
Permissions to Specify the Composite Design Pattern

Kevin Bierhoff Jonathan Aldrich
Institute for Software Research, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213, USA

{kevin.bierhoff,jonathan.aldrich} @ cs.cmu.edu

ABSTRACT
The Composite design pattern is a well-known implemen-
tation of whole-part relationships with trees of Composite
objects. This paper presents a permission-based speci�ca-
tion of the Composite pattern that allows nodes in an object
hierarchy to depend on invariants over their children while
permitting clients to add new children to any node in the
hierarchy at any time. Permissions can capture the circular
dependencies between nodes and their children that arise in
this context. The paper also discusses verifying a Compos-
ite implementation and known limitations of the presented
speci�cation.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Speci�ca-
tion�Languages; D.2.2 [Software Engineering]: Design
Tools and Techniques�Modules and interfaces; D.2.4 [Soft-
ware Engineering]: Software/Program Veri�cation

General Terms
Design, languages, veri�cation.

Keywords
Typestate, invariants, implementation veri�cation.

1. INTRODUCTION
The Composite design pattern is a well-known implemen-

tation of whole-part relationships with trees of Composite
objects [7]. If nodes depend on invariants over their children
then it becomes challenging to verify that adding a child to
a node correctly noti�es the node's parents of changes [9].
In particular, these circular dependencies between nodes are
hard to capture with veri�cation approaches based on own-
ership [1] or uniqueness [5].
This paper presents a permission-based speci�cation of

the Composite design pattern that allows nodes in an ob-
ject hierarchy to depend on invariants over their children

7th International Workshop on Specification and Verification of Component-
Based Systems (SAVCBS 2008), November 9–10, 2008, Atlanta, GA, USA.
Copyright is held by the authors.

while permitting clients to add new children to any node
in the hierarchy at any time (section 3). Permissions can
capture the circular dependencies between nodes and their
children that arise in this context. Section 4 outlines how
the presented speci�cation can be used for verifying a simple
Composite implementation.
The approach is based on the authors' work on sound

reasoning about typestates in object-oriented programs [3]
(brie�y introduced in section 2). We therefore use a typestate-
based invariant in our presentation. Section 5 discusses how
this and other limitations of the presented speci�cation can
be remedied before section 6 concludes.

2. PERMISSIONS
This section gives a brief introduction to the approach

used to specify the Composite pattern in the following sec-
tion. The approach was originally developed for sound rea-
soning about typestates in object-oriented programs with
aliasing [3] and is based, in part, on previous work on type-
states for objects [5].
In our approach, developers can associate objects with a

hierarchy of typestates, similar to Statecharts [8]. For exam-
ple, we will use typestates to indicate whether a Composite
node's subtree has an even or odd number of nodes.
Methods correspond to state transitions and are speci�ed

with access permissions that describe not only the states
required and ensured by a method but also how the method
will access the references passed into the method. We dis-
tinguish exclusive (unique), exclusive modifying (full), read-
only (pure), immutable, and shared access (table 1). Fur-
thermore, permissions will specify the data group [10] they
give access to. Data groups represent orthogonal (logically
independent) parts of an object's state. Thus, we can track
permissions separately for each data group. We associate a
set of mutually exclusive typestates with each data group
and therefore will often refer to data groups as state dimen-
sions. We use sans-serif all-uppercase words for data groups
and all-lowercase words for states. Permissions can option-
ally include the state the data group is known to be in.
Permissions can only co-exist if they do not violate each

other's assumptions. Thus, the following aliasing situations
can occur for a given object: a single reference (unique),
a distinguished writer reference (full) with many readers
(pure), many writers (share) and many readers (pure), and
no writers and only readers (immutable and pure).
Permissions are linear in order to preserve this invariant.

But unlike linear type systems [11], they allow aliasing. This
is because permissions can be split when aliases are intro-

1



Access through Current permission has . . .
other permissions Read/write access Read-only access

None unique unique
Read-only full immutable
Read/write share pure

Table 1: Access permission taxonomy

duced. For example, we can split a unique permission into
a full and a pure permission to introduce a read-only alias.
Using fractions [4] we can alsomerge previously split permis-
sions when aliases disappear (e.g., when a method returns).
This allows recovering a more powerful permission.
Fractions are conceptually rational numbers between zero

and one. In previous work, fractions below one make ob-
jects immutable; in our approach, they can alternatively in-
dicate shared modifying access. Splitting a permission into
two means to replace it with two new permissions whose
fractions sum up to the fractions in the permission being re-
placed. Merging two permissions does the opposite. We will
sometimes use permissions such as immutable(x,WEIGHT, 1/2),
which represents a permission with exactly a half fraction.
Merging two of these permissions yields a full(x,WEIGHT),
which gives exclusive modifying access to the WEIGHT data
group but still permits pure(x,WEIGHT) permissions to the
same object at the same time.
To specify invariants and method pre- and post-conditions

we combine permissions (and other atomic predicates such
as a variable being true) with linear logic operators. We
will use multiplicative conjunction (⊗) when two predicates
must hold at the same time. Additive conjunction (&) al-
lows internal choice between two predicates, while disjunc-
tion (⊕) represents external choice. Linear implication (()
will be used when one predicate indicates another.

3. COMPOSITE SPECIFICATION
We now turn to our sample Composite class, shown in �g-

ure 1, which is a simple implementation of the Composite
pattern [7]. Every node in a Composite object tree will be
represented by a Composite object. The following subsec-
tions summarize goals and assumptions before we discuss
the class's invariants and method speci�cations.

3.1 Specification Goals

• Allow clients to add children to any node in a tree.

• Allow nodes to depend on their children in invariants.

• Ensure that adding children to a node does not violate
its parents' invariants.

3.2 Assumptions
In order to keep the presentation manageable we use a

simpli�ed implementation. We assume that every node in
the tree can only have up to two children. We also restrict
our discussion to an extremely simple invariant: every node
in the tree tracks whether its subtree contains an even or
odd number of nodes (including the node itself). This al-
lows our speci�cation to remain in the realm of typestate.
Furthermore, notice that Composite is the only type of ob-
ject allowed in a Composite tree. Leafs in the tree are sim-
ply Composite objects with no children. This lets us ignore

problems with inheritance for now. Finally, this speci�ca-
tion assumes single-threaded execution.
We discuss extensions to more children and more sophisti-

cated invariants in section 5. Our approach can be extended
to include inheritance [3] and multi-threaded programs [2],
but these extensions are beyond the scope of this paper.

3.3 Invariants
The focus of our Composite speci�cation is the de�nition

of internal invariants that allow verifying that all nodes in a
Composite tree remain consistent when children are added
to a node in the tree.
We de�ne 4 data groups [10] and distinguish 2 states in

each data group using the states keyword.

• TheWEIGHT data group de�nes states that re�ect the
invariant tracked by our Composite objects: whether
the number of nodes in the subtree is even or odd.

• The LEFT (RIGHT) data group each de�ne states that
indicate whether the left (right, respectively) subtree
contains an even or odd number of nodes (excluding
the current node).

• The PARENT data group distinguishes whether the
node is an orphan (no parent) or not.

Each of our 4 data groups holds one of the �elds de�ned
in the Composite class. A permission for the WEIGHT data
group, for example, therefore permits access to the odd �eld
that it contains, but not the other �elds. A full permission
gives exclusive write access to the �elds in the data group,
while an immutable permission gives read-only access with
the guarantee that the �eld will not be (silently) modi�ed.
Unfortunately, however, the �elds in the Composite class

are interdependent in certain ways. In particular, theWEIGHT
dimension depends on the objects referenced by the left and
right �elds. More precisely, it depends on whether the left
and right subtrees contain an odd or even number of nodes.
We will model these dependencies as permissions to a data
group held by another data group. Figure 2 illustrates the
permissions between a node, its parent, left child, and hy-
pothetical client, following the speci�cation in �gure 1.
Our intuition for de�ning invariants is now to use im-

mutable (or full) permissions in an invariant whenever it
depends on the object or data group referenced with the
permission. For example, the WEIGHT data group holds
immutable permissions to the LEFT and RIGHT data groups
in order to depend on those data groups' states. LEFT and
RIGHT, in turn, hold immutable permissions to their chil-
dren's WEIGHT data groups, which allows LEFT and RIGHT
to depend on the children being even or odd.
Based on this structure we can de�ne invariants separately

for each data group and their states, which are marked with
the keyword invariant and the name of the data group or
state. Invariants for data groups must always hold, while an
invariant for a state de�nes the condition under which the
object is in that state. For readability, we sometimes de�ne
multiple invariant clauses for the same data group. All
invariants de�ned for a data group must hold at the same
time.
Following our intuition, invariants for a data group or

state should only mention �elds and states that are (tran-
sitively) reachable through immutable permissions from the

2



�nal class Composite {
states PARENT = { orphan, hasParent }
states WEIGHT = { even, odd }
states LEFT = { lefteven, leftodd }
states RIGHT = { righteven, rightodd }

boolean odd ; in WEIGHT;
Composite parent ; in PARENT;
Composite left ; in LEFT;
Composite right ; in RIGHT;

invariant PARENT: immutable(this,WEIGHT, 1/2)⊗ parent 6= this;
invariant PARENT: (parent = null ( immutable(this,WEIGHT, 1/2)) &

(parent 6= null ( (share(parent,PARENT)⊗ (immutable(parent, LEFT, 1/2)⊗ parent.left = this) ⊕
(immutable(parent,RIGHT, 1/2)⊗ parent.right = this)));

invariant orphan: parent = null;
invariant hasParent: parent 6= null;
invariant WEIGHT: immutable(this, LEFT, 1/2)⊗ immutable(this,RIGHT, 1/2);
invariant WEIGHT: (odd = false ( ((this in leftodd⊗ this in righteven)⊕ (this in lefteven⊗ this in rightodd))) &

(odd = true ( ((this in lefteven⊗ this in righteven)⊕ (this in leftodd⊗ this in rightodd)));
invariant even: odd = false;
invariant odd: odd = true;
invariant LEFT: left 6= null ( immutable(left,WEIGHT, 1/2);
invariant lefteven: left = null⊕ (left 6= null⊗ left in even);
invariant leftodd: left 6= null⊗ left in odd;
invariant RIGHT: right 6= null ( immutable(right,WEIGHT, 1/2);
invariant righteven: right = null⊕ (right 6= null⊗ right in even);
invariant rightodd: right 6= null⊗ right in odd;

Composite()
ensures full(this,PARENT) in orphan⊗ pure(this,WEIGHT) in odd ⊗

immutable(this, LEFT, 1/2)⊗ immutable(this,RIGHT, 1/2);
{ odd = true; parent = null; left = null; right = null; }

void setLeft(Composite c)
requires share(this,PARENT)⊗ immutable(this, LEFT, 1/2)⊗ share(c,PARENT) in orphan ⊗ c 6= null⊗ c 6= this;
ensures share(c,PARENT) in hasParent⊗ c.parent = this;

{
c.parent = this;
left = c;
if(c.odd) {

odd = ! odd ;
Composite p = parent ;
while(p != null) {

p.odd = ! p.odd ;
p = p.parent ;

}
}

}

void setRight(Composite c)
requires share(this,PARENT)⊗ immutable(this,RIGHT, 1/2)⊗ share(c,PARENT) in orphan ⊗ c 6= null⊗ c 6= this;
ensures share(c,PARENT) in hasParent⊗ c.parent = this;

{ c.parent = this; right = c; if(c.odd) { ... } }

boolean odd()
requires pure(this,WEIGHT);
ensures pure(this,WEIGHT)⊗ ((result = true ( this in odd) & (result = false ( this in even));

{ return odd ; }
}

Figure 1: Simple Composite class with invariants and method speci�cations

3



Figure 2: A sample Composite object with parent,

left child, and a client that references it. Arrows are

labeled with the permissions they represent. Shaded

boxes represent data groups inside objects. Only

relevant data groups of parent and child are shown.

data group being de�ned. That ensures that the needed
state or �eld value cannot change without the knowledge of
the data group mentioning the state or �eld in its invariant.
For instance, the invariant for the lefteven state includes the
left �eld, which is part of lefteven's data group, LEFT, and
the state of theWEIGHT data group in the object referenced
through the left �eld, for which LEFT holds an immutable
permission.
We frequently use internal choice (&) between linear im-

plications (() to encode situations where an indicator pred-
icate implies additional facts. For example, the WEIGHT di-
mension uses the odd �eld as an indicator for states of other
dimensions. Internal choice captures the intuition that only
one of the indicating predicates can be true at the same
time. For example, the odd �ag cannot be true and false

at the same time.1 States inside data groups frequently just
assert the truth of an indicating predicate.
The PARENT dimension is intended to be used by clients

for adding children to nodes. Therefore, we will give out
share permissions to this dimension, which allow free modi-
�cation from multiple places. But in order to add children
and modify the odd �ag, the PARENT dimension holds a
permission to the WEIGHT dimension (which in turn refer-
ences LEFT and RIGHT). It also references the node's parent,
if any. The invariants declared for the PARENT dimension
are mostly for veri�cation purposes and will be discussed in
section 4.

3.4 Method Specifications
The speci�cations for the Composite methods follow from

the invariants we discussed above as well as which data
groups are accessed in each method. We de�ne the method
pre- and post-condition with the requires and ensures key-
words, respectively.

1In Boolean logic, internal choice would be expressed as a
regular conjunction.

The constructor creates a brand-new Composite object
without children or parent. The absence of a parent is indi-
cated with the state orphan in the PARENT dimension. The
ability to add children comes from the returned immutable
permissions for LEFT and RIGHT, which are consumed (i.e.,
required but not ensured) by the methods for setting the
left and right child. Additional immutable permissions for
LEFT and RIGHT are kept in the invariant for WEIGHT, as
discussed in the previous section. We could also de�ne a
method for removing a child, which would return the re-
spective immutable permission to the client. We chose to
keep permissions for adding children with the client in order
not to have to track them with more Composite invariants.
Finally, we return a pure permission for the WEIGHT from
the constructor, which clients can use to query the odd �ag
with the odd method. (Notice that the constructor starts
out with full permissions to all data groups, some of which
are immediately consumed to satisfy the new object's invari-
ants, resulting in the declared post-condition.)
Setting the left or right child (with setLeft and setRight,

respectively) requires the respective immutable permission
for the LEFT or RIGHT dimension in addition to a share
permission for the receiver's PARENT dimension. It also re-
quires a share permission for the child's PARENT dimension.
The child is required to be an orphan. The invariant for that
state linearly implies an immutable permission for the child's
WEIGHT dimension, which will be given to the new parent's
LEFT (or RIGHT) dimension. In return, the child will cap-
ture the given permissions for the receiver in its invariant
for hasParent, its ensured state.
Finally, the odd method can be used by clients to query

whether a node is even or odd. We use a pure permission in
the speci�cation of this method. The post-condition uses a
linear implication in a way similar to what we discussed for
invariants in the previous section: the return value indicates
the state of the receiver. The pure permission used in the
speci�cation for odd implies that the receiver's state can
change without the client noticing it. (This is in contrast to
immutable permissions, which exclude this possibility.)
One disadvantage of this speci�cation is that once a node

has children, the client only has a share permission to the
node's PARENT dimension. This is because the initial full
that is ensured by the constructor will have to be split into
share permissions in order to give some of them to the node's
children, as discussed above. Afterwards, clients will loose
track of whether a node is an orphan or not. Therefore, our
Composite probably should have a method isOrphan that
can be called to test whether a node is in the orphan state.
Alternatively, it might be possible to specify the class with
an additional dimension that children can use internally to
access their parents.

4. IMPLEMENTATION VERIFICATION
This section outlines how the speci�cation presented above

can be used to verify the implementation of the setLeft

method for setting a node's left child. Our veri�cation ap-
proach relies on a packing/unpacking methodology which we
adapted from existing work [5, 1]. Unpacking a data group
releases permissions guaranteed by invariants; packing will
consume permissions required by invariants.
Figure 3 shows the setLeft method from �gure 1 with

pack and unpack commands inserted. Our unpacking fo-
cuses [6] on the unpacked data group [3] and makes the

4



void setLeft(Composite c)
requires share(this,PARENT)⊗ immutable(this, LEFT, 1/2)⊗ share(c,PARENT) in orphan ⊗ c 6= null⊗ c 6= this;
ensures share(c,PARENT) in hasParent⊗ c.parent = this;

{
unpack(c, PARENT);
c.parent = this;
unpack(this, PARENT);
if(parent != null)
{ unpack(parent, PARENT); unpack(parent, WEIGHT); unpack(parent, LEFT); unpack(parent, RIGHT); }
unpack(this, WEIGHT); unpack(this, LEFT);
left = c;
pack(this, LEFT); unpack(c, WEIGHT);
if(c.odd) {

pack(c, WEIGHT); pack(c, PARENT);
odd = ! odd ;
pack(this, WEIGHT); if(parent != null) { pack(parent, LEFT); pack(parent, RIGHT); } pack(this, PARENT);
Composite p = parent ;
while(p != null) {

if(p.parent != null)
{ unpack(p.parent, PARENT); unpack(p.parent, WEIGHT); unpack(p.parent, LEFT); unpack(p.parent, RIGHT); }
p.odd = ! p.odd ;
pack(p, WEIGHT); if(p.parent != null) { pack(p.parent, LEFT); pack(p.parent, RIGHT); } pack(p, PARENT);
p = p.parent ;

}
} else {

pack(c, WEIGHT); pack(c, PARENT); pack(this, WEIGHT);
if(parent != null) { pack(parent, LEFT); pack(parent, RIGHT); pack(parent, WEIGHT); pack(parent, PARENT); }
pack(this, PARENT);

}
}

Figure 3: Veri�cation of the setLeft method from �gure 1

invariant of the unpacked data group available as-is even
when unpacking a share permission. This means that in or-
der to be sound, we cannot unpack a data group of an object
if it is already unpacked. Unpacking the same data group of
two references x and y is only allowed when x 6= y. This is
why we require nodes to be di�erent from their children in
the Composite speci�cation (�gure 1).2

In the setLeft method we �rst unpack the new child,
c. Since c is an orphan, we get a full permission to its
WEIGHT dimension. Assigning this as c's parent will later
require the immutable receiver permission from the method
pre-condition when packing c. If the receiver has a parent
then we need to unpack the permissions we have for the
parent3 in order to gain a full permission for the receiver's
WEIGHT dimension (if the receiver is an orphan then that
permission is part of its own PARENT invariant). At this
point it is crucial that the parent points back to the receiver
with its left or right �eld: this lets us combine the receiver's
own immutable permission to its WEIGHT dimension with
the one held by the parent.
Unpacking the full WEIGHT permission for the receiver

yields a permission for LEFT, which we also unpack in or-

2We previously only allowed one data group in one object
to be unpacked at a time [3], but we believe that the more
permissive rule described here preserves soundness.
3We unpack both the parent's LEFT and RIGHT dimension
because a child does not know if it is the left or right child.

der to assign c as the receiver's left child. Re-packing LEFT
consumes an immutable permission for c's WEIGHT dimen-
sion. That leaves another immutable permission for packing
c, which we can do right after testing c's odd �ag. We can up-
date the receiver's odd �ag�which may have to be changed
due to the new child�because we unpacked a full permission
for the receiver's WEIGHT dimension, as discussed above.
After updating the receiver's odd �ag we have to loop

through its (transitive) parents to update their �ags. No-
tice that only two objects are unpacked at a time: the object
pointed to by p and its immediate parent. We can unpack
both of them because p's invariants guarantee that it is dis-
tinct from its parent. We do not prevent cycles in the Com-
posite tree with our speci�cation, but since we only unpack
two objects at a time we can still verify partial correctness.
Updating the parents proceeds similarly to updating the

receiver (without assigning left or right). One interesting
issue is that when we unpack p.parent, we only have an
immutable(p.parent,WEIGHT, 1/2) permission available. Later
on, in the next loop iteration, its parent is unpacked (or we
discover that is has no parent), which yields a second im-
mutable permission, giving us full(p,WEIGHT). That allows
us to to update the odd �ag and re-pack.

5. FUTURE WORK
This section discusses limitations of the Composite speci�-

cation presented in section 3 and how they can be overcome.

5



Non-typestate invariants. Because our approach fo-
cuses on typestates we have chosen an invariant, even vs.
odd, that can be expressed with typestates. But we believe
that the presented speci�cation can be adapted for other
invariants speci�ed in the WEIGHT dimension. For exam-
ple, if nodes wanted to track the number of nodes in their
subtree, they could declare a �eld weight and de�ne the
invariant weight = lw() + rw() + 1, where lw and rw are
functions that return the number of nodes in the left and
right subtree, respectively. Similar to subtrees remaining
even or odd, these numbers are guaranteed to remain valid
because WEIGHT is relying on them using immutable per-
missions. Notice that an invariant based on the number of
nodes would shorten our speci�cation substantially because
we would not need to de�ne the meaning of �even� and �odd�
explicitly. Verifying such properties may require a theorem
prover to reason about integers, which we believe could be
added to our approach.
Many children. An arbitrary number of children can

for example be achieved with a list or array. In order to
specify invariants over this list, we will need to describe the
invariant to the child held in each list element or array cell.
Moreover, we will need an invariant for the children that
guarantees the parent to point back to them. It appears
that one could put each list element or array cell into a
separate data group (with separate permissions), similar to
the LEFT and RIGHT groups, and we are working on a way
of supporting this in speci�cations.
Method calls while unpacked. We put the code for

adding a child into a single method that contains a loop to
iterate through the receiver's parents (see �gure 3). It would
be nicer to, for example, call a method on the new child to
set its parent, and to call a method on the parent to update
its invariant. The presented implementation was chosen be-
cause objects involved in these calls would be unpacked at
the call sites. Moreover, it is harder to guarantee that no
data group of any object is unpacked more than once when
multiple methods may unpack objects at once. We believe
that a speci�cation language similar to Spec# [1], which can
specify objects to be unpacked at method boundaries, could
remove this restriction.
Precise e�ects. As discussed, the pure permission used

for specifying the odd method (�gure 1) re�ects that state
changes in the WEIGHT dimension can happen without the
client noticing. But while our approach will �forget� whether
a node was even or odd upon any e�ectful operation, more
precise tracking of e�ects may enable forgetting this infor-
mation only if nodes are added to the node's subtree (which
is when the node's state actually changes).
Overhead reduction. The speci�cation overhead in

�gure 1 is arguably high. About half of the invariants re-
late to the particular property we are tracking, even vs. odd.
The rest represents a pattern for encoding circular depen-
dencies between objects with immutable permissions. We
believe that a developer could reuse this pattern to track
the property of interest on top of it. This suggests introduc-
ing a speci�cation construct for de�ning circular dependen-
cies, which would internally be translated into the invariants
shown, to reduce speci�cation size.

6. CONCLUSIONS
This paper presents a speci�cation of the Composite de-

sign pattern with permissions that allows nodes to depend

on their children in invariants and allows clients to add chil-
dren to any node in a Composite tree at any time. Permis-
sions can express the circular dependencies between nodes
that are needed to guarantee that adding a child to a node
correctly updates the parents' invariants. We discuss how
shortcomings of the presented speci�cation can be overcome
with a richer speci�cation language than the one used in this
paper. In particular, we believe that our permission based
approach can be extended from typestate-based to more in-
teresting invariants and to arrays or lists of objects.

Acknowledgments. We thank Nels Beckman and the anony-
mous reviewers for their helpful feedback on earlier ver-
sions of this paper. This work was supported in part by
the Army Research O�ce grant number DAAD19-02-1-0389
entitled �Perpetually Available and Secure Information Sys-
tems�, DARPA contract HR00110710019, and NSF grant
CCF-0811592.

7. REFERENCES
[1] M. Barnett, R. DeLine, M. Fähndrich, K. R. M.

Leino, and W. Schulte. Veri�cation of object-oriented
programs with invariants. Journal of Object
Technology, 3(6):27�56, June 2004.

[2] N. E. Beckman, K. Bierho�, and J. Aldrich. Verifying
correct usage of Atomic blocks and typestate. In ACM
Conference on Object-Oriented Programming,
Systems, Languages & Applications, Oct. 2008. To
appear.

[3] K. Bierho� and J. Aldrich. Modular typestate
checking of aliased objects. In ACM Conference on
Object-Oriented Programming, Systems, Languages &
Applications, pages 301�320, Oct. 2007.

[4] J. Boyland. Checking interference with fractional
permissions. In International Symposium on Static
Analysis, pages 55�72. Springer, 2003.

[5] R. DeLine and M. Fähndrich. Typestates for objects.
In European Conference on Object-Oriented
Programming, pages 465�490. Springer, 2004.

[6] M. Fähndrich and R. DeLine. Adoption and focus:
Practical linear types for imperative programming. In
ACM Conference on Programming Language Design
and Implementation, pages 13�24, June 2002.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[8] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming,
8:231�274, 1987.

[9] G. T. Leavens, K. R. M. Leino, and P. Müller.
Speci�cation and veri�cation challenges for sequential
object-oriented programs. Formal Aspects of
Computing, submitted for publication.

[10] K. R. M. Leino. Data groups: Specifying the
modi�cation of extended state. In ACM Conference
on Object-Oriented Programming, Systems, Languages
& Applications, pages 144�153, Oct. 1998.

[11] P. Wadler. Linear types can change the world! In
Working Conference on Programming Concepts and
Methods, pages 347�359. North Holland, 1990.

6


