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ABSTRACT 
The earlier errors are found, the less costly they are to fix.  This 
also holds true of errors in specifications.  While research into 
Static Program Verification (SPV) in general, and Extended Static 
Checking (ESC) in particular, has made great strides in recent 
years, there is little support for detecting errors in specifications 
beyond ordinary type checking.  This paper reports on recent en-
hancements that we have made to ESC/Java2, enabling it to report 
errors in JML specifications due to (method or Java operator) 
precondition violations and this, at a level of diagnostics that is on 
par with its ability to report such errors in program code.  The 
enhancements also now make it possible for ESC/Java2 to report 
errors in specifications for which no corresponding source is 
available. Applying this new feature to, e.g., the JML specifica-
tions of classes in java.*, reveals over 50 errors, including incon-
sistencies. We describe the adjustment to the assertion semantics 
necessary to make this possible, and we provide an account of the 
(rather small) design changes needed to realize the enhancements.  

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification—
programming by contract; D.3.3 [Programming Languages]; F.3.1 
[Logics and Meanings of Programs]: Specifying and Verifying 
and Reasoning about Programs.   

General Terms 
Documentation, Design, Languages, Theory, Verification. 

Keywords 
Java Modeling Language, JML, Extended Static Checking, 
Precondition Errors, Specification Debugging. 

1. INTRODUCTION 
It is well appreciated that the earlier in a product’s lifecycle 

that an error is detected, the less costly it will be to correct.  This 
has motivated considerable research in the area of Static Program 
Verification (SPV) so that today, a variety of approaches and tools 
are becoming available to developers.  In fact, developers can 
already make routine use of tools that effectively eliminate certain 
classes of error.  One promising technological approach to SPV is 
Extended Static Checking (ESC) [11].  ESC tools, like ESC/Java2 
[7] and Spec#’s Boogie [8], offer fully automated checking of 
code against specifications. Despite the fact that automation is 
achieved at the expense of completeness and/or soundness, in 
practice, the tools are still quite effective at revealing coding er-
rors.   

Unfortunately, there is an important lacuna: SPV tools offer 
no support for the detection of errors in specifications beyond 
conventional type checking.  But writing error free specifications 
is just as hard as (if not harder than) writing correct code, hence 
tool assistance would be welcome. Specifications containing er-
rors can cause problems: e.g., consider a situation where a method 
m has a specification (contract) c containing errors, then 
1. A developer can waste time trying to get an ESC tool to prove 

that m satisfies c.  Anyone who has used a verification tool is 
likely to have had this experience; i.e. being convinced that the 
specification (or theorem) is correct, one persists in trying to 
get the verifier to agree, only to realize, in all humility, that the 
tool was right, and that the specification was in error. 

2. The ESC tool is able to prove that m satisfies c.  This merely 
delays the discovery of the error (in both the specification and 
the implementation) until a later lifecycle phase.  As a result, 
the error will be more expensive to correct. 

3. In the worst case, c is inconsistent. Hence, any invocation of m 
in the code would amount to asserting falsehood, from which 
the verifier can trivially prove anything.  For example, 
ESC/Java2 would be able to prove the assertion following a 
call to m: 
   m(); 

   //@ assert 0 == 1; 

One might remark that: “if c is inconsistent, would ESC/Java2 
not report an error in any attempt to prove that the implementa-
tion of m satisfies c?”  Yes, but this assumes that the source for 
m is available, which is not the case, .e.g., for third party librar-
ies distributed in binary form. 

In all three situations mentioned above, any assistance provided in 
the early detection of specification errors would avoid loss of time 
or the increased cost associated with fixing the error at a later 
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stage.  Note that the errors reported by ESC tools can be parti-
tioned into two categories: 
• errors due to a precondition violation, be it for operators of 

the Java language or class constructors and methods.  Com-
mon examples of the former include null pointer exceptions 
and array index-out-of-bound errors. 

• correctness issues—when a constructor or method 
implementation fails to meet its specification. 

There is an order to this categorization since it only makes sense 
to discuss correctness issues once precondition errors have been 
resolved.  While it is not possible for ESC tools to identify 
correctness errors in specifications1, it can be done for precondi-
tion violations. 

Building upon our earlier work [4, 5], this paper reports on a 
recent feature enhancement—called definedness checking—
that we have made to ESC/Java2, enabling it to report errors in 
specifications due to precondition violations at a level of diagnos-
tics that is on par with its ability to report such errors in program 
code.  (This work is actually being done as a first step in a two 
part enhancement plan, the second of which—support for consis-
tency checking—will be the subject of a subsequent publication.)  

To our knowledge, ESC/Java2 is the first static program veri-
fication tool to offer such definedness checking.  Hence, e.g., 
ESC/Java2 now diagnoses in specifications, just as easily as in 
source code, one of the most common programming errors, null 
pointer exceptions (NPEs).  Since specifications are often created 
by the same developers who write the corresponding code, NPEs 
in specifications are just as likely to occur. 

Another important related enhancement made to ESC/Java2 
includes its ability to report errors in specifications for which 
no corresponding source is available (recall that ESC/Java2 for-
merly only checked source code relative to its interface specifica-
tions).  This key enhancement now permits checking of the com-
prehensive collection of public library API specifications shipped 
with ESC/Java2.  Identifying and correcting bugs in API 
specifications is significant since it can positively impact all de-
velopers who make use of them—and, as we shall illustrate in 
Section 2.2, errors in API specifications can have serious conse-
quences.  The enhancement also enables better support for those 
development groups who follow the practice of writing interface 
specifications prior to writing code. 

The remaining sections are organized as follows.  Section 2 
presents examples of specifications that at first appear to be cor-
rect, or that have been in use for several years now, and yet con-
tain serious flaws including inconsistencies.  The examples serve 
to motivate the addition of definedness checking to ESC/Java2 
since prior to this enhancement, the tool was theoretically incapa-
                                                                 
1 It might be possible in the Java Modeling Language (JML) since it 

supports specification refinement, but this is a seldom used feature 
which is in fact not common to the languages used by ESC tools. 

ble of detecting such errors.  We explain the nature of this 
incapacity in Section 3 by briefly describing the former logical 
underpinnings of the tool (inherited from the Java Modeling Lan-
guage) as well as the new assertion semantics that make defined-
ness checking possible.  Section 4 explains the basic mode of 
operation of ESC/Java2 by decomposing it into processing stages.  
This allows us to explain how support for definedness checking 
required changes to only one of the processing stages.  In Section 
5, we answer the question, “better diagnostics, but at what cost?”  
Related work is discussed in Section 6, while we offer conclu-
sions and mention future work in Section 7. 

2. MOTIVATING EXAMPLES 

2.1 MYUTIL/PAIRSUM 
As a first example, consider the following scenario.  Assume 

that a friend, who is a formal methods aficionado, provides you 
with a copy of her MyUtil class.  Of course, being sympathetic to 
the cause, she also provides you with the interface specification 
given in Figure 1.  The utility class provides two methods, one 
that returns the minimum length of its two argument arrays, and 
the other which returns the sum of the integer elements of an ar-
ray, up to, but not including a given index. 

Eager to make use of the functionalities of MyUtil, you write a 
method that will compute the pair wise sum of two arrays, up to 
the length of the shorter of the two arrays.  See Figure 2.  Invok-
ing ESC/Java2 on MyUtil.jml and PairSum.java yields no error 
messages, and yet execution of PairSum.main() raises a null 
pointer exception.  We will defer until Section 3.2 a technical 
discussion explaining why ESC/Java2 “believes” that no excep-
tions should have been raised by PairSum.  For now, suffice it to 
say that rerunning ESC/Java2 with definedness checking enabled, 
easily reports: 
MyUtil: minLen(int[], int[]) ... 

------------------------------------------------- 

MyUtil.jml:3: Warning: Possible null dereference 

  //@   java.lang.Math.min(a1.length, a2.length); 

                             ^ 

------------------------------------------------- 

[0.062 s 12135232 bytes]  failed 

What is the source of the problem?  Intuitively we can understand 
that the specifications of minLen() and sumUpTo() are in a sense, 
incomplete.  E.g., the method contract of minLen() does not pre-
vent it from being called with null arguments, and yet under such 
circumstances, the interpretation of the postcondition does not 
make sense due to precondition errors. 

2.2 API SPECIFICATIONS FOR JAVA.UTIL.* 

public class MyUtil { 

 //@ ensures \result == 

 //@   java.lang.Math.min(a1.length, a2.length); 

 public static int minLen(int[] a1, int[] a2); 

 

 //@ requires n <= a.length; 

 //@ ensures \result ==  

 //@   (\sum int i; 0 <= i && i < n; a[i]); 

 public static int sumUpTo(int[] a, int n); 

} 

Figure 1. Interface specification, MyUtil.jml. 

public class PairSum { 

  public static int pairSum(int[] a, int[] b) { 

  int n = MyUtil.minLen(a, b); 

    // Commutativity of addition allows us to use sumUpTo twice … 

  return MyUtil.sumUpTo(a, n) + MyUtil.sumUpTo(b, n); 

  } 

  public static void main(String[] args) { 

  int[] a = null; 

  int sum =  pairSum(a, a); 

  } 

} 

Figure 2. PairSum class (using MyUtil). 
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Somewhat disgruntled, you decide not to use MyUtil and in-
stead favor the more reliable java.util.* classes.  Thankfully, 
ESC/Java2 comes with API specifications for these classes, 
among others. 

Unfortunately, other problems arise as well.  Consider the 
code given in Figure 3.  The ArraysBug class contains three meth-
ods that exercise the functionality of the java.util.Arrays.-
sort() methods.  The contract for ArraysBug.m0() states that the 
only behavior which m0() can have is to return a null pointer ex-
ception.  Following a common ESC idiom, we have added an 
“assert false” statement at the end of the method body to indi-
cate that flow control should never reach that point.  In this exam-
ple though, such a statement is superfluous since the contract of 
m0() mandates that it always return exceptionally—i.e., an 
exceptional_behavior case implicitly adds an “ensures false” 
clause.  Similarly, the contract for m1a() states that calling it 

always raises an index out of bounds exception.  Finally, the con-
tract for m1b() is inconsistent—i.e. while it has an implicit pre-
condition of true, both its normal and exceptional postconditions 
are unsatisfiable.    

While ESC/Java2 can prove the correctness of m0() and 
m1a(), it is also able to prove m1b()!  Since, the contract of m1b() 
is unimplementable, the only way in which ESC/Java2 can 
“prove” that the body of m1b() satisfies it, is if the specification of 
java.util.Arrays.sort(int[],int,int) is inconsistent.  An 
excerpt of the specification of java.util.Arrays.-

sort(int[],int,int) is given in Figure 4.  The method contract 
has only two specification cases.  What is the source of the prob-
lem this time?  With definedness checking enabled, we find that 
ESC/Java2 is unable to prove that the array element access at (*) 
is within the bounds of the array.  Inspection of the contract re-
veals that this is because the first specification case has no re-
quires clause placing bounds on fromIndex or toIndex.  Adding 
as a precondition, the obvious constraints on these two parame-
ters, allows ESC/Java2 to prove that ArraysBug.m1b() cannot 
meet its specification. (For lack of space we do not discuss the 
nature of the inconsistency here, we merely note that the added 
requires clause guards the particular call made to sort() by m1b() 
from the source of the inconsistency.) 

2.3 OTHER API SPECIFICATION ERRORS 
Performing definedness checks on all of the java.* API 

specifications reveals about 50 errors related to potential null 
pointer exceptions and array out of bounds errors—since these are 
the only checks currently implemented, we anticipate that more 
errors will be found as we increase the definedness coverage of 
the tool.  (Use of definedness checking also exposed a bug in 
ESC/Java2’s handling of specification inheritance—cf. bug#430.)   

ESC/Java2 also reports bugs in the implementation of model 
methods such as the one given in Figure 5.  Asking ESC/Java2 for 
counter examples eventually allows us to deduce that digitVal() 
will fail to satisfy its postcondition for ch in the small range of 
4970 ≤ ch ≤ 4975.   

We believe that the examples given in this section clearly il-
lustrate the benefits of the new definedness checking that has been 
added to ESC/Java2. 

public class ArraysBug { 

 //@ public exceptional_behavior 

 //@ signals_only NullPointerException; 

 void m0() { 

  java.util.Arrays.sort( (int[]) null ); 

  //@ assert false; // this point is never reached 
 } 

 

 //@ public exceptional_behavior 

 //@ signals_only ArrayIndexOutOfBoundsException; 

 void m1a() { 

  java.util.Arrays.sort(new int[]{1,2}, -1, 99); 

 } 

 

 //@ public behavior 

 //@ ensures false; 

 //@ signals_only ArrayIndexOutOfBoundsException; 

 //@ signals (Throwable) false; 

 void m1b() { 

  java.util.Arrays.sort(new int[]{1,2}, -1, 99); 

 } 

} 

Figure 3. ArraysBug.java. 

/*@  public normal_behavior 

  @   requires a != null; 

  @   assignable a[fromIndex..toIndex-1]; 

  @   ensures (\forall int i;  

  @              fromIndex < i && i < toIndex; 

  @              a[i-1] <= a[i]);  // (*) 

  @   ... // more ensures clauses here 

  @ also 

  @  public exceptional_behavior 

  @   requires a == null || fromIndex > toIndex  

  @         || fromIndex < 0 || toIndex > a.length; 

  @   assignable \nothing; 

  @   signals_only NullPointerException, IllegalArgumentException, 
  @               ArrayIndexOutOfBoundsException; 
  @   signals (NullPointerException) a == null; 

  @   signals (IllegalArgumentException) fromIndex > toIndex; 
  @   signals (ArrayIndexOutOfBoundsException) fromIndex < 0; 
  @   signals (ArrayIndexOutOfBoundsException)  

  @             a != null && toIndex > a.length; 

  @*/ 

public static void  

  sort(int[] a, int fromIndex, int toIndex); 

Figure 4. java/util/Arrays.refines-spec. 

/*@ public normal_behavior 

  @  ensures -1 <= \result && \result <= 9; 

public static model pure int digitVal(char ch) 

{ 

  if (!java.lang.Character.isDigit(ch)) { 

  return -1; 

  } else { 

  int val = ch; 

  // Determine the base (0 value) depending on the type of digit …  

  if (val <= 0x06F9 || val >= 0x0E50) 

     base = val & 0xFFF0; 

  else 

     base = ((int)(val - 6) & 0xFFF0) | 0x0006; 

 // convert to a value between 0 and 9 inclusive 
 return (int)(val - base); 

 } 

} @*/ 

Figure 5. Model method defined in java/lang/Character.jml. 
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3. SUPPORTING DEFINEDNESS CHECKING 

3.1 BACKGROUND 
ESC/Java2 can analyze Java source files annotated with speci-

fications written in the Java Modeling Language (JML).  At a 
minimum, JML can be seen as an extension to Java that adds sup-
port for Design by Contract (DBC) [22, 28], though it has more 
advanced features—such as specification only class attributes, 
support for frame axioms, and behavioral subtyping—that we 
believe are essential to writing complete interface specifications 
[6]. 

In the spirit of DBC, JML specifications are expressed via 
program assertions embodied in class invariants, as well as con-
structor and method contracts expressed using pre- and post-con-
ditions.  In the next section, we describe the logical semantics of 
JML assertions.  This will enable us to explain why ESC/Java2 
was unable to prove that the PairSum program would cause ex-
ceptions to be generated at runtime.   

3.2 JML’S CLASSICAL ASSERTION SEMANTICS 
As is common in Behavioral Interface Specification Lan-

guages (BISLs) like JML, assertions are traditionally interpreted 
as formulae in a classical two-valued logic in which partial func-
tions are modeled by underspecified total functions [3].  Hence, 
when a partial function f : A → B with domain D ⊆ A is applied to 
a value v outside of D, then f(v) is nonetheless assumed to have 
some value in B, though we do not know which value it is.   

Returning to the MyUtil/ PairSum example of Section 2.1, we 
can now understand that under such a semantics, minLen(null, 
null) has the (well-defined2) value of null.length—whatever 
particular int value it might be.  While ESC/Java2 is checking the 
body of the pairSum() method, it assumes that the local variable n 
gets assigned the value of null.length.  Next, ESC/Java2 checks 
that the precondition of sumUpTo() is satisfied.  Recall that the 
precondition is:  n <= a.length. Since a is null and n is equal to 
the value of null.length, the expression reduces to true, hence 
the precondition holds.  As a consequence, ESC/Java2 has no 
errors to report. 

3.3 NEW ASSERTION SEMANTICS BASED ON 
STRONG VALIDITY 

Backed by a survey of  industrial software developers [3], we 
recently proposed a new logical foundation for JML in which 
partiality is modeled directly [4, 5] rather than approximated via 
under-specification [12].  While we will not go into the details 
here, in essence, we proposed that a JML assertion be considered 
valid iff it is both 
• defined, and 
• true. 
Hence, assertion failure can result either from undefinedness or 
evaluation to false.  It is useful to distinguish between these two 
cases of assertion failure in practice, as we will explain in the next 
subsection.  Technically speaking, this newly proposed definition 
of assertion validity is what Konikowska et al. call strong validity 
[19].  This is in contrast to classical validity, currently adopted by 
all BISLs, including JML.  Key to the definition of strong validity 
is the so-called “is-defined” operator which we will describe in 
Section 3.5 after a short remark about blame assignment. 

                                                                 
2 It is well-defined relative to the classical assertion semantics of JML. 

3.4 RESPONSIBILITY / BLAME ASSIGNMENT 
The disciplined use of assertions in the context of Design By 

Contract (DBC) [28, 29] also naturally gives rise to the concept of 
responsibility assignment.  Hence, for example, the client of a 
method has the responsibility of ensuring that the method’s pre-
condition holds before invoking it.  In return, when a method is 
called under these circumstances, it commits to respecting its 
postcondition.  When an assertion fails, we can assign blame to 
the party that did not fulfill its responsibilities: if the precondition 
is violated then the client is to blame, and if the postcondition is 
violated then the method implementation is to blame. 

Adoption of an assertion semantics based on strong validity 
gives rise to another kind of responsibility that comes to rest upon 
the specifier: he or she must ensure that the assertions written in 
contracts are always defined.  This becomes a proof obligation on 
the part of the specifier, not much different from normal proof 
obligations which are an integral part of model-based specifica-
tion approaches that define operations by means of pre- and post-
conditions: e.g. satisfiability obligations in VDM [15, §5.3] and Z 
[32]. 

Thus, for example, upon failure of a precondition, we have 
two cases: if the precondition is undefined then we blame the 
specifier, otherwise as before, blame falls upon the client code.  
Similar remarks can be made for postconditions. 

3.5 THE “IS-DEFINED” OPERATOR 
Strong validity relies on the notion of an “is-defined” opera-

tor, D(e), which is true iff the expression e is defined, i.e. it does 
not contain the application of a partial function to a value outside 
its domain.  For example, D(3/x) would be equivalent to x ≠ 0.  

When applied to an expression consisting of a constant or a 
variable, D is true.  For a strict function f having arity n and 
precondition p, we have 

D(f(e1, …, en))  =  D(e1) ∧ …  ∧ D(en)  ∧ p(e1,…,en) 
Note that by a function we mean any operator or method used 

in an assertion expression—such methods are required to be pure 
in JML [24].  As can be seen from the preceding definition, a 
strict function yields undefined whenever any of its arguments is 
undefined.  Here are examples for division and (non-conditional) 
conjunction: 

D(e1 / e2)  =  D(e1) ∧ D(e2)  ∧ e2 ≠ 0 
D(e1 & e2)  =  D(e1) ∧ D(e2) 

In order to ensure that D remains computable, we require that a 
function not contain, directly or indirectly any recursive applica-
tions of itself in the statement of its precondition [14, §9.3]. 

The non-strict (i.e. conditional) operators of most program-
ming languages consist of conditional conjunction, conditional 
disjunction and a ternary (McCarthy) conditional operator.  All 
three can be written in terms of the latter so it is sufficient to de-
fine D for this operator: 

D(e1 ? e2 : e3)  =  D(e1)  ∧  (e1 ⇒ D(e2))  ∧  (¬e1 ⇒ D(e3)) 
Given that “e1 || e2” can be written as “e1 ? true : e2”, and 
“e1 && e2” as “e1 ? e2 : false” it follows that 

D(e1 || e2)  =  D(e1)  ∧  (¬e1 ⇒ D(e2)) 
D(e1 && e2)  =  D(e1)  ∧  (e1 ⇒ D(e2)) 

D can also easily be defined over quantifiers—examples are pro-
vided by Konikowska for Kleene and McCarthy quantifiers [19]. 

An example of an assertion expression that is both classically 
valid and strongly valid is 

x == 0 || 3/x == 3/x 

because D(x == 0 || 3/x == 3/x) 
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= D(x == 0)  ∧  (¬(x == 0) ⇒ D(3/x == 3/x)) 
= true  ∧  (x ≠ 0 ⇒ x ≠ 0) 

which is true.  In contrast, the expression  
3/x == 3/x 

is classically valid, but not (strongly) valid because D(3/x == 3/x) 
is x ≠ 0. 

While the adoption of a new logical foundation for JML may 
seem like a big change, as we shall see in the next section, it is 
straightforward to implement. 

4. ESC/JAVA2 REDESIGN 

4.1 ESC/JAVA2 CONCEPTUAL ARCHITECTURE 
Before explaining the implementation of the new semantics 

we begin by reviewing ESC/Java2’s overall conceptual architec-
ture (essentially an instance of pipes-and-filters [31]).  The main 
processing stages are shown in Figure 6.  Input to the tool consists 
of one or more JML annotated Java source files or pure JML in-
terface specification files.  The source(s) are parsed.  Checking in 
ESC/Java2 is modular and this manifests itself already at the next 
stage; i.e., on a per class basis, each method in turn is translated 
into a Guarded Command (GC) program [26].  Each such pro-
gram entirely captures the proof obligations related to establishing 
the correctness of the method in question, relative to its specifica-
tion.  In particular, this means that calls made inside the method 
body are represented by an inlined version of the contract of the 
called method. 

GCs are then converted into verification conditions (VCs) 
which are fed to a fully automated theorem prover.  Currently 
ESC/Java2 (and Spec#’s Boogie) make use of Simplify [9].  Note-
worthy efforts have been deployed in the past two years so that 
new backends (e.g., CVC3) should be available for use with 
ESC/Java2 before year’s end [17].  As indicated in the diagram, 
the prover is also provided with a Universal Background Predicate 
containing an axiomatization of concepts true of all Java pro-
grams, and a Type-specific Background Predicate which, as the 
name implies, axiomatizes concepts that are specific to the type 
(class or interface) being processed. 

If the prover is able to discharge a method’s VCs, then we 
consider the method implementation to be correct.  If all of a 
class’ VCs are met, then the class is said to meet its specification.  
As usual, while the theory is fairly straightforward, the pragmatics 
(which we will briefly touch upon in Section 4.3), complicate 
matters somewhat.  E.g., significant extra machinery is needed to 
allow for meaningful post-processing of a prover’s output espe-
cially when the prover is unable to discharge a VC.  Accurate and 

meaningful error reporting is essential.  Further details concerning 
the processing performed by ESC/Java2 can be found in [11]. 

4.2 SUPPORTING THE NEW SEMANTICS 
Changes to ESC/Java2 in support of the new semantics were 

confined to the “Translation to GC” stage.  The creation of a 
guarded command program for a given method actually occurs in 
two steps:  the method is first translated into a “sugared GC” lan-
guage, before subsequently being “desugared” into the following 
primitive GC language [26]: 

C ::= Id := Expr 

   |  ASSUME Expr 

   |  ASSERT Expr 

   |  C ; C’ 

   |  C � C’ 
The commands represent: assignment, primitive assume and 

assert commands, sequential and alternative composition.  In the 
latter case (involving an application of the box operator), the 
composite command behaves either like its first operand or its 
second operand, with the choice being non-deterministic.  Note 
that in the present discussion, we are disregarding (Java) excep-
tion processing since it would unnecessarily complicate the pres-
entation of the new semantics.   

The two-staged GC translation process allows more flexibility 
in, e.g., selectively enabling or disabling the various kinds of 
checks to be performed.  Controlling which checks to perform can 
be done globally (e.g. via a command line arguments), or even on 
a line by line basis of the input source. 

We will describe the implementation of the new semantics in 
terms of the translation of JML specification constructs into the 
primitive GC language.  As can be expected, the translation will 
make extensive use of the is-defined operator, D, of Section 3.4.  
We begin with the most basic of the JML assertions, namely 
inline assert and assume statements. 

4.2.1 INLINE ASSERTIONS 
JML assert and assume statements can appear in constructor and 
method bodies as well as static initialization blocks.  Under the 
new assertion semantics, such statements are translated into a 
sequence of two guarded commands: the first asserts that the 
given predicate is defined, then follows the assert or assume 
command proper.  For example, 

〚ASSERT R〛 =  ASSERT〚D(R)〛; 

       ASSERT〚R〛 

This follows naturally from the definition of strong validity.  Note 
that with this approach, it is no longer relevant that the given as-
sertion expression, R, contain partial functions or not.  This is 
because interpretation of R is guarded by an ASSERT of the de-
finedness condition of R; hence all occurrences of partial func-
tions will be to values inside their domain. 

Other JML constructs use assertions as basic building blocks, 
and hence our adapted translation of a single assert statement into 
a pair of guarded commands, will be a recurring theme. 

4.2.2 BASIC METHOD CONTRACTS 
Under the current semantics of JML, the translation of a method 
with precondition P, body B and postcondition Q is handled as 
follows3: 

                                                                 
3 {P}B{Q} is the compact and familiar Hoare-triple syntax. 

 
Figure 6.  ESC/Java2Pipeline Architecture 

(excerpt from [11]). 
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〚{P}B{Q}〛 =  ASSUME〚P〛; 

    〚B〛; 

     ASSERT〚Q〛 

 Under the new semantics we have: 
〚{P}B{Q}〛 =   ASSERT〚D(P)〛;  

      ASSUME〚P〛; 

     〚B〛; 

      ASSERT〚D(Q)〛;  

      ASSERT〚Q〛 

The new GCs are underlined.   

4.2.3 CLASS INVARIANTS 
In those cases where a (non-helper) method belongs to a class C 
having invariant I, we get: 

〚{P}B{Q}〛  =  ASSERT 〚D(I(this))〛; 

      ASSUME 〚∀ o:C . I(o)〛; 

      ASSERT 〚D(P)〛; 

      ASSUME 〚P〛; 

     〚B〛;  

      ASSERT 〚D(Q)〛; 

      ASSERT 〚Q〛; 

      ASSERT 〚D(I(this))〛; 

      ASSERT 〚∀ o:C . I(o)〛; 

Upon entry to the method and on exit from the method, the invari-
ants of all instances of class C, including this, must hold.  The 
invariant definedness need only be checked relative to one in-
stance of C, choosing this is most convenient.  (While it is 
known that JML’s semantics of invariants is unsound, we provide 
a compatible definition under the new semantics—finding a sound 
and effective solution to this problem is still an active area of 
research [6].)   

4.2.4 CHECKING IN THE ABSENCE OF  SOURCE FILES 
Having accurate specifications for public library APIs is es-

sential to the working developer.  Lack of specifications discour-
ages use of the tools.  On the other hand, flawed specifications can 
be useless at best, dangerously misleading at worst.  As was illus-
trated in Section 2.2, use of a public API method having an incon-
sistent specification will always result in the (false!) impression of 
correct code. 

Since such libraries are often only available in binary form, 
practically all of the given library specifications had been subject 
to no more than type checking, and an occasional manual design 
review.  As was pointed out earlier, ESC/Java2 was originally 
designed to check the correctness of source code (i.e. an imple-
mentation) relative to a given specification.  As we have demon-
strated earlier, performing basic definedness checks (and eventu-
ally consistency checks) can be quite useful.   

Given a method specification for which no method body is 
available, we generate a GC of the following form: 

〚{P}_{Q}〛 =   ASSERT 〚D(I(this))〛; 

      ASSUME 〚∀ o:C . I(o)〛; 

      ASSERT 〚D(P)〛; 

      ASSUME 〚P〛; 

     〚return _〛[]〚throw new Exception()〛;  

      ASSERT 〚D(Q)〛; 

      ASSERT 〚D(I(this))〛; 

where we take as a bogus body, one that can either return (an un-
specified return value, if such a value is needed) or raise an ex-
ception. 

4.3  ACCURATE ERROR REPORTING 
As in most software applications, particularly compilers, pro-

viding accurate and helpful error reporting usually requires con-

siderable extra effort beyond the processing of “normal” input.  
The explanation, in the previous subsections, of the translation 

into GCs had conceptual clarity as a main objective.  In this sec-
tion, we briefly describe the extra processing required to enable 
ESC/Java2 to report specification errors, pin-pointing their source, 
as accurately as could be expected of a modern compiler—i.e., 
accurately identifying the cause of the error (such as Division by 
Zero) as well as the line number and character position of the 
problematic partial operator. 

ASSERT commands can have associated labels which the 
backend prover uses when reporting VC proof failures.  Concep-
tually, a label L (containing a file id, line number and character 
position) would be reported by the prover if it were unable to 
prove E in: 

ASSERT Label(L, E);  // (1) 

Unfortunately, if E is a complex expression, we might be unable 
to tell which subterm of E is to blame.  Finer grained error report-
ing can be obtained by decomposing (1) into an expanded GC 
program, more refined, though equivalent in effect to the original 
single assert command.   

Of concern to us here are expressions consisting of defined-
ness predicates.  Recall that for a strict function f having arity n 
and precondition p, we have 

D(f(e1, …, en))  =  D(e1) ∧ …  ∧ D(en)  ∧ p(e1,…,en) 
The expanded GC program for D(f(e1, …, en)), is defined as 

E〚D(f(e1, …, en))〛 = E〚D(e1)〛; 

        ... ; 

        E〚D(en)〛; 

        ASSERT Label(L,〚p(e1,…,en)〛) 

where L is a label generated from the location associated with f.  
For the conditional operator, recall that 

D(e1 ? e2 : e3)  =  D(e1)  ∧  (e1 ⇒ D(e2))  ∧  (¬e1 ⇒ D(e3)) 
The expanded GC form would be:  

E〚D(e1 ? e2 : e3)〛  = E〚D(e1)〛; 

      { ASSUME〚e1〛; 

        E〚D(e2)〛; 

        [] 

        ASSUME〚¬e1〛; 

        E〚D(e3)〛; 

      } 

While conditional conjunction and disjunction are simplifications 
of the ternary conditional operator, it is important not to eliminate 
the box operator from the expanded form.  Recall that, e.g., 
“e1 && e2” is equivalent to “e1 ? e2 : false”, thus we have 

E〚D(e1 && e2)〛 = E〚D(e1)〛; 

     { ASSUME〚e1〛; 

       E〚D(e2)〛; 

       [] 

       ASSUME〚¬e1〛; 

     } 

5. BETTER DIAGNOSTICS, AT WHAT COST? 
The treatment of definedness conditions given here is quite 

similar to the type-correctness conditions (TCCs) of the PVS 
theorem prover [33].   

One of the main objections to using a definition of assertion 
validity that takes definedness into account is that it is likely to 
contribute to making the already sizeable verification conditions 
even larger.  As a consequence, it is believed that this would lead 
to ESC tools being able to prove fewer methods correct.  Like in 
PVS, we expected most definedness conditions to be easily dis-
charged since they are, by their very nature, much smaller and 
simpler than the assertion expressions they guard.    
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Our experiences show that the overhead is not perceptibly 
significant, though such experiences are preliminary since we 
have as yet to implement all planned definedness checks.  It is still 
worth noting that, e.g., in processing 90 KLOC of code, we have 
yet to come across a (correct) method that could not be proven 
with definedness checking enabled and yet could be proven cor-
rect otherwise.  Addition of the remaining definedness checks will 
be completed shortly, after which a more rigorous assessment of 
the cost (in time and memory consumption) of definedness 
checking will be in order.  In the advent that the overhead would 
indeed be prohibitive, then ESC/Java2 could imitate PVS and 
allow users to check definedness conditions separately.   

It is interesting to note that the arrival of new ESC/Java2 
prover backends like CVC3, which directly support three-valued 
logics and partiality, will eliminate having definedness checks 
factored out as separate “side” conditions.  (Of course, it remains 
to be seen if such provers can rival their classical counterparts.) 

6. RELATED WORK 
To our knowledge, the enhancements we have made to 

ESC/Java2 are a first of its kind and this mainly because all other 
static program verification systems (e.g. [1, 2, 8, 27, 34]) are 
based on a classical definition of assertion validity.   

As was mentioned earlier, adoption of strong validity allows 
us to extend the usual Design by Contract responsibility/blame 
matrix—attributed to software components (clients and/or service 
providers) [29]—to assigning responsibility/blame to specifiers, in 
ensuring that contract assertions are always defined.  Findler et al. 
also assign responsibility/blame to specifiers but only relative to 
the conformance of subclass contracts to the constraints of be-
havioral subtyping [10].  We note that in JML, subclasses 
automatically inherit their supertype contracts and hence naturally 
enforcing behavioral subtyping [21]. 

Approaches to assertion semantics based on strong validity, 
and hence using a definedness operator, have been advocated by 
other authors for some time now.  The most fundamental works 
being that of Hoare and He, in their “Unifying Theories of Pro-
gramming” [14], as well as Konikowska’s “Two Over Three: A 
Two-Valued Logic for Software Specification and Validation Over 
a Three-Valued Predicate Calculus” [18].  We invite the reader 
who is interested in a more detailed discussion of these two ap-
proaches in relationship to our work to consult [5]. 

Leino also makes use of a “Defined” operator in the formal 
semantics of his Ecstatic language [25], but this operator is only 
applied to expressions appearing in general program statements 
rather than assertions.  Morris provides a semantics for non-deter-
ministic expressions and also makes use of an “is well-defined” 
operator (∆) [30].  Morris’ operator is more general in that ∆(E) 
not only holds when E is not undefined but also when it is deter-
ministically defined.  Like Leino, Morris does not apply defined-
ness to the semantics of assertion expressions. 

Of course, “definedness” is also an elementary concept in 
VDM’s three-valued Logic of Partial Functions (LPF).  The “is-
defined” operator is written as ∆.  One of the claimed advantages 
of LPF is that specifiers should seldom have to refer to ∆ when 
conducting proofs of VDM specifications [16].  While a three-
valued logic like LPF has a natural correspondence with RAC 
assertion semantics, unfortunately, there are no provers supporting 
LPF (although the Overture initiative might change that [20]).   

7. CONCLUSIONS AND FUTURE WORK 
The focus of current static program verification (SPV) tools 

is, somewhat naturally, on source code bugs.  Little support be-
yond well-formedness and type checking is offered for the static 
“debugging” of specifications.  This is mainly due to reliance on 
an assertion semantics based on classical validity: under such a 
definition there are no partial functions, and hence, in a sense, no 
precondition errors to report.  In this paper we have demonstrated 
how an SPV tool like ESC/Java2 can easily be extended to sup-
port definedness checking of assertion expressions.  Only one of 
the multiple processing stages of ESC/Java2 needed to be en-
hanced; hence, in particular, the change was made while preserv-
ing the same classical prover backend. 

ESC/Java2’s new definedness checking seems to add marginal 
computational overhead while, in our opinion, offering a signifi-
cant debugging capability for specifications.  In fact, having ap-
plied definedness checking to the java.* API specifications 
shipped with ESC/Java2 revealed over 50 errors, one of which 
lead to the identification of an inconsistent method specification.  

The enhancements that we have presented can be applied to 
other SPV tools, such as Spec#’s Boogie verifier [8]. 

We will continue to extend the scope of ESC/Java2’s defined-
ness checking.  In particular, one of the next milestones is the 
addition of support for the checking of method preconditions at 
the point of a method call in an assertion expression.  Following 
this, we plan on conducting a rigorous assessment of the impact 
on time and resource requirements due to the extra load of de-
finedness checks.  The start of this empirical assessment is likely 
to coincide with the availability of CVC3 as a new prover 
backend for ESC/Java2.  Since CVC3 has direct support for parti-
ality, it will be interesting to determine if the overhead of check-
ing definedness conditions as “side-conditions” (when considered 
in the context of a classical prover) can be reduced or eliminated.  

Finally, this will lead us to stage two of our planned en-
hancements to ESC/Java2, namely the addition of consistency 
checking of constructor and method contracts. 
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