
Formalizing Design Patterns:
A Comprehensive Contract for Composite

Jason O. Hallstrom
School of Computing
Clemson University

Clemson, SC 29634-0974
jasonoh@cs.clemson.edu

Neelam Soundarajan
Computer Science and Engineering

Ohio State University
Columbus, OH 43210-1277

neelam@cse.ohio-state.edu

ABSTRACT
Software patterns are used almost universally across design
communities as the preferred mechanism for communicating
best practice. And while the design archetypes captured by
patterns continue to exert significant influence on software
design decisions, there is no rigorous foundation for ensuring
implementation correctness or reasoning about the systems
in which patterns are applied. In this paper, we attempt
to identify the conceptual elements necessary of any pat-
tern formalism that satisfies these validation and reasoning
objectives. We then present an overview of a particular pat-
tern formalism developed as part of our prior work. The
Composite pattern is used as a demonstrative example.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tions—Languages, Methodologies; D.2.2 [Software Engi-
neering]: Design Tools and Techniques—Object-oriented
design methods; D.2.4 [Software Engineering]: Software/
Program Verification—Formal methods, Programming by con-
tract, Reliability, Validation

General Terms
Design, Documentation, Languages, Reliability, Verification

Keywords
Design patterns, pattern contracts, Composite pattern

1. INTRODUCTION
Design patterns began to gain adoption as a mechanism

for disseminating best practice after the publication of the
seminal “Gang of Four” (GoF) text [6]. Myriad pattern doc-
umentation efforts followed, resulting in a wide range of pat-
tern catalogs. Representative efforts include the “POSA” se-
ries [2,3,9,12], and more specialized efforts devoted to partic-
ular implementation technologies (e.g., J2EE, .NET) [1,10].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

While each of the patterns contained in these catalogs may
not be universally accepted as best practice, one point seems
beyond debate: After over a decade of use, patterns continue
to exert a significant influence on the design of software,
from standard desktop applications to embedded realtime
systems and sensor networks.

There is little structural variation among pattern catalogs.
Each adopts a variation of the stylized narrative format pop-
ularized by the GoF [6]. In this format, a pattern descrip-
tion consists of (i) a name, (ii) a problem (or objective), (iii)
structural requirements expressed using UML (or UML-like)
notations, (iv) code examples, and (v) supporting discussion
elements. The last component may include a discussion of
problem context, implementation pitfalls, system properties
arising from a pattern’s application, or other issues. And
while there is no doubt that this documentation format has
proven useful to practitioners, it is also inherently imprecise;
patterns lack the foundation necessary to support rigorous
validation and reasoning activities. Given the tremendous
influence of patterns on software practice and the expec-
tation that this influence will continue in the years ahead,
software designers, implementers, and validators must have
precise pattern specifications — specifications that enable
them to reason rigorously about patterns and the systems
in which they are applied.

In this paper, we present three contributions. (C1) First,
we discuss the requisite features of a comprehensive specifi-
cation formalism for software patterns. We do so by iden-
tifying the types of requirements that patterns impose and
the dimensions of flexibility that must be preserved in doc-
umenting them. Flexibility is, after all, patterns’ hallmark
— a key contributor to their success and a focal point of
our discussion. (C2) Second, we present an overview of a
pattern contract formalism developed as part of our prior
work [7,13]. The formalism supports specifications that are
both precise and flexible and provides facilities for pattern
specialization. These specialization facilities enable design-
ers to capture commonly used pattern variants and to arrive
at application-specific properties based on the patterns used
in a given design. (C3) Finally, we apply the formalism to
the Composite pattern [6]1,2. Key benefits and limitations
are discussed.

Paper Organization. Section 2 describes the require-

1Due to space constraints, we assume prior knowledge of the
Composite pattern throughout the manuscript.
2The discussion is limited to sequential systems in the ab-
sence of object aliasing.

ments of a comprehensive pattern specification formalism.
Section 3 summarizes our prior work on design pattern con-
tracts. Section 4 presents the Composite pattern contract
and discusses an associated specialization. Section 5 high-
lights elements of closely related work. Section 6 concludes
with a discussion of limitations.

2. REQUIREMENTS ON PATTERN
FORMALIZATION

On the one hand, it is clear that design patterns im-
pose specific requirements on the classes that play their con-
stituent roles. In the case of Composite, for example, it is
clear that component, leaf, and composite objects are re-
quired to share a set of common interface elements and that
each composite is responsible for dispatching calls to its chil-
dren. On the other hand, it is also understood that patterns
are intended to serve as reusable templates; they can be
specialized as appropriate for particular scenarios. It is, for
example, understood that the operations shared among par-
ticipants in an instance of Composite will vary, as will the
set of calls dispatched to the children of a composite object.
This gets to the heart of the problem: An effective pattern
formalism must balance the tension between descriptive pre-
cision and pattern flexibility. Here we identify the types of
requirements imposed by patterns and the dimensions of
flexibility that must be preserved.

Structural Requirements. Patterns impose structural
requirements on participating objects. These include the
roles that may participate in a pattern instance, the signa-
tures that must be provided by objects playing these roles,
and the inheritance and association relations among them.
The classes that play the roles required by a given pattern
will of course vary from one application to another, as will
the method signatures they provide to satisfy their role re-
sponsibilities. The Leaf role, for instance, will be played
by different classes in different applications of the pattern,
and the signature of operation() will be implemented in an
application-specific manner. Further, each class may provide
multiple methods intended to play the part of operation().
Or more generally, multiple class methods may correspond
to a single role method.

State Requirements. Patterns impose abstract state
requirements on participating objects. Objects playing the
Composite role, for example, must maintain a set of compo-

nent objects (as children). It is understood, however, that
this set may be implemented using any suitable realization.

Behavioral Requirements – State. Patterns impose
behavioral requirements, expressed in terms of standard state-
based pre-conditions and post-conditions. The addChild(c)

method of Composite, for instance, requires that the com-

ponent passed as argument not be a member of the com-

posite’s child set and ensures that it is added to this set

upon termination. As is standard, these requirements can
be satisfied in any manner the designer chooses.

Behavioral Requirements – Call Sequence. Pat-
terns not only impose requirements on the state conditions
that must be satisfied by particular methods, but also on
how these conditions must be satisfied. These requirements
are expressed in terms of call sequence conditions that must
be respected during a method’s execution. When opera-

tion() is invoked on a composite object, for example, it
is generally required to place a similar call to its children.

Another approach would be for the composite to traverse
the tree structure (using getChild()) and invoke appropriate
methods on each object that affect the same state changes.
While the result would be identical, the implementation
would violate a key pattern requirement.

Non-Interference Requirements. Finally, patterns
impose implicit requirements on all non-role methods pro-
vided by participating classes. After all, a pattern describes
a slice through a system; participating classes will generally
provide method behaviors (and state elements) beyond those
required to satisfy their role responsibilities. It is assumed
that these behaviors will not interfere with pattern behav-
iors. A class playing the role of Composite, for example,
might include additional (non-role) methods for interacting
with the composite’s children. These methods must not
modify the child set or the intended behavior of the pattern
will be compromised.

3. AN OVERVIEW OF A PATTERN
CONTRACT FORMALISM

We now consider a pattern formalism designed to provide
descriptive precision and pattern flexibility along the identi-
fied dimensions. We provide only a brief overview, referring
the reader to [7, 13] for a more complete treatment.

In our approach, a pattern is represented by a contract
that captures the requirements associated with using the
pattern correctly and the behavioral guarantees that accrue
as a result. Specializations of the pattern are represented
by a subcontract. A subcontract refines a pattern contract
to document the manner in which the associated pattern is
tailored for use in a given system or to document a sub-
pattern corresponding to a common usage of the pattern. In
this way, contracts capture properties common to all appli-
cations of a pattern, while subcontracts capture properties
specific to particular applications and sub-patterns.

3.1 Pattern Contracts
A contract consists of four main elements: role contracts, a

pattern invariant, state abstraction concepts, and interaction
abstraction concepts3. We describe each of these elements in
the remainder of the subsection.

Role Contracts. The contract for a given pattern defines
a role contract corresponding to each of the pattern’s con-
stituent roles. These specification entities form the core of
a pattern specification. Each role contract specifies the ab-
stract state elements, method behaviors, and non-interference
conditions that must be satisfied by objects playing the as-
sociated roles4. The structure mirrors a standard interface
specification: Each role contract specifies state elements,
method signatures, and corresponding pre- and post-conditions.
An additional set of post-conditions may be included to cap-
ture non-intereference conditions. These other conditions
must be satisfied by all class methods that do not map to
one of the role methods.

To specify call sequence requirements, we associate a ghost
variable, τ (for “trace”), with each method invocation. Con-
sider the invocation of a method m(). The instance of τ
associated with this invocation records information about

3A pattern contract may additionally define pattern instan-
tiation and destruction conditions. We omit these details.
4A role contract may additionally define role enrollment and
disenrollment conditions. We omit these details.

the calls placed by m() during its execution. More precisely,
τ is an ordered sequence, with each entry corresponding to
a single call. The entry records (i) the target object, (ii)
the method invoked, and (iii) any argument values passed5.
Call sequence requirements are then captured as conditions
on τ , included as part of m()’s post-condition.

Pattern Invariant. A benefit of using many patterns
is the behavioral guarantees they afford. Surprisingly, this
is true even of non-behavioral patterns such as Composite,
classified as a structural pattern by the GoF. As an exam-
ple, in a standard application of the pattern, certain state
conditions can be expected to hold across the nodes within
a subtree based on the fact that calls are forwarded to child
components. These guarantees are captured by the pattern
contract in the form of a pattern invariant — a relation on
the states of participating objects that holds at well-defined
points in the system’s execution6.

Abstraction Concepts. While an application of Com-
posite can be used to ensure that a particular state rela-
tion holds within a subtree, the contract cannot define the
relation since the definition will vary from one application
to another. Similarly, it would be overly-restrictive for the
contract to specify the children to which an invocation of
operation() must be forwarded since this, too, will vary. To
provide this type of flexibility without sacrificing precision,
pattern contracts declare state abstraction concepts and in-
teraction abstraction concepts. The former is a relation on
the states of participating objects, used in specifying the
pattern invariant and the pre- and post-conditions included
within the constituent role contracts. The latter is a relation
on instances of τ , used in the specification of call sequence
conditions. The key to the flexibility that these concepts
provide is that while a pattern contract declares the con-
cepts and imposes constraints on the allowable definitions,
it defers the definitions of the concepts to the subcontracts
associated with particular systems and sub-patterns.

3.2 Pattern Subcontracts
The purpose of a subcontract is to specialize a pattern

contract so that the resulting specification captures a more
specific version of the associated pattern. As such, a sub-
contract consists of specification elements used to document
structural and behavioral refinements to a parent contract.

The first of these specification elements is a role map, used
in two ways: The most common use is to document the map-
ping between a role specified in a pattern contract and an
application class that plays the role in an application of the
pattern. Or stated another way, a role map is used to spec-
ify the manner in which a class can be viewed as an instance
of its role type. Alternatively, a role map may be used to
document a mapping between two roles. In this case, the
mapping captures the relationship between a general role
and a more specialized version of that role used in a sub-
pattern. In each case, a role map consists of a set of state
maps and method maps. The former elements are used to
document the realization of the state elements required by a

5In general, a more sophisticated trace mechanism is re-
quired to handle complex call sequence scenarios. We omit
consideration of such scenarios.
6This relation always holds when control is outside of the
objects participating in a pattern instance. While a much
stronger guarantee is possible, space limitations preclude its
consideration.

System S

Subcontract PC1*-SSubcontract PC1*

Pattern P

Contract PC1

Pattern P*

Role
R1

Role
R2

Role Cont.
R1*

Role Cont.
R2

State AC
C1*

Patt. Invar.
I1*

Role Cont.
R1

Patt. Invar.
I1

SAC Def.
C1*

IAC Def.
C2*

Rolemap
O1-R1*

Rolemap
O2-R2

Role
R1*

Inter. AC
C3

State AC
C1

Inter. AC
C2

Inter. AC
C2*

O2R2O1R1*

PI1

IAC Def.
C3

O4O3

sp
ec

ia
liz

es

sp
ec

ia
liz

es
sp

ec
ia

liz
es

sp
ec

ia
liz

es

specifiesspecifiesspecifies

Figure 1: Contracts, Subcontracts, Specializations

role; they are analogous to abstraction functions. The latter
elements are similar, but used to document method real-
izations. This includes documenting the mappings between
signature elements, and argument and return values.

Finally, a subcontract specifies refinements to the abstrac-
tion concepts specified by the parent contract. These refine-
ments may consist of concept definitions corresponding to a
given application, or constraints on the allowable definitions.
The latter are used to limit the definitions that my supplied
to satisfy the requirements associated with a sub-pattern.

The relationships between patterns, sub-patterns, con-
tracts, subcontracts, and applications are illustrated in Fig-
ure 1. In the figure, contract PC1 specifies pattern P. The
role contract for R1 specifies implementation requirements
on the role, and the pattern invariant I1 specifies an in-
variant across participating objects. Both are expressed in
terms of the state abstraction concept C1 and the interac-
tion abstraction concept C2. The sub-pattern P* specializes
pattern P, as documented by subcontract PC1*. Note that
this subcontract refines C1, C2, I1, and R1, and additionally
adds a new role and a new interaction abstraction concept.
Finally, the instance of sub-pattern P* in system S, PI1, is
specified by subcontract PC1*-S. The subcontract provides
definitions for C1*, C2*, and C3. It additionally provides
rolemaps corresponding to objects O1 and O2, which play
the roles R1 and R2, respectively.

4. COMPOSITE CONTRACT
We now apply the formalism to a common variant of the

Composite pattern. For the sake of presentation, the con-
tract has been segmented into separate listings. We describe
each segment in turn.

The contract begins by declaring the state abstraction
concepts used throughout the remainder of the document
(Listing 1). The first, Modified(), captures the notion of
a significant change to a composite object with respect to
one of its children. At the point this concept is used, it de-
termines the set of children that must receive a forwarded
operation() call from a composite. More precisely, given
the pre-conditional and post-conditional states of the target
composite and one of its children, Modified() determines
whether a call to operation() must be forwarded to the child.

1 pattern contract Composite {
2

3 state abstraction concepts:
4 Modified(Compositeα, Compositeβ, Componentγ)
5 Consistent(Componentδ, Componentε)
6 constraints:
7 (↑ α =↑ β) ∧ ¬((↑ δ =Leaf) ∧ (↑ ε =Leaf))∧
8 ∀c1, c1∗ ` Composite, c2 ` Component ::
9 ((Consistent(c1, c2) ∧ ¬Modified(c1, c1∗, c2))

10 =⇒ Consistent(c1∗, c2))
11

12 interaction abstraction concepts:
13 ...omitted...
14

15 pattern invariant:
16 ∀c1, c2 ` Component :
17 (c1 ∈players) ∧ (c2 ∈players)∧
18 (� c1 =Component) ∧ (c2 ∈ c1.children)) :
19 ((c2.parent= c1)∧Consistent(c1, c2))

Listing 1: Composite Contract (part 1)

The second concept, Consistent(), is used to capture the
notion of state consistency between a composite and a child.
It is used in the post-condition of operation() to require
that the method leave the target object in a state that is
consistent with its parent. As we will see, it will also be
used in expressing the pattern invariant.

The constraints clause restricts the concept definitions
that may be supplied in a subcontract to ensure that the
pattern invariant is satisfied. Three restrictions are imposed.
First, the constraints require that the first two arguments of
Modified() be of the same type (since this operation is only
applied on two states of the same object in the contract).
The “↑” notation denotes the application class (or special-
ized role) mapped to the target’s type. Second, at least one
of the arguments to Consistent must not be a leaf (since
this concept captures consistency between a parent and a
child — a relationship that cannot hold between two leafs.)
Finally, the last conjunct requires that if two states of a
composite are considered to be sufficiently similar accord-
ing to Modified(), and the first is consistent with a given
child, so too, must the second. This is necessary since the
definition of Modified() controls whether operation() calls
are forwarded — calls which are in turn responsible for en-
suring consistency between parents and children.

For the sake of presentation, we provide a simplified con-
tract, omitting interaction abstraction concepts.

Finally, the contract specifies the pattern invariant. If all
implementation requirements are satisfied, Composite en-
sures that every child component is consistent —according
to an appropriate definition— with its parent component.

Next, the contract specifies the role contract for the Com-

ponent role (Listing 2). The notational elements within
brackets indicate that exactly one class must be mapped
to this role in an application of the pattern, and this class
must be abstract.

The body of the role contract begins by requiring that
classes playing the role maintain a Component reference,
referred to as parent in the specification. As the name sug-
gests, this variable is intended to store a reference to the
component’s parent, if any, in the composite tree7.

7In general, it is more flexible to treat parent as a ghost vari-

1 role contract Component [1,abstract] {
2

3 Component parent;
4

5 void operation();
6 pre: true
7 post: (parent= #parent)∧
8 Consistent(parent, this)
9

10 others:
11 post: (parent= #parent)∧
12 (Consistent(parent,#this)
13 =⇒ (Consistent(parent, this))
14 }

Listing 2: Composite Contract (part 2)

Next, the role contract provides the specification of oper-

ation(), and an others clause used to capture the conditions
that must be satisfied by all non-role methods supplied by
classes playing the role. The specification of operation() re-
quires that the method preserve the parent reference and
leave the target object in a state that is consistent with its
parent. The non-intereference conditions are identical, but
the consistency requirement is only imposed if the target
was in a consistent state prior to the call to operation().

1 role contract Composite [+] : Component {
2

3 Set<Component> children;
4

5 void add(Component c);
6 pre: c /∈ children
7 post: (children= (#children∪{c}))∧
8 (c.parent=this)∧
9 ∀oc ` Component :

10 (oc ∈ #children) :
11 ¬Modified(this, #this, oc)∧
12 (|τ.c.operation| = 1)
13

14 void remove(Component c);
15 pre: c ∈ children
16 post: (children= (#children−{c}))∧
17 ∀oc ` Component :
18 (oc ∈ #children) :
19 ¬Modified(this, #this, oc)
20

21 ...other child management methods omited...
22

23 void operation();
24 pre: ...inherited from Component...
25 post: ...inherited from Component...∧
26 (children= #children)∧
27 ∀c ` Component :
28 (c ∈children) :
29 (Modified(this, #this, c)
30 =⇒ (|τ.c.operation| = 1))
31

32 others:
33 ...inherited from Component...∧
34 (children=children)∧
35 ∀c ` Component :
36 (c ∈ #children) :
37 ¬Modified(this, #this, c)
38 }

Listing 3: Composite Contract (part 3)

able, providing developers the ability to omit its realization.

1 role contract Leaf [*] : Component {
2

3 void operation();
4 ...inherited from Component...
5

6 others:
7 ...inherited from Component...
8 }

Listing 4: Composite Contract (part 4)

The bulk of the contract is devoted to specifying the Com-

posite role (Listing 3). The first line of the role contract
indicates that one or more classes must be mapped to this
role in an application of the pattern, and each must inherit
from the class mapped to the Component role.

As before, the contract begins with state requirements:
Participating classes must maintain a Set of component ob-
jects. This variable, children, stores references to each of the
composite’s children.

Next, the contract specifies the method behaviors required
of composite objects: First, participating classes must sup-
ply child management methods. The pre-condition of add(),
for example, requires that the child passed as argument not
be contained within children. The method is required to
add the child to children and assign itself as the child’s par-
ent. The next conjunct requires that the composite not be
significantly modified (according to Modified()) by the call.

More interesting is the last conjunct, which specifies a
call sequence requirement: |τ .c.operation| denotes the sub-
sequence obtained by projecting τ on object c and method
operation(). Hence, the clause requires that the composite

invoke operation() on the new child. While this requirement
is not discussed in the original pattern description, it is es-
sential to ensuring the pattern invariant; without it, there
is no guarantee that the child will be in a state consistent
with its parent. Requirements on remove() are analogous,
but omit call sequence requirements. Other management
methods have been elided.

The pre-condition on operation() is inherited from Com-

ponent; it is trivially true. The inherited post-condition is
strengthened: first, it requires that the children variable not
be altered. More interestingly, it requires that if operation()

modify the state of the component in a manner that is sig-
nificant with respect to some child, the object is responsible
for invoking operation() on that child. This ensures that if
the original call breaks the pattern invariant, the forwarding
behavior will re-assert the invariant.

The non-interference conditions specified in the others

clause strengthen the conditions specified by the Compo-

nent role contract. In particular, non-role methods of a class
mapped to Composite are required to preserve the children

variable. Further, they are not allowed to modify the state
of the composite in a significant way.

Finally, the contract specifies the role contract for Leaf

(Listing 4). The declaration indicates that zero or more
classes may map to this role and each must inherit from
the class mapped to Component. The remainder of the role
contract is inherited without change.

To arrive at the implementation requirements and behav-
ioral guarantees associated with a particular application of
Composite, a corresponding subcontract must be specified.

It is the composition of the subcontract and the contract
that guides system implementation activities and assists in
reasoning about pattern-centric behaviors. As an example,
consider a standard application of the pattern in the context
of designing a GUI library. Classes within the library might
represent windows, frames, panels, and other graphical ele-
ments, and the tree structure imposed by Composite would
mirror visual containment relationships. The subcontract
for this application would provide role maps for each of the
participating classes; the details are straightforward. More
interesting are the concept definitions.

For simplicity, we assume that only one method plays the
role of operation() — namely, a resize() method used to ad-
just the size of a visual container and all of its children. In
this scenario, the definition of Modified() would rely only
on the first two arguments: The relation would evaluate to
true if the object states passed as argument had different
width and height values, and false otherwise. Similarly,
the definition of Consistent() would evaluate to true if the
component states passed as argument had equal dimensions,
and false otherwise. By substituting these definitions into
the role contracts, application-specific requirements emerge.
And by satisfying these requirements, developers are assured
of the specialized pattern invariant: When control is outside
of the participating objects, the dimensions of the children

in any subtree total the dimensions of the parent. In this
way, the contract formalism captures precise implementa-
tion requirements while affording flexible specialization to
document applications and sub-patterns8.

5. RELATED WORK
The benefits and pitfalls of pattern formalization have

been discussed by other authors. A number of specifica-
tion formalisms have been proposed. Here we briefly survey
four representative efforts.

Eden and Hirshfeld [5] focus on specifying the structural
(i.e., static) properties of design patterns. The authors de-
scribe a higher-order logic formalism in which patterns are
specified as formulae. The basic terms of the logic consist
of classes and methods. The associated relations correspond
to standard syntactic concepts, including class membership,
method invocation, and inheritance. Each pattern is speci-
fied as a list of participants (i.e., classes and methods) and
the relations among them. While the approach handles rich
structural properties, it does not provide facilities for state
abstraction, pattern specialization, or behavioral properties.

In contrast to Eden and Hirshfeld’s structural emphasis,
Mikkonen [11] focuses on behavioral (i.e., dynamic) proper-
ties. Using his approach, patterns are expressed in an action
system notation with roots in the UNITY [4] formalism for
parallel and distributed systems. Each pattern is specified
as a set of state elements, relations on these elements, and
guarded assignments. Refinement is supported through su-
perposition; specification layers can be composed without
violating safety properties as long as each layer writes only
to the state components it defines. While this approach of-
fers a number of interesting benefits, including the ability
to concisely specify complex temporal properties, it is, in
a sense, too abstract. Structural and control-flow require-
ments are intentionally abstracted away, compromising the

8Sub-patterns are documented in an analogous matter; we
omit there consideration.

efficacy of the formalism as a prescriptive mechanism for
software design.

Taibi and Ngo [14] describe a hybrid approach. Their for-
malism relies on predicate logic to capture structural prop-
erties of patterns, and an action system notation to capture
behavioral properties. In effect, their work combines the key
elements proposed by Eden and Hirshfeld, and Mikkonen.

Interestingly, one of the most comprehensive notations for
specifying patterns predates the GoF’s text. Helm et al. [8]
describe a notation for specifying “behavioral compositions”
in object-oriented software, including those captured by pat-
terns. There are a number of similarities with our work: A
pattern is represented as a contract that specifies the par-
ticipating roles, their required state elements and method
behaviors, a pattern invariant, and instantiation conditions.
The notation also provides facilities for contract composi-
tion and refinement and documenting the mappings between
application classes and contract participants. While the un-
derlying concepts seem essential, the realization lacks both
precision and flexibility. Fundamental precision limitations
include an inability to document method pre-conditions and
a weakly expressive notation for documenting call sequence
conditions. It is not, for example, possible to restrict the
invocations made between calls or to relate the arguments
and return values of successive calls. Fundamental flexibil-
ity limitations include the absence of state abstraction and
the use of name-based (i.e., syntactic) mappings between
application classes and contract participants.

6. CONCLUSION
We conclude by noting that the contract formalism pre-

sented here is an abbreviated version of a more complete
specification notation. The same is true of the pattern con-
tract for Composite. In particular, the trace mechanism has
been simplified to accommodate space requirements, with
important consequences on both the precision and flexibil-
ity of the resulting contract.

Consider, for example, the specification of operation() in
Listing 3. The post-condition requires that if the method
alters the state of the composite in a significant way (i.e.,
according to the definition of Modified()), the method must
in turn invoke operation() on each affected child to re-assert
the pattern invariant. But what if, after forwarding the
appropriate calls, the method again modifies the state of
the composite? Or alternatively, what if a call from the
method re-enters the Component hierarchy above the exe-
cuting node and modifies component state? And what hap-
pens if control is always within a participating object? When
does the pattern invariant hold?

Addressing these questions hinges on the use of a more
sophisticated trace mechanism. We have recently developed
the concept of a pattern-instance trace, a behavioral projec-
tion on a single pattern instance, which we believe provides
an elegant solution. We are currently experimenting with
the notation and hope to discuss early results if invited for
presentation at the workshop.

Acknowledgments
This work is supported by the National Science Foundation
through awards CNS-0745846 and DUE-0633506.

7. REFERENCES
[1] D. Alur, D. Malks, J. Crupi, G. Booch, and

M. Fowler. Core J2EE Patterns (Core Design Series):
Best Practices and Design Strategies. Sun
Microsystems, Mountain View, CA, USA, 2003.

[2] F. Buschmann, K. Henney, and D. Schmidt.
Pattern-Oriented Software Architecture: A Pattern
Language for Distributed Computing. John Wiley &
Sons, Inc., New York, NY, USA, 2007.

[3] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture: A System of Patterns. John Wiley &
Sons, Inc., New York, NY, USA, 1996.

[4] K. Chandy. Parallel Program Design: A Foundation.
Addison-Wesley, Boston, MA, USA, 1988.

[5] A. Eden and Y. Hirshfeld. Principles in formal
specification of object-oriented design and
architecture. In The 2001 Conference of the Centre for
Advanced Studies on Collaborative Research, pages
(cd–rom), Indianapolis, IN, USA, November 2001.
IBM Press.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
MA, USA, 1995.

[7] J. Hallstrom, N. Soundarajan, and B. Tyler.
Amplifying the benefits of design patterns: From
specification through implementation. In Foundational
Approaches to Software Engineering, pages 214–229,
Berlin, Germany, March 2006. Springer-Verlag.

[8] R. Helm, I. Holland, and D. Gangopadhyay.
Contracts: Specifying behavioral compositions in
object-oriented systems. In The ACM Conference on
Object-Oriented Programming Systems, Languages,
and Applications, pages 169–180, New York, NY,
USA, October 1990. ACM.

[9] M. Kircher and P. Jain. Pattern-Oriented Software
Architecture: Patterns for Resource Management.
John Wiley & Sons, New York, NY, USA, 2004.

[10] Microsoft Corporation. Enterprise Solution Patterns
Using Microsoft .NET. Microsoft Press, Redmond,
WA, USA, 2003.

[11] T. Mikkonen. Formalizing design patterns. In The
20thth International Conference on Software
Engineering, pages 115–124, Los Alamitos, CA, USA,
April 1998. IEEE Computer Society.

[12] D. Schmidt, H. Rohnert, M. Stal, and D. Schultz.
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects. John Wiley &
Sons, Inc., New York, NY, USA, 2000.

[13] N. Soundarajan and J. Hallstrom. Responsibilities and
rewards: Specifying design patterns. In The 26th

International Conference on Software Engineering,
pages 666–675, Los Alamitos, CA, USA, May 2004.
IEEE Computer Society.

[14] T. Taibi and D. Ngo. Formal specification of design
patterns – a balanced approach. Journal of Object
Technology, 2(4):127–140, 2003.

