
25

Early Detection of JML Specification Errors
using ESC/Java2

Patrice Chalin
Dept. of Computer Science and Software Engineering,

Dependable Software Research Group, Concordia University
1455 de Maisonneuve Blvd. West, Montréal

Québec, Canada, H3G 1M8
chalin@cse.concordia.ca

ABSTRACT
The earlier errors are found, the less costly they are to fix. This
also holds true of errors in specifications. While research into
Static Program Verification (SPV) in general, and Extended Static
Checking (ESC) in particular, has made great strides in recent
years, there is little support for detecting errors in specifications
beyond ordinary type checking. This paper reports on recent en-
hancements that we have made to ESC/Java2, enabling it to report
errors in JML specifications due to (method or Java operator)
precondition violations and this, at a level of diagnostics that is on
par with its ability to report such errors in program code. The
enhancements also now make it possible for ESC/Java2 to report
errors in specifications for which no corresponding source is
available. Applying this new feature to, e.g., the JML specifica-
tions of classes in java.*, reveals over 50 errors, including incon-
sistencies. We describe the adjustment to the assertion semantics
necessary to make this possible, and we provide an account of the
(rather small) design changes needed to realize the enhancements.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
programming by contract; D.3.3 [Programming Languages]; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs.

General Terms
Documentation, Design, Languages, Theory, Verification.

Keywords
Java Modeling Language, JML, Extended Static Checking,
Precondition Errors, Specification Debugging.

1. INTRODUCTION
It is well appreciated that the earlier in a product’s lifecycle

that an error is detected, the less costly it will be to correct. This
has motivated considerable research in the area of Static Program
Verification (SPV) so that today, a variety of approaches and tools
are becoming available to developers. In fact, developers can
already make routine use of tools that effectively eliminate certain
classes of error. One promising technological approach to SPV is
Extended Static Checking (ESC) [11]. ESC tools, like ESC/Java2
[7] and Spec#’s Boogie [8], offer fully automated checking of
code against specifications. Despite the fact that automation is
achieved at the expense of completeness and/or soundness, in
practice, the tools are still quite effective at revealing coding er-
rors.

Unfortunately, there is an important lacuna: SPV tools offer
no support for the detection of errors in specifications beyond
conventional type checking. But writing error free specifications
is just as hard as (if not harder than) writing correct code, hence
tool assistance would be welcome. Specifications containing er-
rors can cause problems: e.g., consider a situation where a method
m has a specification (contract) c containing errors, then
1. A developer can waste time trying to get an ESC tool to prove

that m satisfies c. Anyone who has used a verification tool is
likely to have had this experience; i.e. being convinced that the
specification (or theorem) is correct, one persists in trying to
get the verifier to agree, only to realize, in all humility, that the
tool was right, and that the specification was in error.

2. The ESC tool is able to prove that m satisfies c. This merely
delays the discovery of the error (in both the specification and
the implementation) until a later lifecycle phase. As a result,
the error will be more expensive to correct.

3. In the worst case, c is inconsistent. Hence, any invocation of m
in the code would amount to asserting falsehood, from which
the verifier can trivially prove anything. For example,
ESC/Java2 would be able to prove the assertion following a
call to m:
 m();

 //@ assert 0 == 1;

One might remark that: “if c is inconsistent, would ESC/Java2
not report an error in any attempt to prove that the implementa-
tion of m satisfies c?” Yes, but this assumes that the source for
m is available, which is not the case, .e.g., for third party librar-
ies distributed in binary form.

In all three situations mentioned above, any assistance provided in
the early detection of specification errors would avoid loss of time
or the increased cost associated with fixing the error at a later

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Fifth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2006). November 10-11, 2006,
Portland, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11 … $5.00.

26

stage. Note that the errors reported by ESC tools can be parti-
tioned into two categories:
• errors due to a precondition violation, be it for operators of

the Java language or class constructors and methods. Com-
mon examples of the former include null pointer exceptions
and array index-out-of-bound errors.

• correctness issues—when a constructor or method
implementation fails to meet its specification.

There is an order to this categorization since it only makes sense
to discuss correctness issues once precondition errors have been
resolved. While it is not possible for ESC tools to identify
correctness errors in specifications1, it can be done for precondi-
tion violations.

Building upon our earlier work [4, 5], this paper reports on a
recent feature enhancement—called definedness checking—
that we have made to ESC/Java2, enabling it to report errors in
specifications due to precondition violations at a level of diagnos-
tics that is on par with its ability to report such errors in program
code. (This work is actually being done as a first step in a two
part enhancement plan, the second of which—support for consis-
tency checking—will be the subject of a subsequent publication.)

To our knowledge, ESC/Java2 is the first static program veri-
fication tool to offer such definedness checking. Hence, e.g.,
ESC/Java2 now diagnoses in specifications, just as easily as in
source code, one of the most common programming errors, null
pointer exceptions (NPEs). Since specifications are often created
by the same developers who write the corresponding code, NPEs
in specifications are just as likely to occur.

Another important related enhancement made to ESC/Java2
includes its ability to report errors in specifications for which
no corresponding source is available (recall that ESC/Java2 for-
merly only checked source code relative to its interface specifica-
tions). This key enhancement now permits checking of the com-
prehensive collection of public library API specifications shipped
with ESC/Java2. Identifying and correcting bugs in API
specifications is significant since it can positively impact all de-
velopers who make use of them—and, as we shall illustrate in
Section 2.2, errors in API specifications can have serious conse-
quences. The enhancement also enables better support for those
development groups who follow the practice of writing interface
specifications prior to writing code.

The remaining sections are organized as follows. Section 2
presents examples of specifications that at first appear to be cor-
rect, or that have been in use for several years now, and yet con-
tain serious flaws including inconsistencies. The examples serve
to motivate the addition of definedness checking to ESC/Java2
since prior to this enhancement, the tool was theoretically incapa-

1 It might be possible in the Java Modeling Language (JML) since it

supports specification refinement, but this is a seldom used feature
which is in fact not common to the languages used by ESC tools.

ble of detecting such errors. We explain the nature of this
incapacity in Section 3 by briefly describing the former logical
underpinnings of the tool (inherited from the Java Modeling Lan-
guage) as well as the new assertion semantics that make defined-
ness checking possible. Section 4 explains the basic mode of
operation of ESC/Java2 by decomposing it into processing stages.
This allows us to explain how support for definedness checking
required changes to only one of the processing stages. In Section
5, we answer the question, “better diagnostics, but at what cost?”
Related work is discussed in Section 6, while we offer conclu-
sions and mention future work in Section 7.

2. MOTIVATING EXAMPLES

2.1 MYUTIL/PAIRSUM
As a first example, consider the following scenario. Assume

that a friend, who is a formal methods aficionado, provides you
with a copy of her MyUtil class. Of course, being sympathetic to
the cause, she also provides you with the interface specification
given in Figure 1. The utility class provides two methods, one
that returns the minimum length of its two argument arrays, and
the other which returns the sum of the integer elements of an ar-
ray, up to, but not including a given index.

Eager to make use of the functionalities of MyUtil, you write a
method that will compute the pair wise sum of two arrays, up to
the length of the shorter of the two arrays. See Figure 2. Invok-
ing ESC/Java2 on MyUtil.jml and PairSum.java yields no error
messages, and yet execution of PairSum.main() raises a null
pointer exception. We will defer until Section 3.2 a technical
discussion explaining why ESC/Java2 “believes” that no excep-
tions should have been raised by PairSum. For now, suffice it to
say that rerunning ESC/Java2 with definedness checking enabled,
easily reports:
MyUtil: minLen(int[], int[]) ...

MyUtil.jml:3: Warning: Possible null dereference

 //@ java.lang.Math.min(a1.length, a2.length);

 ^

[0.062 s 12135232 bytes] failed

What is the source of the problem? Intuitively we can understand
that the specifications of minLen() and sumUpTo() are in a sense,
incomplete. E.g., the method contract of minLen() does not pre-
vent it from being called with null arguments, and yet under such
circumstances, the interpretation of the postcondition does not
make sense due to precondition errors.

2.2 API SPECIFICATIONS FOR JAVA.UTIL.*

public class MyUtil {

 //@ ensures \result ==

 //@ java.lang.Math.min(a1.length, a2.length);

 public static int minLen(int[] a1, int[] a2);

 //@ requires n <= a.length;

 //@ ensures \result ==

 //@ (\sum int i; 0 <= i && i < n; a[i]);

 public static int sumUpTo(int[] a, int n);

}

Figure 1. Interface specification, MyUtil.jml.

public class PairSum {

 public static int pairSum(int[] a, int[] b) {

 int n = MyUtil.minLen(a, b);

 // Commutativity of addition allows us to use sumUpTo twice …

 return MyUtil.sumUpTo(a, n) + MyUtil.sumUpTo(b, n);

 }

 public static void main(String[] args) {

 int[] a = null;

 int sum = pairSum(a, a);

 }

}

Figure 2. PairSum class (using MyUtil).

27

Somewhat disgruntled, you decide not to use MyUtil and in-
stead favor the more reliable java.util.* classes. Thankfully,
ESC/Java2 comes with API specifications for these classes,
among others.

Unfortunately, other problems arise as well. Consider the
code given in Figure 3. The ArraysBug class contains three meth-
ods that exercise the functionality of the java.util.Arrays.-
sort() methods. The contract for ArraysBug.m0() states that the
only behavior which m0() can have is to return a null pointer ex-
ception. Following a common ESC idiom, we have added an
“assert false” statement at the end of the method body to indi-
cate that flow control should never reach that point. In this exam-
ple though, such a statement is superfluous since the contract of
m0() mandates that it always return exceptionally—i.e., an
exceptional_behavior case implicitly adds an “ensures false”
clause. Similarly, the contract for m1a() states that calling it

always raises an index out of bounds exception. Finally, the con-
tract for m1b() is inconsistent—i.e. while it has an implicit pre-
condition of true, both its normal and exceptional postconditions
are unsatisfiable.

While ESC/Java2 can prove the correctness of m0() and
m1a(), it is also able to prove m1b()! Since, the contract of m1b()
is unimplementable, the only way in which ESC/Java2 can
“prove” that the body of m1b() satisfies it, is if the specification of
java.util.Arrays.sort(int[],int,int) is inconsistent. An
excerpt of the specification of java.util.Arrays.-

sort(int[],int,int) is given in Figure 4. The method contract
has only two specification cases. What is the source of the prob-
lem this time? With definedness checking enabled, we find that
ESC/Java2 is unable to prove that the array element access at (*)
is within the bounds of the array. Inspection of the contract re-
veals that this is because the first specification case has no re-
quires clause placing bounds on fromIndex or toIndex. Adding
as a precondition, the obvious constraints on these two parame-
ters, allows ESC/Java2 to prove that ArraysBug.m1b() cannot
meet its specification. (For lack of space we do not discuss the
nature of the inconsistency here, we merely note that the added
requires clause guards the particular call made to sort() by m1b()
from the source of the inconsistency.)

2.3 OTHER API SPECIFICATION ERRORS
Performing definedness checks on all of the java.* API

specifications reveals about 50 errors related to potential null
pointer exceptions and array out of bounds errors—since these are
the only checks currently implemented, we anticipate that more
errors will be found as we increase the definedness coverage of
the tool. (Use of definedness checking also exposed a bug in
ESC/Java2’s handling of specification inheritance—cf. bug#430.)

ESC/Java2 also reports bugs in the implementation of model
methods such as the one given in Figure 5. Asking ESC/Java2 for
counter examples eventually allows us to deduce that digitVal()
will fail to satisfy its postcondition for ch in the small range of
4970 ≤ ch ≤ 4975.

We believe that the examples given in this section clearly il-
lustrate the benefits of the new definedness checking that has been
added to ESC/Java2.

public class ArraysBug {

 //@ public exceptional_behavior

 //@ signals_only NullPointerException;

 void m0() {

 java.util.Arrays.sort((int[]) null);

 //@ assert false; // this point is never reached
 }

 //@ public exceptional_behavior

 //@ signals_only ArrayIndexOutOfBoundsException;

 void m1a() {

 java.util.Arrays.sort(new int[]{1,2}, -1, 99);

 }

 //@ public behavior

 //@ ensures false;

 //@ signals_only ArrayIndexOutOfBoundsException;

 //@ signals (Throwable) false;

 void m1b() {

 java.util.Arrays.sort(new int[]{1,2}, -1, 99);

 }

}

Figure 3. ArraysBug.java.

/*@ public normal_behavior

 @ requires a != null;

 @ assignable a[fromIndex..toIndex-1];

 @ ensures (\forall int i;

 @ fromIndex < i && i < toIndex;

 @ a[i-1] <= a[i]); // (*)

 @ ... // more ensures clauses here

 @ also

 @ public exceptional_behavior

 @ requires a == null || fromIndex > toIndex

 @ || fromIndex < 0 || toIndex > a.length;

 @ assignable \nothing;

 @ signals_only NullPointerException, IllegalArgumentException,
 @ ArrayIndexOutOfBoundsException;
 @ signals (NullPointerException) a == null;

 @ signals (IllegalArgumentException) fromIndex > toIndex;
 @ signals (ArrayIndexOutOfBoundsException) fromIndex < 0;
 @ signals (ArrayIndexOutOfBoundsException)

 @ a != null && toIndex > a.length;

 @*/

public static void

 sort(int[] a, int fromIndex, int toIndex);

Figure 4. java/util/Arrays.refines-spec.

/*@ public normal_behavior

 @ ensures -1 <= \result && \result <= 9;

public static model pure int digitVal(char ch)

{

 if (!java.lang.Character.isDigit(ch)) {

 return -1;

 } else {

 int val = ch;

 // Determine the base (0 value) depending on the type of digit …

 if (val <= 0x06F9 || val >= 0x0E50)

 base = val & 0xFFF0;

 else

 base = ((int)(val - 6) & 0xFFF0) | 0x0006;

 // convert to a value between 0 and 9 inclusive
 return (int)(val - base);

 }

} @*/

Figure 5. Model method defined in java/lang/Character.jml.

28

3. SUPPORTING DEFINEDNESS CHECKING

3.1 BACKGROUND
ESC/Java2 can analyze Java source files annotated with speci-

fications written in the Java Modeling Language (JML). At a
minimum, JML can be seen as an extension to Java that adds sup-
port for Design by Contract (DBC) [22, 28], though it has more
advanced features—such as specification only class attributes,
support for frame axioms, and behavioral subtyping—that we
believe are essential to writing complete interface specifications
[6].

In the spirit of DBC, JML specifications are expressed via
program assertions embodied in class invariants, as well as con-
structor and method contracts expressed using pre- and post-con-
ditions. In the next section, we describe the logical semantics of
JML assertions. This will enable us to explain why ESC/Java2
was unable to prove that the PairSum program would cause ex-
ceptions to be generated at runtime.

3.2 JML’S CLASSICAL ASSERTION SEMANTICS
As is common in Behavioral Interface Specification Lan-

guages (BISLs) like JML, assertions are traditionally interpreted
as formulae in a classical two-valued logic in which partial func-
tions are modeled by underspecified total functions [3]. Hence,
when a partial function f : A → B with domain D ⊆ A is applied to
a value v outside of D, then f(v) is nonetheless assumed to have
some value in B, though we do not know which value it is.

Returning to the MyUtil/ PairSum example of Section 2.1, we
can now understand that under such a semantics, minLen(null,
null) has the (well-defined2) value of null.length—whatever
particular int value it might be. While ESC/Java2 is checking the
body of the pairSum() method, it assumes that the local variable n
gets assigned the value of null.length. Next, ESC/Java2 checks
that the precondition of sumUpTo() is satisfied. Recall that the
precondition is: n <= a.length. Since a is null and n is equal to
the value of null.length, the expression reduces to true, hence
the precondition holds. As a consequence, ESC/Java2 has no
errors to report.

3.3 NEW ASSERTION SEMANTICS BASED ON
STRONG VALIDITY

Backed by a survey of industrial software developers [3], we
recently proposed a new logical foundation for JML in which
partiality is modeled directly [4, 5] rather than approximated via
under-specification [12]. While we will not go into the details
here, in essence, we proposed that a JML assertion be considered
valid iff it is both
• defined, and
• true.
Hence, assertion failure can result either from undefinedness or
evaluation to false. It is useful to distinguish between these two
cases of assertion failure in practice, as we will explain in the next
subsection. Technically speaking, this newly proposed definition
of assertion validity is what Konikowska et al. call strong validity
[19]. This is in contrast to classical validity, currently adopted by
all BISLs, including JML. Key to the definition of strong validity
is the so-called “is-defined” operator which we will describe in
Section 3.5 after a short remark about blame assignment.

2 It is well-defined relative to the classical assertion semantics of JML.

3.4 RESPONSIBILITY / BLAME ASSIGNMENT
The disciplined use of assertions in the context of Design By

Contract (DBC) [28, 29] also naturally gives rise to the concept of
responsibility assignment. Hence, for example, the client of a
method has the responsibility of ensuring that the method’s pre-
condition holds before invoking it. In return, when a method is
called under these circumstances, it commits to respecting its
postcondition. When an assertion fails, we can assign blame to
the party that did not fulfill its responsibilities: if the precondition
is violated then the client is to blame, and if the postcondition is
violated then the method implementation is to blame.

Adoption of an assertion semantics based on strong validity
gives rise to another kind of responsibility that comes to rest upon
the specifier: he or she must ensure that the assertions written in
contracts are always defined. This becomes a proof obligation on
the part of the specifier, not much different from normal proof
obligations which are an integral part of model-based specifica-
tion approaches that define operations by means of pre- and post-
conditions: e.g. satisfiability obligations in VDM [15, §5.3] and Z
[32].

Thus, for example, upon failure of a precondition, we have
two cases: if the precondition is undefined then we blame the
specifier, otherwise as before, blame falls upon the client code.
Similar remarks can be made for postconditions.

3.5 THE “IS-DEFINED” OPERATOR
Strong validity relies on the notion of an “is-defined” opera-

tor, D(e), which is true iff the expression e is defined, i.e. it does
not contain the application of a partial function to a value outside
its domain. For example, D(3/x) would be equivalent to x ≠ 0.

When applied to an expression consisting of a constant or a
variable, D is true. For a strict function f having arity n and
precondition p, we have

D(f(e1, …, en)) = D(e1) ∧ … ∧ D(en) ∧ p(e1,…,en)
Note that by a function we mean any operator or method used

in an assertion expression—such methods are required to be pure
in JML [24]. As can be seen from the preceding definition, a
strict function yields undefined whenever any of its arguments is
undefined. Here are examples for division and (non-conditional)
conjunction:

D(e1 / e2) = D(e1) ∧ D(e2) ∧ e2 ≠ 0
D(e1 & e2) = D(e1) ∧ D(e2)

In order to ensure that D remains computable, we require that a
function not contain, directly or indirectly any recursive applica-
tions of itself in the statement of its precondition [14, §9.3].

The non-strict (i.e. conditional) operators of most program-
ming languages consist of conditional conjunction, conditional
disjunction and a ternary (McCarthy) conditional operator. All
three can be written in terms of the latter so it is sufficient to de-
fine D for this operator:

D(e1 ? e2 : e3) = D(e1) ∧ (e1 ⇒ D(e2)) ∧ (¬e1 ⇒ D(e3))
Given that “e1 || e2” can be written as “e1 ? true : e2”, and
“e1 && e2” as “e1 ? e2 : false” it follows that

D(e1 || e2) = D(e1) ∧ (¬e1 ⇒ D(e2))
D(e1 && e2) = D(e1) ∧ (e1 ⇒ D(e2))

D can also easily be defined over quantifiers—examples are pro-
vided by Konikowska for Kleene and McCarthy quantifiers [19].

An example of an assertion expression that is both classically
valid and strongly valid is

x == 0 || 3/x == 3/x

because D(x == 0 || 3/x == 3/x)

29

= D(x == 0) ∧ (¬(x == 0) ⇒ D(3/x == 3/x))
= true ∧ (x ≠ 0 ⇒ x ≠ 0)

which is true. In contrast, the expression
3/x == 3/x

is classically valid, but not (strongly) valid because D(3/x == 3/x)
is x ≠ 0.

While the adoption of a new logical foundation for JML may
seem like a big change, as we shall see in the next section, it is
straightforward to implement.

4. ESC/JAVA2 REDESIGN

4.1 ESC/JAVA2 CONCEPTUAL ARCHITECTURE
Before explaining the implementation of the new semantics

we begin by reviewing ESC/Java2’s overall conceptual architec-
ture (essentially an instance of pipes-and-filters [31]). The main
processing stages are shown in Figure 6. Input to the tool consists
of one or more JML annotated Java source files or pure JML in-
terface specification files. The source(s) are parsed. Checking in
ESC/Java2 is modular and this manifests itself already at the next
stage; i.e., on a per class basis, each method in turn is translated
into a Guarded Command (GC) program [26]. Each such pro-
gram entirely captures the proof obligations related to establishing
the correctness of the method in question, relative to its specifica-
tion. In particular, this means that calls made inside the method
body are represented by an inlined version of the contract of the
called method.

GCs are then converted into verification conditions (VCs)
which are fed to a fully automated theorem prover. Currently
ESC/Java2 (and Spec#’s Boogie) make use of Simplify [9]. Note-
worthy efforts have been deployed in the past two years so that
new backends (e.g., CVC3) should be available for use with
ESC/Java2 before year’s end [17]. As indicated in the diagram,
the prover is also provided with a Universal Background Predicate
containing an axiomatization of concepts true of all Java pro-
grams, and a Type-specific Background Predicate which, as the
name implies, axiomatizes concepts that are specific to the type
(class or interface) being processed.

If the prover is able to discharge a method’s VCs, then we
consider the method implementation to be correct. If all of a
class’ VCs are met, then the class is said to meet its specification.
As usual, while the theory is fairly straightforward, the pragmatics
(which we will briefly touch upon in Section 4.3), complicate
matters somewhat. E.g., significant extra machinery is needed to
allow for meaningful post-processing of a prover’s output espe-
cially when the prover is unable to discharge a VC. Accurate and

meaningful error reporting is essential. Further details concerning
the processing performed by ESC/Java2 can be found in [11].

4.2 SUPPORTING THE NEW SEMANTICS
Changes to ESC/Java2 in support of the new semantics were

confined to the “Translation to GC” stage. The creation of a
guarded command program for a given method actually occurs in
two steps: the method is first translated into a “sugared GC” lan-
guage, before subsequently being “desugared” into the following
primitive GC language [26]:

C ::= Id := Expr

 | ASSUME Expr

 | ASSERT Expr

 | C ; C’

 | C � C’
The commands represent: assignment, primitive assume and

assert commands, sequential and alternative composition. In the
latter case (involving an application of the box operator), the
composite command behaves either like its first operand or its
second operand, with the choice being non-deterministic. Note
that in the present discussion, we are disregarding (Java) excep-
tion processing since it would unnecessarily complicate the pres-
entation of the new semantics.

The two-staged GC translation process allows more flexibility
in, e.g., selectively enabling or disabling the various kinds of
checks to be performed. Controlling which checks to perform can
be done globally (e.g. via a command line arguments), or even on
a line by line basis of the input source.

We will describe the implementation of the new semantics in
terms of the translation of JML specification constructs into the
primitive GC language. As can be expected, the translation will
make extensive use of the is-defined operator, D, of Section 3.4.
We begin with the most basic of the JML assertions, namely
inline assert and assume statements.

4.2.1 INLINE ASSERTIONS
JML assert and assume statements can appear in constructor and
method bodies as well as static initialization blocks. Under the
new assertion semantics, such statements are translated into a
sequence of two guarded commands: the first asserts that the
given predicate is defined, then follows the assert or assume
command proper. For example,

〚ASSERT R〛 = ASSERT〚D(R)〛;

 ASSERT〚R〛

This follows naturally from the definition of strong validity. Note
that with this approach, it is no longer relevant that the given as-
sertion expression, R, contain partial functions or not. This is
because interpretation of R is guarded by an ASSERT of the de-
finedness condition of R; hence all occurrences of partial func-
tions will be to values inside their domain.

Other JML constructs use assertions as basic building blocks,
and hence our adapted translation of a single assert statement into
a pair of guarded commands, will be a recurring theme.

4.2.2 BASIC METHOD CONTRACTS
Under the current semantics of JML, the translation of a method
with precondition P, body B and postcondition Q is handled as
follows3:

3 {P}B{Q} is the compact and familiar Hoare-triple syntax.

Figure 6. ESC/Java2Pipeline Architecture

(excerpt from [11]).

30

〚{P}B{Q}〛 = ASSUME〚P〛;

 〚B〛;

 ASSERT〚Q〛

 Under the new semantics we have:
〚{P}B{Q}〛 = ASSERT〚D(P)〛;

 ASSUME〚P〛;

 〚B〛;

 ASSERT〚D(Q)〛;

 ASSERT〚Q〛

The new GCs are underlined.

4.2.3 CLASS INVARIANTS
In those cases where a (non-helper) method belongs to a class C
having invariant I, we get:

〚{P}B{Q}〛 = ASSERT 〚D(I(this))〛;

 ASSUME 〚∀ o:C . I(o)〛;

 ASSERT 〚D(P)〛;

 ASSUME 〚P〛;

 〚B〛;

 ASSERT 〚D(Q)〛;

 ASSERT 〚Q〛;

 ASSERT 〚D(I(this))〛;

 ASSERT 〚∀ o:C . I(o)〛;

Upon entry to the method and on exit from the method, the invari-
ants of all instances of class C, including this, must hold. The
invariant definedness need only be checked relative to one in-
stance of C, choosing this is most convenient. (While it is
known that JML’s semantics of invariants is unsound, we provide
a compatible definition under the new semantics—finding a sound
and effective solution to this problem is still an active area of
research [6].)

4.2.4 CHECKING IN THE ABSENCE OF SOURCE FILES
Having accurate specifications for public library APIs is es-

sential to the working developer. Lack of specifications discour-
ages use of the tools. On the other hand, flawed specifications can
be useless at best, dangerously misleading at worst. As was illus-
trated in Section 2.2, use of a public API method having an incon-
sistent specification will always result in the (false!) impression of
correct code.

Since such libraries are often only available in binary form,
practically all of the given library specifications had been subject
to no more than type checking, and an occasional manual design
review. As was pointed out earlier, ESC/Java2 was originally
designed to check the correctness of source code (i.e. an imple-
mentation) relative to a given specification. As we have demon-
strated earlier, performing basic definedness checks (and eventu-
ally consistency checks) can be quite useful.

Given a method specification for which no method body is
available, we generate a GC of the following form:

〚{P}_{Q}〛 = ASSERT 〚D(I(this))〛;

 ASSUME 〚∀ o:C . I(o)〛;

 ASSERT 〚D(P)〛;

 ASSUME 〚P〛;

 〚return _〛[]〚throw new Exception()〛;

 ASSERT 〚D(Q)〛;

 ASSERT 〚D(I(this))〛;

where we take as a bogus body, one that can either return (an un-
specified return value, if such a value is needed) or raise an ex-
ception.

4.3 ACCURATE ERROR REPORTING
As in most software applications, particularly compilers, pro-

viding accurate and helpful error reporting usually requires con-

siderable extra effort beyond the processing of “normal” input.
The explanation, in the previous subsections, of the translation

into GCs had conceptual clarity as a main objective. In this sec-
tion, we briefly describe the extra processing required to enable
ESC/Java2 to report specification errors, pin-pointing their source,
as accurately as could be expected of a modern compiler—i.e.,
accurately identifying the cause of the error (such as Division by
Zero) as well as the line number and character position of the
problematic partial operator.

ASSERT commands can have associated labels which the
backend prover uses when reporting VC proof failures. Concep-
tually, a label L (containing a file id, line number and character
position) would be reported by the prover if it were unable to
prove E in:

ASSERT Label(L, E); // (1)

Unfortunately, if E is a complex expression, we might be unable
to tell which subterm of E is to blame. Finer grained error report-
ing can be obtained by decomposing (1) into an expanded GC
program, more refined, though equivalent in effect to the original
single assert command.

Of concern to us here are expressions consisting of defined-
ness predicates. Recall that for a strict function f having arity n
and precondition p, we have

D(f(e1, …, en)) = D(e1) ∧ … ∧ D(en) ∧ p(e1,…,en)
The expanded GC program for D(f(e1, …, en)), is defined as

E〚D(f(e1, …, en))〛 = E〚D(e1)〛;

 ... ;

 E〚D(en)〛;

 ASSERT Label(L,〚p(e1,…,en)〛)

where L is a label generated from the location associated with f.
For the conditional operator, recall that

D(e1 ? e2 : e3) = D(e1) ∧ (e1 ⇒ D(e2)) ∧ (¬e1 ⇒ D(e3))
The expanded GC form would be:

E〚D(e1 ? e2 : e3)〛 = E〚D(e1)〛;

 { ASSUME〚e1〛;

 E〚D(e2)〛;

 []

 ASSUME〚¬e1〛;

 E〚D(e3)〛;

 }

While conditional conjunction and disjunction are simplifications
of the ternary conditional operator, it is important not to eliminate
the box operator from the expanded form. Recall that, e.g.,
“e1 && e2” is equivalent to “e1 ? e2 : false”, thus we have

E〚D(e1 && e2)〛 = E〚D(e1)〛;

 { ASSUME〚e1〛;

 E〚D(e2)〛;

 []

 ASSUME〚¬e1〛;

 }

5. BETTER DIAGNOSTICS, AT WHAT COST?
The treatment of definedness conditions given here is quite

similar to the type-correctness conditions (TCCs) of the PVS
theorem prover [33].

One of the main objections to using a definition of assertion
validity that takes definedness into account is that it is likely to
contribute to making the already sizeable verification conditions
even larger. As a consequence, it is believed that this would lead
to ESC tools being able to prove fewer methods correct. Like in
PVS, we expected most definedness conditions to be easily dis-
charged since they are, by their very nature, much smaller and
simpler than the assertion expressions they guard.

31

Our experiences show that the overhead is not perceptibly
significant, though such experiences are preliminary since we
have as yet to implement all planned definedness checks. It is still
worth noting that, e.g., in processing 90 KLOC of code, we have
yet to come across a (correct) method that could not be proven
with definedness checking enabled and yet could be proven cor-
rect otherwise. Addition of the remaining definedness checks will
be completed shortly, after which a more rigorous assessment of
the cost (in time and memory consumption) of definedness
checking will be in order. In the advent that the overhead would
indeed be prohibitive, then ESC/Java2 could imitate PVS and
allow users to check definedness conditions separately.

It is interesting to note that the arrival of new ESC/Java2
prover backends like CVC3, which directly support three-valued
logics and partiality, will eliminate having definedness checks
factored out as separate “side” conditions. (Of course, it remains
to be seen if such provers can rival their classical counterparts.)

6. RELATED WORK
To our knowledge, the enhancements we have made to

ESC/Java2 are a first of its kind and this mainly because all other
static program verification systems (e.g. [1, 2, 8, 27, 34]) are
based on a classical definition of assertion validity.

As was mentioned earlier, adoption of strong validity allows
us to extend the usual Design by Contract responsibility/blame
matrix—attributed to software components (clients and/or service
providers) [29]—to assigning responsibility/blame to specifiers, in
ensuring that contract assertions are always defined. Findler et al.
also assign responsibility/blame to specifiers but only relative to
the conformance of subclass contracts to the constraints of be-
havioral subtyping [10]. We note that in JML, subclasses
automatically inherit their supertype contracts and hence naturally
enforcing behavioral subtyping [21].

Approaches to assertion semantics based on strong validity,
and hence using a definedness operator, have been advocated by
other authors for some time now. The most fundamental works
being that of Hoare and He, in their “Unifying Theories of Pro-
gramming” [14], as well as Konikowska’s “Two Over Three: A
Two-Valued Logic for Software Specification and Validation Over
a Three-Valued Predicate Calculus” [18]. We invite the reader
who is interested in a more detailed discussion of these two ap-
proaches in relationship to our work to consult [5].

Leino also makes use of a “Defined” operator in the formal
semantics of his Ecstatic language [25], but this operator is only
applied to expressions appearing in general program statements
rather than assertions. Morris provides a semantics for non-deter-
ministic expressions and also makes use of an “is well-defined”
operator (∆) [30]. Morris’ operator is more general in that ∆(E)
not only holds when E is not undefined but also when it is deter-
ministically defined. Like Leino, Morris does not apply defined-
ness to the semantics of assertion expressions.

Of course, “definedness” is also an elementary concept in
VDM’s three-valued Logic of Partial Functions (LPF). The “is-
defined” operator is written as ∆. One of the claimed advantages
of LPF is that specifiers should seldom have to refer to ∆ when
conducting proofs of VDM specifications [16]. While a three-
valued logic like LPF has a natural correspondence with RAC
assertion semantics, unfortunately, there are no provers supporting
LPF (although the Overture initiative might change that [20]).

7. CONCLUSIONS AND FUTURE WORK
The focus of current static program verification (SPV) tools

is, somewhat naturally, on source code bugs. Little support be-
yond well-formedness and type checking is offered for the static
“debugging” of specifications. This is mainly due to reliance on
an assertion semantics based on classical validity: under such a
definition there are no partial functions, and hence, in a sense, no
precondition errors to report. In this paper we have demonstrated
how an SPV tool like ESC/Java2 can easily be extended to sup-
port definedness checking of assertion expressions. Only one of
the multiple processing stages of ESC/Java2 needed to be en-
hanced; hence, in particular, the change was made while preserv-
ing the same classical prover backend.

ESC/Java2’s new definedness checking seems to add marginal
computational overhead while, in our opinion, offering a signifi-
cant debugging capability for specifications. In fact, having ap-
plied definedness checking to the java.* API specifications
shipped with ESC/Java2 revealed over 50 errors, one of which
lead to the identification of an inconsistent method specification.

The enhancements that we have presented can be applied to
other SPV tools, such as Spec#’s Boogie verifier [8].

We will continue to extend the scope of ESC/Java2’s defined-
ness checking. In particular, one of the next milestones is the
addition of support for the checking of method preconditions at
the point of a method call in an assertion expression. Following
this, we plan on conducting a rigorous assessment of the impact
on time and resource requirements due to the extra load of de-
finedness checks. The start of this empirical assessment is likely
to coincide with the availability of CVC3 as a new prover
backend for ESC/Java2. Since CVC3 has direct support for parti-
ality, it will be interesting to determine if the overhead of check-
ing definedness conditions as “side-conditions” (when considered
in the context of a classical prover) can be reduced or eliminated.

Finally, this will lead us to stage two of our planned en-
hancements to ESC/Java2, namely the addition of consistency
checking of constructor and method contracts.

ACKNOWLEDGMENTS
We gratefully acknowledge George Karabotsos’ contribution to
the implementation of definedness checking in ESC/Java2. The
research reported here was, in part, supported by NSERC of Can-
ada under grant 261573-03.

REFERENCES
[1] J. Barnes, High Integrity Software: The Spark Approach to Safety and Secu-

rity. Addison-Wesley, 2003.
[2] L. Burdy, A. Requet, and J.-L. Lanet, “Java Applet Correctness: A Developer-

Oriented Approach”. Proceedings of the International Symposium of Formal
Methods Europe, vol. 2805 of LNCS. Springer, 2003.

[3] P. Chalin, “Logical Foundations of Program Assertions: What do Practitioners
Want?” Proceedings of the Third International Conference on Software Engi-
neering and Formal Methods (SEFM'05), Koblenz, Germany, September 5-9.
IEEE Computer Society Press, 2005.

[4] P. Chalin, “Reassessing JML’s Logical Foundation”. Proceedings of the 7th
Workshop on Formal Techniques for Java-like Programs (FTfJP'05), Glas-
gow, Scotland, July, 2005.

[5] P. Chalin, “De-risking the Verifying Compiler Project: Recovering Sound-
ness”, Dependable Software Research Group, Department of Computer Sci-
ence and Software Engineering, Concordia University, ENCS-CSE-TR 2005-
009, 2006.

[6] P. Chalin, J. Kiniry, G. T. Leavens, and E. Poll, “Beyond Assertions: Ad-
vanced Specification and Verification with JML and ESC/Java2”. Fourth
International Symposium on Formal Methods for Components and Objects
(FMCO'05), 2005.

[7] D. R. Cok and J. R. Kiniry, “ESC/Java2: Uniting ESC/Java and JML”. In G.
Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean editors, Proceed-
ings of the International Workshop on the Construction and Analysis of Safe,

32

Secure, and Interoperable Smart Devices (CASSIS'04), Marseille, France,
March 10-14, vol. 3362 of LNCS, pp. 108-128. Springer, 2004.

[8] R. DeLine and K. R. M. Leino, “BoogiePL: A Typed Procedural Language for
Checking Object-Oriented Programs”, Microsoft Research, Technical Report,
2005.

[9] D. L. Detlefs, G. Nelson, and J. B. Saxe, “A Theorem Prover For Program
Checking”, Compaq SRC, Research Report 159, 2002.

[10] R. B. Findler and M. Felleisen, “Contract Soundness for Object-Oriented
Languages”. 16th ACM SIGPLAN Conference on Object Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA '01), Tampa Bay, FL,
USA, October 14 - 18. ACM Press, 2001.

[11] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R.
Stata, “Extended static checking for Java”. Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI’02), June, vol. 37(5), pp. 234-245. ACM Press, 2002.

[12] D. Gries and F. B. Schneider, “Avoiding the Undefined by Underspecifica-
tion”, in Computer Science Today: Recent Trends and Developments, vol.
1000, J. v. Leeuwen, Ed.: Springer-Verlag, 1995, pp. 366-373.

[13] J. Grundy, “Predicative programming--A survey”. International Conference
Formal Methods in Programming and Their Applications, Novosibirsk, Rus-
sia, June 28 – July 2. Springer, 1993.

[14] C. A. R. Hoare and J. He, Unifying Theories of Programming. Prentice Hall,
1998.

[15] C. B. Jones, Systematic Software Development using VDM, 2nd ed. PHI, 1990.
[16] C. B. Jones and C. A. Middelburg, “A Typed Logic of Partial Functions

Reconstructed Classically”, Acta Informatica, 31(5):399-430, 1994.
[17] J. R. Kiniry, P. Chalin, and C. Hurlin, “Integrating Static Checking and

Interactive Verification: Supporting Multiple Theories and Provers in Verifi-
cation”. Proceedings of the International Conference on Verified Software:
Theories, Tools, Experiments (VSTTE), Zürich, Switzerland, October 10-13,
2005.

[18] B. Konikowska, “Two Over Three: A Two-Valued Logic for Software
Specification and Validation Over a Three-Valued Predicate Calculus”, Jour-
nal of Applied Non-Classical Logics, 3:39-71, 1993.

[19] B. Konikowska, A. Tarlecki, and A. Blikle, “A Three-valued Logic for Soft-
ware Specification and Validation”. Second VDM Europe Symposium. VDM -
The Way Ahead (VDM'88), Dublin, Ireland, September. Springer, 1988.

[20] P. G. Larsen and N. Plat, “Introduction to Overture”. First Overture Work-
shop, Newcastle upon Tyne, UK, July, 18, 2005.

[21] G. T. Leavens, “JML's Rich, Inherited Specifications for Behavioral Sub-
types”, Department of Computer Science, Iowa State University, Ames, Iowa.
USA, TR #06-22, 2006.

[22] G. T. Leavens and Y. Cheon, “Design by Contract with JML”,
www.jmlspecs.org, 2006.

[23] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok, “How the de-
sign of JML accommodates both runtime assertion checking and formal verifi-
cation”, Science of Computer Programming, 55(1-3):185-208, 2005.

[24] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J.
Kiniry, and P. Chalin, “JML Reference Manual”, http://www.jmlspecs.org,
2006.

[25] K. R. M. Leino, “Ecstatic: An object-oriented programming language with an
axiomatic semantics”. Fourth International Workshop on Foundations of Ob-
ject-Oriented Languages, January, 1997.

[26] K. R. M. Leino, J. B. Saxe, and R. Stata, “Checking Java programs via
guarded commands”, COMPAQ SRC, Palo Alto, CA, SRC Technical Note
1999-002. 21 May 1999, 1999.

[27] C. Marché, C. Paulin-Mohring, and X. Urbain, “The Krakatoa tool for
certification of Java/JavaCard programs annotated in JML”, Journal of Logic
and Algebraic Programming, 58(1-2):89-106, 2004.

[28] B. Meyer, “Applying Design by Contract”, Computer, 25(10):40-51, 1992.
[29] B. Meyer, Object-Oriented Software Construction, 2nd ed. Prentice-Hall,

1997.
[30] J. M. Morris, “Non-deterministic expressions and predicate transformers”,

Information Processing Letters, 61(5):241-246, 1997.
[31] M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging

Discipline. Prentice-Hall, 1996.
[32] J. M. Spivey, The Z Notation: A Reference Manual. Prentice-Hall, 1989.
[33] SRI International, “The PVS Specification and Verification System”,

http://pvs.csl.sri.com.
[34] J. van den Berg and B. Jacobs, “The LOOP compiler for Java and JML”. In T.

Margaria and W. Yi editors, Proceedings of the Tools and Algorithms for the
Construction and Analysis of Software (TACAS), vol. 2031 of LNCS, pp. 299-
312. Springer, 2001.

