
Challenge Problem: Subject-Observer Specification
with Component-Interaction Automata

Pavlína Vařeková
∗

, Barbora Zimmerova
∗

Faculty of Informatics
Masaryk University

602 00 Brno, Czech Republic
{xvareko1, zimmerova}@fi.muni.cz

ABSTRACT
This paper presents our solution to the Subject-Observer
Specification problem announced as the challenge problem
of the SAVCBS 2007 workshop. The text consists of two
parts. In the first part, we present the model of the Subject-
Observer system in terms of Component-interaction au-
tomata. In the second part, we present our approach to
verification of the system model with respect to unlimited
number of Observers.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation

General Terms
Component-based systems, verification, specification

Keywords
Component-based systems, dynamic number of components,
finite-state systems, verification, software modelling

1. INTRODUCTION
The following solution to the Subject-Observer Specification
challenge problem is based on the paper [3] that is going
to be presented at the workshop. For this reason we do
not repeat the definitions given in the paper and reference
the reader to the paper. The model is created using the
Component-interaction automata modelling language (first
presented in [1]). For more information on the language
please see [4] or the coming detailed case study [5], our re-
sult in the CoCoME (Common Component Modelling Exam-
ple) Contest1, where we have first experienced the Subject-
Observer modelling problem.

∗The authors have been supported by the grant No.
1ET400300504.
1http://www.cocome.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Specification and Verifica-
tion of Component-Based Systems (SAVCBS 2007), September
3-4, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

2. SPECIFICATION
Consider the assignment of the challenge problem. It states
that there may be many Observers for a Subject and an Ob-
server may be registered with more than one Subject. But
it does not discuss whether the numbers of Subjects and
Observers are fixed or change at run-time. While working
on the CoCoME, we have observed that in practical applica-
tions, the number of Subjects is usually fixed, but the num-
ber of Observers can grow dynamically. In this example, we
suppose the same. In addition, as distinct to the official as-
signment, we add a possibility of the Observer to deregister
from Subjects to make the solution more interesting.

Now we present our model for the example created using
Component-interaction automata. For clearness, we start
with the model of the system with one Subject only. Then
we generalize the model to multiple Subjects.

2.1 Model with one Subject
The model of the system with one Subject and multiple
Observers is the following.

2.1.1 Observer
The Observer (in this case with a component name j ∈ N)
first needs to register to get to the state 3 where it can
accept notifications and ask for the value managed by the
Subject. In the model, each method, e.g. register(), is
assigned a tuple of action names: register denotes the call
of the method, and register’ the return from the method.
These two determine the start and the end of the method’s
execution.

Oj : �� 1�������	
(j,register,−)

�� 2�������	

(−,register′,j)
��

4�������	

(−,deregister′,j)

��

3�������	
(j,deregister,−)��

(−,notify,j)
�� 5�������	

(j,getV alue,−)

��
7�������	

(j,notify′,−)

��

6�������	
(−,getV alue′,j)��

A hierarchy of component names: (j)

Figure 1: A CI model of the Observer Oj

75

2.1.2 Subject
The Subject S (component name α) implements four meth-
ods, update(), register(), deregister(), getValue(),
and hence its model consists of four parts connected via
the full composition operator ⊗ (no transitions removed) as
S = ⊗{S1,S2,S3,S4}. Models of the parts are in figure 2.

S1 : �� 1�������	
(−,update,α)

��

��

(−,notify′,α)

��
�� 2�������	

(α,update′,−)

��

��

(−,notify′,α)

��
�� 3�������	

(α,int,α)����
��

��
�

��

(−,notify′,α)

��
��

5�������	
(α,int,α)

���������

����

(−,notify′,α)

�
�� 4�������	

(α,int,α)��
����

(α,notify,−)

�
��

S2 : �� 1�������	
(−,register,α)

�� 2�������	
(α,register′,−)��

S3 : �� 1�������	
(−,deregister,α)

�� 2�������	
(α,deregister′,−)��

S4 : �� 1�������	
(−,getV alue,α)

�� 2�������	
(α,getV alue′,−)��

A hierarchy of component names: (α)

Figure 2: A CI model of the Subject S parts

On the update() method (automaton S1), the Subject first
receives the method call, confirms its return (to allow the
updater to continue its execution while the notifications are
delivered, which is common in Subject-Observer communi-
cational models) and then takes care about notifying the
Observers. This proceeds in two loops separated by inter-
nal actions. The first loop distributes the notification to the
Observers, the second confirms termination of notifications.
This allows the Observers to execute bodies of their methods
in parallel. More, the confirmation (−, notify′, α) is allowed
also in other states than 5. This protects the system from
deadlock of the Observers that do not manage to synchro-
nize with the Subject before it leaves the state 5. Note that
the composition with Observers using a handshake-like com-
position (required synchronization of complementary labels,
which are removed and only synchronized internal labels re-
main) includes paths representing that 0, 1, 2, ...,all registered
Observers are notified. However no Observer can be notified
twice. This confirms to the at most once constraint, which
will be verified later in this text.

On the remaining methods register(), deregister(), get-
Value() (automata S2,S3,S4), the Subject only receives the
call and then returns. More interesting behaviour could be
inserted on the place of state 2.

2.2 Model with several Subjects
The presented model can be readily extended to the multi-
Subject case. Suppose the number of Subjects is n, then
we have Subjects Si for i ∈ {1, 2, ..., n} where i represents
the id of the Subjects. We add this id also to the names of
methods to distinguish which Subject an Observer wants to
communicate with.

2.2.1 Observer
The Observer now consists of n parts identical up to indexes
in actions, each one for communication with one Subject.
A model of one part is in figure 3. The parts are again
connected via the full composition operator ⊗, hence the
model of the Observer (component name j) is Oj,{1,...,n} =
⊗{Oj,i}i∈{1,...,n}.

Oj,i : �� 1�������	
(j,registeri,−)

�� 2�������	

(−,register′
i,j)

��
4�������	

(−,deregister′
i,j)

��

3�������	
(j,deregisteri,−)��

(−,notifyi,j)
�� 5�������	

(j,getV aluei,−)

��
7�������	

(j,notify′
i,−)

��

6�������	
(−,getV alue′i,j)��

A hierarchy of component names: (j)

Figure 3: A CI model of the Observer part Oj,i

2.2.2 Subject
The model of a Subject Si (component name αi where
αi, i ∈ N, denotes the sequence of i symbols α) is analogical
to the model of Subject S (figure 2). It again consists of
four parts Si = ⊗{Si

1,Si
2,Si

3,Si
4}. The models of the parts

are in figure 4.

Si
1 : �� 1�������	

(−,updatei,αi)

��

��

(−,notify′
i,αi)

��
�� 2�������	

(αi,update′i,−)

��

��

(−,notify′
i,αi)

��
�� 3�������	

(αi,inti,αi)����
��

��
�

��

(−,notify′
i,αi)

��
��

5�������	
(αi,inti,αi)

���������

����

(−,notify′
i,αi)

�
�� 4�������	

(αi,inti,αi)��
����

(αi,notifyi,−)

�
��

Si
2 : �� 1�������	

(−,registeri,αi)

�� 2�������	
(αi,register′

i,−)��

Si
3 : �� 1�������	

(−,deregisteri,αi)

�� 2�������	
(αi,deregister′

i,−)��

Si
4 : �� 1�������	

(−,getV aluei,αi)

�� 2�������	
(αi,getV alue′i,−)��

A hierarchy of component names: (αi)

Figure 4: A CI model of the Subject Si parts

2.2.3 The composite model
Now we can fix the number of Subjects to n, and the number
of Observers to m, hence get automata S1,S2, . . . ,Sn and
O1,{1,2,...,n},O2,{1,2,...,n}, . . . ,Om,{1,2,...,n} given by descrip-
tion above, and compose them together using handshake-
like composition. The handshake-like composition requires
synchronization of those labels that have a counterpart at
other component. Such labels are afterwards removed from
the composition and only the internally synchronized labels
are left.

76

This type of composition can be realized via composition
operator ⊗F (see [3]) where F =S

i,j∈N
{(αi,notifyi,j),(j,notify′

i,αi),(j,registeri,αi),(αi,register′
i,j),

(j,deregisteri,αi),(αi,deregisteri,j),(j,getV aluei,αi),(αi,getV alue′i,j)}
∪ S

i∈N
{(−,updatei,αi),(αi,update′i,−),(αi,inti,αi)}

The resulting model is then:
⊗F{S1, . . . ,Sn,O1,{1,2,...,n}, . . . ,Om,{1,2,...,n}}.

Such a model is suitable for verification of properties fixed
to the selected numbers of Subjects and Observers. How-
ever we are interested also in verification of the proper-
ties for an arbitrary number of Observers, because it is
usual that the Observers can be added to and removed
from the system dynamically. To this issue, we may ap-
ply the solution [3] presented at this workshop. However
before we can do so, we need to adjust the system to
the structure that is awaited by our approach. That is
that the system consists of one stable component (called
provider) and a number of dynamic components of one type
(called clients). To meet this constraint, we only com-
pose all Subjects into a composite Subject managing all
values S{1,...,n} = ⊗{Si}i∈{1,...,n} and define the dynamic

system model as Sn&O = (S{1,...,n}, {Oj,{1,...,n}}j∈N,F)
and a composite system with m Observers as Sn&Om =
⊗F{S{1,...,n},O1,{1,...,n}, . . . ,Om,{1,...,n}}.

Now the composite Subject represents the provider and Ob-
servers the clients of the dynamic system we have just de-
fined.

3. VERIFICATION
In this section, we describe the verification of a dynamic
system Sn&O for arbitrary fixed number of Subjects n. We
present the application of the approach introduced in [3]
for effective verification of properties expressed as sequences
Property(Sn&O, m). Then we illustrate the technique on
the properties of the systems S1&O and S2&O.

3.1 Properties for verification
In formal verification techniques, like model checking [2], the
properties for verification are specified in temporal logics.
In our approach, we use the logic CI-LTL. CI-LTL is an
extension of the action-based LTL, which is in addition to
expressing that an action (label) l is proceeding P(l) able
to express that a given label l is enabled E(l) in a state of a
path (one-step branching). See [3] for description of CI-LTL.

Assume a dynamic system D. The properties that we aim to
verify, can be specified with a sequence of formulas {ϕi}i∈N0

over LD such that a property is satisfied iff for each i ∈ N0

it holds that ϕi |= Di. Note that not every sequence of
formulas {ϕi}i∈N0 represents a meaningful property of the
system. Thus we concentrate on the formulas satisfying the
following.

(1) The property makes no distinctions among clients.
(2) If the property is violated by a path in a system Di+j

where j components do not perform any steps, the
property is violated by the same sequence of labels
also in the system with i clients only.

Moreover, we pose the following two restrictions. See [3] for

proper description of these.

(3) We focus only on the formula sequences that represent
properties whose violation involves a finite number m
of observed components only.

(4) We consider only the properties that are invariant un-
der stuttering according to CI-LTL.

The set of properties that fulfills these conditions for model
D and the finite number of components m is denoted
Property(D,m).

3.2 Verification technique
The core idea of the verification process is based on finding a
number k ∈ N such that if the property is violated on a sys-
tem then it must be violated for the system with maximally
k clients deployed. If such k exists, it allows us to reduce
verification of the infinite system to a finite one. In partic-
ular, to a verification of a finite number of finite systems –
with 0, 1, . . . , k clients deployed. The value k for a dynamic
system D and a set of observable actions X can be esti-
mated as a sum of two measures. The first one is a measure
of complexity of a dynamic system reflecting the maximal
number of clients that are regarded by the provider. The
second one is a similar measure on properties that reflects
the minimal number of clients necessary to exhibit a path
violating studied property.

3.3 Optimizations
The model of the dynamic system for the Subject-Observer
problem Sn&O does not exactly follow the pattern client-
provider supposed by our approach [3]. In [3] we require
that the provider of a dynamic system can in any time re-
gard at most n clients for a constant n ∈ N0

2. In the case of
a dynamic system Sn&O, the client (Observer) is regarded
(served) if and only if it is registered. Note that the number
of registered Observers in the system Sn&O can be arbi-
trary. Hence |Sn&O|LC0

= ∞. Therefore we need to use

two optimizations that lead to |Sn&O|X finite.

3.3.1 Optimization 1.
With regard to the presence of sub-formulas P(l) and E(l)
in the verified sequence of formulas, we minimize the set X
used in the computation of |D|X . This decrease of the num-
ber of observed labels increases the probability that w.r.t.
these labels the provider (combined Subject) regards at most
a fixed number of clients (Observers) at any time, which
makes |D|X finite.

Example 3.1. Suppose a dynamic system S1&O and two
sets of observable labels X for which we compute the value
|S1&O|X :

• X = {(α, notify1,−), (−, notify′
1, α)}

In this case, the Observer is in a cycle of service if and only
if it started and did not finish the notification. The number

2It could be said that a client is regarded (or served) by the
provider if it synchronized with the provider on an observ-
able label that started client’s execution (cycle of service)
and has not yet synchronized on an observable label repre-
senting the end of this execution. It holds that the value
|D|X is always grater than the maximal number of served
clients.

77

of such Observers is not bound. It holds that the maximal
number of served Observers is lower or equal to |S1&O|X ,
hence |S1&O|X = ∞.

• X = {(−, notify′
1, α)}

In this case no Observer can be in a cycle of service. Roughly
speaking this is because X implies only one observable tran-
sition and hence no Observer can get in between of two ob-
servable transitions that bound a cycle of service (for defi-
nition of a cycle of service see [3]). Therefore it is possible
that the value |S1&O|X is finite. After computing this value
we get |S1&O|X = 1.

3.3.2 Optimization 2.
This optimization is based on a modification of the dynamic
system and the property in a way that thanks to them we
may verify the original property on the original system, and
we increase the probability that the measure of complex-
ity of the modified model with respect to the modified set
of properties and the set of observable labels is finite. Let
{ϕi}i∈N0 ∈ Property(D,m). Suppose:
• A dynamic system D created from system D by modifica-
tion of its provider – modelling the provider of the system
D composed with m clients (see figure 5). The remaining
items of the dynamic system are identical to the system D.
• A sequence of properties {ϕi}i∈N0 such that the formula
ϕn captures for the automaton Dn the same property as the
formula ϕn+m narrowed down to the clients 1, ..., m for the
automaton Dn+m.

Example 3.2. The formulas {ϕi}i∈N0 ∈ Property(D, 1) for
instance capture the property:
After every start of a notification (sent to any Observer)
there follows the finish of this notification.
Then the formulas {ϕi}i∈N0 ∈ Property(D, 0) capture the
property:
After every start of a notification sent to an Observer that
is modelled as a part of the provider, there follows the finish
of this notification.

As {ϕi}i∈N0 ∈ Property(D,m) and these formulas make no
distinction among clients, it holds that:

. Dn |= ϕn iff Dn+m |= ϕn+m.

As {ϕi}i∈N0 ∈ Property(D, 0) then if D0 |= ϕ0, . . . ,
D|D|X′ |= ϕ|D|X′ (for appropriate X ′) it follows from the

intuition presented in Optimization 2 that it must hold that
Dn |= ϕn for every n ∈ N0. From lemmas in [3] we get that
for every n ∈ N0 it holds that Dn+m |= ϕn+m.
Moreover, the set X ′ contains less external labels (input
and output labels) than the set X, and hence there is higher
probability that |D|X′ is finite.

Example 3.3. Suppose that for the system S1&O we
are interested in the verification of the properties from
example 3.2. These properties can be captured as
formulas Property(S1&O, m) and for their verification,
it suffices to use the set of observable labels X =
{(α, notify1,−), (−, notify′

1, α)}. From the reasoning
above, we know that |S1&O|X = ∞. However if we con-

sider the model S1&O where the provider contains not only
n components for the Subjects, n = 1 here, but also m com-
ponents representing Observers, m = 1 here (modelled with

Figure 5: A dynamic system D with n clients and
dynamic system D with n − m clients

component name β), the minimal set of observable actions
is X ′ = {(α, notify1, β), (β, notify′

1, α)} and it holds that

|S1&O|X′ ≤ 1.

3.4 Algorithm for verification
The next section presents examples of the properties of the
Subject-Observer system that are interesting for verification.
Validity of these properties can be showed by intuitive rea-
soning. However for more complex properties, the automatic
verification technique is necessary. In this section we present
such a technique based on the results from [3]. This verifi-
cation will take advantage of the optimizations introduced
above. It consists of the following three steps.

(1) Creation of a harmonized sequence of formulas {ϕi}i∈N0

that corresponds to a given property for the dynamic sys-
tem Sn&O. Detecting whether there is a finite m such
that the sequence of formulas {ϕi}i∈N0 is part of the set
Property(Sn&O, m). If there is no such m, it is not possi-
ble to verify {ϕi}i∈N0 using the approach from [3]. It is clear
that a property can be captured with various formulas, some
of them can be verified using our approach, some of them
cannot (see the property (c) in section 4.1).

(2) Modification of the dynamic system Sn&O and the se-
quence of formulas {ϕi}i∈N0 using Optimization 2 to the dy-
namic system Sn&O (the Observers that become part of the
provider will be referred to as β, ββ, . . .) and the sequence
of formulas {ϕi}i∈N0 . With respect to the Optimization 1,
we select the set X of observable labels and we compute
|Sn&O|X .

(3) The dynamic system Sn&O and formulas {ϕi}i∈N0 agree
with the prerequisites of Lemma 5.4 from [3]. Hence for the
verification of the given property, it suffices to check the
validity of the according formulas on the systems Sn&O0,
Sn&O1, . . . , Sn&O|Sn&O|X . If the verification succeeds, it

is verified that the property holds for all systems Sn&O0,
Sn&O1, Therefore from the discussion in Optimiza-
tion 2 it follows that the original property is verified on mod-
els Sn&Om, Sn&Om+1, For verification of the whole
dynamic system, we more need to verify the original prop-
erty on Sn&O0, Sn&O1, . . . , Sn&Om−1.

Only the first step (1) needs to be supported manually, the
steps (2) and (3) can be done automatically.

78

The intuition for getting the over-approximation of the value
|D|X , which we will use together with Lemma 5.4 from [3] for
automatization of the steps (2) and (3) from the algorithm
above is based on a simple observation:

”If for a dynamic system D the automaton Dn generates all
possible runs with respect to the observable labels X, then for
every i ∈ N the automaton Dn+i generates again the same
runs. Hence it holds that |D|X ≤ n.”

4. EXAMPLES
Now we present several examples to demonstrate the verifi-
cation of the Subject-Observer system model.

4.1 Verification of the syst. with one Subject
In this section, we illustrate the verification technique pre-
sented above on the dynamic system S1&O. In the exam-
ples, we discuss the first step in detail because it is the man-
ual part of the verification. For the remaining two steps,
which can be done automatically, we just present the results
without further discussion.

a) If a run contains infinitely many steps concerning
some Observer, then the Observer is infinitely many
times enabled to receive notifications.

• This property can be expressed by a harmonized set
of formulas {ϕi}i∈N0 :
ϕi =

V
j≤i ϕ(α, j),

where
ϕ(α, j) = [G F W

l∈Labj
P(l)] ⇒ [G F E(α, notify1, j)],

Labj = {(j,register1,α),(α,register′
1,j),(j,deregister1 ,α),

(α,deregister′
1,j),(α,notify1,j),(j,notify′

1,α),(j,getV alue1,α),

(α,getV alue′1,j)}
(Labj is a set of all the labels that are present in some
of the automata S1&Oj , S1&Oj+1, . . . concerning the
Observer Oj).
For any i ∈ N0 and an infinite run π starting in an
initial state of the automaton S1&O satisfying π 	|=
ϕi, there exists a number j ∈ N such that on this
run the formula ϕ(α, j) is not valid. For confirming
this violation it suffices to observe the Subject and the
Observer with the numerical name j. Hence in general,
it always suffices to observe one Observer to confirm
the violation of the property. It holds that:
{ϕi}i∈N0 ∈ Property(S1&O, 1)

• The modified sequence of formulas {ϕi}i∈N0 is then
ϕi = ϕ(α, β) ∀i ∈ N0.
In this case, it suffices to compute the value
|S1&OLabβ

| (see Lemma 5.4 from [3])
and from the algorithm discussed above it follows that:
|S1&OLabβ

| ≤ 0.

• Then after verifying the models S1&O0 and S1&O0

we can conclude that the property always holds.

b) If one of the registered Observers receives a no-
tification and some other Observer is also ready to
receive one (is registered and has not receive it yet),
it will receive the notification too.

• This property can be expressed by a harmonized set
of formulas {ϕi}i∈N0 :

ϕi =
V

j1,j2≤i,j1 �=j2
ϕ(α, j1, j2),

where
ϕ(α, j1, j2) = G [(P(α, notify1, j1) ∧
E(α,notify1, j2)) ⇒ (true U P(α, notify1, j2))]
For any i ∈ N0 and an infinite run π starting in
an initial state of the automaton S1&O satisfying
π 	|= ϕi, there exists distinct numbers j1, j2 ∈ N such
that on this run the formula ϕ(α, j1, j2) is not valid.
For confirming this violation it suffices to observe the
Subject and the Observers with the numerical names
j1 and j2. Hence in general, it always suffices to
observe two Observer to confirm the violation of the
property. It holds that:
{ϕi}i∈N0 ∈ Property(S1&O, 2).

• {ϕi}i∈N0 satisfies ∀i ∈ N0 ϕi = ϕ(α, β, ββ).

In this case, it suffices to compute the value |S1&OX |
for X = {(α,notify1,βk),(βk,notify′

1,α),(α,register′
1,βk),

(βk,deregister1,α) | k∈{1,2}}
(see Lemma 5.4 from [3]) and from the algorithm dis-

cussed above it follows that: |S1&O|X ≤ 0.

• Then after verifying the models S1&O0, S1&O1 and
S1&O0 we can conclude on the validity of the formula.
In this case the formula does not hold which is con-
firmed by the model S1&O0.
The counterexample is the run of the automaton
S1&O0 where first the Observers β and ββ register for
receiving notifications, then the Subject is updated, it
sends the notification to Observer β, but never deliv-
erers the notification to Observer ββ because this gets
locked in a loop of registering and deregistering.

c) After any update, each Observer receives at most
one notification about value change. This reflects
that ”each Observer is called at most once per state change”
from the assignment of the problem.

• This property can be expressed by a set of formulas
{ϕi}i∈N0 :
ϕi =

V
j≤i ¬F ϕ(α, j),

where
ϕ(α, j) = P(α, notify1, j) ∧ X [¬P(−, update1, α) U
P(α, notify1, j)]
These formulas contain operator X , therefore they
are not invariant under stuttering and that is why
{ϕi}i∈N0 	∈ Property(S1&O, m) holds for any m ∈ N0.
We take advantage of the fact that each Observer
after getting the notification must first confirm the
end of the notification before it is able to receive
another one. Hence we can express the property with
the following harmonized set of formulas:
ϕi =

V
j≤i ¬F ϕ(α, j),

where
ϕ(α, j) = P(α, notify1, j) ∧ [¬P(−, update1, α) U
{P(j, notify′

1, α) ∧ [¬P(−, update1, α) U
P(α, notify1, j)]}].
Example of a run violating the formula ϕ(α, j) is for
instance (without names of states):

•(α,notify1,j)��
�=(−,update1,α)

�� • → . . . → •(j,notify′
1,α)��
�=(−,update1,α)
�� • → . . . → •(α,notify1,j)�� • → . . .

79

Using the reasoning analogical to the one above, we
can conclude that {ϕi}i∈N0 ∈ Property(S1&O, 1)

• ϕi = ¬F ϕ(α, β).
We need to compute the value
|S1&O|{(−,update1,α),(α,notify1,β),(β,notify′

1,α)}.

|S1&O|{(−,update1,α),(α,notify1,β),(β,notify′
1,α)} ≤ 1.

• Then after verifying the models S1&O0, S1&O0 and
S1&O1 we can conclude that the property always
holds.

d) Anytime, the Subject is in future enabled to ex-
ecute update().

• This property can be expressed by a harmonized set
of formulas {ϕi}i∈N0 :
ϕi = G F E(−, update1, α).
As the formulas do not contain a name of any Ob-
server, it holds that {ϕi}i∈N0 ∈ Property(S1&O, 0).

• ϕi = ϕi = G F E(−, update1, α).
We need to compute the value
|S1&O|{(−,update1,α),(α,int1,α)}.
It holds that |S1&O|{(−,update1,α),(α,int1,α)} ≤ 1.

• The verification of the models S1&O0, S1&O1 shows
that the property holds on the model S1&O0 but does
not hold on the model S1&O1.

The counterexample is the run of the automaton
S1&O1 (for space reasons we do not include the names
of the states):

•(β,register1,α)�� •
(α,register′

1,β)

�� •(−,update1,α)�� •
(1,register1,α)

�� •(α,register′
1,1)�� •
(1,register1,α)

�� · · ·

e) If it holds for a run that every update of the
Subject is followed by starting the notification of all
the Observers, then each update will be also followed
by finishing of the notifications by all the Observers.

• This property is an example of a property that can be
expressed as a sequence of formulas, but there exists
no m ∈ N0 such that the sequence of formulas is in
Property(S1&O, m). This follows from the fact that
if a property is violated by some run, we are not able
to bound the number of clients that always suffices to
confirm the faultiness of the run.

4.2 Verification of the syst. with two Subjects
In this section we present examples of two properties dis-
cussed above on the dynamic system Subject-Observer with
two Subjects S2&O.

f) If a run contains infinitely many steps concern-
ing some Observer, then the Observer is infinitely
many times enabled to receive notifications from
both Subjects.

• This property can be expressed by a harmonized set
of formulas {ϕi}i∈N0 :
ϕi =

V
j≤i ϕ(α, αα, j),

where

ϕ(α, αα, j) = [G F W
l∈Labj

P(l)] ⇒
[G (F E(α,notify1, j)) ∧ (F E(αα,notify2, j))],
and
Labj = {(j,registerk,αk),(αk,register′

k
,j),(j,deregisterk,αk),

(αk,deregister′
k

,j),(αk,notifyk,j),(j,notify′
k

,αk),

(j,getV aluek,αk),(αk,getV alue′
k

,j) |k∈{1,2}}
(Labj is a set of all the labels that are present in some
of the automata S2&O0, S2&O1, . . . concerning the
Observer Oj).
From the reasons analogical to the ones discussed
above, it follows that:
{ϕi}i∈N0 ∈ Property(S2&O, 1)

• The modified sequence of formulas {ϕi}i∈N0 is then
ϕi = ϕ(α, αα, β) ∀i ∈ N0.

Hence it suffices to compute the value |S2&OLabβ
| and

it follows that: |S2&OLabβ
| ≤ 0.

• From the verification of the models S2&O0 we learn
that the property is not satisfied. The counterexample
is the run containing an infinite number of the transi-
tions concerning the Observer β who can never accept
the notification about the update of the value managed
by the Subject αα (for space reasons we again do not
include the names of the states):

•(β,register,α)�� •
(α,register′,β)

�� •(β,deregister,α))�� •
(α,deregister′,β)

�� •(β,register,α)�� · · ·

g) After any update, each Observer receives at most
one notification about value change. This reflects
that ”each Observer is called at most once per state change”
from the assignment of the problem.

• Analogically to the property (c) in section 4.1, we
take advantage of the fact that each Observer after
getting the notification must first confirm the end of
the notification before it is able to receive another one.
Hence we can express the property with the following
harmonized set of formulas (without the operator X):
ϕi = [

V
j≤i ¬F ϕ(1, j)] ∧ [

V
j≤i ¬F ϕ(2, j)],

where
ϕ(k, j) = P(αk, notifyk, j) ∧ [¬P(−, updatek, αk) U
{P(j, notify′

k, αk) ∧ [¬P(−, updatek, αk) U
P(αk, notifyk, j)]}].
Using the reasoning analogical to the one above, we
can conclude that {ϕi}i∈N0 ∈ Property(S2&O, 1)

• ϕi = ¬F ϕ(α, β) ∧ ¬F ϕ(αα, β).

We need to compute the value |S2&O|X for
X = {(−, update1, α), (α, notify1, β), (β, notify′

1, α),
(−, update2, αα), (αα, notify2, β), (β, notify′

2, αα)}
and it holds that
|S2&O|X ≤ 1.

• Then after verifying the models S2&O0, S2&O0 and
S2&O1 we can conclude that the property always
holds.

4.3 Closing remarks
We could also study the general issue of whether for a cer-
tain property (parametrized with a number of Subjects and

80

Observers) there exists nmax and n′
max such that the valid-

ity of the property for systems with at most n′
max Subjects

and at most nmax Observers implies the validity of the prop-
erty on all systems. The reasoning would follow the same
intuition as the verification of the properties from the set
Property(D,m) on the dynamic system D. However from
space reasons, we do not study this general case here.

5. REFERENCES
[1] L. Brim, I. Černá, P. Vařeková, and B. Zimmerova.

Component-Interaction Automata as a
Verification-Oriented Component-Based System
Specification. In Proceedings of SAVCBS’05, pages
31–38, Lisbon, Portugal, September 2005.

[2] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, USA, January 2000.

[3] P. Vařeková, P. Moravec, I. Černá, and B. Zimmerova.
Effective-Verification of Systems with a
Dynamic-Number of Components. In Proceedings of
SAVCBS’07, Dubrovnik, Croatia, September 2007.

[4] I. Černá, P. Vařeková, and B. Zimmerova.
Component-interaction automata modelling language.
Technical Report FIMU-RS-2006-08, Masaryk
University, Faculty of Informatics, Brno, Czech
Republic, October 2006.

[5] B. Zimmerova, P. Vařeková, N. Beneš, I. Černá,
L. Brim, and J. Sochor. The Common Component
Modeling Example: Comparing Software Component
Models, chapter Component-Interaction Automata
Approach (CoIn). To appear in LNCS, 2007.

81

