
Total Correctness of Recursive Functions using JML4
FSPV

George Karabotsos, Patrice Chalin, Perry R. James, Leveda Giannas
Dependable Software Research Group,

Dept. of Computer Science and Software Engineering,
Concordia University, Montréal, Canada

{g_karab,chalin,perry,leveda}@dsrg.org

ABSTRACT
JML4 is a next generation tooling and research platform for JML.
JML4, currently in development, aims to support the integrated
capabilities of Runtime Assertion Checking (RAC), Extended
Static Checking (ESC), and Full Static Program Verification
(FSPV). In this paper, we present the JML4 FSPV Theory
Generator (TG) that aims to study the adequacy of Isabelle/Simpl
as the underlying verification condition language. In particular we
study Isabelle/Simpl with respect to proving total correctness of
recursive programs. Simpl is a Hoare-based logic for a sequential
imperative programming language along with a verification
system. It is written in Isabelle/HOL and has been proven sound
and relative complete.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Programming by contract, Correctness proofs; F.3.1 [Logics
and Meaning of Programs]: Specifying and Verifying
and Reasoning about Programs—Mechanical verification.

General Terms
Reliability, Languages, Theory, Verification.

Keywords
Java, Java Modeling Language, Full Static Program Verification.

1. INTRODUCTION
The Java Modeling Language (JML) is a Behavioral Interface

Specification Language (BISL) for Java [14]. A number of tools
exist that recognize JML annotated Java programs and can help in
demonstrating their correctness [4]. These tools perform
verification using one or more of three main verification methods:
Runtime Assertion Checking (RAC) [7], Extended Static
Checking (ESC) [8], and Full Static Program Verification (FSPV)
[12].

While RAC and ESC are fully automated and generally easy to
use, these verification techniques are either unsound and/or
incomplete by nature of the technique. Unfortunately, this is
unacceptable for safety and security critical applications (e.g.
SmartCard applications such as electronic purses used in
commercial transactions and medicare cards used to hold vital
patient information) for which soundness and completeness are
vital. FSPV, on the other hand, has the potential to be both sound
and complete. In this paper, we present the FSPV Theory
Generator (TG), the FSPV component of JML4—a next
generation tooling and research platform for JML. In particular,
we present initial results with respect to proving the total
correctness of recursive functions. To our knowledge, the JML4
FSPV TG is the first:

• JML tool to enable the total correctness of recursive functions
to be proven, such as the one shown for Factorial in Figure 1,
and

• FSPV tool to be based on an underlying theory that has been
proven sound and complete, and this within a mechanical
theorem prover.

Creation of the FSPV TG is also timely, since neither of the two
“first generation” FSPV tools (JACK, LOOP) is still being
actively maintained.

We present:
• The translation process used to generate Isabelle/Simpl [20]

theories from Java programs.
• Our experience in generating and proving Simpl theory

Verification Condition (VC) lemmas for JML annotated Java
programs.
Isabelle/Simpl is a theory built atop Isabelle/HOL for an IMP-

like [22] sequential imperative programming language with loops
and procedures supported by specification constructs (e.g., via
pre- and post-conditions).

The rest of the paper is structured as follows. In the next
section, we describe Isabelle, Simpl, and JML4. Section 3
presents the FSPV TG followed by an account of its use and
subsequent verification of its generated theories in Section 4. In
Section 5 we present related work. Finally conclusions and future
work are given in Section 6.

2. BACKGROUND

2.1 Isabelle
Isabelle [18] is a theorem proving framework. It provides the

necessary proving apparatus to define new logics. This machinery
includes Isabelle’s meta-logic (Isabelle/Pure), the classical
reasoner, and the simplifier. Additionally, existing logics can be
extended, thus defining new ones. Newly constructed object
logics can be further enhanced with new syntax by making use of
Isabelle’s syntax transformations. These transformations can be
specified using relatively simple rules defined within the theory or

public class Factorial {
 //@ requires n >= 0;
 //@ ensures \result ==
 //@ (\product int j; 1 <= j && j <= n ; j);
 a b ; //@ me sured_ y n
 public static int fac(final int n) {
 if 0) (n ==
 urn 1; ret
 else
 return n * fac(n-1);
 }
}

Figure 1: Recursive factorial method

https://www.dsrg.org/
mailto:g_karab@dsrg.org,chalin@dsrg.org

with more complex but more powerful translation functions coded
in ML.

Isabelle/HOL, a realization of High Order Logic for Isabelle, is
just one of these logics defined atop of Isabelle/Pure. It is the
most complete of all of the object logics written for Isabelle so
far. This reason, among others, is why Isabelle/HOL has served
as the basis for a number of additional logics. Some of these
include the Logic for Computable Functions (Isabelle/HOLCF),
and logics for sequential imperative programs with Hoare
semantics defined such as Bali [17] and Simpl.

2.2 Simpl
Simpl [7] is a theory written and proven sound and complete in

Isabelle/HOL for a generic sequential imperative programming
language. The Simpl theory includes definitions of syntax, big-
and small-step operational semantics, a set of Hoare rules both for
partial and total correctness, and weakest-precondition semantics
(via the vcg and vcg-step proof methods) [9]. It is expressive
enough for many language constructs that exist in modern
programming languages. These include: global and local
variables, exceptions, abnormal termination, breaks out of loops,
procedures, as well as expressions with side-effects. Simpl also
has theories for reasoning about the heap and references, thus
allowing for the expression of linked data structures.

Essential elements of a typical Simpl theory include states,
procedure declarations, and Hoare triples. The state takes the
form of a hoarestate statement, which contains the list of
variables used in the Hoare triple—examples will be given further
below. Procedures are declared using Simpl’s procedures
declaration and have the following form:

procedures
 N (x::τ1, y::τ2, …| z::τ3)
 where v::τ4 … in B

where N is the procedure’s name, x and y the formal parameters,
τn a type, z the return value, v a local variable, and B the body. A
procedures declaration is syntactic sugar for a number of
deductive elements that are dynamically generated by Simpl and
include a locale1 and a hoarestate. All such locales are

1 A locale is Isabelle’s construct for parameterized theories

named using the name of the procedure and the prefix _impl.
Hoare triples have the usual form and in Simpl are written as:
Γ, Θ ├ {|P|} B {|Q|}, {|R|}
Γ, Θ ├t {|P|} B {|Q|}, {|R|}

for partial and total correctness, respectively. Γ is the procedure
environment, Θ is a set of Hoare rules used as assumptions, P is
the precondition, B is the body, and Q and R are the postconditions
for normal and abrupt termination, respectively.

2.3 JML4
JML4 [5] is a next generation research platform for JML. It is

an Eclipse-based Integrated Development and Verification
Environment (IVE)—see Figure 2. Users can write their Java
programs, annotate them with JML specifications, and prove them
correct within the same environment using RAC, ESC, or FSPV.

Currently, JML4 supports JML’s non-null type system (both
statically and at runtime), the ability to read and make use of the
extensive JML API library specifications, and basic RAC. Our
research group, in addition to contributing to the basic
infrastructure of JML4, is focusing on a new static verification
component called the JML Static Verifier (SV). The JML SV
offers support for ESC and FSPV. We examine the FSPV
component in more detail in the sections that follow.

3. JML4 FSPV THEORY GENERATOR
In this section we present FSPV TG. Central to FSPV TG is a

translator that takes Java programs along with their associated
JML specifications and generates one or more Simpl theory files.

The choice of Simpl as a target VC language for our FSPV tool
is motivated by two main reasons. Firstly, the generation of the
VC is fully captured within Simpl, which as mentioned above, has
been proven sound and complete. The alternative (and the norm)
is to programmatically define VC generation and in some cases
prove soundness, most of the time this is done by hand. Secondly,
Simpl’s syntax is such that rather than expressing lemmas as
“low-level” VCs, we express them directly as Hoare triples.

At its current level, the FSPV TG supports a handful of JML
and Java language elements, including method calls. Type-wise,
only Integers and Booleans are supported while initial support for
class related elements such as fields and methods are in place. A
functional set of Java statements and expressions are supported.
These include local-variable declarations with initialization and
conditional and while-loop statements. Most arithmetic,
relational, and logical operators are supported, including those
with side-effects. Lightweight JML contracts and loop
annotations are supported. All these elements are translated into
Isabelle/Simpl using FSPV TG’s translator.

FSPV TG’s current translation phases, along with their
individual inputs and outputs, can be seen in Figure 3. The first
phase is named TheoryTranslation. The input to the first phase is
the JML+Java Abstract Syntax Tree (AST) for a compilation unit.
A compilation unit contains AST nodes for type declarations,
which in turn contain type member nodes such as method
declarations, fields, etc. The result of this phase is a (generic)
Theory AST (Figure 4). This resulting theory AST consists of
both a list of variables containing field-related information and
one or more lemma AST nodes. Each lemma node is a translation
of a single Java method declaration and represents the proof
obligation for that method. Proof of the lemma establishes the
correctness of the method with respect to its specification. A
lemma node is a pair of:

Figure 2: JML4 component diagram

Variables

• a variable list containing all parameters and local variables
declared in the method

• a Hoare triple containing the translations of the JML pre- and
post-conditions, as well as the translation of the method body.
In the next phase, PrestateDecoration, the Theory AST is

decorated with pre-state information. This entails storing the pre-
state of the method parameters (since they can be modified within
the method body) as well as the handling \old JML expressions.
The result of this phase is an enriched Theory AST with
additional variables, assignment nodes, and simplified \old JML
expressions.

Additionally, in this stage we perform data analysis of the code
in the presence of while loops. Translating while loops requires
some care. Simpl adopts the classic Hoare rule for while loops
whereas in JML, the assumption is that only a while body’s
assignment targets are “havocked”2—all other variables are
assumed to remain unchanged. As such, the loop invariant is
augmented to maintain additional state information—i.e.,
constraints that the non-havocked variables remain unchanged.
Examples of this are presented in Section 4.

The third phase is called the SideEffectHandling. This phase
translates expressions with side effects into a more palatable form,
based on examples from the Simpl distribution of simplifying
such expressions. To allow for this translation we introduce
additional variables and assignment statements that hold
intermediary results. To illustrate this, consider the following
Java statement containing an expression with side-effects:

a *= b - i++; (1)
It is translated into the following sequence of Java statements:

a0 = a;
i0 = i;
i = i + 1;
a = a0 * (b - i0);

This will translate into Isabelle using Simpl’s notion of a binder
variable: the expression E’ >> v . E(v) evaluates to E(v) in

2 Nothing can be assumed about the value of havocked variables.

which v, if it occurs free, will have the value E’, i.e. E(E’). The
Simpl translation of (1) is:

a >> a0.
 i >> i0.
 i :== i + 1 ;;
 a :== a0 * (b - i0)

The last phase, called SimplTranslation, is responsible for
generating the Simpl theory. For each theory AST, an Isabelle
theory is created containing a hoarestate block for static and
instance fields. For each lemma Theory AST node, a Simpl
procedure and an Isabelle lemma block statement is created. The
procedure contains the translation of the Java method into Simpl,
while the lemma is there to prove the method correct with respect
to its specification.
Examples will be given in Section 4.

4. FSPV BY EXAMPLE
In this section, we present examples of recursive functions

specified in JML and proven using Isabelle/Simpl. Each example
allows us to highlight a particular capability of the JML4 FSPV
TG or limitations in JML with respect to its linguistic ability to
support the specification of recursive functions, especially for the
purpose of proving total correctness. Note that for these examples,
the resulting Simpl theories have a close resemblance to their
associated Java classes. We found this quite pleasing since source
code parts are easily identifiable in the corresponding theory.

4.1 Factorial
In Figure 1, presented earlier, we define the Factorial class

with a single recursive method name fac, which returns the
factorial of its integer argument. Our aim is to prove the method
correct and that it terminates. The JML measured_by clause
allows us to provide a measure that we can use to prove
termination. A measure is a well-founded relation from a function
to the natural numbers. Termination is achieved when the
arguments of each recursive method call decrease with respect to
the measure. While the definition of the fac method is simple,
we note that it is already beyond the capabilities of ESC/Java2
due to the use of a generalized numeric quantifier in the method
contract. Hence, factorial allows us to demonstrate the use,
translation, and verification of JML’s generalized numeric
quantifiers such as \product. Moreover, ESC/Java2 does not
support the JML statementmeasured_by . The corresponding

Figure 3: FSPV TG Phases

y : V
n : Z Integers
b : {T,F} Boolean
op ::== + | - | * | / | \/ | /\ | = | != | ++ | -- Operators
 | += | -= | *= | /= | :=
e ::== y | n | b | e op e | op e | e op Expressions

Statements s ::== y := e
 | WHILE e INV e VAR e s
 | IF e THEN s ELSE s
 | s ; s

Types τ : Γ
Lemma l ::== (y :: τ)*

 {e} s {e}
Theory t ::== (y :: τ)*

 l*

Figure 4: Theory language abstract syntax

public class McCarthy {
 //@ requires n >= 0;
 //@ ensures \result == (100 < n ? n-10 : 91);
 //@ measured_by 101 - n;
 public static int f91(int n) {
 if n) (100 <
 urn n - 10; ret
 else
 return f91(f91(n + 11));
 }

Simpl theory is generated as part of the compilation process when
the user selects the appropriate JML4 compiler options. The
theory generated for Factorial is given in Figure 5.

The theory has two main parts: a Simpl procedures and an
Isabelle lemma declaration. If more methods had been present in
the Java class declaration then additional pairs of procedures
and lemma declarations would have been given, one for each
method. The procedures declaration contains the translation of
the Java method in Simpl as well as all variables referenced by the
program including `result’, a special variable added by the
FSPV TG to hold the return value. The name of the class, the
name of the method, and the method’s signature are used to name
the corresponding Simpl procedure. Encountering this procedure
declaration, Simpl dynamically generates the Factorial_–
fac_int_impl locale that contains all the deductive machinery
required for reasoning about the procedure. This locale is
subsequently used in the lemma block to prove the procedure
correct with respect to its specification.

We can identify the lemma definition enclosed within quotes.
This definition follows the general format of a Simpl lemma
definition proving total correctness (see Section 2.2)3. The
lemma definition contains the Hoare triple to be proven, followed
by its proof. We can clearly identify the pre- and post-condition
at the top and bottom of the lemma enclosed within {| and |}
character sequences which are used to denote assertions.
Additionally, we bind the value of the input parameter to the
logical variable n which is used in the postcondition in order to
preserve the pre-state value of ′n. The logical variable σ represents
the pre-state; σ is always generated though it is not used in the
examples presented here. In between, is a call to the
Factorial_fac_int procedure. It is worth noting how JML
\product quantified expressions are translated to Isabelle/HOL’s
product definition Π using an Isabelle set comprehension to
specify the range. Isabelle/HOL’s set theory is typed and
extensive. It allows for set comprehensions and ranges which are
ideal when translating JML numeric quantifiers.

To prove this procedure correct and that it terminates we need
to provide a well-founded relation and to prove that subsequent
recursive calls are decreasing with respect to its arguments—for
our factorial example this means that subsequent recursive calls

3 The \<^sub>t is how ProofGeneral subscript characters.

Unfortunately not all of Proof General’s X-symbols are
supported in the Eclipse plug-in.

are made using smaller non-negative integer values.
Isabelle/HOL provides us with such a mechanism via the
measure clause. The measure clause for this particular example
is just the input parameter and it has the following form: measure
λ(s,p). nat ns . To introduce this measure to our proof we
make use of the HoareTotal.ProcRec1 rule and we instantiate
the ?r schematic [18] variable with the measure using the where
theorem modifier.

To complete this proof we need to provide additional
properties pertinent to the set comprehensions used in the post-
condition. These are included as simplification rules in the
SetHelper theory (imported by the theory statement) which is
provided in Appendix A. Finally, we complete the proof using
two applications of the vcg and auto methods.

To work with the theory we use Eclipse’s ProofGeneral plug-
in [1] which is a generic front-end for interactive theorem provers
supporting Isabelle. It is through Proof General that we prove this
theory correct following the proof steps described in the previous
paragraphs.

4.2 McCarthy’s 91 Function
Our next example contains an implementation of McCarthy’s

91 function [15]. The f91 method, seen in Figure 6, is defined
over positive integers and returns 91 for all n <= 100 otherwise
it returns n - 10. The measure for the function is remarkably
simple: 101 – n. McCarthy’s 91 function is interesting because
of its use of nested recursion.

The FSPV generated theory is shown in Figure 7. Like in the
previous example, a Simpl procedure and its associated Simpl
specification lemma are generated. We prove correctness and
termination within Eclipse using the associated Proof General
plug-in. Despite the nested recursion we are able to verify the
procedure correct and that it terminates with relative ease: i.e., by
merely asking Simpl to generate the verification condition (vcg),

Figure 5: Simpl Theory for Factorial

}
Figure 6: Recursive McCarthy's 91 Method

Figure 7: Simpl Theory for McCarthy's 91 Function

class Fibonacci {
 //@ public static native int fib_spec(int n);

 //@ requires n>=0;
 //@ ensures \result == fib_spec(n);
 a by n; //@ me sured_
 public static /*@ pure */ int fib(int n) {
 if 0) (n ==
 t n 0; re ur
 el (n == 1) se if
 turn 1; re
 else
 return fib(n-1) + fib(n-2);
 }

which Isabelle’s auto method is then able to discharge without
further user intervention. Surprisingly, our proof in Simpl is
simpler than the corresponding proof for a native Isabelle/HOL
function definition of the 91 function presented in [13].

4.3 Fibonacci Numbers
Our next example is a recursive method that calculates

Fibonacci numbers (see Figure 8). The difference with respect to
the previous cases is that in this example we make use of the
native JML feature, recently proposed by Julien Charles [6]. In
essence, this feature declares pure JML methods without an
explicit definition. The definition is instead provided using the
underlying target logic that JML annotated Java code is translated
to. This provides for a more natural way of proving recursive
methods that have in their specification recursive method calls.
Moreover, it allows us to illustrate the definition of Isabelle/HOL
functions and their use within Simpl assertions.

Figure 9 presents the generated theory suitably edited to
include a definition of fib_spec() and our modifications that
prove the method correct and that it terminates with respect to its
specification and its measure, respectively.

The Simpl procedure declaration of Fibonacci_fib_int
contains the translation of the Java statements and expressions
into Isabelle/Simpl. Notice how binder variables are used to store
the intermediate results of the recursive calls.

The fib_spec() function is the definition of the
corresponding native pure methods. We make use of the Isabelle
special polymorphic value arbitrary which is used to denote an
arbitrary value. This is required because Isabelle/HOL functions
are total by definition—i.e. we underspecify the function for
negative integers. For every Isabelle/HOL function two proof
obligations are required to be satisfied: one for completeness and
compatibility of patterns and another for termination [13]. Their
respective proofs follow the definition. It is worth mentioning
that Isabelle/HOL provides a simpler form of defining functions
where both of these proofs are satisfied automatically, however,
the default termination proof (based on lexicographic order) is not
sufficient for the fib_spec function—hence, the use of the
“long” form.

The final part of this theory is the specification lemma. The
proof proceeds as in the previous cases where the
HoareTotal.ProcRec1 rule is used, instantiated by a well-
founded relation (via measure) and followed by an application of
the vcg and auto methods.

 Supporting reasoning about pure model methods having
contracts that fully capture their behavior is possible (see

). This can be accomplished by using inductive sets to encode

the method contract and then proving that the inductive definition
is functional.

Figure
10

4.4 Ackermann’s Function
In the previous examples we have dealt with functions having

trivial measures. In this section we illustrate a total termination
proof for a recursive implementation of the Ackermann function
[15] (see Figure 11) which has a non-trivial measure. This
measure is a well-founded relation on pairs of non-negative
integers. In the process we also recognize the inadequacy of the
measured_by clause in specifying this measure. Once more we
make use of a native pure JML method to specify the post-
condition. As we shall see, its definition in Isabelle also helps in
making the case of preferring natural numbers instead of integers
when working with non-negative values.

The complete theory that includes our modifications is
presented in Figure 12. In addition to the procedures and
lemma declarations we have defined two Isabelle/HOL functions

}
Figure 8: Fibonacci Method (using native fib_spec())

Figure 9: Simpl Theory for Fibonacci

class Fibonacci {
 //@ requires n>=0;
 //@ ensures \result == (n==0)? 0 : (n==1) ? 1
 //@ : fib_spec(n-1)+fib_spec(n-2);
 //@ measured_by n;
 //@ public static pure model
 //@ int fib_spec(int n);

 //@ requires n>=0;
 //@ ensures \result == fib_spec(n);
 a by n//@ me sured_
 public static /*@ pure */ int fib(int n) {

;

 ...
 }
}

Figure 10: Fibonacci Method with fib_spec() as a model
method

public class Ackermann {
 //@ public static native int ack_spec(int n);

(ack’ and ack_spec) and a lemma declaration
(distrib_minus_int) that proves that Isabelle’s nat operator
distributes over subtraction of integers, where the right hand side
of the subtraction is the integer 1.

The ack_spec function is implemented over integer values
that return the Isabelle arbitrary value when either one of its
arguments is a non-negative number—in all other cases it makes
use of the value returned by the ack’ function. The ack’
function is an implementation of the Ackermann function over
natural numbers. It is possible to avoid writing the ack’ function
altogether and incorporated the remaining cases in the ack_spec
definition—in fact our first attempts in a definition of the native
method followed this approach. We were successful in
completing an integer only definition of ack_spec. However,
when this is used within the Ackerman_ack_int_int_spec
lemma the Isabelle simplifier enters what it seems an infinite loop.
In general, natural number based definitions are easier to work
with in Isabelle/HOL. Hence, by using a natural number
implementation of the Ackermann function as a first step we are
able to prove the corresponding Simpl procedure correct. We are
confident that even with our original approach a proof of
correctness is achievable given additional investment on our part.

In the Ackermann_ack_int_int_spec lemma we have
manually inserted the measure using the HoareTotal.ProcRec1
rule as to demonstrate that Isabelle/Simpl is capable of proving
termination of the Ackermann function. The measure we provide
is in fact a list of two measures. As such they do not correspond
to the current syntax and semantics of the measured_by clause.
In Isabelle/Simpl such measure lists are specified using the
measures combinator. This measures combinator is a

generalization of the measure clause and it constructs a well-
founded relation from a list of measures—it is explained in detail
in [3]. We continue the proof with a set or repeated applications
of the auto and vcg methods. These methods generate subgoals
that each is resolved by cases on the nat type followed by an
extra application of the auto method.

5. RELATED WORK
In this section we examine three existing FSPV tools.

LOOP. The LOOP tool [12,21] was developed at the
University of Nijmegen in Netherlands. LOOP covers a
functional subset of sequential Java. In particular, LOOP can
handle all of Java Card. Thus, LOOP is able to reason about
expressions with side effects, exceptions, inheritance, and
overloading. To our knowledge only multi-threading, inner
classes and termination of recursive programs are left out.

The LOOP tool is a compiler. Its input is JML-annotated Java
source code and its output is theories for the PVS theorem prover.
These theories, along with a set of theories named “the prelude,”
are used as input to the PVS theorem prover when a developer
wishes to conduct a verification session. The prelude contains the
semantics of both JML and Java. Through user interaction,
properties of these JML/Java sources can then be verified. A user
working with LOOP-generated theories has a choice between a
Hoare logic and two weakest-precondition calculi.

As compared to Isabelle/Simpl, LOOP’s Hoare logic has been
proven sound using PVS, but not proven complete. To our
knowledge, the LOOP tool does not support termination of
recursive programs. LOOP incorporates the semantics of JML
and Java in its compiler generating primitive formulas which are
then used as input to the PVS prover. FSPV-TG, on the other
hand, generates Simpl theories which incorporate the semantics of
sequential programming languages in terms of Hoare logic and
weakest precondition semantics—i.e. the transformation from a
Hoare triplet to a primitive formula is done within the prover.

 //@ requires n >= 0 && m >= 0 ;
 s r lt == k_sp n,m); //@ en ures \ esu ac ec(
 public static int ack(int n, int m) {
 if 0) (n ==
 urn m + 1; ret
 el se
 if 0) (m ==
 urn ack(n-1, m); ret
 else
 return ack(n-1, ack(n, m-1));
 }
}

Figure 11: Ackermann Method

Figure 12: Ackermann Theory

Table 1: A Comparison on Java's FSPV Tools

 LOOP JACK Krakatoa
Why

FSPV
TG

Simpl
Maintained

Open Source
Proven Sound 1

Proven
Complete 1

Above two
proofs done

in
PVS N/A by hand in

Isabelle
VC generation
done in prover

Termination of
recursive
functions

 2

1 Simpl is proven sound and complete. The translation to Simpl is not.
2 See main text for a qualification of this mark.

JACK. The Java Applet Correctness Kit (JACK) tool [2] is an
Eclipse plug-in. Like LOOP, JACK also translates Java programs
into one or more theory files. However, JACK generates theories
in a Java-like language called Java Proof Obligation (JPO)
language. These obligations are generated using weakest
precondition semantics which, to our knowledge, has yet to be
proven sound. JACK provides support for a number of theorem
provers, namely Coq, PVS, B, and Simplify—with Coq and
Simplify being the most fully supported. Prover-specific theories
are translated using the JPO theories as input. Additionally,
JACK supports specification and verification at the bytecode
level. Bytecode verification also makes use of a weakest-
precondition semantics. In this case, this semantics is proven
sound using the pen and paper approach [19].

The differences between the underlying logics of JACK and
FSPV TG are similar to those of LOOP. JACK generates
primitive formulas in Java, while we make use of Simpl’s Hoare
rules and weakest precondition semantics to generate the primitive
formulas. Additionally, JACK does not support termination
proofs for recursive functions.

Krakatoa. Krakatoa is an FSPV tool for JML annotated Java
classes. Originally designed to generate theories for the Coq
theorem proven it has recently been modified to output programs
for the Why tool as well [11].

Why is a multi-tool Verification Condition (VC) generator.
The input of Why is a Why program. A Why program may
contain assignment, loop, and conditional statements, as well as
function declarations. Additionally, it supports throwing and
catching exceptions and has limited support for expressions with
side-effects. It supports annotations for function declarations and
loop statements.

The Why tool transforms input programs into VCs using a
weakest-precondition semantics proven sound using the pen and
paper approach [10]. The output is one or more theories for a
number of provers. These include the automated Yices, CVC3,
and the Interactive Coq, Isabelle, and PVS. It is worth noting that
Why is general enough that it is used by Caduceus—a front-end
for verifying C programs.

Krakatoa is similar to FSPV TG in the sense that it translates
Java programs into an intermediate program. However, Why
programs are translated into a prover-specific theory using the
Why compiler written in Objective CAML. Consequently, it
suffers from the same issues as LOOP and JACK with respect to
having VCs generated programmatically. Krakatoa does not
support reasoning about the termination of recursive methods as
indicated by [16]. Nonetheless its underlying intermediate
language, Why, does have support for specifying recursive
functions (via the rec keyword) with measures (via the variant
keyword).

Table 1 presents a comparison in terms of the soundness and
completeness of the underlying logical foundations of these FSPV
tools along with our own FSPV TG. Additionally, we report
(second to last row) on which tools programmatically generate
VCs and which generate them through a theorem prover. Finally,
in the last row, we report on tool support for proving termination
of recursive programs.

6. CONCLUSION AND FUTURE WORK
We have presented initial work we have done in implementing

an FSPV tool in JML4. This FSPV tool makes use of Simpl—a
logic for expressing and verifying sequential imperative programs
developed within Isabelle/HOL. Simpl’s Hoare logic has been

proven sound and complete with respect to the programming
language semantics. We have illustrated the current level of
support that the FSPV TG provides and presented a sample of our
experimental test cases. We have focused our attention on
proving recursive programs correct and that they terminate.

We have shown programs implementing Factorial and
McCarthy’s 91 function and how the FSPV TG, at its current
state, can correctly prove total correctness. We examined more
complicated cases such as Fibonacci and the Ackermann function.
In there we employed the recently introduced native feature that
allows separating declaration and definition of JML pure methods.
This separation allowed for an “easier”, a more natural, and a
flexible definition of the pure method in the underlying logic.
Moreover, we have exposed inadequacies of JML in specifying
complex measures such as the one for the Ackermann function.

Through our experiments we believe that we have
demonstrated the feasibility of Isabelle/Simpl as a backend
proving apparatus for our FSPV TG tool proving recursive
programs correct and that they terminate. To our knowledge
FSPV TG is unique with respect to applying Hoare logic rules and
weakest precondition semantics within an interactive theorem
prover.

We reviewed a number of related FSPV tools and we have
seen that Simpl is the only logic proven both sound and complete
within an interactive theorem prover. Additionally none of our
reviewed tools supports total correctness of recursive programs.

We have plans for a number of future additions to this tool. A
short-term goal is to make progress towards using pure model
methods rather than native methods to specify recursive functions
like the one given in our Fibonacci example. We will also be
exploring extensions to the measured_by syntax of JML so that
measures for Ackermann’s function can be defined within JML
directly.
REFERENCES
[1] Aspinall, D. et al. 2006. Proof general in Eclipse: system

and architecture overview. ACM, 45-49.
[2] Barthe, G. et al. 2007. JACK - A Tool for Validation of

Security and Behaviour of Java Applications. In 5th
International Symposium on Formal Methods for
Components and Objects (FMCO), , 152-174.

[3] Bulwahn, L. et al. 2007. Finding Lexicographic Orders for
Termination Proofs in Isabelle/HOL. In Theorem Proving
in Higher Order Logics. 38-53.

[4] Burdy, L. et al. 2005. An overview of JML tools and
applications. Int. J. Softw. Tools Technol. Transf. 7, 3, 212-
232.

[5] Chalin, P. et al. 2008. JML4: Towards an Industrial Grade
IVE for Java and Next Generation Research Platform for
JML. In Verified Software: Theories, Tools, Experiments.
70-83.

[6] Charles, J. Adding native specifications to JML. Formal
Techniques for Java-like Programs, , 2006.

[7] Cheon, Y. and Leavens, G.T. 2002. A runtime assertion
checker for the Java Modeling Language (JML). In
International Conference on Software Engineering
Research and Practice (SERP '02). CSREA Press, Las
Vegas, Nevada, 322--328.

[8] Cok, D.R. and Kiniry, J.R. 2004. ESC/Java2: Uniting
ESC/Java and JML: Progress and issues in building and
using ESC/Java2 and a report on a case study involving the
use of ESC/Java2 to verify portions of an Internet voting
tally system. In Construction and Analysis of Safe, Secure

and Interoperable Smart Devices: International Workshop,
CASSIS 2004 3362, , 108--128.

[9] Dijkstra, E.W. 1975. Guarded commands, nondeterminacy
and formal derivation of programs. Commun. ACM 18, 8,
453-457.

[10] Filliâtre, J. 2003. Verification of non-functional programs
using interpretations in type theory. J. Funct. Program. 13,
4, 709-745.

[11] Filliâtre, J. and Marché, C. 2007. The
Why/Krakatoa/Caduceus Platform for Deductive Program
Verification. In Computer Aided Verification. 173-177.

[12] Jacobs, B. and Poll, E. 2004. Java Program Verification at
Nijmegen: Developments and Perspective. In Software
Security - Theories and Systems. 134-153.

[13] Krauss, A. 2008. Defining Recursive Functions in
Isabelle/HOL.
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle
/doc/functions.pdf.

[14] Leavens, G.T. 2008. The Java Modeling Language (JML).
http://www.eecs.ucf.edu/~leavens/JML/.

[15] Manna, Z. 1974. Mathematical Theory of Computation.
Mcgraw-Hill College.

[16] March, C. et al. The Krakatoa Tool for Certication of
Java/JavaCard Programs annotated in JML. .

[17] Nipkow, T. 2008. Project Bali.
http://isabelle.in.tum.de/bali/.

[18] Nipkow, T. et al. 2002. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. Springer.

[19] Pavlova, M. 2007. Java bytecode verification and its
applications. Ecole Superieure en Sciences Informatiques
de Sophia Antipolis.

[20] Schirmer, N. 2005. A Verification Environment for
Sequential Imperative Programs in Isabelle/HOL. In Logic
for Programming, Artificial Intelligence, and Reasoning.
398-414.

[21] Van Den Berg, J. and Jacobs, B. 2001. The LOOP
compiler for Java and JML. Tools and Algorithms for the
Construction and Analysis of Systems, number 2031 in
Lect. Notes Comp. Sci, , 299--312.

[22] Winskel, G. 1993. The formal semantics of programming
languages: an introduction. MIT Press.

APPENDIX A

	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. INTRODUCTION
	2. BACKGROUND
	2.1 Isabelle
	2.2 Simpl
	2.3 JML4

	3. JML4 FSPV THEORY GENERATOR
	4. FSPV BY EXAMPLE
	4.1 Factorial
	4.2 McCarthy’s 91 Function
	4.3 Fibonacci Numbers
	4.4 Ackermann’s Function

	5. RELATED WORK
	6. CONCLUSION AND FUTURE WORK
	REFERENCES
	APPENDIX A
	

