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ABSTRACT 
JML4 is a next generation tooling and research platform for JML.  
JML4, currently in development, aims to support the integrated 
capabilities of Runtime Assertion Checking (RAC), Extended 
Static Checking (ESC), and Full Static Program Verification 
(FSPV). In this paper, we present the JML4 FSPV Theory 
Generator (TG) that aims to study the adequacy of Isabelle/Simpl 
as the underlying verification condition language. In particular we 
study Isabelle/Simpl with respect to proving total correctness of 
recursive programs. Simpl is a Hoare-based logic for a sequential 
imperative programming language along with a verification 
system.  It is written in Isabelle/HOL and has been proven sound 
and relative complete. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification— 
Programming by contract, Correctness proofs; F.3.1 [Logics 
and Meaning of Programs]: Specifying and Verifying 
and Reasoning about Programs—Mechanical verification. 

General Terms 
Reliability, Languages, Theory, Verification. 

Keywords 
Java, Java Modeling Language, Full Static Program Verification. 

1. INTRODUCTION 
The Java Modeling Language (JML)  is a Behavioral Interface 

Specification Language (BISL) for Java [14].  A number of tools 
exist that recognize JML annotated Java programs and can help in 
demonstrating their correctness [4].  These tools perform 
verification using one or more of three main verification methods: 
Runtime Assertion Checking (RAC) [7], Extended Static 
Checking (ESC) [8], and Full Static Program Verification (FSPV) 
[12]. 

While RAC and ESC are fully automated and generally easy to 
use, these verification techniques are either unsound and/or 
incomplete by nature of the technique. Unfortunately, this is 
unacceptable for safety and security critical applications (e.g. 
SmartCard applications such as electronic purses used in 
commercial transactions and medicare cards used to hold vital 
patient information) for which soundness and completeness are 
vital. FSPV, on the other hand, has the potential to be both sound 
and complete. In this paper, we present the FSPV Theory 
Generator (TG), the FSPV component of JML4—a next 
generation tooling and research platform for JML. In particular, 
we present initial results with respect to proving the total 
correctness of recursive functions. To our knowledge, the JML4 
FSPV TG is the first: 

• JML tool to enable the total correctness of recursive functions 
to be proven, such as the one shown for Factorial in Figure 1, 
and 

• FSPV tool to be based on an underlying theory that has been 
proven sound and complete, and this within a mechanical 
theorem prover.   

Creation of the FSPV TG is also timely, since neither of the two 
“first generation” FSPV tools (JACK, LOOP) is still being 
actively maintained. 

We present: 
• The translation process used to generate Isabelle/Simpl [20] 

theories from Java programs. 
• Our experience in generating and proving Simpl theory 

Verification Condition (VC) lemmas for JML annotated Java 
programs. 
Isabelle/Simpl is a theory built atop Isabelle/HOL for an IMP-

like [22] sequential imperative programming language with loops 
and procedures supported by specification constructs (e.g., via 
pre- and post-conditions). 

The rest of the paper is structured as follows. In the next 
section, we describe Isabelle, Simpl, and JML4. Section 3 
presents the FSPV TG followed by an account of its use and 
subsequent verification of its generated theories in Section 4.  In 
Section 5 we present related work.  Finally conclusions and future 
work are given in Section 6. 

2. BACKGROUND 

2.1 Isabelle 
Isabelle [18] is a theorem proving framework.  It provides the 

necessary proving apparatus to define new logics.  This machinery 
includes Isabelle’s meta-logic (Isabelle/Pure), the classical 
reasoner, and the simplifier.  Additionally, existing logics can be 
extended, thus defining new ones.  Newly constructed object 
logics can be further enhanced with new syntax by making use of 
Isabelle’s syntax transformations.  These transformations can be 
specified using relatively simple rules defined within the theory or 

public class Factorial { 
 //@ requires n >= 0; 
 //@ ensures  \result ==  
 //@   (\product int j; 1 <= j && j <= n ; j); 
 a b ;  //@ me sured_ y n
 public static int fac(final int n) { 
  if 0) (n == 
  urn 1;  ret
  else 
   return n * fac(n-1); 
 } 
} 
 

Figure 1: Recursive factorial method 
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with more complex but more powerful translation functions coded 
in ML. 

Isabelle/HOL, a realization of High Order Logic for Isabelle, is 
just one of these logics defined atop of Isabelle/Pure.  It is the 
most complete of all of the object logics written for Isabelle so 
far.  This reason, among others, is why Isabelle/HOL has served 
as the basis for a number of additional logics. Some of these 
include the Logic for Computable Functions (Isabelle/HOLCF), 
and logics for sequential imperative programs with Hoare 
semantics defined such as Bali [17] and Simpl. 

2.2 Simpl 
Simpl [7] is a theory written and proven sound and complete in 

Isabelle/HOL for a generic sequential imperative programming 
language.  The Simpl theory includes definitions of syntax, big- 
and small-step operational semantics, a set of Hoare rules both for 
partial and total correctness, and weakest-precondition semantics 
(via the vcg and vcg-step proof methods) [9].  It is expressive 
enough for many language constructs that exist in modern 
programming languages.  These include: global and local 
variables, exceptions, abnormal termination, breaks out of loops, 
procedures, as well as expressions with side-effects.  Simpl also 
has theories for reasoning about the heap and references, thus 
allowing for the expression of linked data structures. 

Essential elements of a typical Simpl theory include states, 
procedure declarations, and Hoare triples.  The state takes the 
form of a hoarestate statement, which contains the list of 
variables used in the Hoare triple—examples will be given further 
below.  Procedures are declared using Simpl’s procedures 
declaration and have the following form: 

procedures  
  N (x::τ1, y::τ2, …| z::τ3) 
  where v::τ4 … in B 

where N is the procedure’s name, x and y the formal parameters, 
τn a type, z the return value, v a local variable, and B the body.  A 
procedures declaration is syntactic sugar for a number of 
deductive elements that are dynamically generated by Simpl and 
include a locale1 and a hoarestate.  All such locales are 

                                                                 
1 A locale is Isabelle’s construct for parameterized theories 

named using the name of the procedure and the prefix _impl.  
Hoare triples have the usual form and in Simpl are written as: 
Γ, Θ ├ {|P|} B {|Q|}, {|R|} 
Γ, Θ ├t {|P|} B {|Q|}, {|R|} 

for partial and total correctness, respectively.  Γ is the procedure 
environment, Θ is a set of Hoare rules used as assumptions, P is 
the precondition, B is the body, and Q and R are the postconditions 
for normal and abrupt termination, respectively.

2.3 JML4 
JML4 [5] is a next generation research platform for JML. It is 

an Eclipse-based Integrated Development and Verification 
Environment (IVE)—see Figure 2.  Users can write their Java 
programs, annotate them with JML specifications, and prove them 
correct within the same environment using RAC, ESC, or FSPV. 

Currently, JML4 supports JML’s non-null type system (both 
statically and at runtime), the ability to read and make use of the 
extensive JML API library specifications, and basic RAC.  Our 
research group, in addition to contributing to the basic 
infrastructure of JML4, is focusing on a new static verification 
component called the JML Static Verifier (SV).  The JML SV 
offers support for ESC and FSPV.  We examine the FSPV 
component in more detail in the sections that follow. 

 

3. JML4 FSPV THEORY GENERATOR 
In this section we present FSPV TG.  Central to FSPV TG is a 

translator that takes Java programs along with their associated 
JML specifications and generates one or more Simpl theory files.  

The choice of Simpl as a target VC language for our FSPV tool 
is motivated by two main reasons.  Firstly, the generation of the 
VC is fully captured within Simpl, which as mentioned above, has 
been proven sound and complete.  The alternative (and the norm) 
is to programmatically define VC generation and in some cases 
prove soundness, most of the time this is done by hand.  Secondly, 
Simpl’s syntax is such that rather than expressing lemmas as 
“low-level” VCs, we express them directly as Hoare triples.  

At its current level, the FSPV TG supports a handful of JML 
and Java language elements, including method calls.  Type-wise, 
only Integers and Booleans are supported while initial support for 
class related elements such as fields and methods are in place.  A 
functional set of Java statements and expressions are supported.  
These include local-variable declarations with initialization and 
conditional and while-loop statements.  Most arithmetic, 
relational, and logical operators are supported, including those 
with side-effects.  Lightweight JML contracts and loop 
annotations are supported.  All these elements are translated into 
Isabelle/Simpl using FSPV TG’s translator. 

FSPV TG’s current translation phases, along with their 
individual inputs and outputs, can be seen in Figure 3. The first 
phase is named TheoryTranslation.  The input to the first phase is 
the JML+Java Abstract Syntax Tree (AST) for a compilation unit.  
A compilation unit contains AST nodes for type declarations, 
which in turn contain type member nodes such as method 
declarations, fields, etc.  The result of this phase is a (generic) 
Theory AST (Figure 4).  This resulting theory AST consists of 
both a list of variables containing field-related information and 
one or more lemma AST nodes.  Each lemma node is a translation 
of a single Java method declaration and represents the proof 
obligation for that method. Proof of the lemma establishes the 
correctness of the method with respect to its specification.  A 
lemma node is a pair of: 

Figure 2: JML4 component diagram 

 

  



 
Variables  

• a variable list containing all parameters and local variables 
declared in the method  

• a Hoare triple containing the translations of the JML pre- and 
post-conditions, as well as the translation of the method body. 
In the next phase, PrestateDecoration, the Theory AST is 

decorated with pre-state information.  This entails storing the pre-
state of the method parameters (since they can be modified within 
the method body) as well as the handling \old JML expressions.  
The result of this phase is an enriched Theory AST with 
additional variables, assignment nodes, and simplified \old JML 
expressions. 

Additionally, in this stage we perform data analysis of the code 
in the presence of while loops.  Translating while loops requires 
some care.  Simpl adopts the classic Hoare rule for while loops 
whereas in JML, the assumption is that only a while body’s 
assignment targets are “havocked”2—all other variables are 
assumed to remain unchanged.  As such, the loop invariant is 
augmented to maintain additional state information—i.e., 
constraints that the non-havocked variables remain unchanged. 
Examples of this are presented in Section 4. 

The third phase is called the SideEffectHandling.  This phase 
translates expressions with side effects into a more palatable form, 
based on examples from the Simpl distribution of simplifying 
such expressions.  To allow for this translation we introduce 
additional variables and assignment statements that hold 
intermediary results.  To illustrate this, consider the following 
Java statement containing an expression with side-effects: 

a *= b - i++;    (1) 
It is translated into the following sequence of Java statements: 

a0 = a;  
i0 = i;  
i = i + 1; 
a = a0 * (b - i0); 

This will translate into Isabelle using Simpl’s notion of a binder 
variable: the expression E’ >> v . E(v) evaluates to E(v) in 
                                                                 
2 Nothing can be assumed about the value of havocked variables. 

which v, if it occurs free, will have the value E’, i.e. E(E’).  The 
Simpl translation of (1) is: 

a >> a0.  
 i >> i0.  
  i :== i + 1 ;; 
  a :== a0 * (b - i0) 

The last phase, called SimplTranslation, is responsible for 
generating the Simpl theory.  For each theory AST, an Isabelle 
theory is created containing a hoarestate block for static and 
instance fields.  For each lemma Theory AST node, a Simpl 
procedure and an Isabelle lemma block statement is created.  The 
procedure contains the translation of the Java method into Simpl, 
while the lemma is there to prove the method correct with respect 
to its specification. 
Examples will be given in Section 4. 

4. FSPV BY EXAMPLE 
In this section, we present examples of recursive functions 

specified in JML and proven using Isabelle/Simpl. Each example 
allows us to highlight a particular capability of the JML4 FSPV 
TG or limitations in JML with respect to its linguistic ability to 
support the specification of recursive functions, especially for the 
purpose of proving total correctness. Note that for these examples, 
the resulting Simpl theories have a close resemblance to their 
associated Java classes. We found this quite pleasing since source 
code parts are easily identifiable in the corresponding theory. 

4.1 Factorial 
In Figure 1, presented earlier, we define the Factorial class 

with a single recursive method name fac, which returns the 
factorial of its integer argument.  Our aim is to prove the method 
correct and that it terminates.  The JML measured_by clause 
allows us to provide a measure that we can use to prove 
termination.  A measure is a well-founded relation from a function 
to the natural numbers. Termination is achieved when the 
arguments of each recursive method call decrease with respect to 
the measure.  While the definition of the fac method is simple, 
we note that it is already beyond the capabilities of ESC/Java2  
due to the use of a generalized numeric quantifier in the method 
contract.  Hence, factorial allows us to demonstrate the use, 
translation, and verification of JML’s generalized numeric 
quantifiers such as \product.  Moreover, ESC/Java2 does not 
support the  JML statementmeasured_by .  The corresponding 

 
Figure 3: FSPV TG Phases 

y : V 
n : Z Integers 
b : {T,F} Boolean 
op ::== + | - | * | / | \/ | /\ | = | != |  ++ | -- Operators 
     | += | -= | *= | /= | := 
e ::== y | n | b | e op e | op e | e op Expressions 

Statements s ::== y := e  
   | WHILE e INV e VAR e s 
   | IF e THEN s ELSE s 
   | s ; s 

Types τ : Γ 
Lemma l ::== (y :: τ)* 

         {e} s {e} 
Theory t ::== (y :: τ)* 

         l* 
 

Figure 4: Theory language abstract syntax 

  



public class McCarthy { 
 //@ requires n >= 0; 
 //@ ensures \result == (100 < n ? n-10 : 91); 
 //@ measured_by 101 - n; 
 public static int f91(int n) { 
  if  n) (100 <
  urn n - 10;  ret
  else 
   return f91(f91(n + 11)); 
 }  

Simpl theory is generated as part of the compilation process when 
the user selects the appropriate JML4 compiler options.  The 
theory generated for Factorial is given in Figure 5. 

The theory has two main parts: a Simpl procedures and an 
Isabelle lemma declaration. If more methods had been present in 
the Java class declaration then additional pairs of procedures 
and lemma declarations would have been given, one for each 
method. The procedures declaration contains the translation of 
the Java method in Simpl as well as all variables referenced by the 
program including `result’, a special variable added by the 
FSPV TG to hold the return value.  The name of the class, the 
name of the method, and the method’s signature are used to name 
the corresponding Simpl procedure.  Encountering this procedure 
declaration, Simpl dynamically generates the Factorial_–
fac_int_impl locale that contains all the deductive machinery 
required for reasoning about the procedure.  This locale is 
subsequently used in the lemma block to prove the procedure 
correct with respect to its specification. 

We can identify the lemma definition enclosed within quotes.  
This definition follows the general format of a Simpl lemma 
definition proving total correctness (see Section 2.2)3.  The 
lemma definition contains the Hoare triple to be proven, followed 
by its proof.  We can clearly identify the pre- and post-condition 
at the top and bottom of the lemma enclosed within {| and |} 
character sequences which are used to denote assertions.  
Additionally, we bind the value of the input parameter to the 
logical variable n which is used in the postcondition in order to 
preserve the pre-state value of ′n. The logical variable σ represents 
the pre-state; σ is always generated though it is not used in the 
examples presented here.  In between, is a call to the 
Factorial_fac_int procedure.  It is worth noting how JML 
\product quantified expressions are translated to Isabelle/HOL’s 
product definition Π using an Isabelle set comprehension to 
specify the range.  Isabelle/HOL’s set theory is typed and 
extensive.  It allows for set comprehensions and ranges which are 
ideal when translating JML numeric quantifiers. 

To prove this procedure correct and that it terminates we need 
to provide a well-founded relation and to prove that subsequent 
recursive calls are decreasing with respect to its arguments—for 
our factorial example this means that subsequent recursive calls 

                                                                 
3 The \<^sub>t is how ProofGeneral subscript characters.  

Unfortunately not all of Proof General’s X-symbols are 
supported in the Eclipse plug-in.  

are made using smaller non-negative integer values.  
Isabelle/HOL provides us with such a mechanism via the 
measure clause.  The measure clause for this particular example 
is just the input parameter and it has the following form: measure 
λ(s,p). nat ns . To introduce this measure to our proof we 
make use of the HoareTotal.ProcRec1 rule and we instantiate 
the ?r schematic [18] variable with the measure using the where 
theorem modifier. 

To complete this proof we need to provide additional 
properties pertinent to the set comprehensions used in the post-
condition. These are included as simplification rules in the 
SetHelper theory (imported by the theory statement) which is 
provided in Appendix A.  Finally, we complete the proof using 
two applications of the vcg and auto methods. 

To work with the theory we use Eclipse’s ProofGeneral  plug-
in [1] which is a generic front-end for interactive theorem provers 
supporting Isabelle.  It is through Proof General that we prove this 
theory correct following the proof steps described in the previous 
paragraphs. 

 

4.2 McCarthy’s 91 Function 
Our next example contains an implementation of McCarthy’s 

91 function [15].  The f91 method, seen in Figure 6, is defined 
over positive integers and returns 91 for all n <= 100 otherwise 
it returns n - 10.  The measure for the function is remarkably 
simple: 101 – n.  McCarthy’s 91 function is interesting because 
of its use of nested recursion. 

The FSPV generated theory is shown in Figure 7.  Like in the 
previous example, a Simpl procedure and its associated Simpl 
specification lemma are generated. We prove correctness and 
termination within Eclipse using the associated Proof General 
plug-in.  Despite the nested recursion we are able to verify the 
procedure correct and that it terminates with relative ease: i.e., by 
merely asking Simpl to generate the verification condition (vcg), 

 
Figure 5: Simpl Theory for Factorial 

} 
Figure 6: Recursive McCarthy's 91 Method 

 
Figure 7: Simpl Theory for McCarthy's 91 Function 

  



class Fibonacci { 
  //@ public static native int fib_spec(int n); 
 
  //@ requires n>=0; 
  //@ ensures \result ==  fib_spec(n); 
  a by n; //@ me sured_
  public static /*@ pure */ int fib(int n) { 
    if 0) (n == 
    t n 0;   re ur
    el (n == 1) se if 
    turn 1;   re
    else 
      return fib(n-1) + fib(n-2); 
  } 

which Isabelle’s auto method is then able to discharge without 
further user intervention. Surprisingly, our proof in Simpl is 
simpler than the corresponding proof for a native Isabelle/HOL 
function definition of the 91 function presented in [13]. 

4.3 Fibonacci Numbers 
Our next example is a recursive method that calculates 

Fibonacci numbers (see Figure 8).  The difference with respect to 
the previous cases is that in this example we make use of the 
native JML feature, recently proposed by Julien Charles [6].  In 
essence, this feature declares pure JML methods without an 
explicit definition.  The definition is instead provided using the 
underlying target logic that JML annotated Java code is translated 
to.  This provides for a more natural way of proving recursive 
methods that have in their specification recursive method calls.   
Moreover, it allows us to illustrate the definition of Isabelle/HOL 
functions and their use within Simpl assertions. 

Figure 9 presents the generated theory suitably edited to 
include a definition of fib_spec() and our modifications that 
prove the method correct and that it terminates with respect to its 
specification and its measure, respectively.  

The Simpl procedure declaration of Fibonacci_fib_int 
contains the translation of the Java statements and expressions 
into Isabelle/Simpl.  Notice how binder variables are used to store 
the intermediate results of the recursive calls. 

The fib_spec() function is the definition of the 
corresponding native pure methods.  We make use of the Isabelle 
special polymorphic value arbitrary which is used to denote an 
arbitrary value.  This is required because Isabelle/HOL functions 
are total by definition—i.e. we underspecify the function for 
negative integers. For every Isabelle/HOL function two proof 
obligations are required to be satisfied: one for completeness and 
compatibility of patterns and another for termination [13].  Their 
respective proofs follow the definition.  It is worth mentioning 
that Isabelle/HOL provides a simpler form of defining functions 
where both of these proofs are satisfied automatically, however, 
the default termination proof (based on lexicographic order) is not 
sufficient for the fib_spec function—hence, the use of the 
“long” form. 

The final part of this theory is the specification lemma.  The 
proof proceeds as in the previous cases where the 
HoareTotal.ProcRec1 rule is used, instantiated by a well-
founded relation (via measure) and followed by an application of 
the vcg and auto methods. 

 Supporting reasoning about pure model methods having 
contracts that fully capture their behavior is possible (see 

).  This can be accomplished by using inductive sets to encode 

the method contract and then proving that the inductive definition 
is functional.

Figure 
10

 

4.4 Ackermann’s Function 
In the previous examples we have dealt with functions having 

trivial measures.  In this section we illustrate a total termination 
proof for a recursive implementation of the Ackermann function 
[15] (see Figure 11) which has a non-trivial measure.  This 
measure is a well-founded relation on pairs of non-negative 
integers.   In the process we also recognize the inadequacy of the 
measured_by clause in specifying this measure.  Once more we 
make use of a native pure JML method to specify the post-
condition.  As we shall see, its definition in Isabelle also helps in 
making the case of preferring natural numbers instead of integers 
when working with non-negative values. 

The complete theory that includes our modifications is 
presented in Figure 12.  In addition to the procedures and 
lemma declarations we have defined two Isabelle/HOL functions 

} 
Figure 8: Fibonacci Method (using native fib_spec()) 

 
Figure 9: Simpl Theory for Fibonacci 

class Fibonacci { 
  //@ requires n>=0; 
  //@ ensures \result == (n==0)? 0 : (n==1) ? 1 
  //@  : fib_spec(n-1)+fib_spec(n-2); 
  //@ measured_by n; 
  //@ public static pure model  
  //@                      int fib_spec(int n); 
 
  //@ requires n>=0; 
  //@ ensures \result == fib_spec(n); 
  a by n//@ me sured_
  public static /*@ pure */ int fib(int n) { 

; 

    ... 
  } 
} 

Figure 10: Fibonacci Method with fib_spec() as a model 
method 

  



public class Ackermann { 
  //@ public static native int ack_spec(int n); 

(ack’ and ack_spec) and a lemma declaration 
(distrib_minus_int) that proves that Isabelle’s nat operator 
distributes over subtraction of integers, where the right hand side 
of the subtraction is the integer 1.   

The ack_spec function is implemented over integer values 
that return the Isabelle arbitrary value when either one of its 
arguments is a non-negative number—in all other cases it makes 
use of the value returned by the ack’ function.  The ack’ 
function is an implementation of the Ackermann function over 
natural numbers.  It is possible to avoid writing the ack’ function 
altogether and incorporated the remaining cases in the ack_spec 
definition—in fact our first attempts in a definition of the native 
method followed this approach.  We were successful in 
completing an integer only definition of ack_spec. However, 
when this is used within the Ackerman_ack_int_int_spec 
lemma the Isabelle simplifier enters what it seems an infinite loop.  
In general, natural number based definitions are easier to work 
with in Isabelle/HOL.  Hence, by using a natural number 
implementation of the Ackermann function as a first step we are 
able to prove the corresponding Simpl procedure correct.  We are 
confident that even with our original approach a proof of 
correctness is achievable given additional investment on our part. 

In the Ackermann_ack_int_int_spec lemma we have 
manually inserted the measure using the HoareTotal.ProcRec1 
rule as to demonstrate that Isabelle/Simpl is capable of proving 
termination of the Ackermann function.  The measure we provide 
is in fact a list of two measures.  As such they do not correspond 
to the current syntax and semantics of the measured_by clause. 
In Isabelle/Simpl such measure lists are specified using the 
measures combinator.  This measures combinator is a 

generalization of the measure clause and it constructs a well-
founded relation from a list of measures—it is explained in detail 
in [3].  We continue the proof with a set or repeated applications 
of the auto and vcg methods.  These methods generate subgoals 
that each is resolved by cases on the nat type followed by an 
extra application of the auto method. 

5. RELATED WORK 
In this section we examine three existing FSPV tools. 

LOOP.  The LOOP tool [12,21] was developed at the 
University of Nijmegen in Netherlands.  LOOP covers a 
functional subset of sequential Java.  In particular, LOOP can 
handle all of Java Card.  Thus, LOOP is able to reason about 
expressions with side effects, exceptions, inheritance, and 
overloading.  To our knowledge only multi-threading, inner 
classes and termination of recursive programs are left out. 

The LOOP tool is a compiler.  Its input is JML-annotated Java 
source code and its output is theories for the PVS theorem prover.  
These theories, along with a set of theories named “the prelude,” 
are used as input to the PVS theorem prover when a developer 
wishes to conduct a verification session.  The prelude contains the 
semantics of both JML and Java.  Through user interaction, 
properties of these JML/Java sources can then be verified.  A user 
working with LOOP-generated theories has a choice between a 
Hoare logic and two weakest-precondition calculi.   

As compared to Isabelle/Simpl, LOOP’s Hoare logic has been 
proven sound using PVS, but not proven complete.  To our 
knowledge, the LOOP tool does not support termination of 
recursive programs.  LOOP incorporates the semantics of JML 
and Java in its compiler generating primitive formulas which are 
then used as input to the PVS prover.  FSPV-TG, on the other 
hand, generates Simpl theories which incorporate the semantics of 
sequential programming languages in terms of Hoare logic and 
weakest precondition semantics—i.e. the transformation from a 
Hoare triplet to a primitive formula is done within the prover. 

 
 //@ requires n >= 0 && m >= 0 ; 
 s r lt == k_sp n,m); //@ en ures \ esu  ac ec(
 public static int ack(int n, int m) { 
  if 0) (n == 
  urn m + 1;  ret
  el   se
   if 0) (m == 
   urn ack(n-1, m);  ret
   else 
    return ack(n-1, ack(n, m-1)); 
 } 
} 

Figure 11: Ackermann Method 

 
Figure 12: Ackermann Theory 

Table 1: A Comparison on Java's FSPV Tools 

 LOOP JACK Krakatoa 
Why 

FSPV 
TG 

Simpl 
Maintained     

Open Source     
Proven Sound    1

Proven 
Complete    1

Above two 
proofs done 

in 
PVS N/A by hand in 

Isabelle 
VC generation 
done in prover     

Termination of 
recursive 
functions 

 2  

1 Simpl is proven sound and complete. The translation to Simpl is not. 
2 See main text for a qualification of this mark. 

  



JACK.  The Java Applet Correctness Kit (JACK) tool [2] is an 
Eclipse plug-in.  Like LOOP, JACK also translates Java programs 
into one or more theory files.  However, JACK generates theories 
in a Java-like language called Java Proof Obligation (JPO) 
language.  These obligations are generated using weakest 
precondition semantics which, to our knowledge, has yet to be 
proven sound.  JACK provides support for a number of theorem 
provers, namely Coq, PVS, B, and Simplify—with Coq and 
Simplify being the most fully supported.  Prover-specific theories 
are translated using the JPO theories as input.  Additionally, 
JACK supports specification and verification at the bytecode 
level.  Bytecode verification also makes use of a weakest-
precondition semantics.  In this case, this semantics is proven 
sound using the pen and paper approach [19]. 

The differences between the underlying logics of JACK and 
FSPV TG are similar to those of LOOP.  JACK generates 
primitive formulas in Java, while we make use of Simpl’s Hoare 
rules and weakest precondition semantics to generate the primitive 
formulas.  Additionally, JACK does not support termination 
proofs for recursive functions. 

Krakatoa.  Krakatoa is an FSPV tool for JML annotated Java 
classes.  Originally designed to generate theories for the Coq 
theorem proven it has recently been modified to output programs 
for the Why tool as well [11]. 

Why is a multi-tool Verification Condition (VC) generator.  
The input of Why is a Why program.  A Why program may 
contain assignment, loop, and conditional statements, as well as 
function declarations. Additionally, it supports throwing and 
catching exceptions and has limited support for expressions with 
side-effects.  It supports annotations for function declarations and 
loop statements. 

The Why tool transforms input programs into VCs using a 
weakest-precondition semantics proven sound using the pen and 
paper approach [10].  The output is one or more theories for a 
number of provers.  These include the automated Yices, CVC3, 
and the Interactive Coq, Isabelle, and PVS.  It is worth noting that 
Why is general enough that it is used by Caduceus—a front-end 
for verifying C programs. 

Krakatoa is similar to FSPV TG in the sense that it translates 
Java programs into an intermediate program.  However, Why 
programs are translated into a prover-specific theory using the 
Why compiler written in Objective CAML. Consequently, it 
suffers from the same issues as LOOP and JACK with respect to 
having VCs generated programmatically. Krakatoa does not 
support reasoning about the termination of recursive methods as 
indicated by [16].  Nonetheless its underlying intermediate 
language, Why, does have support for specifying recursive 
functions (via the rec keyword) with measures (via the variant 
keyword).  

Table 1 presents a comparison in terms of the soundness and 
completeness of the underlying logical foundations of these FSPV 
tools along with our own FSPV TG.  Additionally, we report 
(second to last row) on which tools programmatically generate 
VCs and which generate them through a theorem prover.  Finally, 
in the last row, we report on tool support for proving termination 
of recursive programs. 

6. CONCLUSION AND FUTURE WORK 
We have presented initial work we have done in implementing 

an FSPV tool in JML4.  This FSPV tool makes use of Simpl—a 
logic for expressing and verifying sequential imperative programs 
developed within Isabelle/HOL.  Simpl’s Hoare logic has been 

proven sound and complete with respect to the programming 
language semantics.  We have illustrated the current level of 
support that the FSPV TG provides and presented a sample of our 
experimental test cases.  We have focused our attention on 
proving recursive programs correct and that they terminate. 

We have shown programs implementing Factorial and 
McCarthy’s 91 function and how the FSPV TG, at its current 
state, can correctly prove total correctness.  We examined more 
complicated cases such as Fibonacci and the Ackermann function. 
In there we employed the recently introduced native feature that 
allows separating declaration and definition of JML pure methods.  
This separation allowed for an “easier”, a more natural, and a 
flexible definition of the pure method in the underlying logic.   
Moreover, we have exposed inadequacies of JML in specifying 
complex measures such as the one for the Ackermann function. 

Through our experiments we believe that we have 
demonstrated the feasibility of Isabelle/Simpl as a backend 
proving apparatus for our FSPV TG tool proving recursive 
programs correct and that they terminate.  To our knowledge 
FSPV TG is unique with respect to applying Hoare logic rules and 
weakest precondition semantics within an interactive theorem 
prover. 

We reviewed a number of related FSPV tools and we have 
seen that Simpl is the only logic proven both sound and complete 
within an interactive theorem prover. Additionally none of our 
reviewed tools supports total correctness of recursive programs.   

We have plans for a number of future additions to this tool.  A 
short-term goal is to make progress towards using pure model 
methods rather than native methods to specify recursive functions 
like the one given in our Fibonacci example.  We will also be 
exploring extensions to the measured_by syntax of JML so that 
measures for Ackermann’s function can be defined within JML 
directly.  
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