
Game-Based Safety Checking with Mage

Adam Bakewell
University of Birmingham, UK

a.bakewell@cs.bham.ac.uk

Dan R. Ghica
University of Birmingham, UK

d.r.ghica@cs.bham.ac.uk

ABSTRACTMage is a new experimental model heker based on gamesemantis. It adapts several tehniques inluding lazy (on-the-�y) modelling, symboli modelling, C.E.G.A.R. and ap-proximated ounterexample erti�ation to game models. Itdemonstrates the potential for truly ompositional veri�a-tion of real software.
Categories and Subject DescriptorsD.3.1 [Programming Languages℄: Formal De�nitions andTheory�Semantis
General TermsVeri�ation
KeywordsSoftware model heking, game models, symboli automata,ompositional veri�ation, data approximation, re�nement
1. GAME-BASED SAFETY CHECKING...Game Models Intuitively, the game model of a programan be generated by alling the program with every possibleombination of arguments; and when the program alls onone of its free identi�ers returning every possible result. Thegame model is then the set of sequenes of values passed inand out. Game models have the following key advantages.1. Compositionality The model of a omposite programf(a) is obtained by applying a simple 'ompose' ruleto the models of f and a. Thus omponents an bemodelled and heked independently.2. Full abstration That is, both soundness (presene ofan error-ation in the model implies a fault in the pro-gram) and ompleteness (all program faults are presentas error-ations in the model).
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2007),September 3-4, 2007, Cav-
tat near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

3. Blak-box The game model only reports observable a-tions. This inherent abstration provides the usualbene�ts: ode privay, model onision, separate anal-ysis of omponents.Safety Cheking In game models, program safety reduesto event reahability (i.e. the program passing out an errorvalue or alling an exeption). Building an automaton rep-resentating the model and searhing the transition spae ofthe automaton for error ations implements safety heking.For simple languages like Idealized Algol (IA) [1℄, whihhave regular language game models, a �nite-state automatonis onstruted and a sound and omplete safety hek byexhaustive searh an be realized, as in the �rst game-basedmodel heker whih was presented at SAVCBS 2003. Theaveat is that for realisti types (e.g. 32-bit integers) themodels are often too big, despite the blak-box property.More powerful features like reursive types and higher-order funtions need in�nite-state automata so state approx-imation and loss of soundness must be inorporated as usual.Data Approximation The seond games-based model heker,GameCheker [5℄ used data approximation and adapted theCEGAR (that is, �ounterexample-guided approximation re-�nement�) tehnique [4℄ to game models. This allows hek-ing to begin with a very small model and gradually inreasethe preision of the data types in parts of the program thatgenerate potential ounterexamples. The results [6℄ showanother suess-in-priniple: programs with realisti typesignatures an be modelled and heked. But literal inter-pretation of the game-theoreti approah � build modelsfrom omponent models and pass the �nal produt to aheker � makes analysis of large programs impratiable.
2. ...WITH MAGEMage Our new safety heker, Mage1, makes several ad-vanes over the previous state-of-the-art that overome someof the problems inherent to ompositional blak box models.These ideas, outlined below, give asymptoti improvementsin the omplexity of many safety heking problems. Thesebig performane gains have been won by bending and break-ing the game approah in various ways.Lazy Safety Cheking Models are big. But this shouldnot be the barrier in safety heking beause the result ofsafety heking is a verdit (and perhaps a ounterexample);not a model. Thus, atually building a model then heking1http://www.s.bham.a.uk/~axb/games/mage/.

85

it is very spae ine�ient. It is also very time ine�ient ifthe model ontains errors that show up early in the hek.Mage generates parts of the model as they are demanded bythe heker. And it stops as soon as it detets unsafety.Symboli Game Models The game models are regularlanguages represented as automata. To �t with lazy hek-ing it is muh better to implement models in an impliit �rather than onstruted � form: an initial state and thenext-state funtion su�e and we all this representation asymboli model (f. [2℄). Symboli omposition is espeiallyuseful as it only onsiders parts of the model that are de-manded by the heker: an integer funtion f model mighthave a di�erent behaviour for eah of its 232 arguments butonly those behaviours demanded by the possible values ofthe argument a are onsidered when generating the modelof f(a). Thus symboli models are still de�ned omposi-tionally but the heker an use information about the sur-rounding ontext to make a signi�ant e�ieny gain whensearhing the symboli transitions.Data ApproximationWe replaed integers with �nite ranges.This breaks the soundness diretion of full abstration so ingeneral only produes possible-ounterexamples but an bevery e�etive in eliminating error-free sub programs fromthe searh and quikly deteting data-independent errors.Approximated Counterexamples Data approximationadds behaviours to the model. Therefore ounterexamplesmust be erti�ed � i.e. is the image, under approximation,of an error in the unapproximated model. Model hekersusually analyse ounterexamples with a SAT solver. Mageuses domain-spei� knowledge to implement a simpler andmore e�ient solution: non-determinism on the path throughthe approximated model to the error indiates a possibly-false ounterexample.CEGAR Finding a possibly-false ounterexample ausesMage to re�ne the re-hek the model. Re�nement meansinreasing the preision of the data approximations for thosevalues that led to the ounterexample. The symboli modelis re�ned simply by modifying the type annotation on af-feted variables. The model-hek-ertify-re�ne loop repeatsuntil a true ounterexample is found or every possibly-falseounterexample is eliminated. Termination is guaranteedbeause eah re�nement makes a model stritly less approx-imate and ultimately the unapproximated models are �nite.Individuated Re�nement It is a disadvantage to foredi�erent uses of the same variable to share the same approx-imation: approximate values needed at one site to generateunsafety are then onsidered at other sites, typially leadingto more false ounterexamples and more baktraking in thesearh and more re�nement iterations than would otherwisehappen. Mage identi�es whih variable site generated (oronsumed) eah value in a possible-ounterexample. and re-�nes the approximation used at eah site individually.Grey-box models To support the re�nement and erti�-ation tehniques we have to leak some information aboutinternal ations. For erti�ation this reates a onstantoverhead; for re�nement the ost an be larger. So our mod-els are not stritly blak-box; merely as blak as possible.

stak size Mage GameCheker Blast2 0.1 10.1 1.64 0.1 27.5 3.38 0.2 112.6 4.616 0.4 780.7 7.832 1.2 12,268.1 17.364 3.9 over 7 hours 43.7128 13.9 - 145.3256 54.8 - spae exhaustedTable 1: Stak over�ow detetion tests.
3. RESULTSStak Veri�ationWe ompare Mage with the earlier CE-GAR game-based heker GameCheker on the same veri�-ation problem. We also ompare it with the powerful non-game-based model heker, Blast [7℄ (translating the prob-lem from IA into C makes no semanti di�erene). Blastis a suitable non-game omparison beause it also uses lazymodelling and re�nement tehniques and it represents thestate of the art in veri�ation based on prediate abstra-tion and it an verify signi�ant appliations suh as deviedrivers. The problem is to disover ontexts that lead tounder�ows and over�ows in a stak of integers where thestak is represented by a �nite array and the stak interfaepresents a push and a pop method that all exeptions whenthe empty stak is popped or a full stak is pushed.Over�ow Table 1 shows the time taken (on the same ma-hine, in seonds) for the three tools to detet a ontextleading to an over�ow for staks of di�erent sizes. TheMage times are roughly linear; GameCheker is exponen-tial beause it is dominated by model building; Blast isalso roughly linear but su�ers resoure problems with largerstaks. Mage an handle staks of thousands of elements.Under�ow For the under�ow searh problem the laziness ofboth Mage and Blast allow the ounterexample �pop empty�to be disovered in a fration of a seond for staks of bil-lions of elementss. For GameCheker the need to build themodel before heking auses similar (slightly faster) resultsto the over�ow problem.Future Prospets Results suh as these suggest that theompositional games approah should be salable to handlemuh larger software projets. Our researh agenda is toextend the framework to a pratial language suh as C andthen to ombine the pure model heking with support fromprogram analysis.
4. REFERENCES[1℄ Abramsky, S., Ghia, D.R., Murawski, A.S., Ong,C.H.L.: Applying game semantis to ompositionalsoftware modeling and veri�ation. In: TACAS.(2004) 421�435[2℄ Ball, T., Rajamani, S.K.: Bebop: A symboli modelheker for boolean programs. In: SPIN. (2000)113�130[3℄ Ball, T., Cook, B., Levin, V., Rajamani, S.K.: Slamand stati driver veri�er: Tehnology transfer offormal methods inside Mirosoft. In: IFM. (2004) 1�20

86

[4℄ Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith,H.: Counterexample-guided abstration re�nement.In: CAV. (2000) 154�169[5℄ Dimovski, A., Ghia, D.R., Lazi, R.:Data-abstration re�nement: A game semantiapproah. In: SAS. (2005) 102�117[6℄ Dimovski, A., Ghia, D.R., Lazi, R.: Aounterexample-guided re�nement tool for openproedural programs. In: SPIN. (2006) 288�292[7℄ Henzinger, T.A., Jhala, R., Majumdar, R.: The Blastsoftware veri�ation system. In: SPIN. (2005) 25�26

87

