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ABSTRACT 
A system for engineering and verifying component-based 
software must include mechanisms for specifying abstractly not 
only the complete functionality of components but their exact 
performance as well.  This paper introduces profiles as a first-
class construct for complete, independent specification of 
performance in higher-level languages.  Using profiles, a 
developer can select from an assortment of implementations for a 
particular functionality the one that best suits his needs with 
respect to speed and memory usage.  Equally importantly, he can 
define the expected performance of larger scale components using 
compositions of the profiles of their constituent (possibly as yet 
unimplemented) components.  To support scalability, the profile 
construct facilitates abstraction in performance specifications as 
well as performance composition and analysis.   
.   

Categories and Subject Descriptors 

D.2.8 [Software Engineering]: Metrics – performance measures  
General Terms 
Software Engineering, specification, verification. 

Keywords 
Components, performance, reuse, specification. 

1. INTRODUCTION 
 In order to have an effective system for engineering 
component-based software, it is essential to have a specificational 
framework that supports description of those aspects of a 
component that are relevant to its deployment and that implicitly 
supports suppression of other irrelevant aspects.  The functional 
aspect is typically the most important, and so developing a 
framework for its specification has been the focus of much 
research.  However, a framework is not adequate until it includes 
a mechanism for completely describing component performance. 

 Factoring out performance specifications seems to be a 
common practice in the engineering of components.  An auto 
manufacturer, for example, sets functional limits on the 
dimensions of tires that can be used but leaves to tire suppliers 
such performance specifications as traction, tread life, etc.  As in 
the case of auto tires, a good conceptualization of functional 
behavior will admit a broad assortment of realizations with 
varying performance characteristics.   
 Currently performance specifications for software 
components are usually treated in a rather off-hand manner.  
Often they’re given as gross Big-O estimates, typically in terms of 
imprecisely-specified parameters ill suited to object oriented 
programming (a problem we addressed in [11]). Alternatively, 
they’re presented as exact durations for particular “representative” 
examples run on particular hardware, which data isn’t ordinarily 
of much use for predicting behavior in future applications of 
components.   In [11], we introduced language mechanisms for 
including exact performance specifications within each realization 
for a given component.  We used an enhancement for a stack 
component to emphasize the important role of abstraction by 
showing that our approach permitted performance specification to 
be established without knowledge of how the stack component 
was implemented. 
 Subsequently we have found that there are important 
advantages to separating performance specifications not only from 
the component concepts but also from the realizations for the 
concept.  Since the functionality of a component can be employed 
independent of the performance characteristics of its various 
implementations, those various performance specifications 
obviously don’t belong in a component’s conceptualization, where 
all its functional characteristics are formally specified. The 
principal advantage of separating performance specifications from 
particular realizations is that it supports additional reuse of 
specifications.  As we’ve discovered, the performance of 
alternative implementations for a component often differs only in 
ways that can easily be parameterized in an appropriately abstract 
specification.  Such a separation of specifications also makes it 
easier to document the performance of hardware components that 
are often constituents of larger (embedded) systems. 

We introduce the profile then as a first class specificational 
construct for recording performance characteristics.  Profiles have 
the virtue of allowing the designer of a component 
implementation to summarize its expected performance in a 
concise form that masks implementation details.  At the same 
time, a prospective client for the functionality of the component 
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can use the profiles of its various implementations to select the 
one that best suits his performance objectives. 

Since a profile is to act as a performance contract between 
client code and implementation code, it should become an artifact 
of the software development process with an importance similar to 
that of a functionality specification contract for a component.  
This makes it an entity that is independent of top-down or bottom-
up development methodologies.  Typically, development of a a 
good profile demands simultaneous attention to the desires of the 
clients and to the possibilities open to the implementers, 
regardless of whether implementation or client code exists at the 
time.  In the same way that abstract specifications of functional 
behavior provide essential guideposts in development of modular 
component-based systems, profiles provide analytic yardsticks for 
checking the adequacy of system performance. 

Since a performance profile is of necessity expressed in the 
context of a functional specification, it is not surprising that 
performance specification and verification potentially involves 
every complexity that can arise in functionality specification and 
verification.  Moreover, since overall performance depends upon 
every detail of an implementation, its specification poses several 
new challenges.  One of them is to aggregate these details into 
simplified, abstract specifications so that that clients can keep 
their focus on the larger picture as they the higher level code.  
Another is to formulate expressions for the performance of 
generic components, since performance specifications for their 
parameters are not fixed when their profiles are written.  Our 
examples illustrate how to cope with all this complexity.  

2 A PROFILE EXAMPLE 
 In order to ensure the generality of our profile mechanism 
proposed in this paper, we have tested it by creating performance 
specifications for a variety of software components, including a 
layered component-based system which addresses the issue of 
scalability.   Since our objective here is to introduce the basic 
ideas in developing complete profiles that only make sense in the 
context of a thoroughly understood component, we will forego 
complexity of more sophisticated components and instead use the 
familiar generic stack component, as we did in [11].  For it, the 
functional specifications are given in Figure 1 in Resolve. 

  Concept Stack_Template( type Entry;  
          evaluates Max_Depth: Integer ); 
   uses String_Theory; 
  requires Max_Depth > 0; 
 Type_Family Stack ⊆ Str(Entry); 
  exemplar S; 
  constraints |S| ≤ Max_Depth; 
  initialization ensures S = Λ; 
 Operation Push( alters E: Entry; updates S: Stack ); 
  requires |S| < Max_Depth; 
  ensures S = 〈#E〉◦#S; 
 Operation Pop( replaces R: Entry; updates S: Stack ); 
  requires |S| > 0 ; 
  ensures #S = 〈R〉◦S; 
 Operation Depth_of( restores S: Stack ): Integer; 
  ensures Depth_of = ( |S| ); 
     M 
  end Stack_Template; 

Figure 1: Specification for a Stack_Template 

Figure 1 shows a formal, conceptual client view of a generic 
bounded Stack component, parameterized by the type of entries to 
be contained in stacks and the maximum depth to which a stack 
can grow.  (The evaluates mode is used to indicate that an 
expression may be passed as the maximum Stack depth.)  

The  Stack Template concept uses mathematical String 
Theory, a development of which is given in [20], to formalize 
stacks. The notation Type_Family is used where the stack 
formalization is introduced in order to highlight the generic nature 
of the concept by reminding that it involves a whole family of 
Stack types, which differ depending upon the particular Entry 
type and Max_Depth parameters supplied at the time of 
instantiation.   

The concept provides specifications of typical Stack 
operations, each specified by a requires clause (precondition), 
which is an obligation for all callers, and an ensures clause 
(postcondition), which is a result guarantee from any correct 
implementation.   

For example, the Pop operation updates the value of the stack 
parameter S by removing its top entry and using it to replace the 
value of the parameter R.  This result is guaranteed by the ensures 
clause #S = 〈R〉◦S once we know that #S refers to the previous 
value of S, that 〈R〉 is the single entry string containing R, and that 
◦ is the concatenate operation for strings.  The Clear operation 
gives stack S the initial stack value Λ (empty), and it gets this 
specification not based upon an ensures clause but instead based 
upon the clears parameter mode.   

The important point here is that, by conceiving of stacks as 
strings, it is possible to give a complete and coherent explanation 
of all of the operations on stacks.  Absolutely no reference to 
details of any particular implementation such as arrays, pointers, 
or linked lists is needed.  This hiding of client irrelevant 
information by reconceptualization of objects is an equally critical 
feature for any satisfactory performance specification mechanism. 

2.1 A Performance Profile for the Stack 
 In [11], we addressed the basic problems of adding 
performance specifications to realization code and of developing 
a reasoning system to verify that such specifications are accurate.  
That work was sound as far as it went and served as the basis for 
subsequent work on specification of performance properties in 
JML, and analysis of dynamic heap space usage in [1].  However, 
the earlier work doesn’t fully address the larger software 
engineering scalability concerns of separating out concise and 
comprehensible summaries of the performance of component 
implementations and of structuring them in such a fashion that 
they support the derivation of analogous specifications for large 
components produced as compositions of smaller ones.   Here we 
write performance specifications called profiles that represent a 
class of implementations, thereby removing these specifications 
from individual realizations, and remaining at a level of 
abstraction allowing for multiple realizations. 

Since some alternative implementations of generic concepts 
such as stacks provide substantively different performance trade-
offs, they will of necessity have different profiles.  The 
performance profile in Figure 2, named SSC, is suitable for a class 
of Stack implementations that are Space-Conscious, i.e., ones that 
consider space to be more important than time. The profile is 
written without making any assumptions about the generic type 
Entry or Max_Depth, and therefore, the expressions have to be 
compositional and presented in terms of these parameters.   
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One of the key elements in the specification of a profile that’s 
free of unnecessary implementation details, is the notion of a 
defines specification clause.  Whereas a typical (mathematical) 
definition provides an immediate definiens for its definiendum, 
the defines clause allows a profile to name a definiendum for use 
within the profile, but to defer to each implementation the 
provision of a particular definiens.  An implementation can then 
provide a specific definiens for each defines deferred 
definiendum based upon its exact code.  So the defines construct 
provides a second mechanism whereby profiles can achieve 
appropriate independence.  Whereas Entry and Max_Depth are 
traditional parameters whose values come down from clients, the 
deferred constants SSCI, SSCD, etc. seen here can be viewed as 
parameters whose values come up from implementations. 

A performance profile is intended to document the behavior of 
a class of implementations in terms understandable to clients of 
the concept and generally simpler than an exhaustive description 
of each implementation.  A profile provides the following 
information.  For each operation, there is a duration clause – a 
non-negative real number valued expression – that places a bound 
on the time taken by the operation in terms of the parameters 
supplied to the operation.   

For each operation, there is a manipulation displacement 
clause (abbreviated as manip_disp), a natural number valued 
expression that bounds the minimum additional space that is 
necessary to execute the operation above and beyond what is 
occupied by all objects currently in scope.  Since memory usage 
may increase and decrease during the execution of a complex 
procedure, this clause expresses the “high water mark” in terms of 
the parameters to the operations.  In order to use this information 
to determine whether there is enough space to execute the next 
call with a certain collection of arguments, a caller needs to be 
able to determine the space occupied by all current objects.  Thus, 
profiles for implementations that provide types (and therefore 
permit creation of objects) include a displacement clause – also a 
natural number – that describes how much space is used by a 
variable (e.g., a Stack variable), given its abstract value (a string 
of entries).  We begin the discussion with this clause, following 
Figure 2. 
Profile SSC short_for Space_Conscious for Stack_Template; 

  Defines  SSCI, SSCI1, SSCF, SSCPo, SSCPu, SSCC,  

SSCC1, SSCDp, SSCRC: ℝ≥0; 

  Defines  SSCD, SSCMI, SSCMF, SSCMPo, SSCMPu,  
SSC MC, SSCMDp, SSCMRC: ℕ; 

  Type_Family Stack; 

    Definition  Cnts_Disp( α: Str(Entry) ): ℕ =  

( ∑ ⋅α
Entry:E

(E)Entry.)E,Occurs_Ct( Disp ); 

  Displacement  SSCD  + Cnts_Disp( S ) + 

 (Max_Depth − |S|)⋅Entry.I_Disp;  

  Initialization; 

   duration  SSCI +  
       (SSCI1 + Entry.I_Dur)⋅Max_Depth; 
   manip_disp  SSCMI + Entry.IM_Disp +  
             (Max_Depth – 1)⋅Entry.I_Disp; 

  Oper Pop( replaces R: Entry; updates S: Stack ); 

   duration  SSCPo + Entry.I_Dur + Entry.F_Dur(#R); 

  manip_disp  SSCMPo +  
     Max( Entry.IM_Disp, Entry.FM_Disp(#R) ); 

 Oper Push( alters E: Entry; updates S: Stack ); 

  ensures Entry.Is_Init(E); 

  duration  SSCPu; 

     M 
end SSC; 

Figure 2: A Performance Profile 
  The Displacement Clause 
We note that the same ideas discussed here suffice whether or not 
stacks are bounded a priori, as also noted by Atkey[1].  For 
example, if the stack elements are allocated only when needed 
instead of initially in an array, then the displacement will be less 
and it would not include the last term seen here. However, to 
make our discussions concrete, we consider implementations that 
allocate and initialize an array of entries of size Max_Depth 
whenever a new Stack is created.  An implementation might use a 
simple representation such as the one shown below:   

 Type Stack = Record 
       Contents: Array 1..Max_Depth of Entry; 
       Top: Integer 
     end; 

Within this context, one class of implementations can be 
characterized as placing high priority on minimizing space usage 
for a Stack variable, by following a space-conscious convention 
(or representation invariant): All entries in array locations beyond 
those that correspond to the conceptual stack value are kept 
initialized.  For a stack containing complex objects such as trees, 
for example, this convention leads to minimal space usage 
because unused array locations contain only empty trees instead 
of arbitrary trees.   

Though we have divulged the representation details above in 
order to provide a concrete example for readers of this paper, a 
performance profile must be understandable to users based only 
upon the mathematical conceptualization of stacks as strings as 
given in Figure 1.  Accordingly, the displacement clause in this 
performance profile expresses the space occupied by a stack S 
using only its abstract string value: 
     Displacement SSCD + Cnts_Disp( S ) +  

(Max_Depth − |S|)⋅Entry.I_Disp;  
There are three terms in this expression.  The first term is the 

constant SSCD, and it represents the fixed space overhead in any 
Stack object (e.g., an Integer index into the array that is used to 
keep track of the current top).  The actual definition for this 
constant is implementation-specific and will be specified within 
the implementation; the profile merely provides a placeholder for 
this constant and others by listing them in the defines clause.  The 
second term captures the space occupied by the entries that have 
been pushed onto a stack.  To express this term, we have 
introduced a locally defined contents displacement function 
Cnts_Disp(S), which totals for each entry E in a stack S its 
displacement Entry.Disp(E) times Occurs_Ct(E, S), the number of 
times E occurs in S. 
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The last term in the displacement expression is the product 
(Max_Depth − |S|)⋅Entry.I_Disp), and it accounts for the space 
taken by unused array entries (all of which are assumed by this 
profile to have initial values).  Here, Entry.I_Disp denotes the 
space used by an entry with an initial value.  Using the given 
expression, it is easy to see that for an empty stack with abstract 
string value Λ, the displacement Stack.Disp(Λ) becomes  
SSCD  + Max_Depth⋅Entry.I_Disp.   

 
  Specification of Initialization 

In the class of implementations under discussion here, when a 
Stack variable is initialized, Max_Depth number of entries are 
created and initialized.  Therefore, initialization duration includes 
the factor Entry.I_Dur⋅Max_Depth, which is the product of the 
duration for initializing a variable of type Entry, i.e., Entry.I_Dur 
and Max_Depth, the number of entries to be initialized.  The 
expression includes additional constant overhead per entry, 
denoted by SSCI1, as well an overall constant overhead denoted 
by SSCI.  The actual definitions for these implementation-specific 
constants will be given in the implementations.  (If the Stack 
elements are allocated only when needed instead of using an 
array, then initialization will take a constant time, and the cost of 
object creation will be moved to the Push operation.) 

The initialization manip_disp clause expresses the minimum 
storage space necessary to create a new stack variable.  Recall 
that Entry.I_Disp denotes the space taken by an entry with an 
initial value.  To create a Stack representation with Max_Depth 
initial entries, the necessary displacement is roughly 
Entry.I_Disp⋅Max_Depth.  The expression given in the profile 
differs slightly because the procedure to create an initial entry 
might need more space than what is strictly necessary for storing 
an initial entry.  This would be the case if Entry is a non-trivial 
type, and creating an initial value for it requires creation and use 
of other local variables.  Therefore, suppose that Entry.IM_Disp 
denotes the manipulation space necessary for initial entry 
creation.  Then the highest watermark in space usage during Stack 
initialization occurs when Max_Depth − 1 new entries have been 
created and the Entry initialization operation is being invoked to 
initialize the last entry.  Therefore, this is the minimum space 
necessary to initialize a new Stack.  The expression includes an 
implementation-specific constant as well.  

 
  Specification of Pop 
To explain the expressions for Pop, we consider the following 
code that might have been written for a space-conscious 
implementation.  
 Procedure Pop( replaces R: Entry; updates S: Stack ); 
  Var Fresh_Val: Entry; 
  R :=: S.Contents(S.Top); 
  S.Contents(S.Top) :=: Fresh_Val; 
  S.Top := S.Top − 1; 
 end Pop; 

In this implementation, we have used the swap operator “:=:”, 
instead of assignment, to move Entry values and to access array 
contents.  The reasoning and efficiency advantages of swapping 
over reference assignment and representation assignment of 
arbitrary entries, respectively, are discussed in detail elsewhere 
[8]:  Swapping enables reasoning without introducing aliasing; its 
implementation is efficient because compliers can represent large 

objects internally using references and merely exchanging the 
references in constant time.  (If entries are copied, then the same 
principles of specifying performance expressions would still be 
adequate, except that the performance expressions need to 
account for copying.) 

The second swap statement in the code is necessary to satisfy 
the space-conscious convention.  By declaring a local Entry 
variable (which is automatically initialized) in the Pop procedure 
and swapping it into the array, we make sure that the arbitrary 
entry R that might have been supplied as the incoming parameter 
to Pop does not go into the array and violate the convention.  At 
the end of the code, the local variable that then contains the 
incoming value of parameter R is released or finalized.  The 
performance specification of Pop is expressed in user-oriented 
terms in the profile: 
       Operation Pop( replaces R: Entry; updates S: Stack ); 

  duration  SSCPo + Entry.I_Dur + Entry.F_Dur(#R); 

  manip_disp SSCMPo +  
     Max( Entry.IM_Disp, Entry.FM_Disp(#R) ); 

The duration expression includes the time to initialize a new 
Entry variable.  Finalization depends on the Entry that is 
finalized, and thus, the time to finalize is given in terms of the 
incoming value of parameter R.  The definition for the deferred 
constant SSCPo in the duration expression for Pop code is given 
internally in each implementation.  For the present example, it 
might be defined as:   
Definition SSCPo: ℝ≥0 = DurCall(2) + 2⋅Array.Dur:=: +  

   6⋅Record.Dur. + Int.Dur:= + Int.Dur− ; 
This constant includes the time to call a procedure with 2 

parameters, denoted by DurCall(2), array and record accesses, and 
Integer operations.  This definition is relegated to the 
implementation because it provides too much information to 
include in a profile for clients and it is expressed in terms of 
implementation details that should not be visible to them.  Placing 
the definition in the profile, in addition to hard wiring it, would 
seriously compromise information hiding and hinder modularity 
in reasoning. 

How much space is necessary to call Pop beyond what is 
already taken up by its parameters?  It is the maximum of the 
displacement necessary to initialize a new variable, i.e., 
Entry.IM_Disp (Entry initialization manipulated displacement) or 
finalize the incoming parametric entry, i.e., Entry.FM_Disp(#R).    

One other aspect of interest in the performance profile is the 
additional ensures clause for the Push operation.  In particular, 
using the predicate Entry.Is_Init(E) that is true only if E has an 
initial Entry value1, the ensures clause tells a user that E will be 
initialized after a call to Push(E, S).  While this information, 
which appears only in the performance profile, cannot be used by 
a client program in establishing functional correctness, it can be 
used for reaching displacement/duration conclusions, as 
illustrated in Section 3.  Unlike Pop, the Push and Depth_of 
procedures have constant performance expressions.   

Performance profiles are useful for component clients, 
enabling them to select prudently from among a variety of 
                                                                 
1 We use a predicate here instead of asserting E = Entry.Init or 

equivalent, because initializations may be specified to give an 
object one of many initial values.   
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implementations for a particular concept that provide interesting 
performance trade-offs.  They are also important for independent 
development and modular analysis of component-based systems 
in the same way that abstract specifications of functional behavior 
are useful.  For example, performance of other components that 
reuse the Stack concept can be derived from the performance 
profile of the chosen Stack implementation.  To illustrate how 
profiles for a component built on other components can be 
presented parametrically, we analyze code for a component built 
on Stack objects and operations.  The example specification for a 
Flip operation to invert a stack is given below.  It is an 
enhancement or conceptual extension to the Stack_Template 
described previously. In the ensures clause, Rev denotes the 
mathematical string reversal operator. 
Enhancement Flipping_Capability for Stack_Template; 

  Operation Flip( updates S: Stack ); 

   ensures S = #SRev; 

end Flipping_Capability; 
 

 2.2 Profile Specification of Flip 
A given implementation of Flip may exhibit different 
performance behaviors, depending on the profile of the Stack 
implementation that is used in conjunction with Flip.  It becomes 
possible to express this performance dependence of one 
component upon another quite elegantly, if profiles are available 
as first class constructs in a language.  To illustrate how this is 
done, we show profile SSCF for Flip based on the SSC profile of 
Stack_Template.   

Profile SSCF short_for Space_Conscious_Stack_Flip for  

  Flipping_Capability for Stack_Template with_profile SSC; 

 Defines  SSCFF1, SSCFF2: ℝ≥0;  

 Defines  SSCFFMC1, SSCFFMC2: ℕ;  

      Operation Flip( updates S: Stack ); 

 duration SSCFF1 + Entry.I_Dur + Stack.I_Dur +  
   Entry.F_IV_Dur + Stack.F_IV_Dur +  

     (SSCFF2 + Entry.I_Dur + Entry.F_IV_Dur)⋅|#S|; 

 manip_disp (SSCFFMC1 + Entry.I_Disp + Stack.I_Disp) +  

        Max( SSCFFMC2, Entry.IM_Disp, Entry.F_IVM_Disp 
); 

end SSCF; 
  The abstract performance specifications in the profile above 
are given in terms meaningful to clients of the 
Flipping_Capability.   In particular, the profile of Flip can be 
understood, without knowing any implementation details of either 
the Stack_Template or the Flipping_Capability enhancement. 
  To motivate the specifics of the particular performance 
expressions in the profile, we consider a concrete implementation 
of Flip in this subsection.  The implementation contains concrete 
definitions for constants used in the SSCF profile, such as SSCFF1 
and SSCFF2.  The loop is annotated with the maintaining (loop 
invariant) and decreasing (progress metric) clauses necessary for 
an automated system to prove that the code satisfies its functional 
specification for flipping the Stack.  In addition, the loop 
specification includes elapsed time and manipulated 

displacement expressions [11] needed to prove the correctness of 
the code with respect to its performance profile.   
  Due to space constraints, we present and analyze just the 
timing-related assertions.  Since the code for Flip relies only on 
the specification of operations in the Stack_Template and not on 
any particular implementation, modular reasoning about the 
functional correctness of the code can be done regardless of the 
Stack implementation chosen.   
  
Realization Obvious_F_C_Realiz for Flipping_Capability  

with_profile SSCF of Stack_Template with_profile SSC; 

 Definition SSCFF1: ℝ≥0 = ( DurCall(1) + ( SSCDp + Int.Dur≠ )  
            + Dur:=:  ); 

 Definition SSCFF2: ℝ≥0 = ( SSCDp + Int.Dur≠ + SSCPo +  
               SSCPu  ); 

 Definition SSCFFMC1: ℕ =  L 

 Definition SSCFFMC2: ℕ =  L 
  Procedure Flip( updates S: Stack ); 

 Var Next_Entry: Entry; 

  Var S_Flipped: Stack; 

  While ( Depth_of( S ) ≠ 0 ) 

   affecting S, S_Flipped, Next_Entry; 

   maintaining #S = S_FlippedRev ◦ S and  
              
Entry.Is_Init(Next_Entry); 

   decreasing |S|; 

   elapsed_time ( SSCFF2 + Entry.I_Dur +  
       Entry.F_IV_Dur )⋅|S_Flipped|; 

   manip_disp  L 
    do 
   Pop( Next_Entry, S ); 
   Push( Next_Entry, S_Flipped ); 

  end; 
  S :=: S_Flipped; 

 end Flip; 

end Obvious_F_C_Realiz; 

2.3 Durational Analysis of Flip 
 The duration expression for Flip, in addition to a constant 
term SSCFF1, has three parts: duration for local variable 
initialization, for local variable finalization, and for loop 
execution. First we assume that a Stack component with profile 
SSC is used.  The duration expression to initialize the two local 
variables – an entry and a stack – is straightforward, and it is the 
sum of Entry.I_Dur and Stack.I_Dur.  Unlike initialization, the 
time for finalization of the two local variables depends on the 
values of the local variables at the time of finalization.  Therefore, 
we need to understand what their values would be at the end of 
the code.  Here, the Stack S_Flipped that is finalized is empty, 
because S is empty just before the swap statement.  Therefore, the 
duration expression also includes the term Stack.F_IV_Dur – the 
time to finalize a stack with initial value.  The local variable 
Next_Entry also has an initial value just before finalization.  To 
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see why, notice that the loop maintains the invariant 
Entry.Is_Init(Next_Entry), based on the extended ensures clause 
for the Push operation in the profile SSC, which in our version of 
Stack, guarantees that after Push the parametric Entry is 
initialized.  Therefore, the duration of finalizing the Entry at the 
end of the code is Entry.F_IV_Dur – the time to finalize an entry 
with an initial value.  
 The loop executes |#S| times.  The time for each iteration 
includes a constant term arising from calls to Depth_of, Push, and 
the loop branching activity.  In addition, we note from the SSC 
profile that every call to Pop(R, S) takes time SSCPo + 
Entry.I_Dur + Entry.F_Dur(#R).  In the code given above, the 
Next_Entry that is supplied to Pop is the entry resulting from the 
previous to call to Push.  Since the ensures clause for Push in SSC 
profile guarantees that Push initializes its Entry parameter, we are 
guaranteed that Pop is only supplied initial entries in every call. 
Therefore, Pop needs to finalize only initial entries and the time 
for each call to Pop simplifies to SSCPo + Entry.I_Dur + 
Entry.F_IV_Dur.   Given these considerations and the matching 
definitions of constants SSCFF1 and SSCFF2, the elapsed time 
estimate for the loop is documented in the implementation as: 

  (SSCFF2 + Entry.I_Dur + Entry.F_IV_Dur)⋅|S_Flipped| 

2.3 Validity of the Elapsed Time Estimate  
This elapsed time estimate is used in proving the performance 
correctness of Flip.  A part of the proof that verifies that the given 
elapsed time estimate is valid is given in the table below. 

State 
 

Path  
Condition 

Assume Confirm 

While ( Depth_of( S ) ≠ 0 ) 
 affecting S, S_Flipped, Next_Entry; 
 maintaining #S = S_FlippedRev◦S and  
                                                            Entry.Is_Init(Next_Entry); 
 decreasing |S|; 
 elapsed_time ( SSCFF2 + Entry.I_Dur +  

                                                     Entry.F_IV_Dur )·|S_Flipped|; 
  do 

2 |S2| ≠ 0 Entry.Is_Init(Next_Entry2) ∧  
ET2 = (SSCFF2 + Entry.I_Dur +  
Entry.F_IV_Dur)·|S_Flipped2| L 

 

L 

       Pop (Next_Entry, S); 

3 |S2| ≠ 0 S2 = S3◦<Next_Entry3> ∧ 
S_Flipped3 = S_Flipped2 ∧ 
ET3 = ET2 + (SSCPo +  
           Entry.I_Dur +  
    Entry.F_Dur(Next_Entry2)) L 

 

L 

       Push (Next_Entry, S_Flipped); 

4 |S2| ≠ 0 Entry.Is_Init(Next_Entry4) ∧   
S4 = S3 ∧ S_Flipped4 =  
       S_Flipped3◦<Next_Entry3> ∧ 
ET4 = ET3 + SSCPu L 

 

L 

Confirm ET4 =  
       (SSCFF2+ Entry.I_Dur +  Entry.F_IV_Dur)·|S_Flipped4| ∧ L 

end; 

The table shows only a part of an inductive proof: verification 
conditions corresponding to the inductive potion of the proof to 
confirm the invariance of the elapsed time estimate.  In the table, 
which is based on [26]], we assume at the beginning of the loop 
(numbered state 2 in the figure) the elapsed time estimate holds.  
We then confirm at the end of the loop (state 4) that the estimate 
when evaluated there is correct.  The assumptions in states 3 and 4 
come from the functional and performance specifications of 
operations Push and Pop.  Variable names are subscripted with 
the state number to distinguish their values in different states.  The 
verification variable ET stands for the elapsed time.  Given the 
assumptions, a verifier can conclude that ET4 satisfies its equation 
if ET2 satisfies its equation.  We have omitted the base case for 
the inductive proof, assertions outside the loop, and functionality-
related assertions, not necessary for the above proof. 

3.  SCALING UP 
Two important scalability questions arise in generalizing the 
utility of the profile construct:  

1. Can profiles for layered components be expressed 
abstractly?   

2. How complicated will profiles get when components 
are used to put together a layered system? 

To address these questions we designed and specified a spanning 
forest component that we built using a prioritizer and a 
coalescable equivalence relation component, among others, and 
specified all components fully for both functionality and 
performance.   

We answer the first question affirmatively noting that it was 
possible to write a fully descriptive profile for the top layer of the 
system without filling in the details for the components upon 
which it was layered. 

The second question is one of concern, since the stack example 
may give the impression that the number of lines of specifications 
in a profile may approach the number of lines of executable code.  
However, we note that the stack component has an unusually 
small number of lines of code, and that the complexity of the 
profile is dominated by its parameterization.  Moreover, although 
it may seem counter-intuitive, it turns out that when layering up, 
the profile for a higher-level component is usually no longer than 
that for a lower level one, while the aggregate number of lines of 
executable code grows considerably.  For example, in the case of 
the spanning forest, the ratio of lines of performance specification 
to executable code is closer to one to three, rather than one to one, 
indicating that the depth of layering in a system is not an indicator 
of the need for longer profiles. 

Our research has also shown that the profile construct is 
essential for documenting concisely the various performance 
specifications of a layered component, such as the spanning forest 
component, that result when alternatives are considered for the 
performance of a constituent component such as the prioritizer. 

4. RELATED WORK AND DISCUSSION 
 The importance of performance considerations for software 
engineering (e.g., [4], [14], [17]), in general, and for software 
components, in particular, has been widely acknowledged.  
Designers of languages and developers of component libraries 
have emphasized the need for alternative implementations in order 
to provide performance trade-offs [3], [16], [18].  The importance 



 9

of generic programming and of alternative implementations is 
being increasingly recognized, as is evident from the evolving 
designs of C#, C++, and Java.   
 In order for component users to choose from multiple 
implementations and analyze performance of component-based 
systems in a modular fashion, a formal system for performance 
specification is necessary. Balsamo, et al., in surveying various 
efforts in performance analysis [2], note that “Although several of 
these approaches have been successfully applied, we are still far 
from seeing performance prediction integrated into ordinary 
software development” and conclude that one of the unresolved 
problems is the lack of software notations that allow for easily 
expressing performance.  The profile construct proposed here for 
extending specification (and programming) languages to support 
specifying performance is a contribution to integrating 
performance considerations into software development. 

A general performance specification system should be flexible, 
allowing specifiers to express performance in terms of 
abstractions that are appropriate for the problem at hand.  This 
emphasis on abstraction and generic components in specifying 
both time and space usage of components also makes the ideas 
discussed in this paper quite different from the work in the real-
time community (e.g., [7], [23]) where timing deadlines and 
concurrency are the focus.   

Expression of tight timing constraints is an active area of 
research [6], [15].  Elsewhere, we have detailed how the 
expressiveness issues that arise in tight specification of 
performance at the source code level can be addressed using 
intermediate abstraction models [28].  

Hehner has built on the work of Shaw [22], to formalize time 
and space analysis of a recursive procedure at the source code 
level [9].  Our earlier work and the work of Schmidt and 
Zimmermann [21] have considered space complexity issues for 
components.  Working within the context of functional programs 
Unnikrishnan, et al. and Hofmann and Jost have addressed issues 
in bounding the space usage of functional programs under various 
assumptions using program-level source code analysis [10], [27].  
Ultimately, compositional performance analysis needs to be 
combined with advances in verification of functional behavior in 
the presence of data abstractions (e.g, [5], [19], [25], [26]) 
because assertions from functional correctness are necessary for 
establishing performance correctness.   

We have introduced profiles as a first class language construct 
for modular specification and analysis, providing a vocabulary for 
stating time and space constraints.  The construct supports both 
generics and compositionality. Based on the construct, as Atkey 
[1] has shown recently, mechanisms for other behavioral 
specification language and implementation language 
combinations can be developed, provided the particulars of the 
language features are carefully accommodated in specifications.    
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