGSOFT Softw. Eng. Notes, 31(3):1–38, 2006.

[9] G. T. Leavens, K. R. M. Leino, and P. Müller. Specification
and verification challenges for sequential object-oriented
programs. Form. Asp. Comput., 19(2):159–189, 2007.

[10] G. T. Leavens and P. Müller. Information hiding and
visibility in interface specifications. In International
Conference on Software Engineering (ICSE), pages
385–395. IEEE, May 2007.

[11] C. Morgan. Programming from Specifications: Second
Edition. Prentice Hall International, Hempstead, UK, 1994.

[12] J. M. Morris. A theoretical basis for stepwise refinement and
the programming calculus. Sci. Comput. Program.,
9(3):287–306, 1987.

[13] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular
invariants for layered object structures. Sci. Comput.
Programming, 62(3):253–286, Oct. 2006.

[14] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In
E. Jul, editor, ECOOP ’98 – Object-Oriented Programming,
12th European Conference, Brussels, Belgium, volume 1445
of Lecture Notes in Computer Science, pages 158–185.
Springer-Verlag, July 1998.

[15] D. L. Parnas. On the criteria to be used in decomposing
systems into modules. Commun. ACM, 15(12):1053–8, Dec.
1972.

[16] S. M. Shaner, G. T. Leavens, and D. A. Naumann. Modular
verification of higher-order methods with mandatory calls
specified by model programs. In International Conference on
Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), Montreal, Canada, pages 351–367.
ACM, Oct. 2007.


