

Fifth International Workshop on
Specification and Verification of

Component-Based Systems
(SAVCBS 2006)

ACM SIGSOFT/FSE-14
14th ACM Symposium on the

Foundations of Software Engineering
Portland, Oregon, USA
November 10-11, 2006

Technical Report #06-29, Department of Computer Science, Iowa State University

226 Atanasoff Hall, Ames, IA 50011-1041, USA

ii

iii

SAVCBS 2006
PROCEEDINGS

Specification and Verification of Component-

Based Systems

http://www.cs.iastate.edu/ SAVCBS/

November 10-11, 2006
Portland, Oregon, USA

Workshop at ACM SIGSOFT/FSE-14
14th ACM Symposium on

Foundations of Software Engineering

iv

Permission to make digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Fifth International Workshop on Specification and Verification of Component-Based Systems (SAVCBS
2006), November 10-11, 2006, Portland, Oregon, USA.

Copyright 2006 ACM ISBN 1-59593-586-X/06/11 … $5.00.

v

SAVCBS 2006
TABLE OF CONTENTS

ORGANIZING COMMITTEE vii

PROGRAM COMMITTEE viii

WORKSHOP INTRODUCTION ix

PAPERS 1

SESSION 1
Performance Analysis Based upon Complete Profiles 3

Joan Krone (Denison University),
Murali Sitaraman (Clemson University), and
William F. Ogden (Ohio State University)

Performance Modelling of a JavaEE Component Application using Layered Queuing
Networks: Revised Approach and a Case Study 11

Alexander Ufimtsev (University College Dublin) and
Liam Murphy (University College Dublin)

SESSION 2
Soundness and Completeness Warnings in ESC/Java2 19

Joseph Kiniry (University College Dublin),
Alan E. Morkan (University College Dublin), and
Barry Denby (University College Dublin)

Early Detection of JML Specification Errors using ESC/Java2 25

Patrice Chalin (Concordia University)

SESSION 3
Experiments in the use of tau-simulations for the components-verification of real-time
systems 33

Francoise Bellegarde (LIFC),
Jacques Julliand (LIFC),
Hassan Mountassir (LIFC), and
Emilie Oudot (LIFC)

vi

JML-based Verification of Liveness Properties on a Class 41
Julien Groslambert (LIFC),
Jacques Julliand (LIFC), and
Olga Kouchnarenko (LIFC)

SESSION 4
Using Resemblance to Support Component Reuse and Evolution 49

Andrew McVeigh (Imperial College),
Jeff Kramer (Imperial College), and
Jeff Magee (Imperial College)

Simplifying Reasoning about Objects with Tako 57

Gregory Kulczycki (Virginia Tech), and
Jyotindra Vasudeo (Virginia Tech)

CHALLENGE PROBLEM SOLUTIONS 65

VC Generation for Functional Behavior and Non-Interference of Iterators 67

Bart Jacobs (K.U.Leuven),
Frank Piessens (K.U.Leuven), and
Wolfram Schulte (Microsoft Research)

Specifying Java Iterators with JML and Esc/Java2 71

David R. Cok (Eastman Kodak Company)

SAVCBS 2006 Challenge: Specification of Iterators 75
Bruce W. Weide (The Ohio State University)

Iterator Specification with Typestates 79

Kevin Bierhoff (Carnegie Mellon University)

Reasoning About Iterators With Separation Logic 83
Neelakantan R. Krishnaswami (Carnegie Mellon University)

POSTER ABSTRACTS 87

Automatic Data Environment Construction for Static Device Drivers Analysis 89

Hendrik Post (University of Tübingen)
Wolfgang Küchlin (University of Tübingen)

vii

SAVCBS 2006
ORGANIZING COMMITTEE

Mike Barnett (Microsoft Research, USA)
Mike Barnett is a Research Software Design Engineer in the Foundations of Software
Engineering group at Microsoft Research. His research interests include software
specification and verification, especially the interplay of static and dynamic verification.
He received his Ph.D. in computer science from the University of Texas at Austin in
1992.

Dimitra Giannakopoulou (RIACS/NASA Ames Research Center, USA)
Dimitra Giannakopoulou is a RIACS research scientist at the NASA Ames Research
Center. Her research focuses on scalable specification and verification techniques for
NASA systems. In particular, she is interested in incremental and compositional
model checking based on software components and architectures. She received
her Ph.D. in 1999 from the Imperial College, University of London.

Gary T. Leavens (Dept. of Computer Science, Iowa State University, USA)
Gary T. Leavens is a professor of Computer Science at Iowa State University. His
research interests include programming and specification language design and semantics,
program verification, and formal methods, with an emphasis on the object-oriented and
aspect-oriented paradigms. He received his Ph.D. from MIT in 1989.

Natasha Sharygina (CMU and SEI, USA; Lugano, Switzerland)
Natasha Sharygina is a senior researcher at the Carnegie Mellon Software Engineering
Institute and an adjunct assistant professor in the School of Computer Science at Carnegie
Mellon University, and an assistant professor at the University of Lugano. Her research
interests are in program verification, formal methods in system design and analysis,
systems engineering, semantics of programming languages and logics, and automated
tools for reasoning about computer systems. She received her Ph.D. from The University
of Texas at Austin in 2002.

viii

SAVCBS 2006
PROGRAM COMMITTEE

Jonathan Aldrich (School of Computer Science, Carnegie Mellon Univ., USA)
Jonathan Aldrich chaired the program committee for SAVCBS 2006. He is an assistant
professor in the School of Computer Science at Carnegie Mellon University. His research
interests are in lightweight software verification using programming language and
program analysis techniques. He received his Ph.D. in Computer Science from the
University of Washington in 2003.

Program Committee:
Jonathan Aldrich (Carnegie Mellon University), Program Committee Chair
Michael Barnett (Microsoft Research)
Patrice Chalin (Concordia University)
Robert Chatley (Kizoom, London)
David Coppit (The College of William and Mary)
Ivica Crnkovic (Mälardalen University)
Stephen Edwards (Virginia Tech)
Timothy J. Halloran (Air Force Institute of Technology)
Marieke Huisman (INRIA Sophia Antipolis)
Joseph Kiniry (University College Dublin)
Matthew Parkinson (Middlesex University)
Corina Pasareanu (QSS/NASA Ames Research Center)
Andreas Rausch (University of Kaiserslautern)
Robby (Kansas State)
Heinz Schmidt (Monash University)
Wolfram Schulte (Microsoft Research)
Natasha Sharygina (Lugano and Carnegie Mellon)
Tao Xie (North Carolina State)

Sponsors:

ix

SAVCBS 2006
WORKSHOP INTRODUCTION

This workshop is concerned with how formal (i.e., mathematical) techniques can be or should be used to
establish a suitable foundation for the specification and verification of component-based systems.
Component-based systems are a growing concern for the software engineering community. Specification
and reasoning techniques are urgently needed to permit composition of systems from components.
Component-based specification and verification is also vital for scaling advanced verification techniques
such as extended static analysis and model checking to the size of real systems. The workshop will
consider formalization of both functional and non-functional behavior, such as performance or
reliability.

This workshop brings together researchers and practitioners in the areas of component-based software
and formal methods to address the open problems in modular specification and verification of systems
composed from components. We are interested in bridging the gap between principles and practice. The
intent of bringing participants together at the workshop is to help form a community-oriented
understanding of the relevant research problems and help steer formal methods research in a direction
that will address the problems of component-based systems. For example, researchers in formal methods
have only recently begun to study principles of object-oriented software specification and verification,
but do not yet have a good handle on how inheritance can be exploited in specification and verification.
Other issues are also important in the practice of component-based systems, such as concurrency,
mechanization and scalability, performance (time and space), reusability, and understandability. The aim
is to brainstorm about these and related topics to understand both the problems involved and how formal
techniques may be useful in solving them.

The goals of the workshop are to produce:

1. An outline of collaborative research topics,
2. A list of areas for further exploration,
3. An initial taxonomy of the different dimensions along which research in the area can be

categorized. For instance, static/dynamic verification, modular/whole program analysis,
partial/complete specification, soundness/completeness of the analysis, are all continuums along
which particular techniques can be placed, and

4. A web site that will be maintained after the workshop to act as a central clearinghouse for
research in this area.

x

We enthusiastically thank the authors of submitted papers; their quality contributions and participation
are what make a workshop like SAVCBS successful. We thank the program committee for their careful
reading and reviewing of the submissions. Our PC members have expertise in a wide variety of sub-
disciplines related to specification and verification of component-based systems; they include
established research leaders and promising recent Ph.D.s; they come from both industry and academia,
and hail from all over the world.

We received 13 submissions, of which 3 were withdrawn, leaving 10 to be reviewed. All papers were
reviewed by 3 PC members, with PC member papers were reviewed by 4 PC members and held to a
higher-confidence standard. Ultimately 8 papers were accepted, after PC discussions via email. As in
previous years, we accepted additional submissions as poster presentations, reflecting the role of
SAVCBS to promote discussion and incubation of new ideas for which a full paper may be premature.

This year our program also includes solutions to a specification and verification challenge problem
posed to workshop attendees. The problem focused on the specification of iterators in collection
libraries such as those in Java or C#. In these systems multiple iterators can be created over a collection,
and can access that collection simultaneously as long as it is modified. However, if the collection is
modified, all iterators are invalidated (except—for Java—the iterator through which the change was
made, if any). While familiar to many programmers, this problem poses real challenges for specification
and verification systems such as state aliased between the iterators and the collection. Four-page
challenge problem solutions were each read and reviewed by two members of the program committee, to
ensure quality and help the authors improve their presentation; we accepted all 5 submissions.

This year we also were pleased to have an invited presentation by Josh Berdine of Microsoft Research
titled “Variance Analyses from Invariance Analyses.”

Jonathan Aldrich (Program Committee Chair)

Mike Barnett (Organizing Committee)
Dimitra Giannakopoulou (Organizing Committee)
Gary T. Leavens (Organizing Committee)
Natasha Sharygina (Organizing Committee)

1

SAVCBS 2006
PAPERS

2

 3

Performance Analysis Based upon Complete Profiles

Joan Krone
Denison University

Granville, Ohio 43023
+1 740 587 6484

krone@denison.edu

William F. Ogden
The Ohio State University

Columbus, Ohio 43210
+1 614 292 6004

ogden@cse.ohio-state.edu

Murali Sitaraman
Clemson University
Clemson, SC 29634

+1 864 656 3444
murali@cs.clemson.edu

ABSTRACT
A system for engineering and verifying component-based
software must include mechanisms for specifying abstractly not
only the complete functionality of components but their exact
performance as well. This paper introduces profiles as a first-
class construct for complete, independent specification of
performance in higher-level languages. Using profiles, a
developer can select from an assortment of implementations for a
particular functionality the one that best suits his needs with
respect to speed and memory usage. Equally importantly, he can
define the expected performance of larger scale components using
compositions of the profiles of their constituent (possibly as yet
unimplemented) components. To support scalability, the profile
construct facilitates abstraction in performance specifications as
well as performance composition and analysis.
.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics – performance measures
General Terms
Software Engineering, specification, verification.

Keywords
Components, performance, reuse, specification.

1. INTRODUCTION
 In order to have an effective system for engineering
component-based software, it is essential to have a specificational
framework that supports description of those aspects of a
component that are relevant to its deployment and that implicitly
supports suppression of other irrelevant aspects. The functional
aspect is typically the most important, and so developing a
framework for its specification has been the focus of much
research. However, a framework is not adequate until it includes
a mechanism for completely describing component performance.

 Factoring out performance specifications seems to be a
common practice in the engineering of components. An auto
manufacturer, for example, sets functional limits on the
dimensions of tires that can be used but leaves to tire suppliers
such performance specifications as traction, tread life, etc. As in
the case of auto tires, a good conceptualization of functional
behavior will admit a broad assortment of realizations with
varying performance characteristics.
 Currently performance specifications for software
components are usually treated in a rather off-hand manner.
Often they’re given as gross Big-O estimates, typically in terms of
imprecisely-specified parameters ill suited to object oriented
programming (a problem we addressed in [11]). Alternatively,
they’re presented as exact durations for particular “representative”
examples run on particular hardware, which data isn’t ordinarily
of much use for predicting behavior in future applications of
components. In [11], we introduced language mechanisms for
including exact performance specifications within each realization
for a given component. We used an enhancement for a stack
component to emphasize the important role of abstraction by
showing that our approach permitted performance specification to
be established without knowledge of how the stack component
was implemented.
 Subsequently we have found that there are important
advantages to separating performance specifications not only from
the component concepts but also from the realizations for the
concept. Since the functionality of a component can be employed
independent of the performance characteristics of its various
implementations, those various performance specifications
obviously don’t belong in a component’s conceptualization, where
all its functional characteristics are formally specified. The
principal advantage of separating performance specifications from
particular realizations is that it supports additional reuse of
specifications. As we’ve discovered, the performance of
alternative implementations for a component often differs only in
ways that can easily be parameterized in an appropriately abstract
specification. Such a separation of specifications also makes it
easier to document the performance of hardware components that
are often constituents of larger (embedded) systems.

We introduce the profile then as a first class specificational
construct for recording performance characteristics. Profiles have
the virtue of allowing the designer of a component
implementation to summarize its expected performance in a
concise form that masks implementation details. At the same
time, a prospective client for the functionality of the component

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAVCBS 2006. November 10-11, Portland, Oregon, USA.
Copyright ACM 2006 ISBN 1-59593-586-X/06/11…$5.00

 4

can use the profiles of its various implementations to select the
one that best suits his performance objectives.

Since a profile is to act as a performance contract between
client code and implementation code, it should become an artifact
of the software development process with an importance similar to
that of a functionality specification contract for a component.
This makes it an entity that is independent of top-down or bottom-
up development methodologies. Typically, development of a a
good profile demands simultaneous attention to the desires of the
clients and to the possibilities open to the implementers,
regardless of whether implementation or client code exists at the
time. In the same way that abstract specifications of functional
behavior provide essential guideposts in development of modular
component-based systems, profiles provide analytic yardsticks for
checking the adequacy of system performance.

Since a performance profile is of necessity expressed in the
context of a functional specification, it is not surprising that
performance specification and verification potentially involves
every complexity that can arise in functionality specification and
verification. Moreover, since overall performance depends upon
every detail of an implementation, its specification poses several
new challenges. One of them is to aggregate these details into
simplified, abstract specifications so that that clients can keep
their focus on the larger picture as they the higher level code.
Another is to formulate expressions for the performance of
generic components, since performance specifications for their
parameters are not fixed when their profiles are written. Our
examples illustrate how to cope with all this complexity.

2 A PROFILE EXAMPLE
 In order to ensure the generality of our profile mechanism
proposed in this paper, we have tested it by creating performance
specifications for a variety of software components, including a
layered component-based system which addresses the issue of
scalability. Since our objective here is to introduce the basic
ideas in developing complete profiles that only make sense in the
context of a thoroughly understood component, we will forego
complexity of more sophisticated components and instead use the
familiar generic stack component, as we did in [11]. For it, the
functional specifications are given in Figure 1 in Resolve.

 Concept Stack_Template(type Entry;
 evaluates Max_Depth: Integer);
 uses String_Theory;
 requires Max_Depth > 0;
 Type_Family Stack ⊆ Str(Entry);
 exemplar S;
 constraints |S| ≤ Max_Depth;
 initialization ensures S = Λ;
 Operation Push(alters E: Entry; updates S: Stack);
 requires |S| < Max_Depth;
 ensures S = 〈#E〉◦#S;
 Operation Pop(replaces R: Entry; updates S: Stack);
 requires |S| > 0 ;
 ensures #S = 〈R〉◦S;
 Operation Depth_of(restores S: Stack): Integer;
 ensures Depth_of = (|S|);
 M
 end Stack_Template;

Figure 1: Specification for a Stack_Template

Figure 1 shows a formal, conceptual client view of a generic
bounded Stack component, parameterized by the type of entries to
be contained in stacks and the maximum depth to which a stack
can grow. (The evaluates mode is used to indicate that an
expression may be passed as the maximum Stack depth.)

The Stack Template concept uses mathematical String
Theory, a development of which is given in [20], to formalize
stacks. The notation Type_Family is used where the stack
formalization is introduced in order to highlight the generic nature
of the concept by reminding that it involves a whole family of
Stack types, which differ depending upon the particular Entry
type and Max_Depth parameters supplied at the time of
instantiation.

The concept provides specifications of typical Stack
operations, each specified by a requires clause (precondition),
which is an obligation for all callers, and an ensures clause
(postcondition), which is a result guarantee from any correct
implementation.

For example, the Pop operation updates the value of the stack
parameter S by removing its top entry and using it to replace the
value of the parameter R. This result is guaranteed by the ensures
clause #S = 〈R〉◦S once we know that #S refers to the previous
value of S, that 〈R〉 is the single entry string containing R, and that
◦ is the concatenate operation for strings. The Clear operation
gives stack S the initial stack value Λ (empty), and it gets this
specification not based upon an ensures clause but instead based
upon the clears parameter mode.

The important point here is that, by conceiving of stacks as
strings, it is possible to give a complete and coherent explanation
of all of the operations on stacks. Absolutely no reference to
details of any particular implementation such as arrays, pointers,
or linked lists is needed. This hiding of client irrelevant
information by reconceptualization of objects is an equally critical
feature for any satisfactory performance specification mechanism.

2.1 A Performance Profile for the Stack
 In [11], we addressed the basic problems of adding
performance specifications to realization code and of developing
a reasoning system to verify that such specifications are accurate.
That work was sound as far as it went and served as the basis for
subsequent work on specification of performance properties in
JML, and analysis of dynamic heap space usage in [1]. However,
the earlier work doesn’t fully address the larger software
engineering scalability concerns of separating out concise and
comprehensible summaries of the performance of component
implementations and of structuring them in such a fashion that
they support the derivation of analogous specifications for large
components produced as compositions of smaller ones. Here we
write performance specifications called profiles that represent a
class of implementations, thereby removing these specifications
from individual realizations, and remaining at a level of
abstraction allowing for multiple realizations.

Since some alternative implementations of generic concepts
such as stacks provide substantively different performance trade-
offs, they will of necessity have different profiles. The
performance profile in Figure 2, named SSC, is suitable for a class
of Stack implementations that are Space-Conscious, i.e., ones that
consider space to be more important than time. The profile is
written without making any assumptions about the generic type
Entry or Max_Depth, and therefore, the expressions have to be
compositional and presented in terms of these parameters.

 5

One of the key elements in the specification of a profile that’s
free of unnecessary implementation details, is the notion of a
defines specification clause. Whereas a typical (mathematical)
definition provides an immediate definiens for its definiendum,
the defines clause allows a profile to name a definiendum for use
within the profile, but to defer to each implementation the
provision of a particular definiens. An implementation can then
provide a specific definiens for each defines deferred
definiendum based upon its exact code. So the defines construct
provides a second mechanism whereby profiles can achieve
appropriate independence. Whereas Entry and Max_Depth are
traditional parameters whose values come down from clients, the
deferred constants SSCI, SSCD, etc. seen here can be viewed as
parameters whose values come up from implementations.

A performance profile is intended to document the behavior of
a class of implementations in terms understandable to clients of
the concept and generally simpler than an exhaustive description
of each implementation. A profile provides the following
information. For each operation, there is a duration clause – a
non-negative real number valued expression – that places a bound
on the time taken by the operation in terms of the parameters
supplied to the operation.

For each operation, there is a manipulation displacement
clause (abbreviated as manip_disp), a natural number valued
expression that bounds the minimum additional space that is
necessary to execute the operation above and beyond what is
occupied by all objects currently in scope. Since memory usage
may increase and decrease during the execution of a complex
procedure, this clause expresses the “high water mark” in terms of
the parameters to the operations. In order to use this information
to determine whether there is enough space to execute the next
call with a certain collection of arguments, a caller needs to be
able to determine the space occupied by all current objects. Thus,
profiles for implementations that provide types (and therefore
permit creation of objects) include a displacement clause – also a
natural number – that describes how much space is used by a
variable (e.g., a Stack variable), given its abstract value (a string
of entries). We begin the discussion with this clause, following
Figure 2.
Profile SSC short_for Space_Conscious for Stack_Template;

 Defines SSCI, SSCI1, SSCF, SSCPo, SSCPu, SSCC,

SSCC1, SSCDp, SSCRC: ℝ≥0;

 Defines SSCD, SSCMI, SSCMF, SSCMPo, SSCMPu,
SSC MC, SSCMDp, SSCMRC: ℕ;

 Type_Family Stack;

 Definition Cnts_Disp(α: Str(Entry)): ℕ =

(∑ ⋅α
Entry:E

(E)Entry.)E,Occurs_Ct(Disp);

 Displacement SSCD + Cnts_Disp(S) +

 (Max_Depth − |S|)⋅Entry.I_Disp;

 Initialization;
 duration SSCI +
 (SSCI1 + Entry.I_Dur)⋅Max_Depth;
 manip_disp SSCMI + Entry.IM_Disp +
 (Max_Depth – 1)⋅Entry.I_Disp;

 Oper Pop(replaces R: Entry; updates S: Stack);

 duration SSCPo + Entry.I_Dur + Entry.F_Dur(#R);

 manip_disp SSCMPo +
 Max(Entry.IM_Disp, Entry.FM_Disp(#R));

 Oper Push(alters E: Entry; updates S: Stack);

 ensures Entry.Is_Init(E);

 duration SSCPu;

 M
end SSC;

Figure 2: A Performance Profile
 The Displacement Clause
We note that the same ideas discussed here suffice whether or not
stacks are bounded a priori, as also noted by Atkey[1]. For
example, if the stack elements are allocated only when needed
instead of initially in an array, then the displacement will be less
and it would not include the last term seen here. However, to
make our discussions concrete, we consider implementations that
allocate and initialize an array of entries of size Max_Depth
whenever a new Stack is created. An implementation might use a
simple representation such as the one shown below:

 Type Stack = Record
 Contents: Array 1..Max_Depth of Entry;
 Top: Integer
 end;

Within this context, one class of implementations can be
characterized as placing high priority on minimizing space usage
for a Stack variable, by following a space-conscious convention
(or representation invariant): All entries in array locations beyond
those that correspond to the conceptual stack value are kept
initialized. For a stack containing complex objects such as trees,
for example, this convention leads to minimal space usage
because unused array locations contain only empty trees instead
of arbitrary trees.

Though we have divulged the representation details above in
order to provide a concrete example for readers of this paper, a
performance profile must be understandable to users based only
upon the mathematical conceptualization of stacks as strings as
given in Figure 1. Accordingly, the displacement clause in this
performance profile expresses the space occupied by a stack S
using only its abstract string value:
 Displacement SSCD + Cnts_Disp(S) +

(Max_Depth − |S|)⋅Entry.I_Disp;
There are three terms in this expression. The first term is the

constant SSCD, and it represents the fixed space overhead in any
Stack object (e.g., an Integer index into the array that is used to
keep track of the current top). The actual definition for this
constant is implementation-specific and will be specified within
the implementation; the profile merely provides a placeholder for
this constant and others by listing them in the defines clause. The
second term captures the space occupied by the entries that have
been pushed onto a stack. To express this term, we have
introduced a locally defined contents displacement function
Cnts_Disp(S), which totals for each entry E in a stack S its
displacement Entry.Disp(E) times Occurs_Ct(E, S), the number of
times E occurs in S.

 6

The last term in the displacement expression is the product
(Max_Depth − |S|)⋅Entry.I_Disp), and it accounts for the space
taken by unused array entries (all of which are assumed by this
profile to have initial values). Here, Entry.I_Disp denotes the
space used by an entry with an initial value. Using the given
expression, it is easy to see that for an empty stack with abstract
string value Λ, the displacement Stack.Disp(Λ) becomes
SSCD + Max_Depth⋅Entry.I_Disp.

 Specification of Initialization

In the class of implementations under discussion here, when a
Stack variable is initialized, Max_Depth number of entries are
created and initialized. Therefore, initialization duration includes
the factor Entry.I_Dur⋅Max_Depth, which is the product of the
duration for initializing a variable of type Entry, i.e., Entry.I_Dur
and Max_Depth, the number of entries to be initialized. The
expression includes additional constant overhead per entry,
denoted by SSCI1, as well an overall constant overhead denoted
by SSCI. The actual definitions for these implementation-specific
constants will be given in the implementations. (If the Stack
elements are allocated only when needed instead of using an
array, then initialization will take a constant time, and the cost of
object creation will be moved to the Push operation.)

The initialization manip_disp clause expresses the minimum
storage space necessary to create a new stack variable. Recall
that Entry.I_Disp denotes the space taken by an entry with an
initial value. To create a Stack representation with Max_Depth
initial entries, the necessary displacement is roughly
Entry.I_Disp⋅Max_Depth. The expression given in the profile
differs slightly because the procedure to create an initial entry
might need more space than what is strictly necessary for storing
an initial entry. This would be the case if Entry is a non-trivial
type, and creating an initial value for it requires creation and use
of other local variables. Therefore, suppose that Entry.IM_Disp
denotes the manipulation space necessary for initial entry
creation. Then the highest watermark in space usage during Stack
initialization occurs when Max_Depth − 1 new entries have been
created and the Entry initialization operation is being invoked to
initialize the last entry. Therefore, this is the minimum space
necessary to initialize a new Stack. The expression includes an
implementation-specific constant as well.

 Specification of Pop
To explain the expressions for Pop, we consider the following
code that might have been written for a space-conscious
implementation.

 Procedure Pop(replaces R: Entry; updates S: Stack);
 Var Fresh_Val: Entry;
 R :=: S.Contents(S.Top);
 S.Contents(S.Top) :=: Fresh_Val;
 S.Top := S.Top − 1;
 end Pop;

In this implementation, we have used the swap operator “:=:”,
instead of assignment, to move Entry values and to access array
contents. The reasoning and efficiency advantages of swapping
over reference assignment and representation assignment of
arbitrary entries, respectively, are discussed in detail elsewhere
[8]: Swapping enables reasoning without introducing aliasing; its
implementation is efficient because compliers can represent large

objects internally using references and merely exchanging the
references in constant time. (If entries are copied, then the same
principles of specifying performance expressions would still be
adequate, except that the performance expressions need to
account for copying.)

The second swap statement in the code is necessary to satisfy
the space-conscious convention. By declaring a local Entry
variable (which is automatically initialized) in the Pop procedure
and swapping it into the array, we make sure that the arbitrary
entry R that might have been supplied as the incoming parameter
to Pop does not go into the array and violate the convention. At
the end of the code, the local variable that then contains the
incoming value of parameter R is released or finalized. The
performance specification of Pop is expressed in user-oriented
terms in the profile:
 Operation Pop(replaces R: Entry; updates S: Stack);

 duration SSCPo + Entry.I_Dur + Entry.F_Dur(#R);

 manip_disp SSCMPo +
 Max(Entry.IM_Disp, Entry.FM_Disp(#R));

The duration expression includes the time to initialize a new
Entry variable. Finalization depends on the Entry that is
finalized, and thus, the time to finalize is given in terms of the
incoming value of parameter R. The definition for the deferred
constant SSCPo in the duration expression for Pop code is given
internally in each implementation. For the present example, it
might be defined as:
Definition SSCPo: ℝ≥0 = DurCall(2) + 2⋅Array.Dur:=: +

 6⋅Record.Dur. + Int.Dur:= + Int.Dur− ;
This constant includes the time to call a procedure with 2

parameters, denoted by DurCall(2), array and record accesses, and
Integer operations. This definition is relegated to the
implementation because it provides too much information to
include in a profile for clients and it is expressed in terms of
implementation details that should not be visible to them. Placing
the definition in the profile, in addition to hard wiring it, would
seriously compromise information hiding and hinder modularity
in reasoning.

How much space is necessary to call Pop beyond what is
already taken up by its parameters? It is the maximum of the
displacement necessary to initialize a new variable, i.e.,
Entry.IM_Disp (Entry initialization manipulated displacement) or
finalize the incoming parametric entry, i.e., Entry.FM_Disp(#R).

One other aspect of interest in the performance profile is the
additional ensures clause for the Push operation. In particular,
using the predicate Entry.Is_Init(E) that is true only if E has an
initial Entry value1, the ensures clause tells a user that E will be
initialized after a call to Push(E, S). While this information,
which appears only in the performance profile, cannot be used by
a client program in establishing functional correctness, it can be
used for reaching displacement/duration conclusions, as
illustrated in Section 3. Unlike Pop, the Push and Depth_of
procedures have constant performance expressions.

Performance profiles are useful for component clients,
enabling them to select prudently from among a variety of

1 We use a predicate here instead of asserting E = Entry.Init or

equivalent, because initializations may be specified to give an
object one of many initial values.

 7

implementations for a particular concept that provide interesting
performance trade-offs. They are also important for independent
development and modular analysis of component-based systems
in the same way that abstract specifications of functional behavior
are useful. For example, performance of other components that
reuse the Stack concept can be derived from the performance
profile of the chosen Stack implementation. To illustrate how
profiles for a component built on other components can be
presented parametrically, we analyze code for a component built
on Stack objects and operations. The example specification for a
Flip operation to invert a stack is given below. It is an
enhancement or conceptual extension to the Stack_Template
described previously. In the ensures clause, Rev denotes the
mathematical string reversal operator.
Enhancement Flipping_Capability for Stack_Template;

 Operation Flip(updates S: Stack);

 ensures S = #SRev;

end Flipping_Capability;

 2.2 Profile Specification of Flip
A given implementation of Flip may exhibit different
performance behaviors, depending on the profile of the Stack
implementation that is used in conjunction with Flip. It becomes
possible to express this performance dependence of one
component upon another quite elegantly, if profiles are available
as first class constructs in a language. To illustrate how this is
done, we show profile SSCF for Flip based on the SSC profile of
Stack_Template.

Profile SSCF short_for Space_Conscious_Stack_Flip for

 Flipping_Capability for Stack_Template with_profile SSC;

 Defines SSCFF1, SSCFF2: ℝ≥0;

 Defines SSCFFMC1, SSCFFMC2: ℕ;

 Operation Flip(updates S: Stack);

 duration SSCFF1 + Entry.I_Dur + Stack.I_Dur +
 Entry.F_IV_Dur + Stack.F_IV_Dur +

 (SSCFF2 + Entry.I_Dur + Entry.F_IV_Dur)⋅|#S|;

 manip_disp (SSCFFMC1 + Entry.I_Disp + Stack.I_Disp) +

 Max(SSCFFMC2, Entry.IM_Disp, Entry.F_IVM_Disp
);

end SSCF;
 The abstract performance specifications in the profile above
are given in terms meaningful to clients of the
Flipping_Capability. In particular, the profile of Flip can be
understood, without knowing any implementation details of either
the Stack_Template or the Flipping_Capability enhancement.
 To motivate the specifics of the particular performance
expressions in the profile, we consider a concrete implementation
of Flip in this subsection. The implementation contains concrete
definitions for constants used in the SSCF profile, such as SSCFF1
and SSCFF2. The loop is annotated with the maintaining (loop
invariant) and decreasing (progress metric) clauses necessary for
an automated system to prove that the code satisfies its functional
specification for flipping the Stack. In addition, the loop
specification includes elapsed time and manipulated

displacement expressions [11] needed to prove the correctness of
the code with respect to its performance profile.
 Due to space constraints, we present and analyze just the
timing-related assertions. Since the code for Flip relies only on
the specification of operations in the Stack_Template and not on
any particular implementation, modular reasoning about the
functional correctness of the code can be done regardless of the
Stack implementation chosen.

Realization Obvious_F_C_Realiz for Flipping_Capability

with_profile SSCF of Stack_Template with_profile SSC;

 Definition SSCFF1: ℝ≥0 = (DurCall(1) + (SSCDp + Int.Dur≠)
 + Dur:=:);

 Definition SSCFF2: ℝ≥0 = (SSCDp + Int.Dur≠ + SSCPo +
 SSCPu);

 Definition SSCFFMC1: ℕ = L

 Definition SSCFFMC2: ℕ = L
 Procedure Flip(updates S: Stack);

 Var Next_Entry: Entry;

 Var S_Flipped: Stack;

 While (Depth_of(S) ≠ 0)

 affecting S, S_Flipped, Next_Entry;

 maintaining #S = S_FlippedRev ◦ S and

Entry.Is_Init(Next_Entry);

 decreasing |S|;

 elapsed_time (SSCFF2 + Entry.I_Dur +
 Entry.F_IV_Dur)⋅|S_Flipped|;

 manip_disp L
 do
 Pop(Next_Entry, S);
 Push(Next_Entry, S_Flipped);

 end;
 S :=: S_Flipped;

 end Flip;

end Obvious_F_C_Realiz;

2.3 Durational Analysis of Flip
 The duration expression for Flip, in addition to a constant
term SSCFF1, has three parts: duration for local variable
initialization, for local variable finalization, and for loop
execution. First we assume that a Stack component with profile
SSC is used. The duration expression to initialize the two local
variables – an entry and a stack – is straightforward, and it is the
sum of Entry.I_Dur and Stack.I_Dur. Unlike initialization, the
time for finalization of the two local variables depends on the
values of the local variables at the time of finalization. Therefore,
we need to understand what their values would be at the end of
the code. Here, the Stack S_Flipped that is finalized is empty,
because S is empty just before the swap statement. Therefore, the
duration expression also includes the term Stack.F_IV_Dur – the
time to finalize a stack with initial value. The local variable
Next_Entry also has an initial value just before finalization. To

 8

see why, notice that the loop maintains the invariant
Entry.Is_Init(Next_Entry), based on the extended ensures clause
for the Push operation in the profile SSC, which in our version of
Stack, guarantees that after Push the parametric Entry is
initialized. Therefore, the duration of finalizing the Entry at the
end of the code is Entry.F_IV_Dur – the time to finalize an entry
with an initial value.
 The loop executes |#S| times. The time for each iteration
includes a constant term arising from calls to Depth_of, Push, and
the loop branching activity. In addition, we note from the SSC
profile that every call to Pop(R, S) takes time SSCPo +
Entry.I_Dur + Entry.F_Dur(#R). In the code given above, the
Next_Entry that is supplied to Pop is the entry resulting from the
previous to call to Push. Since the ensures clause for Push in SSC
profile guarantees that Push initializes its Entry parameter, we are
guaranteed that Pop is only supplied initial entries in every call.
Therefore, Pop needs to finalize only initial entries and the time
for each call to Pop simplifies to SSCPo + Entry.I_Dur +
Entry.F_IV_Dur. Given these considerations and the matching
definitions of constants SSCFF1 and SSCFF2, the elapsed time
estimate for the loop is documented in the implementation as:

 (SSCFF2 + Entry.I_Dur + Entry.F_IV_Dur)⋅|S_Flipped|

2.3 Validity of the Elapsed Time Estimate
This elapsed time estimate is used in proving the performance
correctness of Flip. A part of the proof that verifies that the given
elapsed time estimate is valid is given in the table below.

State

Path
Condition

Assume Confirm

While (Depth_of(S) ≠ 0)
 affecting S, S_Flipped, Next_Entry;
 maintaining #S = S_FlippedRev◦S and
 Entry.Is_Init(Next_Entry);
 decreasing |S|;
 elapsed_time (SSCFF2 + Entry.I_Dur +

 Entry.F_IV_Dur)·|S_Flipped|;
 do

2 |S2| ≠ 0 Entry.Is_Init(Next_Entry2) ∧
ET2 = (SSCFF2 + Entry.I_Dur +
Entry.F_IV_Dur)·|S_Flipped2| L

L

 Pop (Next_Entry, S);

3 |S2| ≠ 0 S2 = S3◦<Next_Entry3> ∧
S_Flipped3 = S_Flipped2 ∧
ET3 = ET2 + (SSCPo +
 Entry.I_Dur +
 Entry.F_Dur(Next_Entry2)) L

L

 Push (Next_Entry, S_Flipped);

4 |S2| ≠ 0 Entry.Is_Init(Next_Entry4) ∧
S4 = S3 ∧ S_Flipped4 =
 S_Flipped3◦<Next_Entry3> ∧
ET4 = ET3 + SSCPu L

L

Confirm ET4 =
 (SSCFF2+ Entry.I_Dur + Entry.F_IV_Dur)·|S_Flipped4| ∧ L

end;

The table shows only a part of an inductive proof: verification
conditions corresponding to the inductive potion of the proof to
confirm the invariance of the elapsed time estimate. In the table,
which is based on [26]], we assume at the beginning of the loop
(numbered state 2 in the figure) the elapsed time estimate holds.
We then confirm at the end of the loop (state 4) that the estimate
when evaluated there is correct. The assumptions in states 3 and 4
come from the functional and performance specifications of
operations Push and Pop. Variable names are subscripted with
the state number to distinguish their values in different states. The
verification variable ET stands for the elapsed time. Given the
assumptions, a verifier can conclude that ET4 satisfies its equation
if ET2 satisfies its equation. We have omitted the base case for
the inductive proof, assertions outside the loop, and functionality-
related assertions, not necessary for the above proof.

3. SCALING UP
Two important scalability questions arise in generalizing the
utility of the profile construct:

1. Can profiles for layered components be expressed
abstractly?

2. How complicated will profiles get when components
are used to put together a layered system?

To address these questions we designed and specified a spanning
forest component that we built using a prioritizer and a
coalescable equivalence relation component, among others, and
specified all components fully for both functionality and
performance.

We answer the first question affirmatively noting that it was
possible to write a fully descriptive profile for the top layer of the
system without filling in the details for the components upon
which it was layered.

The second question is one of concern, since the stack example
may give the impression that the number of lines of specifications
in a profile may approach the number of lines of executable code.
However, we note that the stack component has an unusually
small number of lines of code, and that the complexity of the
profile is dominated by its parameterization. Moreover, although
it may seem counter-intuitive, it turns out that when layering up,
the profile for a higher-level component is usually no longer than
that for a lower level one, while the aggregate number of lines of
executable code grows considerably. For example, in the case of
the spanning forest, the ratio of lines of performance specification
to executable code is closer to one to three, rather than one to one,
indicating that the depth of layering in a system is not an indicator
of the need for longer profiles.

Our research has also shown that the profile construct is
essential for documenting concisely the various performance
specifications of a layered component, such as the spanning forest
component, that result when alternatives are considered for the
performance of a constituent component such as the prioritizer.

4. RELATED WORK AND DISCUSSION
 The importance of performance considerations for software
engineering (e.g., [4], [14], [17]), in general, and for software
components, in particular, has been widely acknowledged.
Designers of languages and developers of component libraries
have emphasized the need for alternative implementations in order
to provide performance trade-offs [3], [16], [18]. The importance

 9

of generic programming and of alternative implementations is
being increasingly recognized, as is evident from the evolving
designs of C#, C++, and Java.
 In order for component users to choose from multiple
implementations and analyze performance of component-based
systems in a modular fashion, a formal system for performance
specification is necessary. Balsamo, et al., in surveying various
efforts in performance analysis [2], note that “Although several of
these approaches have been successfully applied, we are still far
from seeing performance prediction integrated into ordinary
software development” and conclude that one of the unresolved
problems is the lack of software notations that allow for easily
expressing performance. The profile construct proposed here for
extending specification (and programming) languages to support
specifying performance is a contribution to integrating
performance considerations into software development.

A general performance specification system should be flexible,
allowing specifiers to express performance in terms of
abstractions that are appropriate for the problem at hand. This
emphasis on abstraction and generic components in specifying
both time and space usage of components also makes the ideas
discussed in this paper quite different from the work in the real-
time community (e.g., [7], [23]) where timing deadlines and
concurrency are the focus.

Expression of tight timing constraints is an active area of
research [6], [15]. Elsewhere, we have detailed how the
expressiveness issues that arise in tight specification of
performance at the source code level can be addressed using
intermediate abstraction models [28].

Hehner has built on the work of Shaw [22], to formalize time
and space analysis of a recursive procedure at the source code
level [9]. Our earlier work and the work of Schmidt and
Zimmermann [21] have considered space complexity issues for
components. Working within the context of functional programs
Unnikrishnan, et al. and Hofmann and Jost have addressed issues
in bounding the space usage of functional programs under various
assumptions using program-level source code analysis [10], [27].
Ultimately, compositional performance analysis needs to be
combined with advances in verification of functional behavior in
the presence of data abstractions (e.g, [5], [19], [25], [26])
because assertions from functional correctness are necessary for
establishing performance correctness.

We have introduced profiles as a first class language construct
for modular specification and analysis, providing a vocabulary for
stating time and space constraints. The construct supports both
generics and compositionality. Based on the construct, as Atkey
[1] has shown recently, mechanisms for other behavioral
specification language and implementation language
combinations can be developed, provided the particulars of the
language features are carefully accommodated in specifications.

5. ACKNOWLEDGMENTS
Several members of our research groups have contributed
important ideas to this work. Our special thanks are due to Gary
Leavens and Bruce Weide for their comments. We gratefully
acknowledge financial support from the U.S. National Science
Foundation under grant CCR-0113181 and a grant from the U.S.
National Aeronautics and Space Administration through the SC
Space Grant Consortium.

6. REFERENCES

[1] Atkey, J., “Specifying and Verifying Heap Space Allocation

with JML and ESC/Java2”, Proceedings of the ECOOP
Workshop Formal Techniques for Java-like Programs,
Nantes, France, July 2006; available at:
http://www.disi.unige.it/person/AnconaD/FTfJP06/

[2] Balsamo, S., Di Marco, A., and Inverardi, P., “Model-Based
Performance Prediction in Software Development: A
Survey”, IEEE Transactions on Software Engineering, 30(5),
May 2004, 67-82.

[3] Booch, G. Software Components With Ada.
Benjamin/Cummings, Menlo Park, CA, 1987.

[4] Cheng, A. M. K., Clemens, P., and Woodside, M., eds.
Special section: Workshop on Software and Performance.
IEEE Trans. on Software Engineering 26, 11/12,
November/December, 2000.

[5] Ernst, G. W., Hookway, R. J., and Ogden, W. F., “Modular
Verification of Data Abstractions with Shared Realizations”,
IEEE Transactions on Software Engineering 20, 4, April
1994, 288-307.

[6] Gomez, G. and Liu, Y. A., “Automatic time-bound analysis
for a higher-order language,” Proceedings of the 2002 ACM
SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation (PEPM '02), Portland,
Oregon, USA, January 14-15, 2002, ACM SIGPLAN
Notices 37(3), March 2002.

[7] Hayes, I.J. and Utting, M., “A Sequential Real-Time
Refinement Calculus,” Acta Informatica 37, 2001, 385-448.

[8] Harms, D.E., and Weide, B.W., “Copying and Swapping:
Influences on the Design of Reusable Software
Components,” IEEE Transactions on Software Engineering,
Vol. 17, No. 5, May 1991, 424-435.

[9] Hehner, E. C. R., “Formalization of Time and Space,”
Formal Aspects of Computing, Springer-Verlag, 1999, 6-18.

[10] Hofmann, M. and Jost, S., “Static Prediction of Heap Space
Usage for First-Order Functional Programs,” Proceedings of
the 30th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), 2003, 185-197.

[11] Krone, J., Ogden, W. F., and Sitaraman, M., “Modular
Verification of Performance Correctness”, SAVCBS
Workshop Proceedings, 2001, 60-67.

[12] Krone, J., Ogden, W.F., “Abstract OO Big O,” SAVCBS
Workshop Proceedings, 2003, 80-84.

[13] Leavens, G. T., Baker, A. L., and Ruby, C., “JML: A
Notation for Detailed Design,” Behavioral Specifications of
Businesses and Systems, H. Kilov and B. Rumpe and I.
Simmonds, eds., Kluwer Academic Publishers, Boston,
1999.

[14] Leavens, G.T., Abrial, J., Batory, D., Butler, M., Coglio, A.,
Fisler, K., Hehner, E., Jones, C., Miller, D., Peyton-Jones, S.,
Sitaraman, M., Smith, D.R., and Stump, A.: Roadmap for
Enhanced Languages and Methods to Aid Verification.
Department of Computer Science, Iowa State University, TR
#06-21. July 2006.

 10

[15] Lim, S-S, Bae, Y. H., Jang, G. T., Rhee, B-D, Min, S. L.,
Park, C. Y., Shin, H., Park, K., Moon, S-M, and Kim, C. S.,
“An accurate worst case timing analysis for RISC
processors,” IEEE Transactions on Software Engineering,
Vol. 21, No. 7, July 1995, 593 - 604.

[16] Meyer, B., Object-Oriented Software Construction, Prentice
Hall PTR, Upper Saddle River, New Jersey, 1997.

[17] Meyer, B., “The Grand Challenge of Trusted Components,”
Procs. 25th Int. Conference on Software Engineering,
Portland, OR, May 2003, 660-667.

[18] Musser, D.R., Derge, G.J., and Saini, A. STL Tutorial and
Reference Guide, Second Edition. Addison-Wesley, 2001.

[19] Muller, P. and Poetzsch-Heffter, A., “Modular Specification
and Verification Techniques for Object-Oriented Software
Components,” in Foundations of Component-Based Systems,
eds. G. T. Leavens and M. Sitaraman, Cambridge University
Press, 2000.

[20] Ogden, W.F., The Proper Conceptualization of Data
Structures, Dept. Computer and Information Science, Ohio
State University, 2000.

[21] Schmidt, H. and Zimmermann, W., “A Complexity Calculus
for Object-Oriented Programs,” Journal of Object-Oriented
Systems, 1994, 117-147.

[22] Shaw, M., A Formal System for Specifying and Verifying
Program Performance, Carnegie-Mellon University
Technical Report CMU-CS-79-129, June 1979.

[23] Shaw, A. C., Reasoning About Time in Higher-Level
Language Software, IEEE Transactions on Software
Engineering 15, 1989, 875-889.

[24] Smith, C. U., Performance Engineering of Software Systems,
Addison-Wesley, 1990.

[25] Sitaraman, M., Ogden, W.F., and Weide, B.W., “On the
Practical Need for Abstraction Relations to Verify Abstract
Data Type Representations,” IEEE Trans. Software Eng 23,
3, Mar. 1997, 157-170.

[26] Sitaraman, M., Atkinson, S., Kulczycki, G., Weide, B. W.,
Long, T. J., Bucci, P., Heym, W., Pike, S., and
Hollingsworth, J. E., “Reasoning About Software-
Component Behavior,” Procs. Sixth Int. Conf. on Software
Reuse, IEEE Computer Society, 2000.

[27] Unnikrishnan, L., Stoller, S. D., and Liu, Y. A., “Automatic
Accurate Live Memory Analysis for Garbage-Collected
Languages,” Procs. ACM SIGPLAN Workshop on
Languages, Compilers, and Tools for Embedded Systems
(LCTES), 2001.

[28] Weide, B. W., Ogden, W. F., and Sitaraman, M.,
“Expressiveness Issues in Compositional Performance
Reasoning,” Procs. Sixth ICSE Workshop on Component-
Based Software Engineering: Automated Reasoning and
Prediction, Portland, OR, May 2001, 85 - 90

Performance Modeling of a JavaEE Component
Application using Layered Queuing Networks: Revised

Approach and a Case Study

Alexander Ufimtsev
Performance Engineering Laboratory

School of Computer Science and Informatics,
University College Dublin, Belfield, D4, Ireland

alexu@ucd.ie

Liam Murphy
Performance Engineering Laboratory

School of Computer Science and Informatics,
University College Dublin, Belfield, D4, Ireland

Liam.Murphy@ucd.ie

ABSTRACT
Nowadays component technologies are an integral part of
any enterprise production environment. Performance and
scalability are among the key properties of such systems. Us-
ing Layered Queuing Networks (LQN), one can predict the
performance of a component based system from its design.
This work revises the approach of using LQN templates, and
offers a case study by using the revised approach to model
a realistic component application.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Reuse
models; D.2.1 [Software Engineering]: Requirements/ Spec-
ifications—Methodologies; D.2.8 [Software Engineering]:
Metrics—Performance measures; D.2.9 [Software Engi-
neering]: Management—Software quality assurance

Keywords
performance modeling, JavaEE, component systems, ECPerf,
Layered Queuing Network.

1. INTRODUCTION AND MOTIVATION
Many large software development projects fail to deliver
the product on time, within budget, and with satisfactory
QoS. Useful software engineering practices such as model
checking, verification, and continuous testing help satisfy
the functional requirements of the projects. However, some
of the non-functional requirements can only be checked when
integrated with other components and during system test-
ing, which is typically done during the final stages of de-
velopment. Performance is one of the non-functional re-
quirements that is commonly difficult to check outside a
test environment.

Software products nowadays include various components de-
veloped by third parties and running on a stack of multiple

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Fifth International Workshop on Specification and Verifica-
tion of Component-Based Systems (SAVCBS 2006), November
10-11, 2006, Portland, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11 ...$5.00.

software layers. Such complexity makes it difficult to provide
software performance guarantees - moving functionality to
middleware and third party components reduces the overall
understanding of the system. Nowadays ’buggy’ and poorly
implemented code contributes less problems to enterprise
software development than a problematic architecture or
”short-sighted design”, as well as poor capacity planning [9].
Unfortunately, design problems are not easily resolvable at
the final development stages. Therefore, a system designer
should be able to assess the performance properties of the
system (both software and hardware) early. He or she needs
to ’plan ahead’, leaving room for possible future improve-
ments and requirement changes.

Use of Layered Queuing Networks for modeling of component-
based software can help system designers to assess the out-
come of performance decisions, starting from very early stages
of development. This work builds upon ’layered queuing
network templates’ [8, 11] by analyzing key strengths and
weaknesses of the approach and also by conducting a case
study on a realistic application.

2. LQN OVERVIEW
Layered Queuing Networks (LQN) is an extension of Queu-
ing Networks that allows the software to be represented in
layers, thus separating resources from a model and dividing
a model into multiple submodels. LQN is abstract enough
not to suffer from drawbacks of other popular formalisms,
notably Stochastic Petri Nets (SPN).

Basic LQN notation consists of three basic elements: cir-
cles denote resource type (CPU, disk, network), rectangles
- software blocks. The right rectangle usually denotes an
object/bean, while rectangles to the left from it denote an
action happening with that object, such as method or func-
tion call. Also, control rectangle usually indicates the type
of resource it utilizes. Arrows depict control flow within the
network.

Key advantages of LQN:

• Layered architecture of LQN ’naturally’ maps to com-
ponentized, multi-tiered, and multi-layered enterprise
level software stacks;

• LQN is easily extend able to include newly discovered

11

bottleneck resource or device into existing model;

• LQN avoids state explosion as some other formalisms
(SPN-like) via higher level of abstraction;

• LQN is a formalism and provides robust analytical and
simulation-based tools.

LQN’s disadvantages:

• Does not allow any type of dynamism in the running
system, provides only steady state solutions;

• Does not have a notion or possibility to model time-
outs, locks, and workload variation within a run. To
introduce some sort of dynamism to LQN one must
have to solve LQN for different states first and then
bind them together with a form of Markov chain, with
probability of the system changing its state from one
to another.

• Requires a lot of data to be accurately collected, in-
terpreted, and put into a model to produce accurate
results.

3. PROBLEM STATEMENT AND APPROACH
The purpose of this work was to understand how suitable
were LQN templates for modeling JavaEE applications and
what improvements to the approach are needed. Java En-
terprise Edition (JavaEE) is a superset of Java Standard
Edition (JavaSE), designed for multi-tier solutions [6]. It
provides developers with the underlying infrastructure re-
quired by the enterprise systems. J2EE’s core is a family
of component models: on the client side, JavaBeans and
applets; on the web server tier, J2servlets and Java Server
Pages (JSPs); on the application server tier Enterprise Jav-
aBeans (EJB).

Java EE’s ECperf application was selected to be modeled
for a number of reasons. First, ECperf is an industry-
standard JavaEE benchmark meant to measure the scal-
ability and performance of JEE servers and containers. It
stresses the ability of EJB containers to handle the complex-
ities of memory management, connection pooling, passiva-
tion/activation, and caching. ECperf is highly portable and
runs on majority of application servers, which makes it per-
fect for future evaluation of the approach on different soft-
ware and hardware configurations. Second, ECPerf creators
stress its ability to represent real-life business applications.
ECPerf is designed as a typical web business application
that permits customers direct specification of product con-
figuration, ordering, and status checking. It also automates
manufacturing, inventory, supplier chain management, and
customer billing. Third, as a benchmark application it pro-
vides necessary workload drivers and all the performance
data aggregators in useful and professional manner.

4. APPLICATION DESIGN
Originally developed by Sun Microsystems, ECPerf is now
being developed and maintained by SPEC Corporation1. It

1http://www.spec.org

is currently available from SPEC under the name of SPEC-
jAppServer2004. ECPerf is designed to be a typical en-
terprise application. It has four implemented domains in
its code: Manufacturing, Supplier & Service Provider, Cus-
tomer, and Corporate. Each domain has separate database
and applications. They provide the foundation for the ECperf
workload. Customers contact the business through any num-
ber of methods, including directly through the web. All of
the worldwide offices and plants make frequent access to
data held in the other offices or plants, and must, at times,
compare/collate/verify their data against that held world-
wide. The company also interacts with completely separate
supplier companies. Each supplier has its own independent
set of computing resources. The overall setup can be seen
in Figure 1.

Figure 1: High-Level Overview of Testing System

Customer Domain

This domain emulates business interactions with the clients.
Clients can be of two types: individuals and distributors.
Both interact with by placing orders. The difference be-
tween the two is in the quantity of items ordered. Approxi-
mately 57% of work on the system is related to orders from
distributors (i.e contain large number of items), 43% is from
individual customers. Customer domain implementation of
ECperf contains seven beans: OrderSes, OrderEnt, Order-
LineEnt, ItemEnt, OrderCustomerSes, OrderCustomerEnt,
and CartSes.

Manufacturing Domain

The manufacturing domain emulates business product lines,
which process the orders received by customer domain. There
are two types of production lines: Planned lines and Large-
order lines. The planned lines run on schedule and pro-
duce a pre-defined number of widgets. On the other hand,
the largeorder lines run only when a large order is received
from a customer such as a distributor. This domain is im-
plemented with ten beans: WorkOrderSes, LargeOrderSes,
ReceiveSes, PartEnt, AssemblyEnt, WorkOrderEnt, Large-
OrderEnt, ComponentEnt, InventoryEnt, and BOMEnt.

Supplier Domain

The Supplier Domain decides which supplier to choose based
on the parts that need to be ordered, the time in which they
are required and the price quoted by suppliers. It is imple-
mented in the system with seven beans: BuyerSes, Recei-
verSes, SupplierEnt, SupplierComponentEnt, POEnt, PO-
LineEnt, and SComponentEnt.

12

Table 1: Top cumulative time-consuming methods
Domain Name Time (%)

mfg WorkOrderEnt.process 19
mfg WorkOrderCmpEJB.process 19
mfg WorkOrderSesEJB.scheduleWO 16.1

supplier BuyerSes.purchase 5.3
supplier BuyerSesEJB.purchase 5.3

mfg ComponentEnt.takeInventory 5.3
orders OrderSesEJB.newOrder 5.3
orders OrderEntHome.create 5.3
orders OrderCmpEJB.ejbCreate 5.3
mfg WorkOrderSesEJB.scheduleWO 4.8

Table 2: Top average method time

Domain Name Time (%)
mfg WorkOrderEntHome.create 0.4

orders OrderCustomerEntHome.create 0.2
supplier ReceiverSesHome.create 0.1

mfg WorkOrderEntHome.create 0.1
orders OrderCustomerEntHome.findByPK 0.1

Corporate Domain

This domain manages the global list of customers, parts and
suppliers and is implemented in three beans: CustomerEnt,
DiscountEnt, RuleEnt. The domain is used for obtaining
customer credit status, various discounts and billing.

5. PERFORMANCE AND CODE ANALYSIS
While performing analysis it is important to concentrate on
so-called ”critical paths” within the system. Critical paths
in ECPerf were obtained by analysing its source code and
execution traces while running the system with minimal pos-
sible workload. The latter was necessary to avoid abnormal
behavior due to monitoring overhead and clarity of the de-
rived call graph. It should be noted that despite the use
of smallest possible workload the amount of users in the
system was equal to eight. Therefore, concurrent resource
usage behavior was preserved. The source code was anal-
ysed using Juliet 2, while execution graph and times were
obtained with JProbe 3 tool. The measurements had shown
that that only two domains make a significant performance
impact: cumulative execution time of beans in manufactur-
ing and customer domains consume around 80% of overall
ECPerf execution time (See Table 1). The other two do-
mains did not seem to have any significant influence on the
overall system performance. Also, Table 2 shows top five
non-cumulative averaged method times. It can be noted
that even the worst performing individual methods use very
little resources on their own. Since a lot of complex services
was pushed to middleware, what becomes important is the
”orchestration” of services provided by other methods and
containers.

5.1 Workload Generation
2http://infotectonica.com/
3http://jprobe.quest.com

ECperf workload is generated by so-called ’Driver’ script,
that runs ’agents’. Standard ECperf configuration features
three agents, one per domain: ordersAgent (customers), mf-
gAgent (manufactures), and loAgent (large orders). Strictly
speaking, loAgent is not a new domain, but rather belongs
to both customers and manufactures. Agents, in their turn,
start up and control the client instances that issue requests
to the servers (See Figure 2). The number of planned lines
and order lines depends on scale parameter.

Figure 2: ECperf Workload Overview

All the loops wait for a certain period of time. It is hard-
coded for one second for large order agent, configured to 100
ms for mfgAgent and for orderEntry it is set to a negative
exponential distribution

Tc = −ln(x)/Ir (1)

where ln - natural log (base e), x - random number with at
least 31 bits of precision, Ir - mean Injection Rate.

Figure 3 shows an overview of manufacturing activity in
LQN notation. System sleep is necessary to introduce emu-
lation of activity stations that gradually change workorder
state from ’scheduled’ to ’updated’, and finally to ’com-
pleted’. WorkOrderSes session bean also creates, searches,
and updates a few entity beans.

Figure 3: High-level overview of Manufacturer Sys-
tem Activity

Large orders agent just pulls information from the database
about large orders once per second and updates its statistics

13

Figure 4: Large Orders Agent activity

Order entry represents a significant amount of system ac-
tivity. The stream of order entry transactions is split in the
following way:

• newOrder - 50%

• getOrderStatus - 20%

• changeOrder - 20%

• getCustStatus - 10%

There is also 10% chance that order is going to be large, 50%
chance that people buy goods right away and another %50
- that they will use a shopping cart. In 90 percent of cases,
people delete the content of their shopping cart. The Metric
for the Customer Domain is Transactions/min. The metric
for the Manufacturing Domain isWorkorders/min, whether
produced on the Planned lines or on the LargeOrder lines.
The numbers described are based on real world experience of
Sun Microsystems building typical enterprise applications.
This particular transaction mix and probabilities of state
changes is built into ECPerf and should not be altered.

newOrder call path is presented in Figure 5. Please note that
other paths, such as changeOrder, orderStatus, customerSta-
tus, and createNewShoppingCart were not expanded due to
cluttering of space. Numbers on call arrows show probabil-
ities.

5.2 Addressing Ambiguity
A few features or implementation details of ECperf pre-
sented a modeling challenge. First, since ECperf was de-
signed after typical web-based enterprise applications, it in-
tentionally did not keep the database size stable. In fact, it
kept growing throughout each test and had to be reinitial-
ized before a new one. Second, even the initial database size,
e.g. the initial number of customers and products depends
on the expected (configurable) workload. This is another
reason why databases have to be swept clean and repopu-
lated with data upon startup of another test. Third, ECperf
authors made some provisions for unstable environment. If
a transaction fails for whatever reason (timeouts, database
lock, etc.), ECperf handles this exception and retries it from
5 to 20 times before failing.

All of the above uncertainties had to be abstracted in order
to keep the scope of the use case feasible. Database size for

the model was chosen as an average of the real database size
before and after test run. We presume this is correct since
database never becomes a bottleneck device throughout the
test. We also had to average in all the retries and transaction
rollback that happened.

The rest of the testsuit was modeled using the following
refined principles:

• Communication is broken into two types: local and
remote. Remote one is modeled with a network re-
source/processor. Local calls that don’t exercise Re-
mote Method Invocation (RMI) are modeled as simple
LQN calls without any resource consumption.

• Container services is an aggregate term for any ad-
ditional activities performed by container. It is not
modeled separately, but spread across execution times.

• Reflection - included in container services times.

• Connection pooling - two essential queues are modeled:
container threads and database threads.

• Transaction manager - again, included in overall con-
tainer services for model simplicity. No specific model
for the actually transaction rollback is specified.

• Security - security checks are modeled with submodels
of beans.

• Garbage Collection (GC) is not addressed in the cur-
rent version of model, since the complexity and closed
source code of JVM makes it hard to derive correct
models. GC time is generally spread across container
services.

• Naming - modeled through container services

• Database - modeled with an average response time.
It is possible, however, to model it with any specified
distribution of response times.

6. MODELING APPROACH
The proof of concept use of LQN for modeling of EJB-based
applications has been demonstrated by Xu et al. [11]. Pro-
duced LQN-EJB templates can be instantiated according to
specific function requirement in each scenario for system us-
age, and then be assembled into a complete LQN model for
the whole scenario. General information on functional as-
pects of EJB technology as well as specific models for each
bean type were presented in [11].

A system is modeled by presenting the beans as tasks with
estimated parameters, then instantiating the template to
wrap each class of beans in a container, and finally adding
the execution environment including the database. Calls
between beans, and calls to the database, are part of the
final assembly. The model may be calibrated from running
data, or by combining

• knowledge of the operations of each bean;

• pre-calibrated workload parameters for container ser-
vices, communication, and database operations.

14

Figure 5: Part of the Orders Domain

15

7. MODEL CALIBRATION AND TESTING

7.1 Hardware platform
The testing environment includes four x86 machines:

• application server Pentium III-866 Mhz with 512 Mb
RAM;

• database Pentium III-800Mhz with 512 Mb RAM; and
client

• client Pentium IV-2.2 Ghz, 1024 Mb RAM.

The client machine is more or as powerful as servers to en-
sure it does not become a bottleneck when generating the
test load.

7.2 The software environment
The following software was used for testing purposes:

• operating system: Debian GNU/Linux 3.1 ’sarge’, ker-
nel v 2.6.8-3;

• database server : MySQL v. 5.0.7beta-1;

• application server : JBoss v. 4.01sp1;

• JVM : Java2SDK 1.4.2 09.

Measurements on the container and program execution were
obtained by running JProbe 5.2.1 Freeware profiler for Linux.
The following options were used for JVM startup:

• The initial Java heap size was 480MB;

• parameter -XX:+PrintCompilation was set to monitor
the runtime behavior of the JVM.

7.3 Benchmarking results
Performance benchmarking of ECPerf produced the follow-
ing results (See Figure 6). The X-axis shows the value of
SCALE parameters while Y-axis shows the number of busi-
ness operations per minute (BBops/min).

Scale value is not equal to number of users, but rather
user num = f(scale). In our case, user num = 5 ∗ scale.
The minimal number of users in the system is 5, and the
maximum measured is 250. The second line of in bench-
marking figure shows standard deviation of the results ob-
tained. It can be noted that results become quite unsta-
ble once SCALE goes over 10, while overall performance
does not seem to increase. Also, once load reaches 50 users
(SCALE=10) the system starts producing errors (time outs,
etc) due to overload. Therefore, system achieves its peak
performance with SCALE=7, or 35 users. Figure 7 shows
response times for Manufacturing and Orders for the respec-
tive workload.

Figure 6: Results of ECPerf benchmarking

Figure 7: Response Time of ECPerf

16

7.4 Resource Utilization
Various resource were used during benchmarking, including
CPUs of the test machines, network, HDDs, etc. Except
for SCALE=1, the CPU of the application server was the
bottleneck. CPU usage of client and db machines reached
17 percent at max with average utilization of 5-7 per cent.
Network utilization was around 1%. Disk usage for both
database and application server was also negligible.

7.5 Model Calibration
The model constructed in Section 7 was calibrated from the
profiling data under a minimal workload. During the mea-
surement phase JProbe profiling tool introduced significant
overhead, so the execution demand values extracted from
profiling data are adjusted to remove the contribution of
overhead. This was done by using a Profiling Ratio Factor
(PFC) based on the assumption that the profiling overhead
is proportionally distributed across the operations within
some section of the scenario. The factor was obtained for
each section by measuring the service time with and with-
out profiling and taking the ratio. For the configuration
of Jboss, PFC varied from 1 (for low-level operations) to
7.49 for business method related operations. Ultimately,
when profiling was on and every method call in JBoss and
ECperf was logged, the response times slowed down 7.49
times. By proportionally dividing each response time ob-
tained with the monitoring on PFC, we can get averaged
execution times for individual methods. It should be noted
that this approach becomes highly inaccurate for monitor-
ing a lot of methods simultaneously. The best results are
shown when PFC → 1, which happens when monitoring is
turned on for a very small number of methods 1...10.

The problems also included the fact that the cycle times in
ECPerf were very dynamic and depended on the response
time.

7.6 Result Analysis
Calibrated LQN simulation gave quite close results to the
tested real-life configuration (See Figure 8). The upper line
is a modeled result, while the lower - a real system test,
which is identical to Figure 6 on the scale from 1 to 7. The
modeled results were aggregated using predefined data in
Subsection 5.1.

For small and average workloads the LQN results were a bit
more pessimistic than real ones, but they are quite close. We
consider that a good result taking into account that mea-
surements for the model where conducted on the system only
once with minimum workload possible, e.g. SCALE = 1.
However, at the higher loads LQN result becomes more op-
timistic. The worrying trend is that LQN model contin-
ues to predict higher performance than the real system. At
SCALE = 7 the real system reaches its optimal workload
and its throughput stabilises. The LQN model shows al-
most linear increase in predicted performance. We were un-
able to identify the reasons for such behavior, though we
noticed that the variance for the overall response time in
the model greatly increased when the workload reached its
peak. This could be due to lack of locking in LQN, or a
missed bottleneck in the model. The most likely ’offenders’
are transaction and security features of application server,
and database record locking. We suspect that when the

load reaches its peak, some transactions might timeout and
be subsequently retried. Since transactions are resource-
expensive, it might deviate the system’s throughput away
from the ’ideal’ situation as demonstrated by the model.

Figure 8: ECPerf Response Time

8. RELATED WORK
The following solutions have been offered so far. Lui et al. [7]
proposed a method for predicting performance of J2EE ap-
plications at design level, which seems to rely mostly on
profiling information instead of models. Denaro et al. [2]
came up with generic framework for performance testing of
distributed component architectures. The evaluation of the
approach is not formal and based on creating a stub appli-
cation, which then is run in the real environment.

9. CONCLUSIONS AND FUTURE WORK
We have presented an evaluation of a Layered Queuing Net-
work (LQN) templates approach by building a model of
ECPerf - a JavaEE component application. Various mod-
eling problems have been addressed within the limitations
allowed by LQN formalism. We showed that despite our
efforts, ECperf performance prediction model was overop-
timistic when compared to a real system. This suggests a
missed resource congestion point due to inaccurate modeling
assumptions or LQN limitations.

We plan to improve the existing model by adding JavaEE
container services, such as transaction & security. This way
we hope to eliminate the current inaccuracies within the
LQN templates model. Additional services outside JVM
layer can also be added to the model. For instance, Virtual
Memory Manager was shown to have a significant effect on
component-based application performance [10].

10. ACKNOWLEDGMENT
The support of the Informatics Commercialization initiative
of Enterprise Ireland is gratefully acknowledged.

11. REFERENCES
[1] Cecchet, E., Marguerite, J., Zwaenepoel, W.:

Performance and Scalability of EJB Applications Proc
of 17th ACM Conference on Object-Oriented
Programming, Seattle, Washington, (2002).

17

[2] Denaro, G., Polini, A., and Emmerich, W.: Early
performance testing of distributed software
applications Proc of the Fourth international
Workshop on Software and Performance, Redwood
Shores, California, (2004) 94-103

[3] Descripton of LQN XML Schema
http://www.sce.carleton.ca/rads/lqn/lqn-
documentation/schema/

[4] ECperf Kit Sun Microsystems
http://java.sun.com/developer/releases/j2ee/ecperf/

[5] Gorton, I., Liu, A.: Performance Evaluation of
Alternative Component Architectures for Enterprise
JavaBean Applications in IEEE Internet Computing,
vol.7, no. 3, pages 18-23, 2003

[6] Java Enterprise Edition Sun Microsystems
http://java.sun.com/javaee/

[7] Liu, Y., Fekete, A., Gorton, I.: Predicting the
Performance of middleware-based applications at the
design level Proc of Fourth International Workshop on
Software and Performance, Redwood Shores,
California (2004) 166-170.

[8] Oufimtsev, A. and Murphy, L.: Predicting
Performance of EJB-based Systems Using Layered
Queueing Networks Proc. of OOPSLA conference,
ACM, Oct. 2004 (poster)

[9] The State of J2EE Application Management: Analysis
of 2003 Benchmark Survey Survey Analysis by Ptak,
Noel & Associates
http://ptaknoelassociates.com/members/J2EE app mgmt survey.pdf

[10] Ufimtsev, A., Murphy, L., Kucharenka A.: Impact of
Virtual Memory Managers on Performance of J2EE
Applications In Proceedings of Component-Based
Software Engineering (CBSE) conference, Vesteras,
Sweden, June 2006

[11] Xu, J., Oufimtsev, A., Woodside, M., Murphy, L.:
Performance Modeling and Prediction of Enterprise
JavaBeans with Layered Queuing Network Templates
Proc of SAVCBS Workshop, FSE, Lisbon (2005)

18

Soundness and Completeness Warnings in ESC/Java2

Joseph R. Kiniry, Alan E. Morkan and Barry Denby
School of Computer Science and Informatics

University College Dublin
Belfield, Dublin 4, Ireland

ABSTRACT
Usability is a key concern in the development of verification tools.
In this paper, we present an usability extension for the verifica-
tion tool ESC/Java2. This enhancement is not achieved through
extensions to the underlying logic or calculi of ESC/Java2, but in-
stead we focus on its human interface facets. User awareness of the
soundness and completeness of the tool is vitally important in the
verification process, and lack of information about such is one of
the most requested features from ESC/Java2 users, and a primary
complaint from ESC/Java2 critics. Areas of unsoundness and in-
completeness of ESC/Java2 exist at three levels: the level of the
underlying logic; the level of translation of program constructs into
verification conditions; and at the level of the theorem prover. The
user must be made aware of these issues for each particular part of
the source code analysed in order to have confidence in the verifica-
tion process. Our extension to ESC/Java2 provides clear warnings
to the user when unsound or incomplete reasoning may be taking
place.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software VerificationÑprogram-
ming by contract; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs

General Terms
Design, Languages, Theory, Verification

Keywords
Extended Static Checking, Java Modeling Language, JML, Sound-
ness, Completeness

1. INTRODUCTION
ESC/Java2 [7] is a programming tool that attempts to partially

verify JML [3] annotated Java programs by static analysis of the
program code and its formal annotations. Users can control the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Fifth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2006), November 10–11, 2006, Port-
land, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11 ...$5.00.

amount and kinds of checking that ESC/Java2 performs by annotat-
ing their programs with specially formatted comments called prag-
mas.

In order for the user to have confidence in the verification pro-
cess, s/he must have confidence in the feedback from the tool.
However, ESC/Java2 is neither sound nor complete. ESC/Java2
being unsound means that it emits false positives. That is, it misses
errors that are actually present in the program it is analysing. As
ESC/Java2 is an extended static checker rather than a program ver-
ifier, some areas of unsoundness are incorporated into the checker
by design, based on intentional trade-offs of unsoundness with other
properties of the checker, such as efficiency and the frequency of
false alarms. ESC/Java2 being incomplete means that it emits false
negatives. That is, it warns of potential errors when it is impossi-
ble for these error to occur in any execution of the program. Since
ESC/Java2 attempts to check program properties that are, in gen-
eral, undecidable, some degree of incompleteness is inevitable. In
addition, the developers of ESC/Java2 were willing to accept some
avoidable areas of incompleteness in order to improve performance
and to keep the tool simple.

This paper presents an extension to ESC/Java2 that attempts to
improve the usability of the tool by providing warnings in cases
where the reasoning of the tool is either unsound or incomplete.
These warnings should give the user greater confidence in using
ESC/Java2.

Unfortunately, such user interaction and feedback is very rarely
incorporated in static analysis tools, and in formal methods tools
in general. Indeed, there is very little published related work in
this field. Many tools are only used by a small community and
are not designed for broad adoption, especially across computing
disciplines (including students and programmers in industry). In
addition, user feedback needs to be “honest”. Although, many tools
aim for soundness and a high level of completeness, it is uncommon
for them to openly declare to the user the limitations of the tool.

ESC/Java2, on the other hand, is aimed at a broad number of
users. It reasons about an established industrial-strength language,
detecting common programming errors, while allowing users to de-
termine the amount of checking performed by providing pragmas in
a straightforward behavioural specification language (JML)1. In ad-
dition, the extensions described in this paper are inspired by “hon-
esty”. It is essential that the user be aware of the limitations of
ESC/Java2, much the same as any verification tool that they use.
Finally, efforts to make ESC/Java2 more user friendly are continu-
ous. More details of this can be found in Section 4.

The rest of this paper is organised as follows: Section 2 describes
the soundness and completeness of ESC/Java2. A detection and

1JML is also considered the de facto standard specification lan-
guage for Java

19

warning system for areas where the reasoning of ESC/Java2 is po-
tentially unsound or incomplete is presented in Section 3. Future
work is considered in Section 4 and Section 5 concludes.

2. LIMITATIONS OF ESC/JAVA2
Although ESC/Java2 contains a full Java program verifier, the

goal of ESC/Java2 is not to provide formally rigourous program
verification. Rather, its aim is to help programmers find some kinds
of errors more quickly than they might be found by other meth-
ods, such as testing or code reviews. Consequently, ESC/Java2 em-
bodies engineering trade-offs among a number of factors including
the frequency of missed errors, the frequency of false alarms, the
amount of time used by the tool and the effort required to imple-
ment the tool. These trade-offs mean that ESC/Java2 is neither
sound nor complete2.

It is important to note that, when discussing program verification
the words “soundness” and “completeness” are often used impre-
cisely. Referring to a single concept “soundness” or a single con-
cept “completeness” hides the various layers of each concept that
exist in a verification environment. Firstly, there is the soundness
and completeness of the underlying logic in which the verification
conditions will be generated. Secondly, there is the soundness and
completeness of the translation of program constructs into verifica-
tion conditions. Finally, there is the soundness and completeness
of the theorem prover that disposes the verification conditions.

In this section, we discuss the various instances of unsoundness
and incompleteness in ESC/Java2, paying special attention to the
category to which it belongs.

2.1 Forms of Unsoundness
This section presents the areas of unsoundness in ESC/Java2

classified according to the underlying cause.

2.1.1 Semantics
There are a number of constructs in Java and JML whose seman-

tics are not treated in a sound manner by ESC/Java2. These are:

Unsound Pragmas. The use of unsound pragmas such as assume
and axiom allow the user to introduce assumptions into the veri-
fication process. ESC/Java2 trusts them, assuming them to be true.
When these assumptions are invalid, the verification is unsound.

Arithmetic Overflow. ESC/Java2 reasons about integer arith-
metic as though machine integers were of unlimited magnitude.
This is unsound. However, it simplifies the checker and reduces
the annotation burden for the user, while still allowing ESC/Java2
to catch many common errors.

Inherited pragmas. The also_modifies and also_requires
pragma are unsound because they allow an overriding method to
have a weaker specification than the method it overrides.

Constructor Leaking. There are a number of ways (often in-
volving exceptional behaviour) in which a constructor can make
the new object under construction available in contexts where its
instance invariants are assumed to hold, but without actually hav-
ing established those instance invariants.

2A description of some of the soundness and completeness issues
in the original release of ESC/Java can be found here: http://
secure.ucd.ie/products/opensource/ESCJava2/
ESCTools/docs/ESCJAVA-UsersManual.html

Shared Variables. ESC/Java2 assumes that the value of a shared
variable stays unchanged if a routine releases and then re-acquires
the lock that protects it, ignoring the possibility that some other
thread might have acquired the lock and modified the variable in
the interim.

String Literals. Java’s treatment of string concatenation is not
accurately modeled by ESC/Java2. This is a source both of un-
soundness and incompleteness.

2.1.2 Verification Methodology
Additionally, there are a number of ways in which ESC/Java2

does not translate the semantics of the constructs in a Java program
into appropriately sound verification conditions.

Loops. ESC/Java2 does not consider all possible execution paths
through a loop. It considers only those that execute at most one
complete iteration, together with testing the guard before the sec-
ond iteration. Although this is a straightforward approach and avoids
the need for loop invariants, it is unsound.

Object Invariants. When checking the implementation of a
method, ESC/Java2 assumes initially that all allocated objects sat-
isfy their invariants. However, on checking a call to a method,
ESC/Java2 imposes a weaker condition on the caller. This is that all
actual parameters of the call and all static fields that are in scope are
shown to satisfy their invariants, but not every object in existence.
Since more is assumed than is proven, this is unsound.

In addition, when ESC/Java2 checks the body of a routine r,
it does not consider all invariants but only a heuristically chosen
“relevant” subset. If an invariant is deemed irrelevant during the
checking of a routine that calls r, yet deemed relevant during the
checking of r, then the invariant will not be checked (even for pa-
rameters) at the call site. However, it will nonetheless be assumed
to hold initially during the verification of r. Conversely, ESC/Java2
might consider some invariant to be irrelevant to r, yet relevant to
a caller. In this case, ESC/Java2 will not check that the body of r
preserves the invariant. Nonetheless, it will assume, while check-
ing the caller, that the invariant is preserved by the call.

Modification Targets. When reasoning about a call to a rou-
tine, ESC/Java2 assumes that the routine modifies only its specified
modification targets (as given in modifies and/or also_modifies
pragmas). However, when checking the implementation of a method,
ESC/Java2 does not check that the implementation modifies only
the specified targets.

Multiple Inheritance. When checking a method m of a class
C, which inherits from A and B, ESC/Java2 assumes that the pre-
conditions of m in A and B hold. However, if a routine r contains
a call to m from an object of dynamic type C and static type A,
then ESC/Java2 will only check the preconditions of m in A. This is
unsound.

Ignored Exceptional Conditions. ESC/Java2 ignores cases
where instances of unchecked exception classes (e.g., OutOfMemory-
Error, StackOverflowError, ThreadDeath, Security-
Exception) might be thrown either synchronously or asynchronously,
except by explicit throw statements in a routine body being checked
or in accordance with the throws clauses of routines called by a rou-
tine being checked.

20

http://secure.ucd.ie/products/opensource/ESCJava2/ESCTools/docs/ESCJAVA-UsersManual.html
http://secure.ucd.ie/products/opensource/ESCJava2/ESCTools/docs/ESCJAVA-UsersManual.html
http://secure.ucd.ie/products/opensource/ESCJava2/ESCTools/docs/ESCJAVA-UsersManual.html

Static Initialisation. ESC/Java2 does not perform extended static
checking of static initialisers and initialisers for static fields. Nei-
ther does it check for the possibility that they do not give rise to
errors such as null dereferences, nor does it check that they estab-
lish or maintain static or object invariants.

Class paths and .spec files. When a .spec file exists on the
class path, ESC/Java2 chooses the specifications to check in an un-
sound manner. If ESC/Java2 is run on A.java where A.spec
also exists, only the specifications in A.java are used. If ESC/Java2
is run on B.java, which contains calls to methods in A.java,
then only the specifications in A.spec are used.

Initialisation of Fields declared non_null. In the case
where a field is declared non_null, it may arise that ESC/Java2
uses the existence of a modifies pragma in the constructor (or
in the specifications of a method called from the constructor) to
assume that this field is indeed set to a non-null value. However, the
modifies pragma simply declares what can be modified. It does
not ensure that the field is modified. Therefore, this assumption is
unsound.

Quantifiers and Allocation. When T is a reference type, spec-
ification expressions of the forms (\forall T t; ...) and
(\exists T t; ...) quantify over allocated instances of T. If
a method allocates new objects but is not annotated with a postcon-
dition containing an occurrence of \fresh or \old, ESC/Java2
may infer unsoundly that some property holds for all allocated ob-
jects after completion of a call, when the property may in fact not
hold for objects allocated during the call.

2.1.3 Theorem Prover
Finally, there are areas of unsoundness in Simplify, the main the-

orem prover currently used by ESC/Java2 [4]. Our work identify-
ing issues with Simplify and warning the user about such will need
to be repeated with each new theorem prover that is being added
to ESC/Java2. Currently, partial support exists for PVS [10], the
SMT-LIB [11] provers Sammy [6] and Harvey [1], and the new
CVC3 (a merge of CVC Lite [2] and Sammy), and Coq [5].

Search Limits in Simplify. Simplify sometimes fails to prove
the validity of an input formula or provide a counterexample. Such
failures happen in a number of different ways. These scenarios are
typical of many automated first-order provers.

• Time Limits. The first way Simplify can fail is it can simply
not find a proof or a (potential) counterexample for the verifi-
cation condition for a given routine within a set time limit. In
this case, ESC/Java2 issues no warnings for the method, even
though it might have issued a warning if given a longer time
limit. If Simplify reaches its time limit after reporting one or
more (potential) counterexamples, then ESC/Java2 will issue
one or more warnings, but perhaps not as many warnings as
it would have issued if the time limit had been longer.

• Limit the Number of Warnings. There is also a bound
on the number of counterexamples that Simplify will report
for any conjecture, and thus on the number of warnings that
ESC/Java2 will issue for any routine. Thus many warnings
“early” in a method can result in missing (possibly more se-
rious) problems “later” in the method.

• Universal Quantifiers. Additionally, Simplify has problems
dealing with (universal) quantifiers. When reasoning about

universal quantifiers, Simplify frequently needs “triggers” to
guide skolemization. A set of heuristics are used to help
guide proof search, but they are not guaranteed to be sound.
In particular, Simplify can miss seemingly “obvious” proofs
because it moves down a branch of the proof tree and is un-
able to backtrack properly.

These kinds of failures are witnessed in practise because first-
order assertions are usually directly translated into first-order
terms in verification conditions. Thus, while the quantifiers
used in ESC/Java2’s object logics are “well-triggered,” user
quantifiers are not. This type of failure must be communi-
cated to the user in a natural manner, so rather than showing a
mysterious failure from the prover, ESC/Java2 indicates that
the user’s specifications are overly-rich for the current prover
and suggests trying other provers.

Prover Failures. Simplify, like many complex programs, also
occasionally crashes. When Simplify fails, it is not sufficient to
just hide the crash from the user and report back an incomplete
verification, but instead it must try to characterise the failure so that
the user can take remedial action by either rewriting specifications
or using a different prover.

Arithmetic. The Simplify theorem prover, like many Nelson-
Oppen inspired provers [9], includes a decision procedure for linear
rational arithmetic based on the simplex algorithm. If integer oper-
ations in Simplify’s simplex module result in overflows, they will
silently be converted to incorrect results. Likewise, if non-linear
arithmetic is used in assertions, then Simplify’s arithmetic subsys-
tem is not sound. Thus, when potential overflow or non-linear
arithmetic expressions are detected by the system, an appropriate
warning must be issued.

Other provers that use decision procedures, particularly new SMT-
LIB provers, have exactly the same kind of behaviour and require
the same kind of warnings. Unfortunately, characterising such prover
limitations, especially in the presence of multiple interacting deci-
sion procedures, requires intimate knowledge of the prover’s design
and construction and is sometimes more art than science.

2.2 Forms of Incompleteness
This section presents the areas of incompleteness in ESC/Java2,

each classified according to the underlying cause.

2.2.1 Semantics
Many sources of incompleteness in ESC/Java2 stem from the

fact that we do not fully capture the semantics of Java and JML in
the tool.

Floating-Point Numbers. The semantics for floating-point op-
erations in ESC/Java2 are currently extremely weak. They are not
strong enough to prove 1.0 + 1.0 == 2.0 or even 1.0 !=
2.0.

Strings. The semantics for strings are also quite weak. They
are strong enough to prove "Hello world" != null, but not
strong enough to prove the assertion c == ’l’ after the assign-
ment c = "Hello world".charAt(3). Also, Java’s treat-
ment of string concatenation is not accurately modeled by ESC/Java2.

New, rich, verification-centric specifications of java.lang.-
String are being written to correct this issue. To accomplish this
goal, the new specifications heavily directly leverage the sequence
theories supported by modern first-order provers. This work was

21

halted when the new specifications pushed the boundaries of Sim-
plify’s capability to reason about sequences too far. Thus, the work
is on-hold until CVC3 is integrated.

Unspecified Java APIs. Not all of the classes in the Java li-
braries have full JML specifications. Therefore, reasoning about
calls to methods of these classes is incomplete.

Type Disjointness. According to the rules of the Java type sys-
tem, if two distinct classes S and T are not subtypes of each other,
then S and T have no non-null instances in common. The mech-
anism that ESC/Java2 uses to model the Java type system is suffi-
cient to enforce this disjointness for explicitly-named types, but not
for all types (e.g., the dynamic element types of array variables).

Arithmetic Overflow. In order to reduce the likelihood of arith-
metic overflow occurring in the prover, ESC/Java2 treats all integer
literals of absolute magnitude greater than 1000000 as symbolic
values whose relative ordering is known but whose exact values are
unknown. Thus, ESC/Java2 can prove the assertions 2 + 2 ==
4 and 2000000 < 4000000 but not 2000000 + 2000000
== 4000000.

Reflection. The semantics for reflection is extremely limited. For
example, ESC/Java2 can determine that Integer.class is a
non-null instance of java.lang.Class, but not that it is dis-
tinct from Short.class, or even that it is equal to Integer.TYPE.

2.2.2 Verification Methodology
The verification methodology used in ESC/Java2 is also unsound

for a number of reasons.

Modular checking. The use of modular checking causes ESC/Java2
to miss some inferences that might be possible through whole pro-
gram analysis. When translating a method call E.m(...), ESC/-
Java2 uses the specification of m for the static type of E, even if it is
provable that the dynamic type of E at the call site will always be a
subtype that overrides m with a stronger specification.

2.2.3 Theorem Prover
The verification conditions that ESC/Java2 gives to the Simplify

theorem prover are in a language that includes first-order predicate
calculus (FOPC) (with equality and uninterpreted function sym-
bols) along with some (interpreted) function symbols of arithmetic.

Since the true theory of arithmetic is undecidable, Simplify is
necessarily incomplete. In fact, the incompleteness of Simplify’s
treatment of arithmetic goes well beyond that necessitated by Gödel’s
Incompleteness Theorem. In particular Simplify has no built-in se-
mantics for multiplication, except by constants. Also, mathemati-
cal induction is not supported.

In addition, FOPC is only semi-decidable. That is, all valid for-
mulas of FOPC are provable, but any procedure that can prove all
valid formulas must loop forever on some invalid ones. Naturally,
it is not useful for Simplify to loop forever, since ESC/Java2 issues
warnings only when Simplify reports (potential) counterexamples.
Therefore, Simplify will sometimes report a (potential) counterex-
ample C, even when it is possible that more work could serve to
refute C, or even to prove the entire verification condition.

3. WARNING SYSTEM
Clear user feedback is important in any tool that performs static

analysis. Given the potential soundness and completeness pitfalls

discussed in Section 2, a warning system for such stumbling blocks
would be extremely beneficial, especially to new or inexperienced
users.

This section presents such a warning system that has been imple-
mented as an extension to ESC/Java2. We describe how constructs,
in Java and JML, that ESC/Java2 treats in an unsound or incom-
plete manner are detected. In addition, we provide examples of the
warnings that are emitted.

3.1 General Detection Methodology
We wish to detect many different kinds of contextual sound-

ness and completeness issues. Also, many of these issues exist
across code paths within ESC/Java2. As we now support, or are
now working on support for, two calculi (weakest precondition
and strongest postcondition), the use of an optional dynamic sin-
gle assignment translation, three different logics, and five differ-
ent provers, this means that we have at least seventy different code
paths for verification. Thus, our detection methodology needs to be
reusable across different parameterisations.

Therefore, we decided to implement each detection algorithm
as an independent, type- and assertion-aware visitor that walks the
fully resolved, typed, and annotated abstract syntax tree (AST).

For a given execution of ESC/Java2 with warnings enabled, each
relevant visitor runs in sequence. The visitors are implemented as
pure classes, so they do not affect the state of the AST.

Many of these visitors are simply performing type- and asser-
tion-aware pattern matching on fragments of the AST. For example,
to detect the use of large integer literals in arithmetic expressions,
all the visitor must detect are AST fragments involving binary ex-
pressions, checking for one of a finite set of Java binary operators,
recursively searching each operator’s subexpressions for large Java
integer literals.

Some visitors must be more complex, as they involve AST sub-
trees that are not obviously directly related in the tree. For example,
we must examine all the invariants of an entire type hierarchy (in-
cluding all inherited interfaces) if we wish to check the structure of
relevant invariants for a given context.

3.2 ESC/Java2 Soundness Warnings
In the soundness warning system, there are three categories for

constructs about which ESC/Java2 does not reason soundly. These
are:

1. Constructs that produce warnings in warning user mode.

2. Constructs the produce warnings only in a special verbose
warning mode.

3. Constructs that do not yet produce warnings.

The constructs that produce warnings in a special verbose warn-
ing mode occur too frequently to emit soundness or incompleteness
warnings in a normal warning mode. Consequently, there is also a
Verbose Warning Mode that emits warnings for all constructs that
ESC/Java2 treats in an unsound or incomplete manner.

3.2.1 Warning User Mode
Currently, the following constructs emit soundness warnings in

the Warning User Mode: Unsound Pragmas, Static Initialisation,
String Concatenation, Specification Inheritance, Quantifiers and
Allocation and Search Limits in Simplify.

This set of constructs has been chosen for Warning User Mode as
they are relatively easy to detect while not occurring so frequently
that the warnings displayed to the user would be overwhelming.

22

The following is an example of the clear and terse warning emit-
ted in the case where the tool detects the initialisation of a static
field on line 15 of a class called Test.java:

Test.java:15 Warning: ESC/Java2 does not
perform extended static checking of static
initialisers.

static int a = 1;
^

3.2.2 Verbose Warning Mode
The additional constructs in this mode are: Loops, Object Invari-

ants and Arithmetic Overflow.
As it is a verbose mode, the warning messages emitted also give

extra information to the user. This includes an extended explana-
tion of the unsoundness and a pointer towards a source of more
information including a direct citation to the relevant documenta-
tion.

An example of a warning in this user mode is where the tool
detects the a loop on line 36 of a class called Loop.java is:

Loop.java:36: Warning: ESC/Java2 does not
consider all possible execution paths
through a loop.

for(int i=0, i<n; i++){
^

It considers only those that execute at
most one complete iteration, plus testing
the guard before the second iteration.

This is unsound.

To make ESC/Java2 consider more
iterations, use the -loop option.

More information can be found in Section
2.4.3 and Appendix C.0.1 of the ESC/Java2
User Manual.

This kind of warning behaviour, one that directly cites relevant
detailed documentation, is inspired by Eiffel Software’s EiffelStu-
dio IDE which cites relevant sections of Meyers’s “Eiffel the Lan-
guage” and “Object-Oriented Software Construction” texts.

3.2.3 Unimplemented Constructs
Finally, there are some constructs that do not yet emit soundness

warnings. These are: Ignored Exceptional Conditions, Constructor
Leaking, Initialisation of Fields Declared non_null, Class paths
with .spec files and Shared Variables.

These constructs are an open problem, in part because we must
start relying upon more than just syntactic and lightweight semantic
information (i.e., types) to reason about them. It may be necessary
to do first-order reasoning to detect some of these scenarios.

3.3 ESC/Java2 Completeness Warnings
In the completeness warning system, the same three categories

apply for constructs about which ESC/Java2’s reasoning is incom-
plete.

3.3.1 Warning User Mode

Currently, the following constructs emit completeness warnings
in the Warning User Mode: Large Numbers, Reflection and Bitwise
Operators.

This set of constructs has been chosen for Warning User Mode as
they are relatively easy to detect while not occurring so frequently
that the warnings provided to the user would be overwhelming.

The following is an example of the clear and terse warning emit-
ted where the tool detects the use of the left shift bitwise operator
on line 87 of a class called Bitwise.java:

Bitwise.java:87: Warning: The semantics
of the left shift operator is incomplete.

int_a << 2;
^

3.3.2 Verbose Warning Mode
The constructs for which warnings are emitted in this mode are:

Floating-Point Numbers, Strings and Arithmetic Overflow.
The last warning to be given in Warning User Mode is to remind

the user of the inherent incompleteness of Simplify. This warning
states:

The theorem prover used by ESC/Java2,
Simplify, is necessarily incomplete.
This is due to the undecidability and
semi-decidability of some of the under-
lying theories used by Simplify.

Note that the warning message is parameterisable across prover
names.

As with the soundness warnings, extra information is given to
the user in Verbose Warning Mode. An example of such a warning
is where the tool detects the use of floating-point numbers on line
64 of a class called Decimals.java is:

Decimals.java:64: Warning: The semantics
of floating-point operations are
incomplete.

double d = 1.0 + 2.0;
^

They are not strong enough to prove
1.0 + 1.0 == 2.0 or even 1.0 != 2.0.

For more information, please see Appendix
C.1.1 of the ESC/Java2 User Manual.

3.3.3 Unimplemented Constructs
Finally, there are some constructs that do not yet emit complete-

ness warnings. These are Type Disjointness and Modular Checking.

4. FUTURE WORK
The most obvious piece of further work to be carried out is the

extension of the soundness and completeness warning system to
cover more scenarios.

The extensions presented in this paper are ones that should be
enabled by default in ESC/Java2. At present, it is only an option
that can be switched on. Users that are aware of the myriad of
options available in ESC/Java2 are those that are experienced in
using the tool. These programmers are probably well-aware of the
soundness and completeness issues with the tool. So how do we
make the tool more user friendly, especially for beginners, without
inundating them with excessive feedback?

23

http://mobius.inria.fr/

One solution lies in the evolution of ESC/Java2 from a command
line tool into one element of an Integrated Verification Environment
(IVE). The authors are part of the EU MOBIUS Project3 and are re-
sponsible with others for the development of such an IVE. In such
a system, the level of feedback to the user will be configurable,
allowing the user to fine-tune the information s/he receives. The
environment will also highlight or underline pieces of code that are
not reasoned about soundly or completely by ESC/Java2. This al-
lows the user to made aware of such warnings without being forced
to read through them all in the process of verification.

Currently all of these visitors, their specifications, and associated
unit tests are hand-written. Given the complexity of the tool and
aforementioned growing number of critical code paths through the
tool, we believe that generating the visitors is a wise next step. We
plan on defining a formal language in which one can specify the
soundness and completeness limitations of various subsystems and
generating the appropriate visitors with specifications, much like
we already generate the Java and JML AST classes in ESC/Java2.

Likewise, to better support the rich warning messages discussed
in Section 3.2.2, we plan on refining the ESC/Java2 architecture
into a new version, integrated with the Mobius IVE, using a literate
programming-style [8].

Finally, we imagine that some of the more complex situations we
wish to check will necessitate the use of a prover to perform logical
reasoning.

5. CONCLUSION
We have presented an extensions to the ESC/Java2 tool that pro-

vides useful feedback to the user during the verification process.
Indeed, user friendliness of static analysis tools is an area that re-
quires more research. It is one of the complaints of first-time users
of ESC/Java2 that the feedback offered by the tool is hard to clearly
understand and often overwhelming. One step has now been taken
in improving this situation, but more are required.

6. ACKNOWLEDGMENTS
This work is being supported by the European Project Mobius

within the frame of IST 6th Framework, national grants from the
Science Foundation Ireland and Enterprise Ireland and by the Irish
Research Council for Science, Engineering and Technology. This
paper reflects only the authors’ views and the Community is not
liable for any use that may be made of the information contained
therein.

7. REFERENCES
[1] Alessandro Armando, Silvio Ranise, and Michael

Rusinowitch. A rewriting approach to satisfiability
procedures. Journal of Information and Computation,
183(2):140–164, June 2003.

[2] Clark Barrett and Sergey Berezin. CVC Lite: A new
implementation of the cooperating validity checker. In
Rajeev Alur and Doron A. Peled, editors, CAV, Lecture
Notes in Computer Science. Springer–Verlag, 2004.

[3] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe
Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll.
An Overview of JML Tools and Applications. International
Journal on Software Tools for Technology Transfer, Feb
2005.

[4] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a
theorem prover for program checking. J. ACM,
52(3):365–473, 2005.

3The Mobius Project: http://mobius.inria.fr/

[5] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy,
C. Parent, C. Paulin-Mohring, and B. Werner. The Coq Proof
Assistant User’s Guide. INRIA, Rocquencourt, France,
rapport techniques 154 edition, 1993.

[6] Harald Ganzinger, George Hagen, Robert Nieuwenhuis,
Albert Oliveras, and Cesare Tinelli. DPLL(T): Fast decision
procedures. In R. Alur and D. Peled, editors, Proceedings of
the 16th International Conference on Computer Aided
Verification, CAV’04 (Boston, Massachusetts), volume 3114
of Lecture Notes in Computer Science, pages 175–188.
Springer–Verlag, 2004.

[7] Joseph R. Kiniry and David R. Cok. ESC/Java2: Uniting
ESC/Java and JML: Progress and issues in building and
using ESC/Java2 and a report on a case study involving the
use of ESC/Java2 to verify portions of an Internet voting
tally system. In Construction and Analysis of Safe, Secure
and Interoperable Smart Devices: International Workshop,
CASSIS 2004, volume 3362 of Lecture Notes in Computer
Science. Springer–Verlag, Jan 2005.

[8] Donald E. Knuth. Literate Programming. Number 27 in
CSLI Lecture Notes. Center for the Study of Language and
Information, 1992.

[9] Greg Nelson and Derek C. Oppen. Simplification by
cooperating decision procedures. ACM Transactions on
Programming Languages and Systems, 1(2):245–257, 1979.

[10] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype
verification system. In Deepak Kapur, editor, 11th
International Conference on Automated Deduction (CADE),
volume 607 of Lecture Notes in Artificial Intelligence, pages
748–752, Saratoga, NY, June 1992. Springer–Verlag.

[11] SMT-LIB: The satisfiability modulo theories library.
http://goedel.cs.uiowa.edu/smtlib/.

24

http://goedel.cs.uiowa.edu/smtlib/

25

Early Detection of JML Specification Errors
using ESC/Java2

Patrice Chalin
Dept. of Computer Science and Software Engineering,

Dependable Software Research Group, Concordia University
1455 de Maisonneuve Blvd. West, Montréal

Québec, Canada, H3G 1M8
chalin@cse.concordia.ca

ABSTRACT
The earlier errors are found, the less costly they are to fix. This
also holds true of errors in specifications. While research into
Static Program Verification (SPV) in general, and Extended Static
Checking (ESC) in particular, has made great strides in recent
years, there is little support for detecting errors in specifications
beyond ordinary type checking. This paper reports on recent en-
hancements that we have made to ESC/Java2, enabling it to report
errors in JML specifications due to (method or Java operator)
precondition violations and this, at a level of diagnostics that is on
par with its ability to report such errors in program code. The
enhancements also now make it possible for ESC/Java2 to report
errors in specifications for which no corresponding source is
available. Applying this new feature to, e.g., the JML specifica-
tions of classes in java.*, reveals over 50 errors, including incon-
sistencies. We describe the adjustment to the assertion semantics
necessary to make this possible, and we provide an account of the
(rather small) design changes needed to realize the enhancements.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
programming by contract; D.3.3 [Programming Languages]; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs.

General Terms
Documentation, Design, Languages, Theory, Verification.

Keywords
Java Modeling Language, JML, Extended Static Checking,
Precondition Errors, Specification Debugging.

1. INTRODUCTION
It is well appreciated that the earlier in a product’s lifecycle

that an error is detected, the less costly it will be to correct. This
has motivated considerable research in the area of Static Program
Verification (SPV) so that today, a variety of approaches and tools
are becoming available to developers. In fact, developers can
already make routine use of tools that effectively eliminate certain
classes of error. One promising technological approach to SPV is
Extended Static Checking (ESC) [11]. ESC tools, like ESC/Java2
[7] and Spec#’s Boogie [8], offer fully automated checking of
code against specifications. Despite the fact that automation is
achieved at the expense of completeness and/or soundness, in
practice, the tools are still quite effective at revealing coding er-
rors.

Unfortunately, there is an important lacuna: SPV tools offer
no support for the detection of errors in specifications beyond
conventional type checking. But writing error free specifications
is just as hard as (if not harder than) writing correct code, hence
tool assistance would be welcome. Specifications containing er-
rors can cause problems: e.g., consider a situation where a method
m has a specification (contract) c containing errors, then
1. A developer can waste time trying to get an ESC tool to prove

that m satisfies c. Anyone who has used a verification tool is
likely to have had this experience; i.e. being convinced that the
specification (or theorem) is correct, one persists in trying to
get the verifier to agree, only to realize, in all humility, that the
tool was right, and that the specification was in error.

2. The ESC tool is able to prove that m satisfies c. This merely
delays the discovery of the error (in both the specification and
the implementation) until a later lifecycle phase. As a result,
the error will be more expensive to correct.

3. In the worst case, c is inconsistent. Hence, any invocation of m
in the code would amount to asserting falsehood, from which
the verifier can trivially prove anything. For example,
ESC/Java2 would be able to prove the assertion following a
call to m:
 m();

 //@ assert 0 == 1;

One might remark that: “if c is inconsistent, would ESC/Java2
not report an error in any attempt to prove that the implementa-
tion of m satisfies c?” Yes, but this assumes that the source for
m is available, which is not the case, .e.g., for third party librar-
ies distributed in binary form.

In all three situations mentioned above, any assistance provided in
the early detection of specification errors would avoid loss of time
or the increased cost associated with fixing the error at a later

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Fifth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2006). November 10-11, 2006,
Portland, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11 … $5.00.

26

stage. Note that the errors reported by ESC tools can be parti-
tioned into two categories:
• errors due to a precondition violation, be it for operators of

the Java language or class constructors and methods. Com-
mon examples of the former include null pointer exceptions
and array index-out-of-bound errors.

• correctness issues—when a constructor or method
implementation fails to meet its specification.

There is an order to this categorization since it only makes sense
to discuss correctness issues once precondition errors have been
resolved. While it is not possible for ESC tools to identify
correctness errors in specifications1, it can be done for precondi-
tion violations.

Building upon our earlier work [4, 5], this paper reports on a
recent feature enhancement—called definedness checking—
that we have made to ESC/Java2, enabling it to report errors in
specifications due to precondition violations at a level of diagnos-
tics that is on par with its ability to report such errors in program
code. (This work is actually being done as a first step in a two
part enhancement plan, the second of which—support for consis-
tency checking—will be the subject of a subsequent publication.)

To our knowledge, ESC/Java2 is the first static program veri-
fication tool to offer such definedness checking. Hence, e.g.,
ESC/Java2 now diagnoses in specifications, just as easily as in
source code, one of the most common programming errors, null
pointer exceptions (NPEs). Since specifications are often created
by the same developers who write the corresponding code, NPEs
in specifications are just as likely to occur.

Another important related enhancement made to ESC/Java2
includes its ability to report errors in specifications for which
no corresponding source is available (recall that ESC/Java2 for-
merly only checked source code relative to its interface specifica-
tions). This key enhancement now permits checking of the com-
prehensive collection of public library API specifications shipped
with ESC/Java2. Identifying and correcting bugs in API
specifications is significant since it can positively impact all de-
velopers who make use of them—and, as we shall illustrate in
Section 2.2, errors in API specifications can have serious conse-
quences. The enhancement also enables better support for those
development groups who follow the practice of writing interface
specifications prior to writing code.

The remaining sections are organized as follows. Section 2
presents examples of specifications that at first appear to be cor-
rect, or that have been in use for several years now, and yet con-
tain serious flaws including inconsistencies. The examples serve
to motivate the addition of definedness checking to ESC/Java2
since prior to this enhancement, the tool was theoretically incapa-

1 It might be possible in the Java Modeling Language (JML) since it

supports specification refinement, but this is a seldom used feature
which is in fact not common to the languages used by ESC tools.

ble of detecting such errors. We explain the nature of this
incapacity in Section 3 by briefly describing the former logical
underpinnings of the tool (inherited from the Java Modeling Lan-
guage) as well as the new assertion semantics that make defined-
ness checking possible. Section 4 explains the basic mode of
operation of ESC/Java2 by decomposing it into processing stages.
This allows us to explain how support for definedness checking
required changes to only one of the processing stages. In Section
5, we answer the question, “better diagnostics, but at what cost?”
Related work is discussed in Section 6, while we offer conclu-
sions and mention future work in Section 7.

2. MOTIVATING EXAMPLES

2.1 MYUTIL/PAIRSUM
As a first example, consider the following scenario. Assume

that a friend, who is a formal methods aficionado, provides you
with a copy of her MyUtil class. Of course, being sympathetic to
the cause, she also provides you with the interface specification
given in Figure 1. The utility class provides two methods, one
that returns the minimum length of its two argument arrays, and
the other which returns the sum of the integer elements of an ar-
ray, up to, but not including a given index.

Eager to make use of the functionalities of MyUtil, you write a
method that will compute the pair wise sum of two arrays, up to
the length of the shorter of the two arrays. See Figure 2. Invok-
ing ESC/Java2 on MyUtil.jml and PairSum.java yields no error
messages, and yet execution of PairSum.main() raises a null
pointer exception. We will defer until Section 3.2 a technical
discussion explaining why ESC/Java2 “believes” that no excep-
tions should have been raised by PairSum. For now, suffice it to
say that rerunning ESC/Java2 with definedness checking enabled,
easily reports:
MyUtil: minLen(int[], int[]) ...

MyUtil.jml:3: Warning: Possible null dereference

 //@ java.lang.Math.min(a1.length, a2.length);

 ^

[0.062 s 12135232 bytes] failed

What is the source of the problem? Intuitively we can understand
that the specifications of minLen() and sumUpTo() are in a sense,
incomplete. E.g., the method contract of minLen() does not pre-
vent it from being called with null arguments, and yet under such
circumstances, the interpretation of the postcondition does not
make sense due to precondition errors.

2.2 API SPECIFICATIONS FOR JAVA.UTIL.*

public class MyUtil {

 //@ ensures \result ==

 //@ java.lang.Math.min(a1.length, a2.length);

 public static int minLen(int[] a1, int[] a2);

 //@ requires n <= a.length;

 //@ ensures \result ==

 //@ (\sum int i; 0 <= i && i < n; a[i]);

 public static int sumUpTo(int[] a, int n);

}

Figure 1. Interface specification, MyUtil.jml.

public class PairSum {

 public static int pairSum(int[] a, int[] b) {

 int n = MyUtil.minLen(a, b);

 // Commutativity of addition allows us to use sumUpTo twice …

 return MyUtil.sumUpTo(a, n) + MyUtil.sumUpTo(b, n);

 }

 public static void main(String[] args) {

 int[] a = null;

 int sum = pairSum(a, a);

 }

}

Figure 2. PairSum class (using MyUtil).

27

Somewhat disgruntled, you decide not to use MyUtil and in-
stead favor the more reliable java.util.* classes. Thankfully,
ESC/Java2 comes with API specifications for these classes,
among others.

Unfortunately, other problems arise as well. Consider the
code given in Figure 3. The ArraysBug class contains three meth-
ods that exercise the functionality of the java.util.Arrays.-
sort() methods. The contract for ArraysBug.m0() states that the
only behavior which m0() can have is to return a null pointer ex-
ception. Following a common ESC idiom, we have added an
“assert false” statement at the end of the method body to indi-
cate that flow control should never reach that point. In this exam-
ple though, such a statement is superfluous since the contract of
m0() mandates that it always return exceptionally—i.e., an
exceptional_behavior case implicitly adds an “ensures false”
clause. Similarly, the contract for m1a() states that calling it

always raises an index out of bounds exception. Finally, the con-
tract for m1b() is inconsistent—i.e. while it has an implicit pre-
condition of true, both its normal and exceptional postconditions
are unsatisfiable.

While ESC/Java2 can prove the correctness of m0() and
m1a(), it is also able to prove m1b()! Since, the contract of m1b()
is unimplementable, the only way in which ESC/Java2 can
“prove” that the body of m1b() satisfies it, is if the specification of
java.util.Arrays.sort(int[],int,int) is inconsistent. An
excerpt of the specification of java.util.Arrays.-

sort(int[],int,int) is given in Figure 4. The method contract
has only two specification cases. What is the source of the prob-
lem this time? With definedness checking enabled, we find that
ESC/Java2 is unable to prove that the array element access at (*)
is within the bounds of the array. Inspection of the contract re-
veals that this is because the first specification case has no re-
quires clause placing bounds on fromIndex or toIndex. Adding
as a precondition, the obvious constraints on these two parame-
ters, allows ESC/Java2 to prove that ArraysBug.m1b() cannot
meet its specification. (For lack of space we do not discuss the
nature of the inconsistency here, we merely note that the added
requires clause guards the particular call made to sort() by m1b()
from the source of the inconsistency.)

2.3 OTHER API SPECIFICATION ERRORS
Performing definedness checks on all of the java.* API

specifications reveals about 50 errors related to potential null
pointer exceptions and array out of bounds errors—since these are
the only checks currently implemented, we anticipate that more
errors will be found as we increase the definedness coverage of
the tool. (Use of definedness checking also exposed a bug in
ESC/Java2’s handling of specification inheritance—cf. bug#430.)

ESC/Java2 also reports bugs in the implementation of model
methods such as the one given in Figure 5. Asking ESC/Java2 for
counter examples eventually allows us to deduce that digitVal()
will fail to satisfy its postcondition for ch in the small range of
4970 ≤ ch ≤ 4975.

We believe that the examples given in this section clearly il-
lustrate the benefits of the new definedness checking that has been
added to ESC/Java2.

public class ArraysBug {

 //@ public exceptional_behavior

 //@ signals_only NullPointerException;

 void m0() {

 java.util.Arrays.sort((int[]) null);

 //@ assert false; // this point is never reached
 }

 //@ public exceptional_behavior

 //@ signals_only ArrayIndexOutOfBoundsException;

 void m1a() {

 java.util.Arrays.sort(new int[]{1,2}, -1, 99);

 }

 //@ public behavior

 //@ ensures false;

 //@ signals_only ArrayIndexOutOfBoundsException;

 //@ signals (Throwable) false;

 void m1b() {

 java.util.Arrays.sort(new int[]{1,2}, -1, 99);

 }

}

Figure 3. ArraysBug.java.

/*@ public normal_behavior

 @ requires a != null;

 @ assignable a[fromIndex..toIndex-1];

 @ ensures (\forall int i;

 @ fromIndex < i && i < toIndex;

 @ a[i-1] <= a[i]); // (*)

 @ ... // more ensures clauses here

 @ also

 @ public exceptional_behavior

 @ requires a == null || fromIndex > toIndex

 @ || fromIndex < 0 || toIndex > a.length;

 @ assignable \nothing;

 @ signals_only NullPointerException, IllegalArgumentException,
 @ ArrayIndexOutOfBoundsException;
 @ signals (NullPointerException) a == null;

 @ signals (IllegalArgumentException) fromIndex > toIndex;
 @ signals (ArrayIndexOutOfBoundsException) fromIndex < 0;
 @ signals (ArrayIndexOutOfBoundsException)

 @ a != null && toIndex > a.length;

 @*/

public static void

 sort(int[] a, int fromIndex, int toIndex);

Figure 4. java/util/Arrays.refines-spec.

/*@ public normal_behavior

 @ ensures -1 <= \result && \result <= 9;

public static model pure int digitVal(char ch)

{

 if (!java.lang.Character.isDigit(ch)) {

 return -1;

 } else {

 int val = ch;

 // Determine the base (0 value) depending on the type of digit …

 if (val <= 0x06F9 || val >= 0x0E50)

 base = val & 0xFFF0;

 else

 base = ((int)(val - 6) & 0xFFF0) | 0x0006;

 // convert to a value between 0 and 9 inclusive
 return (int)(val - base);

 }

} @*/

Figure 5. Model method defined in java/lang/Character.jml.

28

3. SUPPORTING DEFINEDNESS CHECKING

3.1 BACKGROUND
ESC/Java2 can analyze Java source files annotated with speci-

fications written in the Java Modeling Language (JML). At a
minimum, JML can be seen as an extension to Java that adds sup-
port for Design by Contract (DBC) [22, 28], though it has more
advanced features—such as specification only class attributes,
support for frame axioms, and behavioral subtyping—that we
believe are essential to writing complete interface specifications
[6].

In the spirit of DBC, JML specifications are expressed via
program assertions embodied in class invariants, as well as con-
structor and method contracts expressed using pre- and post-con-
ditions. In the next section, we describe the logical semantics of
JML assertions. This will enable us to explain why ESC/Java2
was unable to prove that the PairSum program would cause ex-
ceptions to be generated at runtime.

3.2 JML’S CLASSICAL ASSERTION SEMANTICS
As is common in Behavioral Interface Specification Lan-

guages (BISLs) like JML, assertions are traditionally interpreted
as formulae in a classical two-valued logic in which partial func-
tions are modeled by underspecified total functions [3]. Hence,
when a partial function f : A → B with domain D ⊆ A is applied to
a value v outside of D, then f(v) is nonetheless assumed to have
some value in B, though we do not know which value it is.

Returning to the MyUtil/ PairSum example of Section 2.1, we
can now understand that under such a semantics, minLen(null,
null) has the (well-defined2) value of null.length—whatever
particular int value it might be. While ESC/Java2 is checking the
body of the pairSum() method, it assumes that the local variable n
gets assigned the value of null.length. Next, ESC/Java2 checks
that the precondition of sumUpTo() is satisfied. Recall that the
precondition is: n <= a.length. Since a is null and n is equal to
the value of null.length, the expression reduces to true, hence
the precondition holds. As a consequence, ESC/Java2 has no
errors to report.

3.3 NEW ASSERTION SEMANTICS BASED ON
STRONG VALIDITY

Backed by a survey of industrial software developers [3], we
recently proposed a new logical foundation for JML in which
partiality is modeled directly [4, 5] rather than approximated via
under-specification [12]. While we will not go into the details
here, in essence, we proposed that a JML assertion be considered
valid iff it is both
• defined, and
• true.
Hence, assertion failure can result either from undefinedness or
evaluation to false. It is useful to distinguish between these two
cases of assertion failure in practice, as we will explain in the next
subsection. Technically speaking, this newly proposed definition
of assertion validity is what Konikowska et al. call strong validity
[19]. This is in contrast to classical validity, currently adopted by
all BISLs, including JML. Key to the definition of strong validity
is the so-called “is-defined” operator which we will describe in
Section 3.5 after a short remark about blame assignment.

2 It is well-defined relative to the classical assertion semantics of JML.

3.4 RESPONSIBILITY / BLAME ASSIGNMENT
The disciplined use of assertions in the context of Design By

Contract (DBC) [28, 29] also naturally gives rise to the concept of
responsibility assignment. Hence, for example, the client of a
method has the responsibility of ensuring that the method’s pre-
condition holds before invoking it. In return, when a method is
called under these circumstances, it commits to respecting its
postcondition. When an assertion fails, we can assign blame to
the party that did not fulfill its responsibilities: if the precondition
is violated then the client is to blame, and if the postcondition is
violated then the method implementation is to blame.

Adoption of an assertion semantics based on strong validity
gives rise to another kind of responsibility that comes to rest upon
the specifier: he or she must ensure that the assertions written in
contracts are always defined. This becomes a proof obligation on
the part of the specifier, not much different from normal proof
obligations which are an integral part of model-based specifica-
tion approaches that define operations by means of pre- and post-
conditions: e.g. satisfiability obligations in VDM [15, §5.3] and Z
[32].

Thus, for example, upon failure of a precondition, we have
two cases: if the precondition is undefined then we blame the
specifier, otherwise as before, blame falls upon the client code.
Similar remarks can be made for postconditions.

3.5 THE “IS-DEFINED” OPERATOR
Strong validity relies on the notion of an “is-defined” opera-

tor, D(e), which is true iff the expression e is defined, i.e. it does
not contain the application of a partial function to a value outside
its domain. For example, D(3/x) would be equivalent to x ≠ 0.

When applied to an expression consisting of a constant or a
variable, D is true. For a strict function f having arity n and
precondition p, we have

D(f(e1, …, en)) = D(e1) ∧ … ∧ D(en) ∧ p(e1,…,en)
Note that by a function we mean any operator or method used

in an assertion expression—such methods are required to be pure
in JML [24]. As can be seen from the preceding definition, a
strict function yields undefined whenever any of its arguments is
undefined. Here are examples for division and (non-conditional)
conjunction:

D(e1 / e2) = D(e1) ∧ D(e2) ∧ e2 ≠ 0
D(e1 & e2) = D(e1) ∧ D(e2)

In order to ensure that D remains computable, we require that a
function not contain, directly or indirectly any recursive applica-
tions of itself in the statement of its precondition [14, §9.3].

The non-strict (i.e. conditional) operators of most program-
ming languages consist of conditional conjunction, conditional
disjunction and a ternary (McCarthy) conditional operator. All
three can be written in terms of the latter so it is sufficient to de-
fine D for this operator:

D(e1 ? e2 : e3) = D(e1) ∧ (e1 ⇒ D(e2)) ∧ (¬e1 ⇒ D(e3))
Given that “e1 || e2” can be written as “e1 ? true : e2”, and
“e1 && e2” as “e1 ? e2 : false” it follows that

D(e1 || e2) = D(e1) ∧ (¬e1 ⇒ D(e2))
D(e1 && e2) = D(e1) ∧ (e1 ⇒ D(e2))

D can also easily be defined over quantifiers—examples are pro-
vided by Konikowska for Kleene and McCarthy quantifiers [19].

An example of an assertion expression that is both classically
valid and strongly valid is

x == 0 || 3/x == 3/x

because D(x == 0 || 3/x == 3/x)

29

= D(x == 0) ∧ (¬(x == 0) ⇒ D(3/x == 3/x))
= true ∧ (x ≠ 0 ⇒ x ≠ 0)

which is true. In contrast, the expression
3/x == 3/x

is classically valid, but not (strongly) valid because D(3/x == 3/x)
is x ≠ 0.

While the adoption of a new logical foundation for JML may
seem like a big change, as we shall see in the next section, it is
straightforward to implement.

4. ESC/JAVA2 REDESIGN

4.1 ESC/JAVA2 CONCEPTUAL ARCHITECTURE
Before explaining the implementation of the new semantics

we begin by reviewing ESC/Java2’s overall conceptual architec-
ture (essentially an instance of pipes-and-filters [31]). The main
processing stages are shown in Figure 6. Input to the tool consists
of one or more JML annotated Java source files or pure JML in-
terface specification files. The source(s) are parsed. Checking in
ESC/Java2 is modular and this manifests itself already at the next
stage; i.e., on a per class basis, each method in turn is translated
into a Guarded Command (GC) program [26]. Each such pro-
gram entirely captures the proof obligations related to establishing
the correctness of the method in question, relative to its specifica-
tion. In particular, this means that calls made inside the method
body are represented by an inlined version of the contract of the
called method.

GCs are then converted into verification conditions (VCs)
which are fed to a fully automated theorem prover. Currently
ESC/Java2 (and Spec#’s Boogie) make use of Simplify [9]. Note-
worthy efforts have been deployed in the past two years so that
new backends (e.g., CVC3) should be available for use with
ESC/Java2 before year’s end [17]. As indicated in the diagram,
the prover is also provided with a Universal Background Predicate
containing an axiomatization of concepts true of all Java pro-
grams, and a Type-specific Background Predicate which, as the
name implies, axiomatizes concepts that are specific to the type
(class or interface) being processed.

If the prover is able to discharge a method’s VCs, then we
consider the method implementation to be correct. If all of a
class’ VCs are met, then the class is said to meet its specification.
As usual, while the theory is fairly straightforward, the pragmatics
(which we will briefly touch upon in Section 4.3), complicate
matters somewhat. E.g., significant extra machinery is needed to
allow for meaningful post-processing of a prover’s output espe-
cially when the prover is unable to discharge a VC. Accurate and

meaningful error reporting is essential. Further details concerning
the processing performed by ESC/Java2 can be found in [11].

4.2 SUPPORTING THE NEW SEMANTICS
Changes to ESC/Java2 in support of the new semantics were

confined to the “Translation to GC” stage. The creation of a
guarded command program for a given method actually occurs in
two steps: the method is first translated into a “sugared GC” lan-
guage, before subsequently being “desugared” into the following
primitive GC language [26]:

C ::= Id := Expr

 | ASSUME Expr

 | ASSERT Expr

 | C ; C’

 | C � C’
The commands represent: assignment, primitive assume and

assert commands, sequential and alternative composition. In the
latter case (involving an application of the box operator), the
composite command behaves either like its first operand or its
second operand, with the choice being non-deterministic. Note
that in the present discussion, we are disregarding (Java) excep-
tion processing since it would unnecessarily complicate the pres-
entation of the new semantics.

The two-staged GC translation process allows more flexibility
in, e.g., selectively enabling or disabling the various kinds of
checks to be performed. Controlling which checks to perform can
be done globally (e.g. via a command line arguments), or even on
a line by line basis of the input source.

We will describe the implementation of the new semantics in
terms of the translation of JML specification constructs into the
primitive GC language. As can be expected, the translation will
make extensive use of the is-defined operator, D, of Section 3.4.
We begin with the most basic of the JML assertions, namely
inline assert and assume statements.

4.2.1 INLINE ASSERTIONS
JML assert and assume statements can appear in constructor and
method bodies as well as static initialization blocks. Under the
new assertion semantics, such statements are translated into a
sequence of two guarded commands: the first asserts that the
given predicate is defined, then follows the assert or assume
command proper. For example,

〚ASSERT R〛 = ASSERT〚D(R)〛;

 ASSERT〚R〛

This follows naturally from the definition of strong validity. Note
that with this approach, it is no longer relevant that the given as-
sertion expression, R, contain partial functions or not. This is
because interpretation of R is guarded by an ASSERT of the de-
finedness condition of R; hence all occurrences of partial func-
tions will be to values inside their domain.

Other JML constructs use assertions as basic building blocks,
and hence our adapted translation of a single assert statement into
a pair of guarded commands, will be a recurring theme.

4.2.2 BASIC METHOD CONTRACTS
Under the current semantics of JML, the translation of a method
with precondition P, body B and postcondition Q is handled as
follows3:

3 {P}B{Q} is the compact and familiar Hoare-triple syntax.

Figure 6. ESC/Java2Pipeline Architecture

(excerpt from [11]).

30

〚{P}B{Q}〛 = ASSUME〚P〛;

 〚B〛;

 ASSERT〚Q〛

 Under the new semantics we have:
〚{P}B{Q}〛 = ASSERT〚D(P)〛;

 ASSUME〚P〛;

 〚B〛;

 ASSERT〚D(Q)〛;

 ASSERT〚Q〛

The new GCs are underlined.

4.2.3 CLASS INVARIANTS
In those cases where a (non-helper) method belongs to a class C
having invariant I, we get:

〚{P}B{Q}〛 = ASSERT 〚D(I(this))〛;

 ASSUME 〚∀ o:C . I(o)〛;

 ASSERT 〚D(P)〛;

 ASSUME 〚P〛;

 〚B〛;

 ASSERT 〚D(Q)〛;

 ASSERT 〚Q〛;

 ASSERT 〚D(I(this))〛;

 ASSERT 〚∀ o:C . I(o)〛;

Upon entry to the method and on exit from the method, the invari-
ants of all instances of class C, including this, must hold. The
invariant definedness need only be checked relative to one in-
stance of C, choosing this is most convenient. (While it is
known that JML’s semantics of invariants is unsound, we provide
a compatible definition under the new semantics—finding a sound
and effective solution to this problem is still an active area of
research [6].)

4.2.4 CHECKING IN THE ABSENCE OF SOURCE FILES
Having accurate specifications for public library APIs is es-

sential to the working developer. Lack of specifications discour-
ages use of the tools. On the other hand, flawed specifications can
be useless at best, dangerously misleading at worst. As was illus-
trated in Section 2.2, use of a public API method having an incon-
sistent specification will always result in the (false!) impression of
correct code.

Since such libraries are often only available in binary form,
practically all of the given library specifications had been subject
to no more than type checking, and an occasional manual design
review. As was pointed out earlier, ESC/Java2 was originally
designed to check the correctness of source code (i.e. an imple-
mentation) relative to a given specification. As we have demon-
strated earlier, performing basic definedness checks (and eventu-
ally consistency checks) can be quite useful.

Given a method specification for which no method body is
available, we generate a GC of the following form:

〚{P}_{Q}〛 = ASSERT 〚D(I(this))〛;

 ASSUME 〚∀ o:C . I(o)〛;

 ASSERT 〚D(P)〛;

 ASSUME 〚P〛;

 〚return _〛[]〚throw new Exception()〛;

 ASSERT 〚D(Q)〛;

 ASSERT 〚D(I(this))〛;

where we take as a bogus body, one that can either return (an un-
specified return value, if such a value is needed) or raise an ex-
ception.

4.3 ACCURATE ERROR REPORTING
As in most software applications, particularly compilers, pro-

viding accurate and helpful error reporting usually requires con-

siderable extra effort beyond the processing of “normal” input.
The explanation, in the previous subsections, of the translation

into GCs had conceptual clarity as a main objective. In this sec-
tion, we briefly describe the extra processing required to enable
ESC/Java2 to report specification errors, pin-pointing their source,
as accurately as could be expected of a modern compiler—i.e.,
accurately identifying the cause of the error (such as Division by
Zero) as well as the line number and character position of the
problematic partial operator.

ASSERT commands can have associated labels which the
backend prover uses when reporting VC proof failures. Concep-
tually, a label L (containing a file id, line number and character
position) would be reported by the prover if it were unable to
prove E in:

ASSERT Label(L, E); // (1)

Unfortunately, if E is a complex expression, we might be unable
to tell which subterm of E is to blame. Finer grained error report-
ing can be obtained by decomposing (1) into an expanded GC
program, more refined, though equivalent in effect to the original
single assert command.

Of concern to us here are expressions consisting of defined-
ness predicates. Recall that for a strict function f having arity n
and precondition p, we have

D(f(e1, …, en)) = D(e1) ∧ … ∧ D(en) ∧ p(e1,…,en)
The expanded GC program for D(f(e1, …, en)), is defined as

E〚D(f(e1, …, en))〛 = E〚D(e1)〛;

 ... ;

 E〚D(en)〛;

 ASSERT Label(L,〚p(e1,…,en)〛)

where L is a label generated from the location associated with f.
For the conditional operator, recall that

D(e1 ? e2 : e3) = D(e1) ∧ (e1 ⇒ D(e2)) ∧ (¬e1 ⇒ D(e3))
The expanded GC form would be:

E〚D(e1 ? e2 : e3)〛 = E〚D(e1)〛;

 { ASSUME〚e1〛;

 E〚D(e2)〛;

 []

 ASSUME〚¬e1〛;

 E〚D(e3)〛;

 }

While conditional conjunction and disjunction are simplifications
of the ternary conditional operator, it is important not to eliminate
the box operator from the expanded form. Recall that, e.g.,
“e1 && e2” is equivalent to “e1 ? e2 : false”, thus we have

E〚D(e1 && e2)〛 = E〚D(e1)〛;

 { ASSUME〚e1〛;

 E〚D(e2)〛;

 []

 ASSUME〚¬e1〛;

 }

5. BETTER DIAGNOSTICS, AT WHAT COST?
The treatment of definedness conditions given here is quite

similar to the type-correctness conditions (TCCs) of the PVS
theorem prover [33].

One of the main objections to using a definition of assertion
validity that takes definedness into account is that it is likely to
contribute to making the already sizeable verification conditions
even larger. As a consequence, it is believed that this would lead
to ESC tools being able to prove fewer methods correct. Like in
PVS, we expected most definedness conditions to be easily dis-
charged since they are, by their very nature, much smaller and
simpler than the assertion expressions they guard.

31

Our experiences show that the overhead is not perceptibly
significant, though such experiences are preliminary since we
have as yet to implement all planned definedness checks. It is still
worth noting that, e.g., in processing 90 KLOC of code, we have
yet to come across a (correct) method that could not be proven
with definedness checking enabled and yet could be proven cor-
rect otherwise. Addition of the remaining definedness checks will
be completed shortly, after which a more rigorous assessment of
the cost (in time and memory consumption) of definedness
checking will be in order. In the advent that the overhead would
indeed be prohibitive, then ESC/Java2 could imitate PVS and
allow users to check definedness conditions separately.

It is interesting to note that the arrival of new ESC/Java2
prover backends like CVC3, which directly support three-valued
logics and partiality, will eliminate having definedness checks
factored out as separate “side” conditions. (Of course, it remains
to be seen if such provers can rival their classical counterparts.)

6. RELATED WORK
To our knowledge, the enhancements we have made to

ESC/Java2 are a first of its kind and this mainly because all other
static program verification systems (e.g. [1, 2, 8, 27, 34]) are
based on a classical definition of assertion validity.

As was mentioned earlier, adoption of strong validity allows
us to extend the usual Design by Contract responsibility/blame
matrix—attributed to software components (clients and/or service
providers) [29]—to assigning responsibility/blame to specifiers, in
ensuring that contract assertions are always defined. Findler et al.
also assign responsibility/blame to specifiers but only relative to
the conformance of subclass contracts to the constraints of be-
havioral subtyping [10]. We note that in JML, subclasses
automatically inherit their supertype contracts and hence naturally
enforcing behavioral subtyping [21].

Approaches to assertion semantics based on strong validity,
and hence using a definedness operator, have been advocated by
other authors for some time now. The most fundamental works
being that of Hoare and He, in their “Unifying Theories of Pro-
gramming” [14], as well as Konikowska’s “Two Over Three: A
Two-Valued Logic for Software Specification and Validation Over
a Three-Valued Predicate Calculus” [18]. We invite the reader
who is interested in a more detailed discussion of these two ap-
proaches in relationship to our work to consult [5].

Leino also makes use of a “Defined” operator in the formal
semantics of his Ecstatic language [25], but this operator is only
applied to expressions appearing in general program statements
rather than assertions. Morris provides a semantics for non-deter-
ministic expressions and also makes use of an “is well-defined”
operator (∆) [30]. Morris’ operator is more general in that ∆(E)
not only holds when E is not undefined but also when it is deter-
ministically defined. Like Leino, Morris does not apply defined-
ness to the semantics of assertion expressions.

Of course, “definedness” is also an elementary concept in
VDM’s three-valued Logic of Partial Functions (LPF). The “is-
defined” operator is written as ∆. One of the claimed advantages
of LPF is that specifiers should seldom have to refer to ∆ when
conducting proofs of VDM specifications [16]. While a three-
valued logic like LPF has a natural correspondence with RAC
assertion semantics, unfortunately, there are no provers supporting
LPF (although the Overture initiative might change that [20]).

7. CONCLUSIONS AND FUTURE WORK
The focus of current static program verification (SPV) tools

is, somewhat naturally, on source code bugs. Little support be-
yond well-formedness and type checking is offered for the static
“debugging” of specifications. This is mainly due to reliance on
an assertion semantics based on classical validity: under such a
definition there are no partial functions, and hence, in a sense, no
precondition errors to report. In this paper we have demonstrated
how an SPV tool like ESC/Java2 can easily be extended to sup-
port definedness checking of assertion expressions. Only one of
the multiple processing stages of ESC/Java2 needed to be en-
hanced; hence, in particular, the change was made while preserv-
ing the same classical prover backend.

ESC/Java2’s new definedness checking seems to add marginal
computational overhead while, in our opinion, offering a signifi-
cant debugging capability for specifications. In fact, having ap-
plied definedness checking to the java.* API specifications
shipped with ESC/Java2 revealed over 50 errors, one of which
lead to the identification of an inconsistent method specification.

The enhancements that we have presented can be applied to
other SPV tools, such as Spec#’s Boogie verifier [8].

We will continue to extend the scope of ESC/Java2’s defined-
ness checking. In particular, one of the next milestones is the
addition of support for the checking of method preconditions at
the point of a method call in an assertion expression. Following
this, we plan on conducting a rigorous assessment of the impact
on time and resource requirements due to the extra load of de-
finedness checks. The start of this empirical assessment is likely
to coincide with the availability of CVC3 as a new prover
backend for ESC/Java2. Since CVC3 has direct support for parti-
ality, it will be interesting to determine if the overhead of check-
ing definedness conditions as “side-conditions” (when considered
in the context of a classical prover) can be reduced or eliminated.

Finally, this will lead us to stage two of our planned en-
hancements to ESC/Java2, namely the addition of consistency
checking of constructor and method contracts.

ACKNOWLEDGMENTS
We gratefully acknowledge George Karabotsos’ contribution to
the implementation of definedness checking in ESC/Java2. The
research reported here was, in part, supported by NSERC of Can-
ada under grant 261573-03.

REFERENCES
[1] J. Barnes, High Integrity Software: The Spark Approach to Safety and Secu-

rity. Addison-Wesley, 2003.
[2] L. Burdy, A. Requet, and J.-L. Lanet, “Java Applet Correctness: A Developer-

Oriented Approach”. Proceedings of the International Symposium of Formal
Methods Europe, vol. 2805 of LNCS. Springer, 2003.

[3] P. Chalin, “Logical Foundations of Program Assertions: What do Practitioners
Want?” Proceedings of the Third International Conference on Software Engi-
neering and Formal Methods (SEFM'05), Koblenz, Germany, September 5-9.
IEEE Computer Society Press, 2005.

[4] P. Chalin, “Reassessing JML’s Logical Foundation”. Proceedings of the 7th
Workshop on Formal Techniques for Java-like Programs (FTfJP'05), Glas-
gow, Scotland, July, 2005.

[5] P. Chalin, “De-risking the Verifying Compiler Project: Recovering Sound-
ness”, Dependable Software Research Group, Department of Computer Sci-
ence and Software Engineering, Concordia University, ENCS-CSE-TR 2005-
009, 2006.

[6] P. Chalin, J. Kiniry, G. T. Leavens, and E. Poll, “Beyond Assertions: Ad-
vanced Specification and Verification with JML and ESC/Java2”. Fourth
International Symposium on Formal Methods for Components and Objects
(FMCO'05), 2005.

[7] D. R. Cok and J. R. Kiniry, “ESC/Java2: Uniting ESC/Java and JML”. In G.
Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean editors, Proceed-
ings of the International Workshop on the Construction and Analysis of Safe,

32

Secure, and Interoperable Smart Devices (CASSIS'04), Marseille, France,
March 10-14, vol. 3362 of LNCS, pp. 108-128. Springer, 2004.

[8] R. DeLine and K. R. M. Leino, “BoogiePL: A Typed Procedural Language for
Checking Object-Oriented Programs”, Microsoft Research, Technical Report,
2005.

[9] D. L. Detlefs, G. Nelson, and J. B. Saxe, “A Theorem Prover For Program
Checking”, Compaq SRC, Research Report 159, 2002.

[10] R. B. Findler and M. Felleisen, “Contract Soundness for Object-Oriented
Languages”. 16th ACM SIGPLAN Conference on Object Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA '01), Tampa Bay, FL,
USA, October 14 - 18. ACM Press, 2001.

[11] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R.
Stata, “Extended static checking for Java”. Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI’02), June, vol. 37(5), pp. 234-245. ACM Press, 2002.

[12] D. Gries and F. B. Schneider, “Avoiding the Undefined by Underspecifica-
tion”, in Computer Science Today: Recent Trends and Developments, vol.
1000, J. v. Leeuwen, Ed.: Springer-Verlag, 1995, pp. 366-373.

[13] J. Grundy, “Predicative programming--A survey”. International Conference
Formal Methods in Programming and Their Applications, Novosibirsk, Rus-
sia, June 28 – July 2. Springer, 1993.

[14] C. A. R. Hoare and J. He, Unifying Theories of Programming. Prentice Hall,
1998.

[15] C. B. Jones, Systematic Software Development using VDM, 2nd ed. PHI, 1990.
[16] C. B. Jones and C. A. Middelburg, “A Typed Logic of Partial Functions

Reconstructed Classically”, Acta Informatica, 31(5):399-430, 1994.
[17] J. R. Kiniry, P. Chalin, and C. Hurlin, “Integrating Static Checking and

Interactive Verification: Supporting Multiple Theories and Provers in Verifi-
cation”. Proceedings of the International Conference on Verified Software:
Theories, Tools, Experiments (VSTTE), Zürich, Switzerland, October 10-13,
2005.

[18] B. Konikowska, “Two Over Three: A Two-Valued Logic for Software
Specification and Validation Over a Three-Valued Predicate Calculus”, Jour-
nal of Applied Non-Classical Logics, 3:39-71, 1993.

[19] B. Konikowska, A. Tarlecki, and A. Blikle, “A Three-valued Logic for Soft-
ware Specification and Validation”. Second VDM Europe Symposium. VDM -
The Way Ahead (VDM'88), Dublin, Ireland, September. Springer, 1988.

[20] P. G. Larsen and N. Plat, “Introduction to Overture”. First Overture Work-
shop, Newcastle upon Tyne, UK, July, 18, 2005.

[21] G. T. Leavens, “JML's Rich, Inherited Specifications for Behavioral Sub-
types”, Department of Computer Science, Iowa State University, Ames, Iowa.
USA, TR #06-22, 2006.

[22] G. T. Leavens and Y. Cheon, “Design by Contract with JML”,
www.jmlspecs.org, 2006.

[23] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok, “How the de-
sign of JML accommodates both runtime assertion checking and formal verifi-
cation”, Science of Computer Programming, 55(1-3):185-208, 2005.

[24] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J.
Kiniry, and P. Chalin, “JML Reference Manual”, http://www.jmlspecs.org,
2006.

[25] K. R. M. Leino, “Ecstatic: An object-oriented programming language with an
axiomatic semantics”. Fourth International Workshop on Foundations of Ob-
ject-Oriented Languages, January, 1997.

[26] K. R. M. Leino, J. B. Saxe, and R. Stata, “Checking Java programs via
guarded commands”, COMPAQ SRC, Palo Alto, CA, SRC Technical Note
1999-002. 21 May 1999, 1999.

[27] C. Marché, C. Paulin-Mohring, and X. Urbain, “The Krakatoa tool for
certification of Java/JavaCard programs annotated in JML”, Journal of Logic
and Algebraic Programming, 58(1-2):89-106, 2004.

[28] B. Meyer, “Applying Design by Contract”, Computer, 25(10):40-51, 1992.
[29] B. Meyer, Object-Oriented Software Construction, 2nd ed. Prentice-Hall,

1997.
[30] J. M. Morris, “Non-deterministic expressions and predicate transformers”,

Information Processing Letters, 61(5):241-246, 1997.
[31] M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging

Discipline. Prentice-Hall, 1996.
[32] J. M. Spivey, The Z Notation: A Reference Manual. Prentice-Hall, 1989.
[33] SRI International, “The PVS Specification and Verification System”,

http://pvs.csl.sri.com.
[34] J. van den Berg and B. Jacobs, “The LOOP compiler for Java and JML”. In T.

Margaria and W. Yi editors, Proceedings of the Tools and Algorithms for the
Construction and Analysis of Software (TACAS), vol. 2031 of LNCS, pp. 299-
312. Springer, 2001.

Experiments in the use of τ -simulations for the
components-verification of real-time systems

Françoise Bellegarde, Jacques Julliand, Hassan Mountassir, Emilie Oudot

LIFC - Laboratoire d’Informatique de l’Université de Franche-Comté
FRE CNRS 2661
16, route de Gray,

25030 Besançon Cedex, France
Ph:(33) 3 81 66 66 51, Fax:(33) 3 81 66 64 50

{bellegar,julliand,mountass,oudot}@lifc.univ-fcomte.fr

ABSTRACT
We present a verification framework exploiting τ -simulations
as a way to preserve local linear properties checked on the
components of real-time systems. Therefore, we consider
a component-based modeling of real-time systems. Their
properties are expressed in a timed logic, Mitl (Metric In-
terval Temporal Logic).
For component-based models, traditional verification tech-
niques are generally applied to the complete composed model,
even if some properties only concern some components of
the system, if not only one. We show that it is possible to
check such local linear properties (safety as well as liveness)
on the components they concern, and then to ensure their
preservation using τ -simulation relations. We show the in-
terest of the method by applying it on two real-time systems
examples and by comparing the results with traditional ver-
ification techniques.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal Methods,Model-checking ; I.6.5 [Simulation
and modeling]: Model Development—Modeling method-
ologies

General Terms
Verification, Experimentation

Keywords
τ -simulation, integration of components, timed systems, preser-
vation of linear-time properties

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Fifth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2006), November 10–11, 2006, Port-
land, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11 ...$5.00.

1. MOTIVATIONS
Component-based modeling is a modeling method that

receives more and more attention. In particular, timed sys-
tems are often modeled this way. First, it consists in decom-
posing the system into a set of sub-systems, called compo-
nents. The complete model is obtained by putting all the
components together, thanks to some parallel composition
operator. To ensure their correctness, such models have
global requirements to meet, i.e., requirements about the
behaviour of the complete model, as well as so-called local
requirements. Local requirements are properties concerning
the components (or subsets of components) of the system.
Model-checking is a verification method that can be used in
order to verify these properties on the model. For both kinds
of properties, the verification is performed on the global
model. However, this method is generally not applicable
on large-sized systems, due to the exponential blow-up of
the state space.
We propose a verification method for local linear properties
of real-time systems modeled in a compositional framework,
by taking advantage of the modeling process. We propose to
model systems incrementally, by integration of components:
instead of building once the complete model, components
(or assembling of components) are integrated step by step
to the others, and local properties are checked on these com-
ponents (or assembling of components) before integration.
Model-checking is still applicable since the size of each com-
ponent / assembling of components is small enough.
To ensure that locally established properties continue to
hold after integration, we propose to use timed τ -simulations,
i.e., simulation relations extended to handle timing aspects
and internal activity of the models. Indeed, it is known
that in the untimed case, classic τ -simulations preserve lin-
ear safety properties. Divergence-sensitive and stability-
respecting τ -simulations [12] also handle the preservation
of linear liveness properties. For that matter, this last kind
of τ -simulation is already used in other incremental model-
ing processes, such as the refinement of B event systems [1],
which preserves Ltl properties [9].
In [5], we defined a timed τ -simulation adapted for timed
systems and showed that it preserves safety (un)timed prop-
erties. Moreover, we showed that it is well-adapted with in-
tegration of components made with the classic parallel com-

33

position operator ||. That is, given two components A and
B, A τ -simulates A||B and B τ -simulates A||B. In terms
of preservation of properties, this means that linear safety
properties of A and B are preserved for free when A and B
are merged together. The timed τ -simulation is also com-
patible with the operator ||: given a third component C,
if B τ -simulates A, then B||C τ -simulates A||C. Compat-
ibility allows to benefit of the compositionnality property:
given components A, B, C and D, if B τ -simulates A and
D τ -simulates C, then B||D τ -simulates A||C. Thus, this
first timed τ -simulation has nice properties w.r.t. parallel
composition. However, as it only preserves safety proper-
ties, we extended it into a divergence-sensitive and stability-
respecting (DS) timed τ -simulation to preserve a larger spec-
trum of properties, such as liveness or bounded liveness
properties. We proved in [5] this new relation preserves all
properties which can be expressed by the linear-time logic
Mitl [4].

In this paper, we aim at showing the interest of the verifi-
cation method we propose by applying it to the verification
of the local properties of two timed systems. In both ex-
amples, we compare the application of our method with the
classic verification method, consisting in verifying directly
all the properties on the complete model. The first exam-
ple is a production cell, made up of at least seven compo-
nents. We focus in particular on the local properties of one
of these components, and perform the verification locally on
this component before verifying the preservation thanks to
the timed τ -simulations. This example shows that the cost
of this kind of verification (local verification and preserva-
tion checking) is lower than the cost of the classic verifica-
tion method, in terms of computation times. The second
example is a well-known protocol, the CSMA/CD protocol,
composed of a medium and at least two senders. With this
example, we show that one of the main properties of the
protocol can be checked by only considering the smallest
possible number of senders, i.e. two, instead of verifying it
with a greater number of senders. Moreover, in both exam-
ples, we identify cases where the classic verification method
is not applicable while the method we propose is.

The paper is organized as follows. In section 2, we present
the model we use for modeling timed systems – timed au-
tomata [3], the logical formalism Mitl used to formulate
their properties and the parallel composition || used for
the integration of components. In section 3, we recall the
definitions and results of [5], where we defined timed τ -
simulations and gave its properties w.r.t. the preservation
of Mitl properties and the compatibility with parallel com-
position. Section 4 shows the interest in practice of the
verification method we propose, by applying it to two ex-
amples of timed systems and comparing the results with the
classic verification method. Finally, section 5 sums up the
results presented in the paper and plans the future works.

Related works. Numerous works have been devoted to
the study of timed simulation relations and their preserva-
tion ability. A time-abstracting simulation has been studied
in [13], where an algorithm to check the relation is pro-
posed. However, timed properties are not preserved by this
relation. A timed simulation was defined in [17]. The au-
thors showed that the problem of verifying the existence of

this timed simulation is EXPTIME. But, internal activity
is not handled by this relation. The closest notion of sim-
ulation, in comparison with our timed τ -simulation, is the
timed ready simulation of [14]. Internal activity is also con-
sidered. As our (DS) timed τ -simulation, this relation also
handles the preservation of safety properties, but does not
preserve other kind of properties, such that liveness prop-
erties. To our knowledge, there is no previous definition or
use of simulation relations handling internal activity as well
as timing constraints, and preserving safety and, especially,
liveness properties.

2. MODELING TIMED SYSTEMS
Timed automata [3] are amongst the most studied formal

models for timed systems. They are classical finite automata
with real-valued variables called clocks modeling the time
elapsing.

2.1 Clock valuations and clocks constraints
Let X be a set of clocks. A clock valuation over X is

a function v : X → R+ assigning to each clock in X a
real value. For δ ∈ R

+, the valuation v + δ is obtained by
adding δ to the value of each clock. Given Y ⊆ X, and
a valuation v over X, the dimension-restricting projection
of v on Y [18], written v�Y , is a new valuation containing
only the values in v concerning the clocks in Y . The reset
operation on v of the clocks in Y , written [Y := 0]v, creates
a valuation obtained from v by setting to zero all clocks in Y ,
and leaving the values of other clocks (∈ X\Y) unchanged.
A clock constraint over X is a predicate of the form

g ::= x ∼ c | g ∧ g | true where x ∈ X, c ∈ N and
∼∈ {<,≤, =,≥, >}

The set of all clock constraints over X is called C(X). We
say that a valuation v satisfies a constraint x ∼ c, written
v ∈ x ∼ c, if v(x) ∼ c. Note that a clock constraint over
X defines a X-polyhedron. The reset operation defined on
valuations can be extended straightforwardly to polyhedra.
The backward diagonal projection of a polyhedron g defines
a new polyhedron ↙g s.t. v′ ∈↙g if ∃δ ∈ R

+ · v′ + δ ∈ g.

2.2 Timed automata (TA)
Syntax. Let Props be a set of atomic propositions. A
timed automaton A over Props is a tuple 〈Q, q0, Labels,X,
T, Invar,L〉 where Q is a finite set of locations, q0 is the
initial location, Labels is a finite set of names of actions and
X is a finite set of clocks. Invar : Q → C(X) is a function
associating to each location a clock constraint called its in-
variant. The invariant of a location defines the time progress
condition for this location. L : Q → 2Props is the labelling
function for the locations. T ⊆ Q×C(X)×Labels×2X ×Q
is a finite set of transitions. Each transition can reset clocks
and is equiped with a clock constraint called its guard, defin-
ing when the transition can be taken. We write a transition
e as a tuple (q, g, a, λ, q′) where q and q′ are respectively the
source and target location of the transition, g is its guard, a
its label and λ the set of clocks to be reset by the transition.
In the rest of the paper, we use the notations source(e) and
target(e) for q and q′, guard(e) for g, label(e) for a and

34

reset(e) for λ.

Semantics. The semantics of A is an infinite graph where
states1 are pairs (q, v) composed of a location q of A (the
discrete part of the state) and a clock valuation v s.t. v ∈
Invar(q). The initial state is the pair (q0, v0) where v0 is
the clock valuation assigning 0 to each clock in X. The
transitions of the graph are either discrete transitions or
time transitions:

• discrete transitions: given a transition e = (q, g, a, λ, q′)
of A, (q, v)

e→ (q′, v′) is a discrete transition of the
graph if v ∈ g and v′ ∈ Invar(q′). The valuation v′ is
obtained from v by resetting the clocks in λ. We call
(q′, v′) a discrete successor of (q, v),

• time transitions: (q, v)
δ→ (q, v+δ) is a time transition

of the graph, for δ ∈ R
+, if v + δ ∈ Invar(q). We call

(q, v + δ) a time successor of (q, v).

Runs. A run ρ = (q0, v0)
δ0→ (q0, v1)

e0→ (q1, v2)
δ1→ (q1, v3)

δ2→
(q1, v4)

e1→ (q2, v5) · · · of a TA A is a path in its semantic
graph. Note that consecutive time transitions are not con-
catenated. We note Γ(A) the set of runs of A. A run ρ is
non-zeno if time can progress along ρ without upper bound.
We write time(ρ) for the total time elapsed during ρ. If
time(ρ) = ∞ then ρ is called non-zeno.

2.3 Properties of timed systems
Mitl (Metric Interval Temporal Logic) [4] is a logical for-

malism allowing to express linear timed properties. It can be
viewed as an extension of the (untimed) linear logic Ltl [16],
where each temporal operator used in the formulas is con-
strained by a non singular interval with integer bounds (a
singular interval is of the form [a, a], i.e., it is closed and the
left and right bounds are equal). Mitl formulas are defined
inductively by the following grammar:

ϕ ::= ap | ¬ϕ | φ ∨ ψ | φ UI ψ

where ap is an atomic proposition and I is a non singular
interval with integer bounds. Other classical temporal op-
erators can be defined: �Iϕ = true UIϕ (eventually ϕ) and
�Iϕ = ¬�I¬ϕ (always ϕ).

Mitl properties are interpreted over runs of a timed au-
tomaton. Intuitively, a property φ UI ψ holds on a run if,
when φ is met, φ holds until ψ is true. Moreover, ψ must
hold at a time t within the time interval I following the
moment when φ was true. An Mitl property is satisfied by
a timed automaton if it holds on each run of the automaton.

2.4 Integration of components
Consider a timed system composed of a set of components

A1, A2, · · · , An, each one modeled by a TA. Integration of
components is a type of incremental modeling, which con-
sists in first considering one component, for instance A1.
Then, the other components are successively added to A1,
until obtaining the complete system. We consider that this

1In the rest of the paper, we directly call these states, the
states of A, instead of the states of the semantic graph of A.

integration is achieved by using the classic parallel compo-
sition operator ||. This composition is defined as a syn-
chronized product where the synchronizations are done on
actions with the same label, while other actions interleave.
Formally, consider two TA Ai =〈Qi, q0i

, Labelsi,Xi,Ti, Invari,
Li〉, for i = 1, 2, s.t. X1 ∩ X2 �= ∅. The parallel com-
position of A1 and A2, written A1||A2, creates a new TA
which set of clocks is X1 ∪ X2 and which labels are the set
Labels1 ∪ Labels2. The set Q of locations consists of pairs
(q1, q2) composed of a location of each Ai. Invar((q1, q2))
is defined as Invar(q1)∧ Invar(q2) and L((q1, q2)) is the set
L(q1)∪L(q2). The initial location is the pair (q01 , q02). The
set of transitions T is given by the three following rules:

Synchronization:
(q1,g1,a,λ1,q′1) ∈ T1 , (q2,g2,a,λ2,q′2) ∈ T2

((q1,q2),g1∧g2,a,λ1∪λ2,(q′1,q′2)) ∈ T

Interleaving:
(q1,q2)∈Q , (q1,g1,a,λ1,q′1) ∈ T1 , a �∈Labels2

((q1,q2),g1,a,λ1,(q′1,q2)) ∈ T

(q1,q2)∈Q , (q2,g2,a,λ2,q′2) ∈ T2 , a �∈Labels1
((q1,q2),g2,a,λ2,(q1,q′2)) ∈ T

Incremental modeling, and in particular integration of
components, is a way to cope with the complexity of the
verification when large-sized model are treated. Indeed, it
could allow to verify local properties of the components at
each step of the modeling, i.e., at each integration of com-
ponents, instead of performing the verification directly on
the complete system. However, this reasoning is valid only
if the integration preserves the properties already checked.

3. EXPLOITING SIMULATIONS TO PRE-
SERVE LOCAL PROPERTIES

We showed in [5] that timed τ -simulations are sufficient
conditions for the preservation of Mitl properties during in-
cremental modeling, and in particular, integration of compo-
nents. That is, if a component τ -simulates the whole system
w.r.t. some τ -simulation relation, then already established
properties of the component are preserved after integration
in its environment. We defined in [5] two τ -simulation re-
lations: one dealing with safety Mitl properties (called a
timed τ -simulation)2, and the other to handle all Mitl prop-
erties (divergence-sensitive and stability-respecting timed τ -
simulation).

3.1 Timed τ -simulations
Consider a TA A1 that has to be integrated in an en-

vironment E. We note A2 = A1||E the result of the in-
tegration. Consider also that A1 and E have a common
subset of labels of actions – the synchronized actions –, i.e.,
labelsA1 ∩ labelsE �= ∅. Let us rename by τ all the labels
of the own actions of the environment (the non-common la-
bels of E) and call them τ -actions.
The timed τ -simulation S between the semantic graphs of
A2 and A1 is characterized by the following points: if A2 can
make an action of A1 after some amount of time (that is,
either a synchronized action or an own action of A1), then

2Note that, although deadlock-freedom properties can be
classified as safety properties, we do not consider them like
this, but as a separate class of properties. Thus, this kind
of properties are not preserved by the timed τ -simulation.

35

A1 could also do the same action after the same amount of
time (clauses 1 and 2 of Definition 1), and own actions of E
(τ -actions) stutter (clause 3).

Definition 1 (Timed τ -simulation S). Let A1 =〈Q1,
q01

, Labels1, X1, T1, Invar1, L1〉 and A2 =〈Q2, q02
, Labels1∪

{τ}, X2, T2, Invar2, L2〉 be two TA such that X1 ⊆ X2. S1

and S2 are the respective set of states of A1 and A2. The re-
lation S is included in S2×S1. We say that (q2, v2)S(q1, v1)
if v2�X1 = v1 and

1. Strict simulation:
(q2, v2)

e2→ (q′
2, v′

2) ∧ label(e2) ∈ Σ1 ⇒ ∃(q′
1, v′

1)·
((q1, v1)

e1→ (q′
1, v′

1) ∧ label(e1) = label(e2) ∧ (q′
2, v′

2) S (q′
1, v′

1)).

2. Time transitions:
(q2, v2)

δ→ (q2, v′
2) ⇒

∃(q1, v′
1) · ((q1, v1)

δ→ (q1, v′
1) ∧ (q2, v′

2) S (q1, v′
1)).

3. Stuttering:
(q2, v2)

e2→ (q′
2, v′

2) ∧ label(e2) = τ ⇒ (q′
2, v′

2) S (q1, v1).

We say that A1 τ -simulates A2 w.r.t. S , written A2 � A1, if
s02 S s01 , where s01 and s02 are the respective initial states
of A1 and A2.

This τ -simulation only preserves safety properties. To
preserve also liveness properties, it has to be (1) stability
- respecting : the integration of A1 in E must not create
deadlocks in comparison with A1 (all the deadlocks appear-
ing in A1||E must already exist in A1), and (2) divergence-
sensitive: the own actions of the environment E must not
have the possibility to take the control forever, i.e., A1||E
must not contain non-zeno runs composed of an infinite se-
quence of successive τ -actions. Such a run is called a non-
zeno τ -cycle, and a TA containing such a run is called τ -
divergent.

The predicate free. To deal with the non-introduction
of deadlocks during the integration, we use the predicate
free introduced in [18]. Informally, free(q) computes the
set of valuations of the states with discrete part q that can
let some time pass and then take a discrete transition (i.e.,
non-blocking states):

free(q) =
[

e∈out(q)

↙ (guard(e)∩([reset(e) := 0]Invar(target(e))))

where out(q) is the set of discrete transitions leaving from q.

Non-zeno τ -cycles. Let A be a TA where some labels of
actions are renamed by τ . We say that A does not contain
any non-zeno τ -cycles (and thus that A is not τ -divergent)
if:
∀ρ, k · (ρ ∈ Γ(A) ∧ time(ρ) = ∞∧ k ≥ 0 ⇒

∃k′, e · (k′ ≥ k ∧ (ρ, k′) e→ (ρ, k′ + 1) ∧ label(e) �= τ)).

We restrict the timed τ -simulation of Def. 1 by adding
conditions imposing divergence-sensitivity and stability-respect.
This Divergence-sensitive and Stability-respecting (DS) timed
τ -simulation is defined as follows.

Definition 2 (DS timed τ -simulation Sds). Consider
two TA A1 = 〈Q1, q01

, Labels1, X1, T1, Invar1, L1〉 and A2

= 〈Q2, q02
, Labels1∪{τ}, X2, T2, Invar2, L2〉, such that X1 ⊆

X2 and A2 is not τ -divergent. S1 and S2 are the respective
set of states of A1 and A2. The relation Sds is included in
S2 × S1. We say that (q2, v2)Sds(q1, v1) if

(q2, v2)S(q1, v1) and v2 �∈ free(q2) ⇒ v1 �∈ free(q1)

We say that A1 τ -simulates A2 w.r.t. Sds, written A2 �ds

A1, if s02 Sds s01 .

3.2 Properties of timed τ -simulations
We give in this section the main propositions and theo-

rem showing the interest of the timed τ -simulations for the
incremental modeling of timed systems. Indeed, the timed
τ -simulation is well-adapted to the parallel composition op-
erator || (Proposition 1). Moreover, this operator does not
add τ -divergence if the environment in which a component
is integrated is not τ -divergent (Proposition 2). Theorem 1
is the main result, showing that the DS timed τ -simulation
preserves Mitl properties. Proofs can be found in [5].

Proposition 1. Let A, B, C and D be TA. Then, we
have the following:

1. A||B � A,

2. if A � B then A||C � B||C,

3. if A � B and C � D then A||C � B||D.

Proposition 2. Consider two TA A and B s.t. some
actions of B are renamed by τ . If B is not τ -divergent, then
neither is A||B.

Theorem 1. Let ϕ be a M itl property, A and B be TA.
If A |= ϕ and B �ds A, then B |= ϕ.

Therefore, in the context of integration of components,
the preservation of local safety properties can be obtained
for free, since parallel composition is compatible with the
timed τ -simulation. The preservation of local linear liveness
properties of a component can be ensured only by check-
ing that its integration in an environment does not create
deadlocks and that this environment is not τ -divergent.

Remark 1. Tctl [2] is a branching-time logic which is
often used to express timed properties. However, Tctl prop-
erties are not preserved by the DS timed τ -simulation. In-
deed, even in the untimed case, simulation relations can not
handle the preservation of branching-time properties. This
kind of properties gives the possibility to add existential or
universal quantifiers in the formulas. In particular, proper-
ties including existential quantifications, such as reachability
properties, are not preserved (note that each M itl formula
is implicitly preceded by a universal quantification, meaning
that the property must hold on all runs). One often need to
use bisimulation relations to ensure the preservation of such
properties, but they are not appropriate to formalize incre-
mental modeling, and thus, integration of components.

3.3 Checking the simulations
To check the DS timed τ -simulation, we developped the

tool Vesta3. The structure of the tool was guided by the
structure of the tool Open-Kronos [18], allowing an easy
connection to the Open-Caesar platform [11]. It takes as
input two TA A1 and A2, where A2 represents the integra-
tion of A1 in an environment E, i.e. A1||E.

3available at: http://lifc.univ-fcomte.fr/∼oudot/VeSTA

36

The tool performs a joint on-the-fly depth-first search on
symbolic graphs representing the two TA (the so-called sim-
ulation graphs [18]), and checks if A2 �ds A1. This verifica-
tion is in O((|Z1| + | −→1 |) × (|Z2| + | −→2 |)), where Zi

and −→i, for i = 1, 2, are respectively the set of states and
transitions of the simulations graphs of each Ai. If the ver-
ification fails, the tool returns a diagnostic. This diagnostic
consists in a trace of A2 containing a state which does not
satisfy the relation, and the corresponding trace in A1. To
check if A2 is τ -divergent, we use the tool Profounder [19],
which can in particular detect non-zeno cycles. Thus, we use
it to detect non-zeno τ -cycles first in E, then in A2 if τ -cycles
are detected in E.

4. EXPERIMENTS
We present in this section examples on which we lead

experiments to show the interest of timed τ -simulations.
For each case study, the verification of the properties was
achieved with the tool Kronos [20]. Kronos is a verifi-
cation tool for timed systems which performs Tctl model-
checking [2], in particular for component-based models (in-
deed, Kronos can compute the parallel composition of TA).
Tctl is a logical formalism that allows to express branching-
time properties. It can be seen as the timed extension of
the untimed logic Ctl [8, 10]. To our knowledge, there is no
tool performing Mitl model-checking. Thus, we focused on
linear-time properties that can also be expressed in Tctl to
lead the verification with Kronos. The verification of the
simulations was done with Vesta.

4.1 Production Cell
The production cell case study was developed by FZI (the

Research Center for Information Technologies, in Karlsruhe)
as part of the Korso project. The goal was to study the
impact of the use of formal methods when treating indus-
trial applications. Thus, this case study was treated in
about thirty different formalisms. We treat it with timed
automata, as it was in [7].

��������������

��������������

��

��

press

robot

rotary table
elevating−

deposit belt

feed belt

sensor

arm B

arm A

Figure 1: The Production Cell

Modeling. The cell consists of six devices: a feed-belt and
a deposit-belt, from which pieces to be treated arrive and
are evacuated, a sensor detecting the arrival of the pieces,
an elevating rotary table, a two-arms robot and a press (see
Fig. 1). The sensor, on the feed-belt, detects when a piece
passes in front of it and sends a signal to the robot to in-
form that a piece is going to be available. When the piece

arrives at the end of the feed-belt, it is transfered to the
table which goes up while turning until being in a position
where the piece can be taken by the arm A of the robot. The
robot turns 90◦ so that the arm A can put down the piece
on the press, where it is processed and then transported by
the arm B to the deposit belt.
In the following, we focus on local properties concerning the
robot. Thus, let us give details about its behaviour: when
a piece is available on the table, the robot picks it up and
moves to the press so that its arm B is in front of the press.
If there is a piece on the press, the arm B takes it, otherwise
the robot goes on turning to place the arm A in front of
the press to put its piece down. Next, if the arm B is full,
the robot goes to the deposit belt to unload its piece (and
then goes back to the table), else it goes to an intermediary
position, called wait position. From this wait position, the
robot can either go back to the table to pick a new piece up
or to the press to get a processed piece.
The cell is modeled by at least seven components, one for
each device, and one or several pieces. Each component is
modeled by a TA. These TA can be found in [7]. The com-
plete model is obtained by making the parallel composition
of all these components. The timing constraints of the plant
are shown in Fig. 2. We give in Fig. 3 the size, in terms of
number of states and transitions, of the simulation graphs
of each component.

Device Description Time
Robot moves to press 5
Robot turns 90◦ 15
Robot moves to deposit belt 5
Robot from deposit belt to table 25
Robot from deposit belt to wait pos. 22
Robot from press to wait pos. 17
Robot from wait pos. to table 3
Robot from wait pos. to press 2
Robot at wait pos. 2
Feed Belt piece moves to sensor 3
Feed Belt piece moves to table 1
Table raises and turns 2
Table returns and turns 2
Press presses a piece 22-25
Press ready for a new piece 18-20
Deposit Belt evacuates a piece 4

Figure 2: Timing constraints for the production cell

Component Robot Press Feed belt Dep. Belt
States/Trans. 39/40 7/7 6/6 4/4

Component Table Sensor Piece Complete Model
States/Trans. 6/6 2/2 7/7 1655/2395

Figure 3: Size of the simulation graphs of each com-
ponent of the production cell

Verification. To ensure that the modeling is correct, there
are several properties to check. We focus on the local prop-
erties of the components, and in particular on the local prop-
erties concerning the robot. Here is a non-exhaustive list of
dynamic properties to check on the robot component. Prop-
erties 1 and 2 are safety requirements, properties 3 and 4 are
liveness requirements and properties 5 to 7 are bounded-
response requirements:

37

(1) When the robot is in wait position, its two arms are
empty,

(2) The robot is not waiting in front of the table if the
arm A is full,

(3) If there is a piece on arm B, the robot will eventually
go to the deposit belt,

(4) If there is a piece on arm A, the robot will eventually
go to the press,

(5) When the robot is in front of the deposit belt, then it
goes back to the table within 25 time units (t.u.) if
there are no pieces on the press,

(6) When the robot is in front of the deposit belt, then it
goes to the wait position within 22 t.u. if there is a
piece on the press,

(7) When it is in wait position, either the robot goes to
the press within 2 t.u. to unload it or it goes back to
the table within 3 t.u. to pick a new piece.

The following liveness property concerns the correct inter-
action between the robot and the press :

(8) If arm A is full then the press will eventually be free.

We used two approaches to verify these properties on the
plant. As a first approach, we verified the properties in a
classic way, directly on the global model, with only one piece.
As a result, we obtained that all the properties hold on this
model of the plant. The second approach consisted in veri-
fying the properties locally, i.e., on the robot component for
properties 1 to 7, and on the composition robot||press for
property 8. Here again, the verification succeeded. Next,
to guarantee the preservation of these properties, first when
integrating the robot with the press, then when integrating
the composition robot||press with the rest of the compo-
nents, we used the DS timed τ -simulation. We used our
tool Vesta to check it for both cases, and obtained as a re-
sult that the verification was successful. Thus, properties
are preserved.

Fig. 4 gives the results of the comparison of the two ap-
proaches in terms of verification times (in seconds). We can
see that, even on this small example, the second approach
only needs 0,57 sec. of computation time to ensure that
the properties hold on the cell, whereas the classic approach
consumes 19,58 sec.
Note that, in both approaches, we focused on a global sys-
tem which contains only one piece. The reason is the fol-
lowing. First, in the case of the second approach, adding
other pieces to the global system does not affect the re-
sults of the preservation. As the component piece already
exists in the global system and that there are no synchro-
nizations between the pieces, no new deadlocks can appear
while adding a new piece. Indeed, the system can behave
like it did with only one piece, or synchronize with the new
piece. In this last case, as the environment of the pieces
could synchronize with one piece without introducing dead-
locks, then it will synchronize with the new pieces in the
same way, thus without introducing deadlocks. On the other
hand, in the first approach, adding pieces considerably in-
crease the computation time for the verification of liveness or

bounded-response properties. Indeed, even with few pieces,
the memory needed to perform classic verification of such
properties is too large for the verification to be run to com-
pletion.

4.2 CSMA/CD protocol
The CSMA/CD protocol (Carrier Sense, Multiple Access

with Collision Detection protocol) [15] is used in broadcast
networks with a single channel, to which many stations try
to access. The protocol solves the problem of how to assign
the use of the channel to one of the stations and allows to
detect collisions when two stations try to send data simul-
taneously.

Modeling. The protocol works as follows: a station tries to
send a data. If the channel is busy, it waits some amount of
time and then retries to send. Otherwise, it begins to send
its data. If two or more stations begin to send a data simul-
taneously, and thus a collision arises, these stations detect
the collision and wait some amount of time to begin retrans-
mitting the data.
At least two TA are used to model the protocol: one per
station, called sender, and a medium. These TA are shown
in Fig. 5. Transitions cdi represent a collision detection
by the ith sender, and cdM models this detection by the
medium. The complete model of the protocol can contain
several senders. For n senders, the synchronizations are the
following: for a ∈ {begin, busy, end}, there is a synchro-
nized transition ai||aM

4, for i ∈ [1..n]. Moreover, the cd
transitions of each TA are synchronized, i.e., in the parallel
composition, there is a transition cdM ||cd1|| · · · ||cdn.

Verification. A main property of the protocol is that what-
ever the number of stations, if a collision occurs between two
stations i and j, i �= j, both detect it within 26 t.u. This is
a bounded-response property, written in Mitl by:

�(transmi ∧ transmj ⇒ �≤26(coll detectedi ∧ coll detectedj)).

This property holds in the case of a modeling with only
two senders S1 and S2. The verification with Kronos takes
less than 0.001 seconds of computation time. We want to
ensure that adding other senders does not alter the result of
the verification. That is, we want that, with a number n > 2
of senders, if S1 and S2 transmit their data simultaneously,
they still detect the collision. To preserve this bounded-
liveness property, we have to check that

S1||S2||S3|| · · · ||Sn||Medium �ds S1||S2||Medium.

As the senders Si are not τ -divergent, and with Proposi-
tion 1, we only have to check that the addition of S3, · · · , Sn

does not add deadlocks to S1||S2||Medium.
As in the production cell example, there already exist two
senders in the system. Thus, when adding a new sender, the
synchronizations of this sender with the medium (actions be-
gin, end and busy) can take place as they did with only two
senders. Thus, no deadlocks can be introduced by these
synchronizations. The main difference with the production

4Note that, for more simplicity, we extend here the notation
|| initially defined on timed automata, to transitions. Thus,
a||b denotes the transition resulting of the synchronization
of transitions a and b.

38

Property Global Verification Local Verification Preservation checking
Prop. 1 0.01 < 0.001
Prop. 2 0.01 < 0.001
Prop. 3 0.98 < 0.001
Prop. 4 15.79 0.04 0.05
Prop. 5 0.68 < 0.001
Prop. 6 0.48 < 0.001
Prop. 7 0.7 < 0.001
Prop. 8 0.93 0.02 0.46

Total 19.58 0.06 0.51

Figure 4: Production cell : local and global verification times (in seconds)

cdi

cdi, {xi}

{xi}
{xi}begini,

cdi

{xi}
cdi,

sendi, {xi}

xi = 782,
endi, {xi}

busyi,
{xi}

xi ≤ 782 xi ≤ 52

initi

coll detectedi

transmi

ready to sendi

endM , {xM}

xM < 26xM ≤ 26

xM ≥ 26
busyM

initM

transmM

coll detectedM

beginM ,

{xM}

beginM , {xM}cdM , {xM}

xM ≤ 26

xi = 0
retryi,

Figure 5: Timed automata for the ith sender and the medium of the CSMA/CD protocol

cell example is that there exists synchronizations between
all the components of the system, i.e., all the senders and
the medium (action cd). That is, when two senders detect
a collision and try to take action cd between the locations
transmi and coll detectedi, all other senders must allow
them to detect the collision and thus, must allow them to
take this transition. If not, a new deadlock occurs, since
the synchronization can not take place, whereas it could be
taken with two senders. However, we see that, at each lo-
cation of the TA of the senders, the transition cd appears.
This means that whenever a collision must be detected by
two senders (i.e., taking transition cd between the locations
transmi and coll detectedi), the other senders also have the
possibility to take a transition cd, allowing the two first
senders to detect the collision. No deadlocks can appear
while adding new senders, and thus, the property is pre-
served whatever the number of senders may be.
We compared our approach with a classic verification ap-
proach, and tried to verify this property, for instance, for
two senders S1 and S2, using the tool Kronos:

• Up to six senders (S1 to S6), the property can be
checked successfully. The computation times for the
verification changed from less than 0,5 seconds (three
senders) to more than 57 minutes (six senders). These
computations times take into account the time con-
sumed to make the parallel composition of all the com-
ponents and the verification time. Note that, in the
last case, the verification time takes about 30 seconds,
while the construction of the composition takes almost
57 minutes.

• For seven senders or more, the construction of the TA
resulting of the parallel composition of all the compo-
nents takes a considerably long time. For instance, we

aborted the construction for seven senders after ten
hours of computation without results. Thus, as the
composition could not be obtained, it was impossible
to perform the verification of the property.

5. CONCLUSION AND FUTURE WORKS
We aimed at treating the problem of the verification of

linear-time properties, expressed in Mitl, of timed systems.
We considered timed systems modeled in a compositional
framework, and focused on the verification of local proper-
ties of the components.

In [5], we proposed to use timed τ -simulations as a way
to verify these properties at a lower cost. The main thesis
is that a local linear property can be checked only on the
component it concerns, instead of on the complete composed
system, and that the preservation of the property when inte-
grating the component in its environment can be checked by
means of timed τ -simulation relations. More precisely, we
defined two such relations: a timed τ -simulation handling
the preservation of linear safety properties, and a divergence-
sensitive and stability-respecting timed τ -simulation for the
preservation of all Mitl properties, in particular liveness
properties.

In this paper, we studied the impact in practice of this
methodology. We applied it to two timed systems, and com-
pared the results with the ones obtained by a direct verifi-
cation on the complete system. It turns out that, in terms
of computation times, the methodology appears to be more
efficient. Moreover, both examples show the interest of the
methodology when a system S is susceptible to include an
indeterminate number n of components Ci,i=1..n of the same

39

“kind”, i.e., S = E||C1|| · · · ||Cn. In this case, we say that
S has n as a parameter. For instance, the parameter of the
production cell is the number of pieces on the cell, while
in the CSMA/CD protocol, it is the number of senders. In
such a parametrized system, the interesting cases are when
the verification can be performed with a small fixed number
l of such components, that is Sl = E||C1|| · · · ||Cl, implying
the preservation of the properties on Sm = E||C1|| · · · ||Cm,
∀m ≥ l, under some simple conditions. As the parallel
composition is compatible with the timed τ -simulation, it
is enough that the conditions ensure that adding the Cis
does not introduce any deadlocks. For instance, for the pro-
duction cell example, the condition is that there are no syn-
chronizations between the pieces. Thus, an interesting work
is to determine such simple conditions.

Another work direction would be to study the compatibil-
ity of the timed τ -simulations with other composition oper-
ators, in particular those preserving deadlock-freedom, such
as the one presented in [6]. Indeed, this analysis would al-
low to evaluate the interest of the methodology we propose
in a more general framework, i.e., also for systems using
composition paradigms which differ from the classic parallel
composition one.

6. REFERENCES
[1] J.-R. Abrial. Extending B without changing it (for

developing distributed systems). In 1st Conference on
the B method, pages 169–190, Nantes, France,
November 1996.

[2] R. Alur, C. Courcoubetis, and D. Dill.
Model-Checking in Dense Real-time. Information and
Computation, 104(1):2–34, 1993.

[3] R. Alur and D. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[4] R. Alur, T. Feder, and T. Henzinger. The benefits of
relaxing punctuality. Journal of the ACM, 43:116–146,
1996.

[5] F. Bellegarde, J. Julliand, H. Mountassir, and
E. Oudot. On the contribution of a τ -simulation in the
incremental modeling of timed systems. In Proceedings
of the 2nd International Workshop on Formal Aspects
of Component Software (FACS’05), volume 160 of
Electronic Notes in Theoretical Computer Science,
pages 97–111, Macao, Macao, October 2005. Elsevier.

[6] S. Bornot, J. Sifakis, and S. Tripakis. Modeling
Urgency in Timed Systems. In COMPOS’97, volume
1536 of Lecture Notes in Computer Science.
Springer-Verlag, 1997.

[7] A. Burns. How to verify a safe real-time system: The
application of model-checking and timed automata to
the production cell case study. Real-Time Systems
Journal, 24(2):135–152, 2003.

[8] E. Clarke and E. Emerson. Design and synthesis of
synchronization skeletons using branching-time
temporal logic. In Proceedings of Workshop on Logic
of Programs, volume 131 of Lecture Notes in
Computer Science. Springer-Verlag, 1981.

[9] C. Darlot, J. Julliand, and O. Kouchnarenko.
Refinement Preserves PLTL Properties. In Proceedings
of 3rd International Conference on B and Z Users

(ZB’03), volume 2651 of Lecture Notes in Computer
Science, pages 408–420, Turku, Finlande, June 2003.
Springer-Verlag.

[10] E. Emerson and J. Halpern. Decision procedures and
expressiveness in the temporal logic of branching time.
In Proceedings of the 14th ACM Symp. Theory of
Computing (STOC’82), pages 169–180, San Francisco,
CA, USA, May 1982.

[11] H. Garavel. OPEN/CAESAR: An Open Software
Architecture for Verification, Simulation and Testing.
In B. Steffen, editor, Proceedings of 1st International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’98),
Lisboa, Portugal, March 1998.

[12] R. v. Glabbeck. The Linear Time - Branching Time
Spectrum II ; The semantics of sequential systems
with silent moves. In Proceedings of 4th international
Conference on Concurrency Theory (CONCUR’93),
volume 715 of Lecture Notes in Computer Science,
pages 66–81, Hildesheim, Germany, august 1993.
Springer-Verlag.

[13] M. Henzinger, T. Henzinger, and P. Kopke.
Computing simulations on finite and infinite graphs.
In Proceedings of the 36th IEEE Symposium on
Foundations of Computer Science, pages 453–462,
1995.

[14] H. Jensen, K. Larsen, and A. Skou. Scaling up
Uppaal : Automatic verification of real-time systems
using compositionnality and abstraction. In
Proceedings of the 6th international symposium on
Formal Techniques in Real-Time and Fault-Tolerant
Systems (FTRTFT’00), pages 19–30, London, UK,
2000. Springer-Verlag.

[15] X. Nicollin, J. Sifakis, and S. Yovine. Compiling
real-time specifications into extended automata. IEEE
Transactions on Software Engineering, Special Issue
on Real-Time Systems, 18(9):794–804, September
1992.

[16] A. Pnueli. The temporal logic of programs. In
Proceedings of the 18th IEEE Symposium on
Foundations Of Computer Science, pages 46–77, 1977.

[17] S. Tasiran, R. Alur, R. Kurshan, and R. Brayton.
Verifying Abstractions of Timed Systems. In
Proceedings of the 7th Conference on Concurrency
Theory (CONCUR’96), volume 1119 of Lecture Notes
in Computer Science, pages 546–562, Pisa, Italy, 1996.

[18] S. Tripakis. The analysis of timed systems in practice.
PhD thesis, Universite Joseph Fourier, Grenoble,
France, December 1998.

[19] S. Tripakis, S. Yovine, and A. Bouajjani. Checking
Timed Büchi Automata Emptiness Efficiently. Formal
Methods in System Design, 26(3):267–292, May 2005.

[20] S. Yovine. Kronos: A verification tool for real-time
systems. Journal of Software Tools for Technology
Transfer, 1(1/2):123–133, October 1997.

40

JML-based Verification of Liveness Properties on a Class
in Isolation∗

Julien Groslambert
Université de Franche-Comté -

LIFC - CNRS
16 route de Gray

25030 Besançon cedex
France

groslambert@lifc.univ-
fcomte.fr

Jacques Julliand
Université de Franche-Comté -

LIFC - CNRS
16 route de Gray

25030 Besançon cedex
France

julliand@lifc.univ-
fcomte.fr

Olga Kouchnarenko
Université de Franche-Comté -
LIFC - CNRS - INRIA CASSIS

16 route de Gray
25030 Besançon cedex

France

kouchna@lifc.univ-
fcomte.fr

ABSTRACT
This paper proposes a way to verify temporal properties of a
Java class in an extension of JML (Java Modeling Language)
called JTPL (Java Temporal Pattern Language). We par-
ticularly address the verification of liveness properties by
automatically translating the temporal properties into JML
annotations for this class. This automatic translation is im-
plemented in a tool called JAG (JML Annotation Genera-
tor). Correctness of the generated annotations ensures that
the temporal property is established for the executions of
the class in isolation.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Software/Program Verifi-
cation—Temporal Property Verification

General Terms
Verification, Security

Keywords
Liveness Properties, Class in Isolation, JML, Automatic An-
notation Generation

1. INTRODUCTION
Recently, significant progresses have been made in the

field of smart card application verifications. The develop-
ment of the Java Modeling Language project1 (JML) is a
part in these results [6]. The JML project defines a specifi-
cation language which is syntactically and semantically close
to Java, thus making specifications more accessible to Java

∗Research partially funded by French Research ACI Geccoo.
1See http://www.jmlspecs.org.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Fifth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2006), November 10–11, 2006, Port-
land, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11 ...$5.00.

programmers. JML allows adding to the Java class tradi-
tional formal annotations like method pre- and postcondi-
tions and class invariants. However, it is difficult to directly
specify complex dynamic properties in JML, like temporal
properties [15] that are often needed to express the security
policies that the Java implementation has to ensure. For
example, no JML clause permits easy expression of the fol-
lowings properties

“After the invocation of the method m

the property P must be satisfied in all the states”. (S)

“After the non-exceptional termination of the method m

a state where P holds must inevitably

be reached in the future”. (L)

Following [15], Property S is a safety property, expressing
that something bad – a state where ¬P holds after the in-
vocation of m – must never happen whereas L is a liveness
property, expressing that, under certain conditions – an in-
vocation of m –, something good – a state where P holds –
must inevitably happen in the future.

A key concept for reasoning modularly about safety prop-
erties is the notion of class invariant, i.e., a predicate over
the variables of the class that must hold along all the history
of all the instances of the class. Reasoning in a modular way
about invariant consists in: (a) considering only the class in
isolation [1], i.e., without regarding the program using the
class, we show that the constructor of the class establishes
the invariant and that each method of the class preserves it.
(b) showing that under certain conditions on the program,
the invariant is still satisfied.

We propose to address the expression and the verification
of liveness properties following the same approach. There-
fore, this paper particularly focuses on the first task, i.e.,
the verification of liveness properties in isolation.

For that, we provide in the paper (1) an execution path
semantics of a Java Class in isolation and a semantics of
the main JML annotations; (2) a primitive liveness opera-
tor Loop, inspired from [9], for expressing liveness properties;
(3) a way to verify on a class in isolation liveness proper-
ties expressed with the Loop primitive, by generating JML
annotations ensuring their satisfaction; (4) a tool, called
JAG [10] (for JML Annotation Generator) implementing an
automatic translation of liveness properties into standard
JML annotations that ensure the satisfaction of these prop-

41

erties. Translation of liveness properties is done through the
primitive Loop operator.

We particularly focus on Java card applet. So, this paper
focus on single Java Class in isolation and the problem of
inheritance and sub-typing is not addressed.

The paper is outlined as follows. Section 2 quickly presents
JML on an example. Section 3 presents the semantics frame-
work of the paper. In particular, Section 3.1 defines a se-
mantics for the class C in isolation whereas Section 3.2 gives
the semantics of JML main annotations. Section 4 presents
the verification of liveness properties on a class in isola-
tion, through appropriate annotation generation. Section 5
presents the JAG tool, implementing this automatic gener-
ation of annotations. Section 6 concludes and presents the
perspectives of future work.

Nota Bene: The proofs of propositions and theorems are
not included in this paper, but can be found in [14].

2. OVERVIEW OF JML AND EXAMPLE
JML (Java Modeling Language) [16] is a specification lan-

guage especially tailored for Java applications. Originally,
JML was proposed by G.T. Leavens and his team; the de-
velopment of JML is now a community effort. JML has been
successfully used in several case studies to specify Java ap-
plications, and notably to specify smart card applications,
written in Java Card [6, 13]. JML is developed following
the Design by Contract approach [21], where classes are an-
notated with class invariants and method pre- and post-
conditions. The predicates are written as (side-effect-free)
boolean Java expressions, extended with specific constructs.
Specifications are written as Java comments marked with a
@, i.e., annotations follow //@ or are enclosed between /*@

and @*/. Below, we give a brief introduction to the main
constructs of JML, by means of the example in Fig.1.

The class Buffer works as follows. A method storeData()

personalizes the application by setting the length of the
transaction. One can initialize a new transaction with the
method begin(), creating a new temporary buffer. Then,
a write() method fills the modifications in the temporary
buffer, that is validated, i.e., assigned to the attribute
status, by an invocation of commit. It is also possible to
abort the transaction (abort()).

Figure 1 presents the main JML annotations on the sim-
ple example of a buffer. It shows a declaration of a class
invariant, denoting a predicate that has to hold before and
after every method call, i.e., in so-called JML visible states.
History constraints allow expressing a relation between the
pre- and post-state of all methods. Pre-state values of ex-
pressions are denoted by the JML keyword \old. Using the
clause for, one may specify the list of the methods for which
the history constraint must be satisfied. When this clause
is omitted, the constraint must hold for all the methods of
the class. The clause requires denotes the precondition
of the method, i.e., a predicate that must be true when
the method is called. A postcondition is expressed with an
ensures clause. A method may terminate exceptionally by
throwing an exception and satisfying the exceptional post-
condition (signals clause). The assignable clause gives
the list of variables that can be potentially modified by the
method. A method without side-effect is denoted by the
keyword pure. The specification of a method can also con-
tain a diverges clause (not displayed in this example). If

the predicate of a diverges clause of a method m is satisfied
by the pre-state of m, then the execution of m may not ter-
minate. Otherwise the method must terminate. By default,
the JML diverges clause is set to false. A method with a
helper modifier may not preserve the invariant. JML also
introduces its own variables – declared with the keyword
ghost. A special set annotation exists to assign their value.

In the rest of the paper, given a method m, we denote
by requires(m) (resp. diverges(m)), the predicate of the
requires clause of m (resp. the diverges clause). The
correctness of a Java class C w.r.t. a JML annotation A,
denoted C : A in the rest of the paper, can be established
by model-checking [24] or by a prover (B or Coq) via a proof
obligation generator (Jack[8] or Krakatoa [20]).

3. A JAVA EXECUTION SEMANTICS
Linear temporal properties [23] have a semantics over infi-

nite executions of a program. So, to express such properties
in terms of equivalent JML annotations, we need a path
semantics of the JML. This semantics is presented in this
section.

3.1 Class in Isolation Semantics
In this section, we define, in term of execution paths the

semantics of a class C in isolation. A class C is the descrip-
tion of a set of objects IC , called the instances of C.

Definition 1 (Java Class) A class C is a tuple (VC , MC)
where VC is the set of attributes of the class, MC is the set
of methods of the class. Within the set MC of methods, we
consider the following particular subsets:

• ConsC ⊆ MC the set of constructors of the class.

• HelperC ⊆ MC the set of helper methods of the class.

• PMC the set of progress (side-effect) methods. The set
of non-progress (pure) methods is denoted by PMC.
Notice that MC = PMC ∪ PMC.

Notice that, as said before, we do not consider in this paper
the problem of inheritance. Intuitively, an execution path of
a Java statement is the sequence of memory states reached
during the execution of the statement. The structure of the
memory model is not in the scope of the paper, but has
been formally specified in [26] or [20]. Intuitively, it is com-
posed of a heap, mapping variables to memory addresses
and a store, mapping addresses to their values. JML pred-
icates are pre/post predicates, therefore they are evaluated
on two memory states. Let P ∈ Pred be a JML predi-
cate and let spre and scur be two memory states, we denote
by (spre, scur) |= P the satisfaction of P at these memory
states. The values of the variables with an \old are in spre

and the others are in scur. If P does not contain variables
relating to a preceding state, i.e., no \old, then we simply
denote scur |= P . Given a state s and a variable a, s(a)
returns the value of a in the state s. The Java memory con-
tains also an execution stack [18]. As in Logozzo [19], we do
not explicitly use the execution stack, heap and store but we
assume to have special variables to observe it.

Definition 2 (Special Variables)
Let s be a memory state, we assume to have the following
special variables:

42

public class Buffer {
int len;
byte [] status;
byte [] buffer;
int position = 0;
boolean perso = false;

//@ ghost boolean trDepth = false;

//@ invariant position >= 0;

/*@ constraint position > \old(position)
@ for write;
@*/

/*@ normal_behavior
@ requires perso == false;
@ requires l > 0;
@ assignable len,perso;
@*/

void storeData(int l){
len = l;
perso = true;

}

/*@pure@*/ byte [] getStatus(){
return status;

}

/*@pure@*/ int getBufferLess(){

return len - buffer.length;
}

/*@ normal_behavior
@ requires trDepth == false;
@ requires perso == true;
@ assignable buffer;
@ also
@ exceptional_behavior
@ requires perso == false;
@ assignable \nothing;
@ signals (Exception e) true;
@*/

void begin() throws Exception{
if (perso == false) {

throw new Exception();
}
buffer = new byte[len];
//@ set trDepth = true;

}

/*@ normal_behavior
@ requires trDepth == true;
@ requires perso == true;
@ assignable status,position;
@*/

void commit(){
status = buffer;
position = 0;

//@ set trDepth = false;
}

/*@ normal_behavior
@ requires trDepth == true;
@ requires perso == true;
@ assignable position;
@*/

void abort(){
position = 0;
//@ set trDepth = false;

}

/*@ normal_behavior
@ requires trDepth == true;
@ requires perso == true;
@ requires position < len;
@ assignable position;
@ assignable buffer[position-1];
@ ensures position <= len;
@ ensures position == \old(position)+1;
@*/

void write(byte b){
buffer[position] = b;
position++;

}

}

Figure 1: Class Buffer

• s(excp), a flag denoting that an exception has been
thrown.

• s(stackHeight), the height of the execution stack.

• s(curMethod), the current method (the method on the
top of the stack).

• s(curInstance), the pointer on the current object.

Intuitively, we define a path of a Java statement T as a
sequence of states that are reached during the execution of
T . For that, we assume a transition relation → associated
to each Java statement T . Readers can find an example of
such a relation in [12] for a sequential Java core.

Definition 3 (Java Statement Path) Let s0 be a Java
state and let T be a Java statement, the path of T , denoted
s0[T] is either:

• if T terminates, the finite sequence σ of states
s0, s1, s2, . . . , sn such that ∀i.(0 ≤ i < n ⇒ (si →
si+1)); or

• if T diverges, the infinite sequence σ of states
s0, s1, s2, ... such that ∀i ≥ 0.(si → si+1).

In the rest of the paper, we denote by si the ith state of the
execution path σ. We denote by ε the empty path and given
an execution path σ the path suffix σi denotes the infinite
path si, si+1, si+2 . . . and the path segment σj

i denotes the
finite path si, si+1, si+2 . . . sj . A predicate P without \old
holds on σi and σj

i if si |= P as in LTL logic [23]. Given a
finite path σ = s0, . . . , sn and another path σ′ = sa, sb, . . . ,
the sequential composition of σ and σ′, denoted σ, σ′ is equal
to the path s0, . . . , sn, sa, sb,

As explained in Section 1, we aim at verifying that a prop-
erty of a class C is satisfied by any instances of C and by
any programs using the class C.

Therefore, we introduce a class in isolation semantics,
handling all potential executions of all instances of C.

As explained in Sect. 2, JML considers only visible states,
i.e., states before the invocation of a non-helper method or
after the termination of a non-helper method. Therefore,
we define the notions of pre- and post-states for a method
m as follows.

Definition 4 (Pre-, Post-, Matching Post- and Inner-
state of a Method) Let σ be a path, let si be its ith state
(with i > 0) and let m be a method. We say that si is a
pre-state of m, denoted si |= pre(m) if:

si(curMethod) = m and
si(stackHeight) = si−1(stackHeight) + 1

si is a post-state of m, denoted si |= post(m) if:

si(curMethod) = m and
si(stackHeight) − 1 = si+1(stackHeight)

Given a pre-state si of m, a state sj, where j > i is its
matching post-state sj, denoted sj |= postsi

(m), if:

sj |= post(m) ∧ sj(stackHeight) = si(stackHeight)
∧∀k.(i < k < j ⇒ (sk(stackHeight) ≥ si(stackHeight))).

Let i be the index of the pre-state of m, let j be the index of
its matching post-state, a state sk is an visible inner-state
of m, denoted sk |= innersi(m) if i ≥ k ≥ j. If m does not
terminate, sk is an inner-state if i ≥ k.

Then, we define the notion of visible states following [16].

Definition 5 (Visible States)
Given a Java execution path σ, the state si is a visible state
for an instance iC of the class C, denoted si |= visible(iC)
either if

• si is the post-state of a constructor of iC ,

si |= post(m) ∧ m ∈ ConsC ∧
si(curInstance) = iC , or

43

• si is the pre-state of a non-helper method invoked on
iC ,

si |= pre(m) ∧ m ∈ MC ∧ m �∈ ConsC ∧
m �∈ HelperC ∧ si(curInstance) = iC , or

• si is the post-state of a non-helper method invoked on
iC .

si |= post(m) ∧ m ∈ MC ∧ m �∈ ConsC ∧
m �∈ HelperC ∧ si(curInstance) = iC .

Therefore, for easily reasoning about JML, we define the
notion of visible state execution path as follows:

Definition 6 (Visible State Abstraction and Visible
State Execution Path) Let σ be an execution, we de-
fine the visible state abstraction for an instance iC , denoted
vsaiC (σ), by:

• vsaiC (ε) = ε

• if s0 |= visible(iC) then vsaiC (σ) = s0, vsaiC (σ1) else
vsaiC (σ) = vsaiC (σ1).

Given a Java statement S, we define the visible state execu-
tion path of S on a state s0, denoted s0[S]iC , as follows:

s0[S]iC =def vsaiC (s0[S])

Notice that the visible state abstraction hides:

• The details of the C method’s body execution.

• The invocations of helper methods.

• The invocations of methods of other classes (both meth-
ods of other classes invoked by C and by the environ-
ment of C).

Let Σ be a set of paths, the visible state abstraction of Σ
w.r.t. an instance iC , denoted vsaiC (Σ) is defined as the set
of all the abstractions of the paths of Σ, i.e.,

vsaiC (Σ) = {vsaiC (σ)|σ ∈ Σ}.
Then, we define the semantics of an instance iC in iso-

lation, denoted ΣiC . The semantics of iC captures all the
potential executions of iC . So, it is intuitively the set of all
paths ΣiC starting at invocation of a constructor creating
iC , followed by an arbitrary number of invocations on iC of
the methods of C within their preconditions.

Definition 7 (Instance Semantics) Let iC be an instance
of C = (VC , MC), we denote ΣiC the set of executions iter-
atively defined as follows:

• ε ∈ ΣiC .

• Let s0 be a state, let m ∈ ConsC . If s0 |= requires(m)
then

s0[(m, iC)]iC ∈ ΣiC .

• Let σ ∈ ΣiC be a finite execution and sn be its last
state. Let sn+1 be a state such that ∀v ∈ VC .(sn(v) =
sn+1(v)). Let m such that m ∈ MC∧m �∈ ConsC∧m �∈
HelperC. If sn+1 |= requires(m) then:

(σ, (sn+1[(m, iC)]iC)) ∈ ΣiC .

The class semantics of a class C is defined as the set of all
executions of its instances.

Definition 8 (Class semantics) Given a class C, let IC

be the set of instances of C. We define ΣC , the semantics
of the class C, by:

ΣC =def

[

iC∈IC

ΣiC

3.2 JML Semantics
To express temporal properties by JML annotations, we

need an execution semantics of JML annotations. To our
knowledge, JML semantics has been given in terms of wp-
calculus (see for example [20]), but never in terms of prop-
erties of the execution paths. We propose in this section
a semantics for the invariant clauses, constraint clauses
and a behavior specification.

Definition 9 (Path Execution Semantics of JML an-
notations) Given a set of executions ΣC of a class in iso-
lation, the path execution semantics of JML annotations is
displayed in Fig. 2.

The semantics is given w.r.t. the definition in [16]. It
must be understood as follows2 .

• Invariant: The invariant must be satisfied by each
visible state.

• Constraint: For the body of each method included
in the for clause, the constraint must hold between
the pre-state and the post-state, but also between all
visible states that arise during the execution of the
method, i.e., all inner states of the method.

• Behavior method specification: each specification of
a method can be desugared as a behavior specifica-
tion [16]. This JML specification is interpreted on a
path as follows. i If the predicate P of the requires

clause is satisfied by the pre-state of the method m,
that implies:

– If the predicate D of the diverges is satisfied
on the pre-state, then if the method terminates,
i.e., the method has a post-state, the predicate Q
of the ensures clause must be satisfied between
the pre-state and the post-state if it is a normal
termination (sj(excp) = false). Otherwise, i.e.,
if it is an exceptional termination, the predicate
R must be satisfied.

– If the predicate D of the diverges is not satis-
fied on the pre-state, then the method must ter-
minate, i.e., the method must have a post-state.
Moreover, if it is a normal termination the pred-
icate Q must be satisfied, and the predicate R
must be satisfied otherwise.

Notice that in each case, only attributes within the list
A of the assignable clause can be modified (∀a.(a ∈
VS ∧ a �∈ A ⇒ (si(a) = sj(a)))).

2The definitions of constraint and assignable are pro-
posed accordingly to the semi-formal description in [16]. No-
tice that, for technical reasons, an alternative semantics of
these clauses has been implemented in some tools

44

//@ invariant I; ≡def ∀σ ∈ ΣC . ∀i ≥ 0 . σi |= I

//@ constraint H for M; ≡def ∀σ ∈ ΣC . ∀i ≥ 0 . ∀m ∈ M.
(si |= pre(m) ⇒

(∀k1, k2.(i ≤ k1 < k2

∧sk1 |= innersi(m) ∧ sk2 |= innersi(m)− ⇒
(sk1 , sk2) |= H)))

/*@ behavior;
@ requires P;
@ diverges D;
@ assignable A;
@ ensures Q;
@ signals
@ (Exception e) R;
@*/

m()

≡def

∀σ ∈ ΣC . ∀i ≥ 0 .(
((σi |= (P ∧ ¬D) ∧ σi |= pre(m)) ⇒

∃j > i.(
(sj |= postsi

(m) ∧ sj(excp) = false
∧(si, sj) |= Q
∧∀a.(a ∈ VS ∧ a �∈ A ⇒ (si(a) = sj(a))))

∨
(sj |= postsi

(m) ∧ sj(excp) = true
∧(si, sj) |= R
∧∀a.(a ∈ VS ∧ a �∈ A ⇒ (si(a) = sj(a)))))

∧
((σi |= (P ∧ D) ∧ σi |= pre(m)) ⇒

∀j > i.(
(sj |= postsi

(m) ∧ sj(excp) = false ⇒
(si, sj) |= Q
∧∀a.(a ∈ VS ∧ a �∈ A ⇒ (si(a) = sj(a))))

∧
(sj |= postsi

(m) ∧ sj(excp) = true ⇒
(si, sj) |= R.
∧∀a.(a ∈ VS ∧ a �∈ A ⇒ (si(a) = sj(a))))))))

Figure 2: Path execution semantics of JML annotations

4. LIVENESS PROPERTIES VERIFICATION
This section deals with the verification of liveness proper-

ties on the execution semantics ΣC of a class C. For that, we
presents in Section 4.1 a liveness primitive operator Loop.
Under a progress hypothesis on the environment presented
in Section 4.2, the satisfaction of the Loop operator can be
ensured by appropriates JML annotations. This result is
established in a theorem given in Section 4.3.

4.1 The Loop Primitive
In this section, Q denotes a JML predicate, M denotes a

subset of PMC , and V denotes a JML expression returning
an integer. The Loop(Q, V, M) primitive is satisfied by an
execution if, after any states of the execution satisfying Q, a
state where ¬Q holds must eventually be reached. Besides
the predicate Q marking the loop entry condition we also
require, to prove the termination of the loop, a variant V
and a set of methods M ⊆ PMC .

Definition 10 (Loop Primitive) Loop(Q, V, M)3 holds on
an execution σ, written σ |= Loop(Q,V, M), if

∀i.((i ≥ 0 ∧ σi |= Q) ⇒ (∃j.j > i ∧ σj |= ¬Q)).

If σ is a finite execution of length n, σ |= Loop(Q, V, M) if

∀i.((0 ≤ i ≤ n ∧ σi |= Q) ⇒ (∃j.i < j ≤ n ∧ σj |= ¬Q)).

Notice that the variant V and the set M of methods do not
appear in the above expression since they are only used to
generate the appropriate proof obligations for the termina-
tion of the loop. For the verification of the Loop operator, fi-
nite executions are viewed as infinite executions by infinitely

3Notice that Loop(Q,V,M) semantics corresponds to LTL
property GF¬Q.

repeating the last state of the execution. The infinite exten-
sion of a finite execution is the following.

Definition 11 (Infinite Extension of Finite Execution)
Let σ be a finite execution s0, s1, s2 . . . , sn. We extend it to
the infinite sequence σ′ such that σ′ is s0, s1, s2 . . . , sn, sn,

The infinite extensions of finite executions are suitable for
verifying the Loop primitive.

Lemma 1 Let σ be a finite execution, σ′ be the infinite ex-
tension of σ. We have

σ′ |= Loop(Q,V, M) ⇔ σ |= Loop(Q,V, M)

Notice that ΣC contains all potential executions of in-
stances of C. We address the verification of a particular
subset of ΣC that satisfies a progress hypothesis.

4.2 Progress Hypothesis PH
Using the semantics of LTL [23], Hypothesis PH(Q,M) is

expressed by the LTL operators G∞ (“almost everywhere”)
and F∞ (“infinitely often”).

Intuitively, G∞P means that after a finite number of states,
the property P holds forever. The semantics of G∞ is the
following

σi |= G∞P ≡def ∃j ≥ i.(∀k.(k ≥ j ⇒ σk |= P)).

Given a predicate P , the formula F∞P means that at any
state of the execution, there always exists a future state
verifying P . Formally,

σi |= F∞P ≡def ∀j ≥ i.(∃k.(k ≥ j ∧ σk |= P)).

In order to verify ΣC |= Loop(Q, V, M), we need to assume
progress of the environment, i.e., the environment invokes

45

the methods of the subset M of the progress methods. Two
behaviors of the environment are allowed:

• The environment calls methods in M infinitely often.

• The environment performs a finite number of invoca-
tions of methods in M until a state i such that any
state of σi satisfies ¬Q.

Therefore, we define the progress hypothesis PH(Q,M) as
follows.

Definition 12 (Progress Hypothesis PH(Q,M))

(G∞¬Q) ∨ (F∞pre(M)) (PH(Q,M))

where pre(M) denotes the predicate
W

m∈M pre(m).

We denote ΣC/PH(Q,M) the subset of executions of ΣC

satisfying PH(Q,M).

Definition 13 (Class under PH(Q,M)) ΣC/PH(Q,M) is
the set of execution defined as follows.

ΣC/PH(Q,M) = {σ|σ ∈ ΣC ∧ σ |= PH(Q,M)}.
In the next section we show how to use appropriate JML an-
notations for establishing that ΣC/PH(Q,M) |= Loop(Q,V, M).

4.3 Annotations for the Loop operator
Verification of the Loop primitive is quite similar to a ter-

mination proof, since we have to show that as long as Q it
must always be possible to invoke a method of M and meth-
ods in M must decrease a well founded variant V . Here we
propose proof obligations – inspired from [9] – expressed as
JML annotations. These proof obligations guarantee the
satisfaction of the Loop primitive by an execution satisfying
the hypothesis PH(Q,M).

Let Loop(Q,V, M) be the Loop primitive. Let A1−5 be
the following set of JML annotations.

//@ invariant V >= 0; (A1)

//@ constraint Q ==> V < \old(V) for M ; (A2)

//@ constraint Q ==> V <= \old(V) ; (A3)

//@ invariant Q ==>
_

m∈M

requires(m) (A4)

//@ invariant Q ==>
^

m∈MC

(requires(m) ==> !diverges(m));

(A5)

Intuitively, A1−5 could be understood as follows.

A1 The variant V actually is greater than zero, i.e., it is
an expression over a well-founded set.

A2 As long as Q holds, when a method in M is executed,
the variant V must decrease. It ensures the progress
when the environment satisfies PH(Q,M) (livelock-
freeness).

A3 As long as Q holds, when a method of C is executed,
the variant V must not increase.

A4 As long as Q holds there always should be a method
in M that might be called, i.e., its precondition holds.
This ensures the deadlock-freeness of the system.

A5 As long as Q holds, all callable methods must not di-
verge. This ensures the non-divergence of the system.

Hypothesis PH(Q,M) is the disjunction of (F∞pre(M)
and G∞(¬Q), therefore, for each of these hypothesis, we
show respectively in Lemma 2 and Lemma 3 that, assuming
that the code of the class is correct w.r.t. the annotations
A1−5 (C : A1−5), the satisfaction of Loop (Q,V, M) is es-
tablished on ΣC .

Lemma 2 If C : A1−5 and σ ∈ ΣC and σ |= (F∞pre(M))
then σ |= Loop(Q,V, M).

Lemma 3 If C : A1−5 and σ ∈ ΣC and σ |= G∞(¬Q)
then σ |= Loop(Q,V, M).

A consequence of Lemma 2 and Lemma 3 is the following
theorem.

Theorem 1

If C : A1−5 then ΣC/PH(Q,M) |= Loop(Q,V, M).

An interesting property is obtained when M = PMC .
In this particular case, Hypothesis PH(Q,M) is not only
sufficient, but also necessary.

Proposition 1 When M = PMC, given σ ∈ ΣC , σ |=
Loop(Q,V, M) and C : A1−5 imply that σ |= PH(Q,M).

We now show how liveness properties (expressed here in
JTPL) can be embedded into a Loop primitive.

5. JML ANNOTATION GENERATOR TOOL
The generation of annotations for safety properties in [25]

and of liveness properties presented in Sect. 4 is implemented
in a tool, called JAG (for JML Annotation Generator) [10].

The JAG tool takes as an input a formula expressed in
JML Temporal Pattern Logic (JTPL), first introduced in [25].
A JTPL formula is a combination of JML predicates, events
and temporal operators. Using JTPL formulae, one can ex-
press, on the example of the Buffer (see Fig. 1 Sect. 2), the
following properties:

1. After the invocation of storeData (after storeData

called), the variable perso is always true, expressed
in JTPL as follows.

after storeData called always perso; (S)

2. After starting a transaction, i.e., the normal termi-
nation of the method begin (after begin normal),
a state where trDepth is false must eventually be
reached.

after begin normal eventually !trDepth

under variant getBufferLess()

for begin, commit, abort, write . (L)

Notice that in Property L, the event is begin normal and
not begin called since a buffer transaction starts only when
the method begin terminates normally. Notice also that
since Property L is a liveness property, the user gives a vari-
ant and a set of progress methods with the JTPL clause
under variant ... for.

The result of the translation of Properties S and L is
displayed in Fig. 3.

46

public class Buffer {

//@ ghost boolean witness S = false; (Sa)

//@ ghost boolean witness L = false; (La)

/*@ invariant witness S
@ ==> perso;
@*/

(Sc)

//@ invariant getBufferLess() > 0;
/*@ constraint witness L ==>
@ getBufferLess() < \old(getBufferLess())
@ for begin,comit, abort, write;
@*/

/*@ constraint witness L ==>
@ getBufferLess() <= \old(getBufferLess())
@*/

/*@ invariant witness L ==> (
@ (trDepth == false && perso == true) ‖
@ (trDepth == true && perso == true) ‖
@ (trDepth == true && perso == true
@ && position < len))
@*/

(Lloop)

void storeData(int l){
...
//@ set witness S = true; (Sb)

//@ set witness L = !trDepth; (Lc) }

void begin(){
try { (Lb)

...
//@ set witness L = !trDepth; (Lc)

}
catch (Exception e) {
throw e;
}
finally {
//@ set witness L = true;
}

(Lb)

}
void commit(){
...
//@ set witness L = !trDepth; (Lc) }

void write(byte b){
...
//@ set witness L = !trDepth; (Lc) }

void byte[] /*@ pure @*/ getStatus(){
... }
}

Figure 3: Buffer with generated annotations

1. First, JAG generates a ghost boolean variable for ob-
serving the occurrences of the events of the temporal
properties. These ghost variables are assigned w.r.t.
the events occurring in the formula.

Example 1 (Ghost Variables Generation for S)
The ghost variable witness S, corresponds to the event
storeData called of S. It is initially declared with
the value false (see Annotation Sa in Fig. 3) and it
is set to true when the method storeData is called
(see annotation Sb). So, in each state after the event
storeData called, the value of the ghost variable wit-

ness S is true, i.e., witness S is true exactly with the
scope of the property.

Example 2 (Ghost Variables Generation for L)
The ghost variable witness L, corresponding to the
event begin normal of the temporal property L is
also declared with the value false (Annotation La in
Fig. 3). The ghost variable witness L is assigned us-
ing a try...catch...finally statement (see annota-
tion Lb). Notice that, in case of exception, the caught
exception is re-thrown, the execution does not go into
the finally block, the reader can see that witness L is
set to true only when begin normal occurs. The
ghost variable witness L is set to false again by
adding to each method a set statement (annotation
Lc).

2. Second, it generates an invariant to ensure the satis-
factions of a safety property.

Example 3 (Invariant Generation for S) The in-
variant for S is displayed in Fig. 3 (annotation Sc). It
means that when the variable witness S is true, i.e.,
after the first occurrence of storeData called, the
predicate (perso == true) must be true - the defini-
tion of Property S.

3. Finally JAG translates each liveness property into a
Loop primitive and generates the corresponding JML
annotations.

Example 4 (Generation of annotations for L)

The JML primitive corresponding to L is

Loop(witness L, getBufferLess(),
{begin, commit, abort, write})

The corresponding annotations are displayed in Fig. 3
(see Annotations Lloop).

Notice that, since no method of Buffer diverges, An-
notation A5 does not appear.

The tool is able to keep the trace of the generated annota-
tions, i.e., it is possible, given a generated annotation, to find
the original intermediate primitive and the original temporal
property. Since the generated output file contains standard
JML annotations, it can be used with other JML tools [7]
to validate or prove the temporal formulae. In particular,
we have successfully used it for the following purposes.

• Verification of the correctness of the Java code
w.r.t. the JML annotations with the proof obliga-
tion generators Jack [8] and Krakatoa [20].

• Validation of a JML model with JML-TT [5];

• Formal verification of a JML model with the
JML2B method [2];

• Test generation and Runtime Assertion Check-
ing with the test generators Tobias [17], Jartege [22]
and JML-TT [4].

Test generation and Runtime Assertion Checking using JAG
has been studied on a industrial Javacard application [3].

47

6. CONCLUSION AND FUTURE WORKS
This paper presents a way to verify liveness properties on

Java classes in isolation by generating appropriate JML an-
notations. This requires that the user specifies a variant for
the verification of a Loop primitive to which liveness prop-
erties are reduced. The generated JML annotations are ver-
ified (or validated) with any tools handling JML. The JAG
tool implements this translation. It has been used for several
toy examples and a Java Card Electronic Purse Specification
(over 500 lines of JML).

To the best of our knowledge, this is the first attempt to
verify liveness properties for potentially infinite-state sys-
tems using a translation into JML. For finite state systems,
liveness properties expressed in LTL are usually verified au-
tomatically by model checkers such as SPIN [11]. For infinite
state systems, model checking is used on liveness preserving
abstractions.

Currently we are working on extensions of JAG to other
temporal properties. In particular, we currently address
the verification of properties expressed by Büchi automata.
Then, the Büchi acceptance condition is checked using Loop
primitives introduced in this paper. The second challenge is,
assuming that a liveness is established on the class in isola-
tion, to provide techniques for verifying that the (single- or
multi-threaded) environment effectively satisfies PH(Q,M).

Acknowledgment: We like to thank Marieke Huisman
for her interesting and helpful comments and suggestions to
improve this work. Further, we acknowledge all the anony-
mous referees for their corrections, comments and advices.

7. REFERENCES
[1] J. Andronick, B. Chetali, and O. Ly. Using Coq to

verify Java Card Applet Isolation Properties. In 16th
International Conference on Theorem Proving in
Higher Order Logics (TPHOLs’2003), 2003.

[2] F. Bouquet, F. Dadeau, and J. Groslambert. Checking
JML specifications with B machines. In ZB’05, volume
3455 of LNCS, pages 435–454. Springer-Verlag, 2005.

[3] F. Bouquet, F. Dadeau, J. Groslambert, and
J. Julliand. Safety property driven test generation
from JML specifications. In FATES/RV’06, LNCS,
pages 225–239. Springer-Verlag, 2006. To appear.

[4] F. Bouquet, F. Dadeau, and B. Legeard. Automated
Boundary Test Generation from JML Specifications.
In FM’06, volume 4085 of LNCS, pages 428–443.
Springer-Verlag, 2006.

[5] F. Bouquet, F. Dadeau, B. Legeard, and M. Utting.
JML-Testing-Tools: a symbolic animator for JML
specifications using CLP. In TACAS’05 Tool session,
volume 3440 of LNCS, pages 551–556. Springer, 2005.

[6] C-B. Breunesse, N. Cataño, M. Huisman, and
B. Jacobs. Formal methods for smart cards: an
experience report. Sci. Comput. Program.,
55(1-3):53–80, 2005.

[7] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.T.
Leavens, K.R.M. Leino, and E. Poll. An Overview of
JML Tools and Applications. In FMICS 03, volume 80
of ENTCS, pages 73–89. Elsevier, 2003.

[8] L. Burdy, A. Requet, and J.-L. Lanet. Java Applet
Correctness: a Developer-Oriented Approach. In
FM’03, number 2805 in LNCS, pages 422–439.
Springer, 2003.

[9] R.M. Burstall. Program Proving as Hand Simulation
with a Little Induction. Information Processing, pages
308–312, 1974.

[10] A. Giorgetti and J. Groslambert. JAG: JML
Annotation Generation for Verifying Temporal
Properties. In FASE, LNCS, pages 373–376. Springer,
2006.

[11] G.J. Holzmann. The Model Checker SPIN. In IEEE
Trans. on Software Engineering, volume 23-5, pages
279–295, 1997.

[12] A. Igarashi, B. Pierce, and P. Wadler. Featherweight
Java: A minimal core calculus for Java and GJ. In
OOPSLA, volume 34(10), pages 132–146. ACM, 1999.

[13] B. Jacobs, C. Marché, and N. Rauch. Formal
Verification of a Commercial Smart Card Applet with
Multiple Tools. In AMAST’04, number 3116 in LNCS,
pages 21–22. Springer, 2004.

[14] O. Kouchnarenko, J. Groslambert, and J. Julliand.
JML-based Verification of Liveness Properties on a
Class. Technical Report RR2006-7, LIFC, 2006.

[15] L. Lamport. Proving the Correctness of Multiprocess
Programs. In IEEE Transactions on Software
Engineering, volume 3(2), pages 125–143, 1977.

[16] G.T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby,
D.R. Cok, and J. Kiniry. JML Reference Manual.
Department of Comp. Science, Iowa State University.
Available from http://www.jmlspecs.org, 2003.

[17] Y. Ledru, L. du Bousquet, O. Maury, and P. Bontron.
Filtering TOBIAS Combinatorial Test Suites. In
FASE 2004, volume 2984 of LNCS, pages 281–294.
Springer-Verlag, 2004.

[18] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. The Java Series. Addison-Wesley,
Reading, MA, USA, 1997.

[19] F. Logozzo. Class Invariants as Abstract
Interpretation of Trace Semantics. Computer
Languages, Systems and Structures, 2005.

[20] C. Marché, C. Paulin-Mohring, and X. Urbain. The
Krakatoa tool for certification of Java/Java Card
programs annotated in JML. Journal of Logic and
Algebraic Programming, 58(1-2):89–106, 2004.

[21] B. Meyer. Object-Oriented Software Construction.
Prentice Hall, 2nd rev. edition, 1997.

[22] C. Oriat. Jartege: A Tool for Random Generation of
Unit Tests for Java Classes. In SOQUA 2005, volume
3712 of LNCS, pages 242–256. Springer-Verlag, 2005.

[23] A. Pnueli. The Temporal Logic of Program. In 18th
Ann. IEEE Symp. on foundations of computer science,
pages 46–57, 1977.

[24] Robby, E. Rodŕıguez, M. Dwyer, and J. Hatcliff.
Checking Strong Specifications Using an Extensible
Software Model Checking Framework. In TACAS
2004, volume 2988, pages 404–420. Springer, 2004.

[25] K. Trentelman and M. Huisman. Extending JML
Specifications with Temporal Logic. In AMAST’02,
number 2422 in LNCS, pages 334–348. Springer, 2002.

[26] J. van den Berg, M. Huisman, B. Jacobs, and E. Poll.
A Type-Theoretic Memory Model for Verification of
Sequential Java Programs. In WADT, volume 1827 of
LNCS, pages 1–21. Springer, 1999.

48

Using Resemblance to Support Component Reuse and
Evolution

Andrew McVeigh, Jeff Kramer and Jeff Magee
Department of Computing

Imperial College
London SW7 2BZ, United Kingdom
{amcveigh, jk, jnm}@doc.ic.ac.uk

ABSTRACT
The aim of a component-based approach to software is to allow
the construction of a system by reusing and connecting together a
number of existing components. To successfully reuse a compo-
nent, alterations generally need to be made to it, particularly if the
abstraction level is high. However, existing usage of a component
means that it cannot be altered without affecting the systems that
reuse it already. This leads to a dilemma which frustrates the goals
of the compositional approach to reuse.

To help resolve this dilemma, we introduce the resemblance con-
struct, allowing a new component to be defined in terms of changes
to a base component. This allows us to effectively alter a base com-
ponent for reuse, without affecting the existing definition or any
users of the component. We use an example to show how this and
other constructs ameliorate the reuse problems of complex, possi-
bly composite, components.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—Lan-
guages; D.2.13 [Software Engineering]: Reusable Software—
Reuse models; D.2.10 [Software Engineering]: Design—Repre-
sentation

General Terms
Design, languages

Keywords
Architecture, components, composition, reuse, modelling

1. INTRODUCTION
When taking a compositional approach to system construction, a
composite component can be created by composing and connect-
ing together a number of other components. Each of the constituent
components of the composite may either be composite themselves
or leaf components which have no further decomposition [20, 9].
Complex subsystems, and even entire systems can be represented

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Fifth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2006), November 10-11, 2006,
Portland, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11 ...$5.00.

as composites which can then be reused as parts of other sys-
tems. The aim is to assemble systems from increasingly higher-
level components, offering a compelling approach to construction
and reuse. In practice, however, a number of issues frustrate this
goal.

To set the context, consider that a system is constructed from both
existing components, and new components developed specifically
for that architecture. Existing components are obtained from a
component provider, or taken from an existing system. It is un-
likely that changes can be made to an existing component specifi-
cally to accommodate a new system, as existing usage in other en-
vironments places constraints on what can be changed. To be suc-
cessfully reused, however, existing components generally require
alterations before they can be integrated into a new architecture
[6].

This situation leads to a dilemma: components cannot be reused
without changes, but existing usage heavily constrains any changes.
The more complex or higher-level a component is, the less is the
likelihood that it will be suitable for reuse in an unaltered form.
This situation is closely related to the abstraction problem [5]: com-
ponents are more valuable when they represent higher-level ab-
stractions targeted at a particular domain, but this specificity limits
their reuse. This is particularly a problem with composite compo-
nents as they hide their constituent components and abstractions.

In order to examine this dilemma more closely, a reuse scenario
from an existing system is presented. By analysing this situation,
we form a set of requirements that a solution must meet in order to
address the identified issues.

From these requirements we develop the concept of resemblance,
which is an inheritance-like construct for components. This allows
us define a new component in terms of changes to a, possibly com-
posite, base component. The key is that the changes are held in the
new component, and do not affect the base definition. Combined
with a small number of other constructs, we demonstrate how this
ameliorates the reuse problems. We further show how the con-
structs can also help with component evolution, acting as a type of
decentralised configuration management (CM) system.

The rest of the paper is organised as follows. We begin by pre-
senting the component model as general background for the dis-
cussion and to establish terminology. A simplified example of a
component reuse problem from a working system is shown, lead-
ing to a conceptual view of the problem. We then introduce the
resemblance and other constructs and show how a component can

49

be altered for new requirements, without losing the link back to the
original definition. We conclude with a discussion of related work
which contrasts this work with architecturally-aware CM systems,
and product family approaches.

2. THE COMPONENT MODEL
In keeping with Darwin [10] and UML2 [12], we define a com-
ponent as an instantiable, class-like construct which explicitly de-
scribes the interfaces that it provides and requires. An interface rep-
resents a collection of methods defining a service and may inherit
from other interfaces. Interfaces can only be provided or required
via ports, and each port has a name and may be indexed. Ports serve
to name the role of interfaces as services offered or required by a
component.

A component may have attributes, which can only be of primitive
type. These present a view, or projection, on the internal state of
the component.

Components are either leaf or composite, where a leaf component
cannot be further decomposed and is associated directly with an
implementation in (currently) Java.

Figure 1 shows a leaf component with two attributes and two ports.
The graphical representation is a UML2 composite structure dia-
gram where a provided interface is shown as a circle, and a required
interface is shown as a semi-circle. Note that the leaf is directly as-
sociated with a Java implementation class.

IRequiredInterfaceIProvidedInterface

LeafComponent

attr2: String
attr1: int

component LeafComponent

 describes com.example.JavaLeafComponent

{

 attributes:

 int attr1; String attr2;

 ports:

 port1 provides IProvidedInterface;

 port2 requires IRequiredInterface;

}

port2port1

Figure 1: Definition of a leaf component

The textual definition in the lower half of the figure is from the
Backbone architecture description language (ADL). This experi-
mental language has been defined, as part of this work, in order to
demonstrate the concepts in this paper, and to also explore the use
of UML2 as an ADL. We have developed a prototype Backbone
interpreter which can assemble a system from the ADL representa-
tion and the Java implementation of the leaf components.

Although Backbone has been designed around the UML2 compo-
nent meta-model, it bears more than a passing resemblance to Dar-
win. This presumably reflects the influence that Darwin, ROOM
[15], ACME [3] and other ADLs have had on the UML2 specifica-
tion.

A composite component (figure 2) can additionally contain a num-
ber of component instances, each of which is shown as a box within
the component. These instances are called parts in UML2 termi-
nology. Each part has a name (part1), and a component type (Leaf-
Component) which is the component it is an instance of. Further,

a part can define slots, which hold values for the attributes of the
component type e.g. attr(10). The parts of a composite represent
its initial configuration and state.

component CompositeComponent

{

 ports:

 portP provides IProvidedInterface;

 portR requires IRequiredInterface;

 parts:

 LeafComponent part1

 set attr1(10), attr2("test");

 connectors:

 connP joins portP to port1@part1;

 connR joins portR to port2@part1;

}

IProvidedInterface IRequiredInterface

CompositeComponent

part1 : LeafComponent

attr2("test")
attr(10)

connR
portP portR

connP

Figure 2: Definition of a composite component

Ports are wired together using connectors (connP, connR). In
UML2, connectors represent little more than an aliasing of two dif-
ferent ports [4].

3. MOTIVATING EXAMPLE
This example is based on a reuse problem experienced when ex-
tending our graphical modelling tool. This tool is being developed
as part of this work to provide an environment to support the con-
cepts outlined in this paper.

As we work through the example, we use it to distill four require-
ments that a solution to the component reuse problems must ad-
dress.

3.1 Context
Company X is a component provider that produces components for
constructing graphical drawing tools. The major component is a
composite called CDrawing, which represents a drawing frame-
work.

Also available are a set of components which can draw various
complex shapes when used with the framework. One such com-
ponent is CPostItNote, which displays a small note surrounded by
a border as shown in figure 3.

Feed the cat

and dog...

Register the car

http://www.dvla.gov.uk/

Buy some milk

Figure 3: Post-it notes displayed in a drawing

X sells these components to third parties, providing an ADL rep-
resentation for each component, along with the Java interface defi-
nitions, but not the Java implementation source code. X maintains
the components using its own CM systems, and periodically re-
leases new versions, which aim for backwards compatibility. A
major aim has been to make the drawing components as reusable

50

as possible. However, due to the large number of customers using
the components, changes cannot be specifically introduced for one
customer’s system.

The definition of CDrawing is shown in figure 4. It is a compos-
ite component with parts to handle clipboard functionality and a
drawing canvas. An indexed port (shown by a multiplicity of [0..*]
which denotes a lower bound of 0 and an unlimited upper bound)
is used to hold the list of shapes, which are used for drawing the
display. This is shorthand for a set of ports: shape[0], shape[1] and
so on.

CDrawing

mgr : CDrawingMgr

clip : CClipboardMgr

canvas : CDrawingCanvas

IShape

component CDrawing

{

 ports:

 shapes[0..*] requires IShape;

 parts:

 CDrawingMgr mgr;

 CDrawingCanvas canvas;

 CClipboardMgr clip;

 connectors:

 shapes joins shapes to shapes@manager;

 canvas joins surface@canvas to view@manager;

 clip joins board@clip to view@manager;

}

shapes [0..*]

Figure 4: Definition of CDrawing

The composite CPostitNote component (figure 5) is designed to
work with the framework by providing the IShape interface. The
CNoteDisplay part handles the display of text on the screen and the
word wrapping. The plain text is stored in the CNoteText part.

3.2 Reuse Scenario
Company Y now wishes to reuse the CDrawing and CPostitNote
components to construct a desktop tool for taking notes. For this
task, the clipboard is not needed and Y wishes to omit this facility
to minimise the size of the application. In addition, CPostitNote
must support hyperlinks and the CDrawing component must sup-
port changing the zoom level. Although this is a simple scenario, it
shares many of the characteristics of real-world reuse situations.

Y clearly must make changes in order to reuse the existing compo-
nents, leading to our first requirement:

Alter It should be possible to alter a component to allow it to be
reused into a new system. The changes required may be ex-
tensive.

IShape

component CPostitNote

{

 ports:

 shape provides IShape;

 parts:

 CNoteDisplay display;

 CNoteText text;

 connectors:

 shape join shape to shape@display;

 text joins data@text to text@display;

 }

CPostitNote

display : CNoteDisplay

text : CNoteText

shape

Figure 5: Definition of CPostitNote

In our scenario, Y contacts X and suggests that X makes the
changes, or at least provide variation points to make the incorpora-
tion of the features possible. However, the provider does not wish
to alter the components, as this would require a major change for
existing customers. In addition, if this courtesy was extended to all
reusers, the architecture would quickly descend into a generic mess
with variation points for every conceivable option.

This leads to our next requirement:

NoImpact Alterations to a component for reuse must not impact
existing users of the component. Further, the alterations
should not impose an obligation on the provider to accept
or even know about the changes.

At any rate, the alterations required for reuse are often specific to
the new application, and cannot easily be generalised for incorpo-
ration into a generic component. In this sense, the alterations fall
into the same category as glue code which often has to be written to
adapt a component for reuse in a new context. Like glue code, the
alterations belong with the system where the component is being
reused, not with the original component definition.

Subsequently, Y performs an analysis and decides that its re-
quirements could be met by omitting (or stubbing out) the CClip-
boardMgr part from CDrawing, upgrading the CNoteDisplay part
from CPostitNote and introducing a zoom manager component into
CDrawing. Graphically, this would look as shown in figure 6
(changes highlighted).

As a consequence of the analysis, Y decides to make the changes
directly to the components themselves. However, a further obstacle
is that X has only released their components in a binary form in
order to protect their intellectual property. This leads to the next
requirement:

NoSource The reuse approach should work even if the full source
code of the implementation is not available.

3.3 Evolution Scenario

51

CDrawing

canvas : CDrawingCanvas

z : CZoomMgr

clip : CNullClipboardMgr

mgr : CDrawingMgr

CPostitNote

text : CNoteText

display : CHyperlinkNoteDisplay

IShape

IShape

shapes [0..*]

shape

Figure 6: The architecture with Y’s changes

Suppose that Y is somehow able to reuse the components for its
product, incorporating the changes as described in figure 6. X then
issues a new release, upgrading the CDrawing component to use the
new CFastDrawingCanvas component, providing improved perfor-
mance. Clearly, Y wishes to incorporate this improvement into its
reuse of CDrawing, leading to a requirement that any reuse solution
should not cut off a component from its natural upgrade path from
the provider. This effectively rules out copy and paste as a reuse
mechanism.

Upgrade It should be possible for a reuser to accept an upgrade
to a component, even if that component has been altered for
reuse.

4. ADL CONSTRUCTS FOR COMPONENT
REUSE AND EVOLUTION

From the analysis of the requirements, constructs have been devel-
oped and integrated into the Backbone ADL. The constructs are
resemblance, redefinition and stratum.

4.1 Analysing the Requirements
Requirements Alter and NoImpact appear to be in direct conflict.
The provider and other reusers do not have to accept or even know
about changes to the component, and yet alterations must still be
allowed in order to facilitate reuse.

This situation can be resolved by holding any alterations to a com-
ponent separately from its original definition. By keeping these
alterations with the system that is reusing the component, no-one
else will be impacted by, or even aware of, the changes. Upgrade
further suggests that changes should be held in such a way as to
allow them to be analysed and combined with future upgrades of
the component. This suggests keeping the alterations explicitly as
differences or deltas, rather than storing the entire altered compo-
nent.

Alter indicates that we need the ability to modify any aspect of a
component to facilitate reuse, including interface definitions. This
blurs the line between modification for reuse, and the evolution of a
component. Such a facility will allow upgrades to also be delivered

as a set of differences, distilling the Upgrade requirement into the
ability to merge two different sets of alterations.

Finally, the requirements imply that we need a way to group related
definitions together to differentiate between an existing system and
a new system.

The resemblance, redefinition and stratum constructs have been de-
veloped in response to the above analysis. Resemblance allows
one component to be defined in terms of alterations to a base com-
ponent, such that the base definition is not affected. Redefinition
allows the definition of an existing component to be altered or
evolved, and coupled with resemblance allows the new definition
to be phrased in terms of alterations to the old definition. Stratum
provides a package-like mechanism for grouping a related set of
definitions.

4.2 Using Resemblance to Express Change
The resemblance construct allows one component to be defined in
terms of changes to another. This is an inheritance-like construct
for components, but it does not imply a subtype relationship be-
tween components in the way that inheritance usually does between
classes [16], as features can be added or removed.

A component can indicate that it resembles a base component, by
providing a list of changes in terms of renaming, adding, replac-
ing or deleting elements from the base. For instance, we can form
CNewDrawing in terms of CDrawing, thereby altering it for reuse:

component CNewDrawing resembles CDrawing {
replace-parts:
CNullClipboardMgr clip;

parts:
CZoomMgr z;

connectors:
zoom joins zoom@z to
surface@canvas; }

This component definition does not perturb the original definition,
and does not affect any existing usages of it.

4.3 Using Strata to Control Dependencies
The stratum construct exists to group definitions and control their
dependencies. A stratum is a package-like concept which groups
a set of related component and interface definitions. It indicates
which other stratum are visible for these definitions to refer to
through dependency relations. To facilitate strata reuse, circular
strata dependencies are not allowed.

To simplify the tracking of dependencies and the analysis of how
strata can be combined to create a system, we have restricted the
concept to being non-hierarchical. In other words, a stratum can-
not contain another stratum. The only valid relationship between
stratum is a dependency.

A system is constructed by indicating which strata will be included
and in what order. For instance, if CDrawing is in stratum Base
and CNewDrawing is in stratum Extension, then a strata load list of
{Extension, Base} will cause Base to be loaded into the interpreter,
followed by Extension.

52

4.4 Using Redefinition to Evolve Components
It is not always sufficient to reuse a component by declaring a new
component that resembles it. When a component is used in an exist-
ing architecture, and a wide-ranging change is required, the original
component definition may need to be altered. Redefinition provides
a way to alter the definition of the component, but still keep the dif-
ferences in a separate stratum so that the revised definition is only
visible to those systems which include the stratum.

To redefine the CDrawing component, we can use redefinition and
resemblance together. The redefinition allows the replacement of
an existing definition, and resemblance allows the new definition
to be expressed in terms of differences to the previous definition.

redefine-component CDrawing
resembles [previous]CDrawing

{
replace-parts:
CNullClipboardMgr clip;

parts:
CZoomMgr z;

connectors:
zoom joins zoom@z to
surface@canvas; }

Redefinition can also be used without resemblance, in order to wrap
and adapt a component. For instance, we can redefine CDrawing to
include the old definition as a part which is then delegated to in the
new definition.

redefine-component CDrawing
{
ports:
shapes[0..*] requires IShape;

parts:
[previous]CDrawing old;

connectors:
delegator joins shapes to
shapes@old; }

If the redefinition is in the Extension stratum and the original defi-
nition in Base, then the load list of {Extension, Base} will include
the alterations. If, however, another client does not wish to use the
changes, Extension is simply omitted from the load list. Conceptu-
ally, the changes are applied at start-up time to effect the alterations.

Further, using this construct, a provider can issue updates to a com-
ponent and release this as another stratum. Suppose that X releases
an updated form of CDrawing in a stratum called Update, where
CFastDrawingCanvas has replaced the original CDrawingCanvas
part.

redefine-component CDrawing
resembles [previous]CDrawing

{
replace-parts:
CFastDrawingCanvas canvas; }

We can include both sets of alterations above by using the load list
of {Update, Extension, Base}. The base definition is loaded, and
then modified by the inclusion of the redefinition in the Extension
stratum. Finally, the definition is again modified by the redefinition
in the Update stratum.

4.5 Summary of Approach
The relationship between the constructs is shown in figure 7, where
component definitions are shown as small boxes within a stratum.
Stratum are loaded in the reverse order of the load list, and each
successive stratum has the ability to alter any definitions in lower
strata via redefinition.

Redefinition is shown as an arrow from an upper to a lower stra-
tum, allowing alterations to be made to a definition in a lower stra-
tum. Resemblance is shown as an arrow from a lower to an upper
stratum, allow a definition in a stratum to reuse and alter a defini-
tion from a lower stratum without perturbing the original definition.
Even though the system is loaded from bottom to top, the eventual
view of the system is from the top down.

Figure 7: Conceptual view of constructs

Resemblance and redefinition support Alter and NoImpact by al-
lowing extensive alterations to be made to a component without
impacting any existing usages. As explained previously, support
for Upgrade relies on the ability to combine multiple redefinitions
of a single component. This can result in name collisions and other
issues, analogous to the problems experienced by the use of mul-
tiple inheritance [16]. This situation also occurs when combining
two independently developed systems that redefine the same com-
ponent in a common stratum.

Currently when two redefinitions cannot be merged automatically
due to overlap, manual alteration of one of the redefinitions is re-
quired. In this case, the replace, add and delete facilities seem
rather uncompromising. See the section on further work, detailing
possible solutions to this problem.

NoSource is partially supported, as long as the Backbone defini-
tions and interface definitions are provided (even if the implemen-
tation code is not). The range of alterations for leaf components is
then restricted to adaptation through decoration [2] or outright re-
placement. It is still possible to freely alter composite components,
as they only have a Backbone expression.

Backbone further supports Alter by allowing interfaces to be rede-
fined also, and tracking the possible leaf components which also

53

need to be redefined to support this. At an implementation level,
this relies on the Java facility where a definition in one JAR file can
supersede or hide the definition in another.

The approach integrates well with existing CM systems. Backbone
programs are textual and can be controlled like any set of source
files. The stratum and resemblance mechanisms address the con-
cerns about either holding the entire architectural configuration of a
system in a single file, or having to scatter the configuration across
many files [13]. The definitions within a stratum are held in files,
and each file can hold a number of Backbone definitions and redefi-
nitions. This allows related alterations to be grouped and controlled
in a simple and straight forward manner.

5. RELATED WORK
A number of approaches have been previously proposed that deal
with many of the requirements presented. Amongst other mech-
anisms, parameterisation is used in Koala to capture options sup-
ported by a component [19]. This approach only supports planned
variation which conflicts with the Alter requirement. This can also
result in a combinatorial explosion of options if the parameters of
the constituent parts of a composite are also exposed.

Koala and other approaches allow for variation in an architecture
[20, 18] to be expressed through variation points. These capture
possible component variants at predefined points in an architecture.
This is referred to variation over space. The points must be planned
in advance and designed into a system, which mitigates against this
technique for the reuse of existing components which must remain
unchanged.

In current product family approaches, if deep modifications or new
variation points are required for an existing component these must
be introduced by forming a new revision of the component. This
is known as variation over time, and any unplanned changes re-
quire perturbing the original definition violating many of the re-
quirements. Further, repeated introduction of variation points can
quickly create complex and generic architectures which are diffi-
cult to reuse and reason about.

The introduction of variation points and the general evolution of ar-
chitectures has been made more feasible through systems like Mae
which have integrated CM and architectural concepts [18, 13]. This
approach provides an overarching CM system which understands
architectural and evolutionary concepts and can support the cre-
ation of variants. This approach assumes that all components are
available via a unified and consistent CM system, which is not fea-
sible in an environment with many (possibly commercial) compo-
nent providers. Further this does not solve the need to create many
variation points to satisfy those wanting to reuse the components,
eventually leading to a complex, very generic architecture which
deeply violates the NoImpact requirement.

ROOM includes a notion of inheritance which allows for addi-
tive and subtractive changes to be specified against actors [14]. A
ROOM actor is analogous to a (composite) component with its own
thread of control. No formal model of this language has been con-
structed, and the inheritance facility is not suitable for redefinition,
evolution or arbitrary change.

Architectural reconfigurations have previously been used to alter
the architecture of a running system, using the property of quies-
cence to discern when a component can be upgraded [8]. In con-

trast, the approach presented here provides an intuitive modelling
construct for these types of changes, and applies the concepts to
the specification and reuse of components. In theory, it is possible
to utilise the work on quiescence to effect architectural changes at
runtime also.

C2SADEL [11] is a variant of the C2 ADL [17], supporting com-
ponent specifications through the explicit declaration of state along
with pre and post-conditions that indicate changes to that state.
This system addresses evolution using a type-based taxonomy of
components and connectors and supports configuration evolution,
but does not feature composite components. The approach is sup-
ported by a modelling environment called DRADEL.

In terms of component technologies, a number of approaches allow
for the selective updating of components in a system. COM [1], for
example, uses indirection and a registry-based approach to allow
one component to instantiate another without having direct knowl-
edge of the exact component type that will be used. Through this
mechanism, it is possible to update only some of the components
in a system, assuming that the updated components support at least
the old interfaces. In contrast, Backbone is focussed on modelling
and reasoning about changes to the architecture of a system. The
outcome of these changes can eventually be expressed as a set of
component updates, which could be realised using the mechanism
of the COM component technology.

6. CURRENT STATUS
The interpreter, jUMbLe modelling tool and Alloy model
for Backbone are available at the following location:
http://www.doc.ic.ac.uk/~amcveigh/backbone.html

6.1 The Backbone Interpreter
An interpreter for Backbone has been developed in order to ex-
periment with the language. This fully supports the resemblance,
redefinition and stratum concepts. Note however that in the current
interpreter, redefinition automatically presumes resemblance from
the base component, as opposed to the examples presented earlier
in 4.4.

The interpreter is written in Java, and uses reflection to instanti-
ate and connect components at startup time. A strata load list is
supported.

In recent use, it became apparent that names of elements in Back-
bone programs are being used for two purposes: human under-
standability and logical identity. E.g. a component specifies that
it resembles another component by using its name. Unfortunately,
support for renaming interferes with the concept of identity. As a
result, it has been decided to explicitly separate the two concepts.
The identity will be assigned as a globally unique identifier.

For instance, when defining a component, both the identity and
name will be used (identity/name). However, when referring to an
element, only the identity is required. This ensures that the identity
remains the same, even if the element’s name changes. The follow-
ing definition shows how the code listing in 4.4 might look under
this scheme.

redefine-component C0012/CDrawing
resembles [previous]C0012

{

54

replace-parts:
CNullClipboardMgr P009/clip;

parts:
CZoomMgr P023/z;

connectors:
zoom joins PT001@P023 to
PT002@P010; }

Clearly, assigning and working with identifiers places a large bur-
den on a designer. However, this is not an issue with a graphical
approaches to modelling, which explicitly separate the two con-
cepts. For instance, a dependency relation between component A
and B is not linked via the name of the components, but by their
logical identities. Changing the names will not affect the relation.

6.2 Graphical Modelling with Backbone
In order to support modelling with Backbone, we have developed
a prototype UML2 modelling tool called jUMbLe. A key focus of
the approach is to completely hide the textual language (including
logical identities), and allow designers to work directly with UML2
composite structure diagrams. The tool allows the creation of com-
posite structure diagrams and package (stratum) diagrams.

The next step is to support the resemblance construct in the mod-
eller. The aim is to allow the designer to alter a component by
deleting and adding parts, and have the tool record the changes ex-
plicitly.

6.3 Formal Model of Backbone
A formal model of Backbone has been created in Alloy [7]. Al-
loy is a formal language based on a combination of predicate logic
and relational algebra. Specifications can be model checked for
counter-examples within a finite state space.

The current Alloy model does not support resemblance, although
this is being added. The aim is to show that two redefinitions of the
same component can lead to potential conflict. This model will fur-
ther be used to verify that any solution to this conflict ameliorates
the problem.

7. CONCLUSIONS AND FURTHER WORK
From one perspective, resemblance provides a compelling mod-
elling construct which allows an inheritance-like concept to be ap-
plied to components at all levels, including the architectural level.
It makes it possible to derive other components from a base compo-
nent, with changes to reflect new requirements, supporting a more
incremental approach to system construction. This partially ad-
dresses the abstraction problem, as highly specific components can
be altered to be reused in a new context. This is useful for internal
reuse within a system, as well as for reusing existing components
from providers.

By providing uniform reuse and evolution support, the constructs
prevent the need to compulsively make components intended for
reuse more generic. Unplanned changes can be catered for at the
time when the change is required, rather than requiring a costly and
sometimes unused upfront investment.

From another perspective, resemblance and the supporting con-
structs provide a decentralised form of version control, which inte-
grates well with existing CM systems. This offers a multi-authority
approach to change control, and allows the changes to be held

where the component is reused, rather than were the component
is initially defined. Either CM revisions or redefinition can be used
for modelling variation over time, and resemblance combined with
redefinition can be used for modelling variation over space. Alter-
ations are managed by the team that desires the changes rather than
the provider of the component, allowing the original component to
retain a coherent architectural vision.

There is a potential conflict between Backbone and a CM system
when dealing with variation over time. Ideally, alterations will be
specified using redefinitions, even for provider-supplied component
upgrades, as this allows better reasoning about the combination of
changes. However, it is not possible to keep specifying deltas in-
definitely in this way, so a utility is provided which can compress
multiple redefinitions into one new definition. We call this process
baselining in keeping with the terminology of CM system. We are
also investigating the possibility of constructing reverse redefini-
tions from a baseline, which preserve the characteristics of previous
definitions.

As explained in 4.5, multiple redefinitions of a single component
present a problem when incompatible or overlapping alterations are
specified in two independent strata. We are currently pursuing two
approaches to resolve this situation. The first approach is based
around graph transformations. This involves expressing alterations
using an extensible set of transformation patterns. We aim to con-
struct the patterns to limit or resolve any interference between re-
definitions although we anticipate the need to for human guidance
in some cases.

The second approach is more declarative, where we allow be-
havioural specifications to be registered with each component.
These specifications describe the effect that the component is de-
signed to achieve, in terms of the message protocols of the con-
stituent components. An existing architecture can then be analysed
in conjunction with a behavioural specification for a new architec-
ture, with the aim of automatically determining the alterations re-
quired to effect the new specification.

8. REFERENCES
[1] D. Box. Essential COM. Addison-Wesley Professional, 1997.

[2] E. Gamma, R. Helm, R. Johnson, and V. J. Design Patterns:
Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[3] D. Garlan, R. Monroe, and D. Wile. Acme: an architecture
description interchange language. In CASCON ’97:
Proceedings of the 1997 conference of the Centre for
Advanced Studies on Collaborative research, page 7. IBM
Press, 1997.

[4] M. Goulo and F. Abreu. Bridging the gap between acme and
uml 2.0 for cbd. In Specification and Verification of
Component-Based Systems (SAVCBS 2003), pages –, 2003.

[5] J. Greenfield, K. Short, S. Cook, S. Kent, and J. Crupi.
Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools. Wiley; 1st edition (August
16, 2004), 2004.

[6] U. Holzle. Integrating independently-developed components
in object-oriented languages. In Proceedings of the 7th
European Conference on Object-Oriented Programming,
pages 36–56. Springer-Verlag, 1993.

55

[7] D. Jackson. Alloy: a lightweight object modelling notation.
ACM Trans. Softw. Eng. Methodol., 11(2):256–290, 2002.

[8] J. Kramer and J. Magee. The evolving philosophers problem
- dynamic change management. Ieee Transactions on
Software Engineering, 16(11):1293–1306, Nov. 1990.

[9] J. Kramer, J. Magee, and M. Sloman. Configuration support
for system description, construction and evolution. In
Proceedings of the 5th international workshop on Software
specification and design, pages 28–33, Pittsburgh,
Pennsylvania, United States, 1989. ACM Press.

[10] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying
distributed software architectures. In W. Schafer and
P. Botella, editors, Proc. 5th European Software Engineering
Conf. (ESEC 95), volume 989, pages 137–153, Sitges, Spain,
1995. Springer-Verlag, Berlin.

[11] N. Medvidovic, D. Rosenblum, and R. Taylor. A language
and environment for architecture-based software
development and evolution. In ICSE ’99: Proceedings of the
21st international conference on Software engineering,
pages 44–53, Los Alamitos, CA, USA, 1999. IEEE
Computer Society Press.

[12] OMG. Uml 2.0 specification. Website,
http://www.omg.org/technology/documents/formal/uml.htm,
2005.

[13] R. Roshandel, A. Van Der Hoek, M. Mikic-Rakic, and
N. Medvidovic. Mae—a system model and environment for
managing architectural evolution. ACM Trans. Softw. Eng.
Methodol., 13(2):240–276, 2004.

[14] B. Selic, G. Gullekson, and P. Ward. Inheritance. In
Real-Time Object-Oriented Modeling, volume First, pages
255–285. Wiley, 1994.

[15] B. Selic, G. Gullekson, and P. Ward. Real-Time
Object-Oriented Modeling. John Wiley & Sons, 1994.

[16] A. Taivalsaari. On the notion of inheritance. ACM Comput.
Surv., 28(3):438–479, 1996.

[17] R. Taylor, N. Medvidovic, M. Anderson, E. Whithead Jr.,
and J. Robbins. A component- and message-based
architectural style for gui software. In Proceedings of the
17th international conference on Software engineering,
pages 295–304, Seattle, Washington, United States, 1995.
ACM Press.

[18] A. van der Hoek, M. Mikic-Rakic, R. Roshandel, and
N. Medvidovic. Taming architectural evolution. In
Proceedings of the 8th European software engineering
conference held jointly with 9th ACM SIGSOFT
international symposium on Foundations of software
engineering, pages 1–10, Vienna, Austria, 2001. ACM Press.

[19] R. van Ommering. Mechanisms for handling diversity in a
product population. In ISAW-4: The Fourth International
Software Architecture Workshop, 2000.

[20] R. van Ommering. Building product populations with
software components. In ICSE ’02: Proceedings of the 24th
International Conference on Software Engineering, pages
255–265, New York, NY, USA, 2002. ACM Press.

56

57

Simplifying Reasoning about Objects with Tako
Gregory Kulczycki and Jyotindra Vasudeo

Virginia Tech, Falls Church, VA 22043

{gregwk, vasudeo}@vt.edu

ABSTRACT
A fundamental complexity in understanding and reasoning about
object-oriented languages is the need for programmers to view
variables as references to objects rather than directly as objects.
The need arises because a simplified view of variables as (muta-
ble) objects is not sound in the presence of aliasing. Tako is an
object-oriented language that is syntactically similar to Java but
incorporates alias-avoidance techniques. This paper describes
the features of the Tako language and shows how it allows
programmers to view all variables directly as objects without
compromising sound reasoning. It discusses the benefits of such
a language, including its use as an instructional tool to help
teach students how to reason formally about their code.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – abstract data types, polymorphism, control struc-
tures.

General Terms
Design, Education, Languages, Verification.

Keywords
Alaising, Semantics, Java, Tako

1. INTRODUCTION
References are pervasive in popular object-oriented languages.
They permit efficient data assignment and parameter passing of
non-trivial objects and are used to implement object identity.
However, the need to reason about references and the aliasing
that results from their use in such languages has frustrated stu-
dents, programmers and formalists alike. As a result, significant
research has focused on alias control techniques and alias-
avoidance techniques for object-oriented languages [15].
Alias control techniques typically involve extending common
object-oriented languages with annotations to ensure that certain
types of aliasing do not occur [3][9][14][26]. They strive to
conform as much as possible with a traditional style of object-
oriented programming. Therefore, potentially aliased objects are
still the norm, while alias-controlled objects are the exception.
In contrast, alias avoidance techniques typically involve a fun-

damental change to traditional object-oriented languages by
replacing reference assignment—the primary cause of aliasing—
with alternatives that do not introduce aliasing, such as value
copying [3], destructive read [25], or swapping [12]. These
approaches are also referred to as ones that use unique refer-
ences, because in the implementation of languages that use
them, each object must have exactly one reference to it. Despite
the names alias control and alias avoidance, nearly all ap-
proaches to object aliasing—including ours—permits aliasing to
some degree. In alias avoidance techniques, however, potential
aliasing is the exception rather than the rule.
A common theme in languages that use alias control and even
most alias avoidance techniques is that sound reasoning forces
their semantics to be referenced-based. Variables that denote
objects are viewed as mere references into a global heap, and
method calls modify the heap abstraction rather than the abstract
values of the variables (because the abstract values of the vari-
ables, according to the semantics, are references).
The language described in this paper, Tako, is different in this
respect. It is intended to facilitate a simple value-based seman-
tics called clean semantics [19] that has the following properties:
(1) the state space is comprised of variables whose abstract
values are objects rather than references, and (2) the effect of a
method call is restricted to the abstract values of the variables
involved: the arguments to the call and any relevant globals.
The key benefit of this approach is that it greatly simplifies
reasoning about objects. Representing the state space abstractly
is straightforward whether programmers are tracing through
their code or reasoning about it symbolically. The fact that Tako
supports a simple and sound view of the program state makes it
particularly useful as an educational tool for introducing stu-
dents to formal reasoning. From the perspective of object-
oriented programming, a drawback of Tako is that it does not
conform to some of the paradigms of traditional object-oriented
programming. Despite this, Tako, like Java, contains all of the
features traditionally found in object-oriented languages, such as
classes, inheritance, and polymorphism.
Tako is essentially a redesign of Java that incorporates the alias-
avoidance techniques found in Resolve. The Resolve language
[30][31] is an integrated programming and specification lan-
guage intended to support full, heavyweight program verifica-
tion. For years, various universities including Ohio State, Clem-
son, and Virginia Tech have offered courses in which variants of
Resolve have been used to introduce both undergraduate and
graduate students to formal reasoning. Resolve has many fea-
tures that facilitate formal verification, but as designers of Tako,
we are primarily interested in the alias-avoidance features of
Resolve and whether they can be successfully and independently
applied to a traditional object-oriented language such as Java.
Section 2 of this paper introduces the features of Tako, with
emphasis on how it differs from Java. Section 3 describes how

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAVCBS 2006, November 10-11, 2006, Portland, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11…$5.00.

 58

Tako supports clean semantics and facilitates reasoning, using
examples similar to those we have used in courses at Virginia
Tech. Section 4 discusses related work and future directions.

2. OVERVIEW AND FEATURES
As illustrated in Figure 1, a Tako stack implementation is syn-
tactically similar to a Java stack implementation. They declare
the same variables, they have similar methods, and, with one
exception, they use the same keywords.

2.1 Data Assignment
The most important difference between the classes in Figure 1 is
that wherever Java uses reference assignment—the main source
of aliasing—Tako uses alternative data assignment mechanisms.
As in the Resolve language, Tako uses swapping as its primary
means of data assignment. In the body of the push method, the
Java code assigns the object in contents[top] to x by copying its
reference. But the Tako code uses a swapping operator (:=:) to
swap the values of contents[top] with x. A call to Java’s push
method creates an alias between the incoming object x and the
top element of the current stack; a call to Tako’s push method
transfers x’s object to the top of the stack, and replaces it with
some unspecified but valid object of its type.
Swapping is described as simultaneous assignment in [17] and is
proposed as an alternative to both reference and value copying
in [12]. Swapping is a constant-time operation because a com-
piler can implement it by swapping object references; swapping
preserves unique references, so programmers can reason about it
as if object values are swapped. Swapping never creates aliases.
For efficiency, a compiler can implement small objects such as
integers and booleans directly as objects while implementing
non-trivial objects using references.
Swapping is symmetric—it requires both objects to be of the
same type. For assigning a type to a supertype, Tako provides an
initializing transfer operator (←). The initializing transfer opera-
tion s ← c assigns circle c to shape s and initializes c to a new

circle object. The approach does not introduce aliasing, but it
does require the creation of a new object, and—because Tako’s
underlying implementation guarantees unique references—it
ultimately requires memory from an old object to be reclaimed.
Therefore, initializing transfer is less efficient than swapping.

2.2 Function Assignment
Both the swap statement and the transfer statement require a
variable on either side of the operator. For assigning the result of
an expression evaluation to a variable, Tako provides a function
assignment operator (:=), as in the new expression that initializes
the contents array in the stack’s constructor in Figure 1. The
same operator is used to copy values from one variable to an-
other, as in the statement MAX := n.
Java methods return references rather than values, potentially
introducing aliasing. For example, the Java pop method is a
side-effecting function that returns a reference to contents[top],
so that the assignment x = s.pop() causes two references to point
to the same object. Tako avoids this problem with the introduc-
tion of a distinguished result variable that always holds the
return value of a non-void method. The result variable is auto-
matically initialized at the beginning of the method, and what-
ever object value it holds at the end of the method is returned.
Since the result variable goes out of scope at the end of the
method, we know that any returned reference (to the result
variable’s object) will continue to be unique. The syntax return
〈expression〉 is not permitted in Tako, though the return key-
word may be used alone to denote that the program should
return from the method with the current result value.
Consider the following Tako pop method written as a side-
effecting function.
 public Object pop() {
 top--;
 result :=: contents[top];
 }

The result variable gets a new initial Object as soon as the

public class BddStack {
 private final int MAX;
 private Object[] contents;
 private int top;

 public Stack(int n) {
 MAX := n;
 contents := new Object[MAX];
 }

 public void push(Object x) {
 assert depth() < MAX;
 contents[top] :=: x;
 top++;
 }

 public void pop(Object x) {
 assert depth() > 0;
 top--;
 x :=: contents[top];
 }

 public int depth() {
 result := top;
 }

}

 public class BddStack {
 private final int MAX;
 private Object[] contents;
 private int top;

 public Stack(int n) {
 MAX = n;
 contents = new Object[MAX];
 }

 public void push(Object x) {
 assert depth() < MAX;
 contents[top] = x;
 top++;
 }

 public Object pop() {
 assert depth() > 0;
 top--;
 return contents[top];
 }

 public int depth() {
 return top;
 }

}

Figure 1. A Tako bounded stack implementation (left) compared to a Java bounded stack implementation (right)

 59

method is invoked, as if the first statement were Object result :=
new Object(). After the swap operation, result holds the object
originally held by contents[top] and contents[top] holds the
newly created object originally held by result. Thus, the method
returns the object originally at the top of the current stack. Inter-
nally, it places a new initialized object in the cell of the contents
array that previously held the stack’s top element.
The function assignment operator can also be used to copy
objects. The compiler expects the function assignment operator
to have a variable on the left-hand side and an expression on the
right-hand side. If it does not find a variable on the left-hand
side, it will report an error. However, if it finds a variable rather
than an expression on the right-hand side, it will check to see if a
replica method has been implemented for the variable’s type. If
so, it will call the replica method for the variable’s object; if not,
it will report that no replica method could be found. Thus, the
compiler considers the statement s := t to be special syntax for
s := t.replica(). The replica method is intended to be used for
small objects where copying is the preferred form of data as-
signment, such as integers and booleans. In principle, though,
any Tako class can be extended with a replica method.

2.3 Parameter Passing
Parameter passing in Java is accomplished by copying the refer-
ences of the arguments to the formal parameters without copy-
ing them out again. This approach is problematic for a language
that intends to facilitate value semantics, because the semantics
that describe this form of parameter passing are difficult to
formulate without introducing the notion of reference. Java
parameter passing cannot be viewed as in-out because assign-
ments to formals inside the body are not reflected in the actuals.
It cannot be viewed as copying object values in only, because in
Java you can update an argument’s conceptual object value as
long as you do not change its reference value.
Tako avoids this difficulty by fully supporting in-out (also called
value-result) parameter passing. Conceptually, programmers can
reason about in-out parameter passing as if object values are
copied into the method, the method is executed, and object
values are copied out again. However, a compiler can implement
in-out parameter passing efficiently by copying references to the
formal parameters, executing the method, and copying refer-
ences back out, which is what C# does with ref parameters.
The effects of in-out parameter passing with references and in-
out parameter passing with objects are semantically equivalent
whenever the arguments are not aliased [11]. Since Tako avoids
aliasing, in-out parameter passing is an appropriate choice. Note
that Tako uses in-out parameter passing by default for all pa-
rameters, even the current this parameter, which cannot be a ref
parameter in C#.
Using in-out parameter passing gives programmers the option of
writing certain methods as procedures (i.e., void methods) rather
than side-effecting functions. For example, the Tako pop method
is a procedure whereas the Java pop method must be written as a
side-effecting function. A function is free of side-effects if its
execution does not change the program state. Keeping functions
free from side-effects simplifies reasoning about programs that
include conditions, as in if and while statements.
One aliasing problem that in-out parameter passing does not
solve is the repeated argument problem [19]. As long as parame-
ter passing is implemented by copying references—whether in-

out or in-only—aliasing can be introduced when arguments are
repeated in a call. For example, the call q.append(q) introduces
aliasing between the implicit formal parameter this and the
explicit formal parameter in the body of the append method.
The call a[i].append(a[j]) does the same when i and j are equal.
We are currently exploring alternative designs for handling
repeated arguments. One option is to throw a runtime error when
repeats occur, another is to initialize the second and subsequent
repeats, as described in [19]. In either case, the compiler will
warn programmers when arguments are potentially repeated.
Tako includes an eval parameter mode that indicates that a
function is expected for evaluation. The eval mode is often used
for small types such as integers and booleans. As with function
assignment, if a variable a is given where a function is expected,
the compiler will translate it as a.replica(). If no replica function
is found, the compiler will report an error. Since the result of an
expression evaluation is always a new object, repeated argu-
ments do not pose a problem for eval parameters.
A potential problem with in-out parameter passing and Java-like
inheritance concerns the passing of subtypes. If c has type Cat
and d has type Dog, what should the effect be of “s.push(c);
s.pop(d);”? If we blindly permit this, it results in the dog vari-
able d holding a cat object, causing a type violation. Some ob-
ject-oriented languages that support the conceptual equivalent of
in-out parameters (such as C#) do not allow programmers to
pass subtype objects to them. In Tako, this is not an option—
particularly since Tako does not yet support generics. The stack
class in Figure 1 would be of little value if we were restricted to
populating the stack with objects of type Object.
One option is that when a parameter is transferred back, an
implicit cast is done. If the cast cannot be made, a runtime error
occurs. Due to the poor performance of runtime casts in Java,
this solution, though adequate, is not the most efficient, and we
are currently exploring alternatives.

2.4 Initialization
As in the case of the initializing transfer operator, Tako some-
times requires the compiler to automatically create new, initial-
ized objects. This is done for newly declared variables as well.
In Java, the declaration “Circle c;” does not initialize c, and if c
is not assigned to before it is used, a compile-time error occurs.
In Tako, the declaration Circle c is interpreted by the compiler
as Circle c := new Circle().
Types that do not have a default constructor get initialized to
null. Tako tries to facilitate a view of all variables as objects, so
including null values in the language may seem odd. Techni-
cally, a value semantics can accommodate null values by intro-
ducing them as distinguished “object” values. Specifications are
complicated when null values are permitted [7]. However, types
derived from interfaces cannot have constructors, and some
classes, such as the bounded stack class in Figure 1, effectively
require parameters in their constructors. Therefore, in the current
version of Tako, types may be nullable or non-nullable, based on
whether a default constructor is provided for the class. Non-
nullable classes are encouraged because they simplify reasoning.
Null pointer exceptions do not occur with non-nullable classes.

2.5 Pointer Component
One of the primary motivations for Tako is the simplification of
object-based reasoning through alias avoidance. By providing

 60

efficient alternatives to data assignment and parameter passing
that avoid aliasing, Tako supports the construction of typical
classes as pure value types, allowing programmers to reason
about variables directly as objects. There are circumstances,
however, in which aliasing cannot be avoided without sacrific-
ing efficiency. For example, references and aliasing are needed
to implement all the methods in the list component in constant
time. For the efficient implementation of lists and other typically
linked data structures, Tako provides a pointer component that
models a system of linked locations. Each location holds data
(objects) and has a fixed number of links to other locations.
Position variables reside at the various locations. In the follow-
ing Position interface, k is the number of outgoing links at each
location.

 interface Position {
 static final int k;
 public void takeNew();
 public void moveTo(Position p);
 public void redirectLink(int k, Position p);
 public void followLink(int k);
 public void swapContents(Object x);
 public boolean isWith(Position p);
 public boolean isAtVoid();
 }

Presenting pointers in the form of a class has the advantage that
programmers can reason about pointers the same way they
reason about any other object. No special proof rules are needed
for pointers, and no universal heap structure needs to be in-
cluded in the semantics. Programmers can maintain a sound
view of position variables as abstract object values just as they
can with any other variable in Tako.

allocate p; p.takeNew();

 p -> q; p.moveTo(q);

 p -> q^PREV; p.moveTo(q); p.follow(PREV);

 p^NEXT -> q; p.redirectLink(NEXT, q);

 p <-> q; p :=: q;

 p *:=: s; p.swapContents(s);

Figure 2. Special syntax for position objects

The Position interface provides a way for programmers to view
pointers in a value-based reasoning environment. However, the
compiler cannot implement a Position class as it can other
classes because position variables must not only provide the
functional benefits of pointers but the performance benefits as
well. For example, the call p.moveTo(q) moves p to q’s location,
effectively resulting in p and q being aliases. Although the
programmer can reason about the statement as a method call, the
Tako compiler will implement it by copying a single reference.
With the help of the special syntax shown in Figure 2, the im-
plementation of linked data structures using Tako pointers has a
relatively straightforward translation into Java, as illustrated in
Figure 3. The Tako pointer component shares many similarities
with Resolve’s Location_Linking_Template, whose specification
and reasoning in terms of clean semantics is detailed in [20].

3. VALUE-BASED REASONING
This section describes the properties of the value-based reason-
ing system that Tako facilitates and presents an example of
specification and verification using Tako.

3.1 Clean Semantics
The value-based semantics for Tako should have the following
two properties. First, the state space should be based on the
object values of variables. Specifically, at any point in the pro-
gram, the state consists of the abstract object values of the cur-
rently defined programming or conceptual variables. Conceptual
variables are similar to model variables or data groups [8][22],
and they are used to help model the program state. An example
of their use is given in the mathematical model of the reference-
based stack component below. The second property of our
semantics is a frame property [6]. It states that the portion of the
state space that can be modified by a method call is restricted to
certain syntactically discernible variables—the arguments to the
call and any global (static) variables listed in the affects clause
of the method’s declaration.
Together, the variable-based property and the effects-restricted
property define the behavior of a clean semantics as given in
[19]. This notion was proposed as a syntactic yet formalizable
way to capture the notion of localized reasoning about operation

public class LinkedList {
 class Node is Object^(NEXT);
 private Node head, pre, last;
 private int left_length, right_length;

 public LinkedList() {
 allocate head;
 pre -> head;
 last -> head;
 }

 public void insert(Object x) {
 Node post, new_pos;
 post -> pre^NEXT;
 allocate new_pos;
 new_pos *:=: x;
 pre^NEXT -> new_pos;

 ...

 public class LinkedList {
 class Node {
 Node next = null;
 Object contents = new Object();
 }
 private Node head, pre, last;
 private int left_length, right_length;

 public LinkedList() {
 head = new Node();
 pre = head;
 last = head;
 }

 public void insert(Object x) {
 Node post, new_pos;
 post = pre.next;
 new_pos = new Node();
 new_pos.contents = x;
 pre.next = new_pos;

 ...

Figure 3. A portion of a linked list implementation using Tako (left) compared to one using Java (right)

 61

invocations. The potential for aliasing in a programming lan-
guage complicates reasoning and makes clean semantics harder
to achieve. However, a system may permit aliasing and still
conform to clean semantics, as with Tako’s pointer component.

3.2 Simple Stack Specification
This section describes the specification and reasoning for a Tako
stack component. The stack component is a typical Tako com-
ponent because it specifies a single mathematical model for its
type and does not require any conceptual state variables to
describe its behavior. We have used this example and others like
it to introduce graduate students to formal reasoning in courses
not normally associated with formal methods, such as software
engineering, and theory of algorithms. The software engineering
course covers general topics, but approximately the last 25% of
the course focuses on component-based software engineering
and formal methods. Tako code is used to illustrate key princi-
ples. The algorithms course uses the Cormen et al. text [10],
whose latest edition puts greater emphasis on demonstrating the
correctness of algorithms and includes discussions on loop
invariants. Their “proofs” of correctness are typical mathemati-
cal proofs given in natural language. We occasionally augment
these proofs using formally specified Tako components and
demonstrate formal correctness through a symbolic reasoning
table, like the one described below.
 import spec.MathString;

 public interface Stack {

 model MathString;

 initialization ensures
 this = EMPTY_STRING;

 public void push(Object x);
 ensures this = <#x> o #this;

 public void pop(Object x);
 requires |this| > 0;
 ensures #this = <x> o this;

 public int depth();
 ensures this = #this and result = |this|;

 }

Figure 4. A specification for a Tako stack
Figure 4 gives a specification for an unbounded Tako stack. The
model clause indicates that an object of type Stack is modeled as
(has a conceptual value of) a mathematical string of objects. The
clause does not specify a variable name as the current stack this
is implied. A string is similar to a sequence except that it is not
indexed. The initialization ensures clause gives the behavior of
the default (no-argument) constructor, which in this case guaran-
tees that an initial stack will be empty.
A Java stack specified in JML (the Java Modeling Language
[21]) would likely be modeled using a JMLObjectSequence.
JML provides three different sequences depending on weather
the sequence holds object types (references to objects), equals
types (non-clonable objects), or value types (object values).
Variables in Tako always denote object values, so all mathe-
matical structures hold value types, eliminating the need for
such a distinction.
A hash mark (#) is used only in an ensures clause—it denotes
the incoming value of a variable. The expression 〈e〉 is a unary
string containing the element e, and the symbol o denotes string
concatenation. So the ensures clause for push states that the

current stack is equal to the string containing the original value
of x concatenated with the original stack value. Notice that the
outgoing value of x is left unspecified. The method is specified
this way partly because of the new paradigm for component
construction in Tako. If we specified that the outgoing value of x
was the same as the incoming value of x (x = #x) we would
effectively force the implementer to make a deep copy of x.
When we don’t specify how x changes, the reasoning system
guarantees only that x contains a valid value of its type.
Only actual parameters and global variables listed in an affects
clause may be modified by a method, so Tako does not provide
a modifies or assignable clause as JML does. None of the stack
methods modifies any global state variables, so none of them
have an affects clause.
In the depth method, the keyword result denotes the return
value. Also, since the current stack (this) is considered the first
parameter to the call, our frame property states that its value may
be modified. But we do not want the function to have side-
effects, so we must explicitly state in the ensures clause that it is
not modified.
Once students are introduced to formal specification, they prac-
tice reading the specifications by tracing through code. The
following tracing table (Table 1) gives an example. Students are
given variable values for state 0 and asked to fill in the other
states. The assertion x = ?? indicates that x is a valid but unspeci-
fied value of its type.

Table 1. Tracing table for simple stack code

3.3 More Complex Stack Specification
The fact that the potential for aliasing does not exist greatly
simplifies our ability to represent and understand the state space.
Consider the tracing table in Table 2 for similar code with the
swap statement replaced by an assignment. If this were Java
code, we would know that the object value of s in state 2 is
〈 3, 4, 5 〉 since s and t point to the same object. But if we as-
sume that variables denote strict object values we will conclude
that s = 〈 4, 5 〉 is unchanged, making the simple value-based
specification unsound in the presence of aliasing.

Table 2. Problematic tracing table for code with aliasing

We can remedy this by giving the stack a specification that
accounts for aliasing, such as the one in Figure 5. Here, stack
variables are modeled as locations, and the conceptual variable

St Facts
0 s = 〈 4, 5 〉 and t = 〈 7, 8, 9 〉 and x = 3
t :=: s;
1 s = 〈 7, 8, 9 〉 and t = 〈 4, 5 〉 and x = 3
t.push(x);
2 s = 〈 7, 8, 9 〉 and t = 〈 3, 4, 5 〉 and x = ??

St Facts
0 s = 〈 4, 5 〉 and t = 〈 7, 8, 9 〉 and x = 3
t = s;
1 s = 〈 4, 5 〉 and t = 〈 4, 5 〉 and x = 3
t.push(x);
2 s = /* what goes here? */ and t = 〈 3, 4, 5 〉 and x = ??

 62

obj maps locations to mathematical strings (conceptual stack
objects). Like to model variables in JML, conceptual variables
do not correspond to programming objects, but they are neces-
sary for reasoning about the component. The conceptual variable
obj is a global variable, so it must be listed in the affects clause
of any method (such as push) that potentially modifies its value.

With this specification, we can reason soundly about the stack
component in the presence of aliasing, as shown in Table 3.
However, even this specification is an oversimplification of
object-oriented logics as it does not account for the effects of
(future) inheritance.

 import spec.MathString;
 import spec.Location;

 public interface Stack {

 var obj: Location → MathString;
 model Location;

 public void push(Object x);
 affects obj;
 ensures this = #this and
 obj(this) = <#x> o #obj(this) and
 ∀r: Stack, if r ≠ this then
 obj(r) = #obj(r);

Figure 5. Portion of a reference-based stack specification

We can simplify the appearance of the specification in Figure 5
to something resembling Figure 4 by indicating—as JML
does—that all variables have reference semantics. This ap-
proach, however, will not simplify the states in our tracing table.
There is no rule that can tell us how to transition from the state
“s = 〈 4, 5 〉 and t = 〈 4, 5 〉 and x = 3” through s.push(x), to the
next state, without telling us whether s and t are aliased.

Table 3. Sound tracing table for stack code with aliasing

St Facts
0 s = @47 and t = @53 and x = 3 and

contents = { @47 |→ 〈 4, 5 〉, @53 |→ 〈 7, 8, 9 〉 }
t = s;
1 s = @47 and t = @47 and x = 3 and

contents = { @47 |→ 〈 4, 5 〉, @53 |→ 〈 7, 8, 9 〉 }
s.push(x);
2 s = @47 and t = @53 and x = 3 and

contents = { @47 |→ 〈 3, 4, 5 〉, @53 |→ 〈 7, 8, 9 〉 }

3.4 Reasoning about Stack Reverse
Consider the specification and implementation for the stack
reverse method in Figure 6. The method has no precondition,
and the postcondition states that the mathematical string that
models the stack will be reversed. The implementation pops
elements one at a time from the current stack and pushes them
onto a temporary stack. Before the method returns, the current
stack is swapped with the temporary stack. We want to reason
about the correctness of this implementation with respect to its
specification, so we include an invariant for the loop. The de-
creasing clause allows us to prove that the loop terminates.
A tracing table for the reverse method is given below. It demon-
strates that when the current stack has a value of 〈 3, 4 〉, the
reverse method will change its value to 〈 4, 3 〉, satisfying the
postcondition of the reverse method.

Once students are comfortable with tracing tables, we introduce
them to symbolic reasoning [13][30]. A symbolic reasoning
table for the reverse procedure is given in Table 5. For each
state, the table shows a path condition, facts, and obligations.
The path condition must hold for the program to enter the speci-
fied state, the facts tell us what we know about the values of the
variables in that state, and the obligations tell us what needs to
be true before we can move to the next state.
public void reverse()
 ensures this = REV(#this);
 {
 Stack temp;
 Object x;
 while (this.depth() != 0)
 decreasing |this|;
 maintaining REV(temp) o this = #this;
 {
 this.pop(x);
 temp.push(x);
 }
 this :=: temp;
 }

Figure 6. Specification and implementation of stack reverse
In general, obligations come from preconditions of called opera-
tions and facts come from their postconditions. For example, the
requires clause of the pop method indicates that the stack must
be non-empty. All variables are indexed with the current state,
so in state 1 we have an obligation to show that |this1| > 0. The
pop method ensures that the old value of the stack is equivalent
to the new value of the x parameter concatenated with the new
value of the stack. So in state 2 we have the fact that this1 = 〈x2〉
o this2. We also know that temp2 = temp1 in accordance with the
frame property.

Table 4. Tracing table for stack reverse method

St Facts

0 this = 〈 3, 4 〉 and temp = 〈 〉 and x = 0

while (this.length() != 0) {
1 this = 〈 3, 4 〉 and temp = 〈 〉 and x = 0

this.pop(x);
2 this = 〈 4 〉 and temp = 〈 〉 and x = 3

temp.push(x);

3 this = 〈 4 〉 and temp = 〈 3 〉 and x = ??

// this.length() != 0

1′ this = 〈 4 〉 and temp = 〈 3 〉 and x = ??

this.pop(x);

2′ this = 〈 〉 and temp = 〈 3 〉 and x = 4

temp.push(x);

3′ this = 〈 〉 and temp = 〈 4, 3 〉 and x = ??
} // this.length() = 0

4 this = 〈 〉 and temp = 〈 4, 3 〉 and x = ??

this :=: temp;
5 this = 〈 4, 3 〉 and temp = 〈 〉 and x = ??

 63

The facts in state 0 come from the precondition (if any) of the
method you are trying to prove correct, and the obligations in
the last state come from the method’s postcondition.
A reasoning table for code that involves a loop is slightly more
complex than one that does not. It effectively breaks up the table
into three separate sub-tables dedicated to proving the following
three properties: initialization – the invariant is true when the
loop first begins; maintenance – if the invariant holds at the
beginning of the n-th iteration, it also holds at the end of the
(n+1)-th iteration; and termination – the invariant and the nega-
tion of the while condition allow you to prove what you want to
prove (in our case, the postcondition of the reverse method).
Table 5. Symbolic reasoning table for stack reverse method

St P Cond Facts Obligations

0 Object.is_init(x0) and
Stack.is_init(temp0) and
this0 = #this

|this0| ≠ 0 ⇒
REV(temp0) o this0
 = #this

while (this.length() != 0) {

1 |this1| ≠ 0 REV(temp1) o this1
 = #this and x1 = ??

|this1| > 0

this.pop(x);
2 |this1| ≠ 0 this1 = 〈x2〉 o this2 and

temp2 = temp1

temp.push(x);
3 |this1| ≠ 0 this3 = 〈x2〉 o this2 and

x3 = ?? and
temp3 = temp2

REV(temp3) o this3
 = #this and
|this3| < |this1|

}

4 |this4| = 0 REV(temp4) o this4
 = #this and x4 = ??

this :=: temp;
5 |this4| = 0 this4 = temp4 and

temp5 = this4 and
x5 = x4

this5 = REV(#this)

The obligation in state 0 must be discharged to prove the ini-
tialization property. Discharging the first part of the obligation
in state 3 proves maintenance. And discharging the obligation in
state 5 proves the termination property. Note that the second part
of the obligation in state 3 comes from the decreasing clause. It
must be discharged to prove that the while loop terminates.
The obligations may be discharged with a theorem prover, but
they may also be simple enough for students and programmers
to reason about themselves. Take, for example, the obligation in
state 5. We want to prove that this5 = REV(#this). We know
from the facts in state 5 that this5 = temp4, so it suffices to show
that temp4 = REV(#this). We know from the facts in state 4 that
REV(temp4) o this4 = #this, and we know from the path condi-
tion that |this4| = 0 which can only happen if this4 is empty. So
we know REV(temp4) = #this. Hence, temp4 = REV(#this).

4. DISCUSSION
The difficulty of reasoning in the presence of aliasing is well
known [15], and numerous techniques to control aliasing in
object-based languages have been proposed [2][3][9][23]. We

have used the term alias avoidance to refer to techniques that
promote alias-free alternatives to reference assignment, such as
the approach based on destructive read in [25] and the approach
based on swapping in [12]. The term uniqueness has generally
come to refer to techniques such as [25] and variations that
employ the destructive read operator. They preserve unique
references to objects, but they also support a borrowing mecha-
nism that allows programmers to violate the uniqueness condi-
tion when they deem it useful. Borrowing raises the potential for
aliasing and is therefore not conducive to value semantics.
However, there is nothing fundamental about the destructive
read operator that prevents it from being used in a language that
does support value-based reasoning.
Most proposals for controlling object aliasing attempt to mini-
mize the impact of their approach on programmers who have
become accustomed to an object-oriented style of programming.
While some practitioners have reported positive experiences
when using a swap operator in object-based applications [16],
we understand that allowing programmers to view all classes as
value types is a radical departure from the traditional object-
oriented paradigm. Among other things, it removes the distinc-
tion between primitive types and user-defined types; it forces
programmers who want to modify an object inside a container to
remove, modify, and re-insert it; and it requires programmers to
rethink common design patterns whose implementations tradi-
tionally use aliasing, such as the singleton and the observer
patterns. The question of whether programmers accustomed to
traditional object-oriented paradigms can make the transition to
object-oriented languages that support direct reasoning can only
be answered empirically. The desire to answer this question is
one of our primary motivations for creating the Tako compiler.
The current focus for the Tako language is its use as an educa-
tional tool to introduce students to formal reasoning. But we
would like to develop it into a practical programming language
that could be used alone or with Java components to develop
non-trivial applications. Practical concerns include compiler
optimizations, especially in the areas of automatic initialization
and automatic casting. The current implementation of the Tako
compiler is available at SourceForge under the name takocom-
piler. We have developed a medium-sized application (about 40
classes) in Tako that interfaces with Java Swing components.
We have no immediate plans to see how other object-oriented
languages might benefit from alias-avoidance, but we would
consider it a worthy long-term pursuit. In-out parameter passing
is easier to implement on the .NET platform than the JVM,
making C# appealing for our research, and Eiffel’s value-based
expanded types may serve as a basis for alias avoidance.
From a research perspective, we are still exploring the impact
that alias avoidance and clean semantics will have on advanced
language features such as inheritance and concurrency. To this
end, we hope to leverage both Resolve research and the ongoing
research on specification and verification of Java-like languages.
We are exploring using Tako in the context of both lightweight
and full verification. The general trade-offs on verification rigor
are described in [33]. The ultimate goal might be a verifying
compiler that—due to the relative simplicity of Tako’s seman-
tics—could be much more automated than a comparable tool for
Java, and would generate verified Java byte code.

 64

5. ACKNOWLEDGMENTS
Our thanks to Murali Sitaraman, Bill Ogden, Bruce Weide and
other members of the Reusable Software Research Group for
their valuable insights into the specification and verification of
object-based languages.

6. REFERENCES
[1] Abadi, M. and Leino, K.R.M. A logic of object-oriented

programs. Dauchet, M. ed. In Proceedings TAPSOFT ’97,
pages 682-696. Springer-Verlag, New York, 1997.

[2] Aldrich, J., Kostadinov, V. and Chambers, C., Alias anno-
tations for program understanding. In Proceedings OOP-
SLA ’02, pages 311-330. ACM Press, 2002.

[3] Almeida, P.S., Balloon types: Controlling sharing of state
in data types. In Proceedings ECOOP ’97, pages 32-59.
Springer-Verlag, New York, 1997.

[4] Baker, H.G. ‘Use-once’ variables and linear objects—
storage management, reflection and multi-threading. ACM
SIGPLAN Notices, 30 (1). pages 45-52. 1995.

[5] Bokowski, B. and Vitek, J., Confined types. In Proceedings
OOPSLA ’99, pages 82-96. ACM Press, 1999.

[6] Borgida, A., Mylopoulos, J. and Reiter, R., ... And nothing
else changes?: The frame problem in procedure specifica-
tions. In Proceedings of the 15th International Conference
on Software Engineering, pages 303-314. IEEE Computer
Society Press, 1993.

[7] Chalin, P. and Rioux, F., Non-null references by default in
the Java Modeling Language. In Proceedings SAVCBS ’05,
pages 70-76. 2005.

[8] Cheon, Y., Leavens, G.T., Sitaraman, M. and Edwards, S.
Model variables: Cleanly supporting abstraction in design
by contract. Software: Practice and Experience, 35 (6),
pages 583-589. 2005.

[9] Clarke, D.G., Potter, J.M. and Noble, J., Ownership types
for flexible alias protection. In Proceedings OOPSLA ’98,
pages 48-64, ACM Press, 1998.

[10] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C.,
Introduction to Algorithms, 2nd ed., McGraw-Hill, 2001.

[11] Gries, D. and Levin, G. Assignment and procedure call
proof rules. ACM Transactions on Programming Lan-
guages and Systems, 2 (4), pages 564-579. 1980.

[12] Harms, D.E. and Weide, B.W. Copying and swapping:
Influences on the design of reusable software components.
IEEE Transactions on Software Engineering, 17 (5). pages
424-435. 1991.

[13] Heym, W. Computer Program Verification: Improvements
for Human Reasoning, Ph.D. thesis, The Ohio State Uni-
versity (1995)

[14] Hogg, J., Islands: Aliasing protection in object-oriented
languages. In Proceedings OOPSLA ’91, pages 271-285.
ACM, 1991.

[15] Hogg, J., Lea, D., Wills, A., deChampeaux, D. and Holt, R.
The Geneva convention on the treatment of object aliasing.
OOPS Messenger, 3 (2). pages 11-16. 1992.

[16] Hollingsworth, J.E., Blankenship, L. and Weide, B.W.,
Experience report: Using Resolve/C++ for commercial

software. In Proceedings FSE ’00, pages 11-19. ACM
Press, 2000.

[17] Kieburtz, R.B., Programming without pointer variables. In
Proceedings of the SIGPLAN ’76 Conference on Data: Ab-
straction, Definition, and Structure, ACM Press, 1976.

[18] Krone, J. The Role of Verification in Software Reusability,
Doctoral Thesis, The Ohio State University, 1988.

[19] Kulczycki, G., Sitaraman, M., Ogden, W.F. and Weide,
B.W. Clean Semantics for Calls with Repeated Arguments,
Technical Report RSRG-05-01, Clemson University, 2005.

[20] Kulczycki, G., Sitaraman, M., Weide, B. and Rountev, N.,
A specification-based approach to reasoning about pointers.
In Proceedings SAVCBS ’05, pages 55-62. 2005.

[21] Leavens, G.T., Baker, A.A. and Ruby, C. JML: A notation
for detailed design. Simmonds, I. ed. Behavioral Specifica-
tions of Businesses and Systems, Kluwer, 1999.

[22] Leino, K.R.M., Data groups: Specifying the modification of
extended state. In Proceedings OOPSLA ’98, pages 144-
153, ACM Press, 1998.

[23] Meyer, B., Object-Oriented Software Construction, 2nd ed.
Prentice Hall, 1997.

[24] Müller, P. and Poetzsch-Heffter, A. Modular specification
and verification techniques for object-oriented software
components. Sitaraman, M. and Leavens, G. eds. Founda-
tions of Component-Based Systems, Cambridge University
Press, Cambridge, United Kingdom, 2000.

[25] Minsky, N.H., Towards alias-free pointers. In Proceedings
ECOOP '96, pages 189-209. 1996.

[26] Noble, J., Vitek, J. and Potter, J. Flexible alias protection.
Lecture Notes in Computer Science, 1445. pages 158-185.
1998.

[27] Ogden, W.F. The Proper Conceptualization of Data Struc-
tures. The Ohio State University, Columbus, OH, 2000.

[28] O’Hearn, P., Reynolds, J. and Yang, H. Local reasoning
about programs that alter data structures. Lecture Notes in
Computer Science, 2142, 2001.

[29] Popek, G.J., Horning, J.J., Lampson, B.W., Mitchell, J.G.
and London, R.L. Notes on the design of Euclid. ACM SIG-
PLAN Notices, 12 (3), poages 11-18. 1977.

[30] Sitaraman, M., Atkinson, S., Kulczycki, G., Weide, B.W.,
Long, T.J., Bucci, P., Heym, W., Pike, S. and
Hollingsworth, J.E., Reasoning about software-component
behavior. In Proceedings ICSR ’00, pages 266-283.
Springer-Verlag, 2000.

[31] Sitaraman, M. and Weide, B.W. Component-based soft-
ware using Resolve. ACM Software Engineering Notes, 19
(4), pages 21-67. 1994.

[32] Weide, B.W. and Heym, W.D., Specification and verifica-
tion with references. In Proceedings SAVCBS ’01. 2001.

[33] Wilson, T., Maharaj, S., and Clark, R.G., Omnibus verifica-
tion policies: a flexible, configurable approach to assertion-
based software verification. In SEFM ’05. IEEE Press.
2005.

65

SAVCBS 2006
CHALLENGE PROBLEM

SOLUTIONS

66

VC Generation for Functional Behavior and
Non-Interference of Iterators

Bart Jacobs
∗

Dept. CS, K.U.Leuven
Celestijnenlaan 200A
3001 Leuven, Belgium

bartj@cs.kuleuven.be

Frank Piessens
Dept. CS, K.U.Leuven
Celestijnenlaan 200A
3001 Leuven, Belgium

frank@cs.kuleuven.be

Wolfram Schulte
Microsoft Research
One Microsoft Way

Redmond, WA, USA
schulte@microsoft.com

ABSTRACT
We propose a formalism for the full functional specification of enu-
merator methods, which are C# methods that return objects of type
IEnumerable<T> or IEnumerator<T>. We further propose
a sound modular automatic verification approach for enumerator
methods implemented using C# 2.0’s iterator blocks (i.e., using
yield return and yield break statements), and for client code
that uses for-each loops. We require for-each loops to be annotated
with special for-each loop invariants.

The approach prevents interference between iterator implemen-
tations and client code. Specifically, an enumerator method may
read a field o.f only if o is reflexively-transitively owned by an ob-
ject listed in the enumerator method’s reads clause, and the body
of a for-each loop may not modify these objects. For example, we
verify that a for-each loop iterating over an ArrayList does not
modify the ArrayList . Note that one may break out of a for-each
loop at any time to perform modifications before the iteration is
complete. This in effect invalidates the iteration since the for-each
loop cannot be resumed.

We support specification of non-deterministic enumerations, in-
finite enumerations, and enumerations that terminate with a checked
exception, but not enumerations with side-effects. We support ver-
ification of an enumerator method only if it is implemented using
yield statements, and verification of client code only if it per-
forms a for-each loop on an enumerator method call. That is, the
present approach does not support explicit creation or manipulation
of IEnumerator<T> objects.

Our approach integrates easily with our concurrency approach
(presented at ICFEM06), since both are based on read/write sets.

This approach was initially presented at FTfJP05. Please refer to
this paper for related work, references, and a soundness proof.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/program verification

∗Bart Jacobs is a Research Assistant of the Fund for Scientific Re-
search - Flanders (Belgium) (F.W.O.-Vlaanderen).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Fifth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2006), November 10–11, 2006, Port-
land, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11 ...$5.00.

General Terms
Design, verification

Keywords
Formal specification, iterators, Boogie, verification

1. PROOF RULES

1.1 Spec#
We present our specification and verification method for the It-

erator pattern in the context of the Spec# programming system, an
extension of C# with preconditions, postconditions, non-null types,
checked exceptions, loop invariants, object invariants, and other re-
liability features, and accompanied by a compiler that emits run-
time checks and a static program verifier backed by an automatic
theorem prover.

We hope to add support for our approach to the Spec# program
verifier in the future.

The program verifier works by translating the Spec# source code
into a guarded command program, which is then further translated
into verification conditions that are passed to the theorem prover.
The following guarded commands are relevant to this presentation:

• An assert C; statement causes an error to be reported if the
condition C cannot be shown to always hold.

• An assume C; statement causes the verifier to consider
only those program executions which either do not reach this
statement or satisfy the condition C.

• A havoc x; statement assigns an arbitrary value to the vari-
able x.

1.2 Specification of enumerator methods
In our formalism, methods are categorized as regular methods or

enumerator methods. Enumerator methods must have a return type
of IEnumerable<T> or IEnumerator<T>, for some T , and
methods that have such return types are categorized as enumerator
methods by default.

The syntax of an enumerator method’s contract differs from that
of a regular method. In addition to requires and ensures clauses,
an enumerator method may provide one or more invariant clauses,
which declare the method’s enumeration invariants. Both the enu-
meration invariants and the ensures clauses may mention the key-
word values, which denotes the sequence of elements yielded so
far at a given point during the enumeration. The values keyword
is of type Seq<T>, whose interface is given in Fig. 2. An enu-
meration invariant must hold at each point during an enumeration.

67

IEnumerable<int> FromTo(int b, int e)
requires b ≤ e + 1;
invariant values.Count ≤ e + 1− b;
invariant forall{int i in (0 : values.Count);

values[i] == b + i};
ensures values.Count == e + 1− b;

{
for (int x = b; x ≤ e; x++)

invariant values.Count == x− b;
{ yield return x; }

}

Figure 1: Method FromTo

public struct Seq<T> {
public int Count { get; }
public invariant 0 ≤ this.Count ;
public T this[int index]

requires 0 ≤ index ∧ index < this.Count ;
{ get; }
public Seq();

ensures this.Count == 0;
public void Add(T value);

ensures this.Count == old(this).Count + 1;
ensures forall{int i in (0 : old(this).Count);

this[i] == old(this)[i]};
ensures this[old(this).Count] = value;

}

Figure 2: The Seq<T> type

Fig. 1 shows an example of a method specified in our formalism.1

1.3 Verification of iterator methods
We verify an enumerator method that is implemented as an iter-

ator method (i.e., a method whose body is a C# 2.0 iterator block)
by translating it into a guarded command program. Consider the
following method:

IEnumerable<T> M(~p)
requires P ; invariant I; ensures Q;
{ B }

It gets translated into the following:

assume P ;
Seq<T> values = new Seq<T>();
assert I; JBK assert Q;

where

Jyield return v; K ≡ values.Add(v); assert I;
Jyield break; K ≡ assert Q; assume false;

That is, we verify that the enumeration invariants hold for the empty
sequence, as well as after each yield return operation. Also, we
check the postcondition at each yield break operation.

As a convenience, we insert I as a loop invariant into each loop
in B.2

Applied to our FromTo example from Fig. 1, this yields the pro-
gram of Fig. 3.
1We propose a more concise syntax for simple cases like this one
below.
2These are “free of charge”, i.e. they provide assumptions but
do not incur proof obligations, since they are guaranteed by the
assert statements inserted at the yield return statements.

assume b ≤ e + 1;
Seq<int> values = new Seq<int>();
assert values.Count ≤ e + 1− b;
assert forall{int i in (0 : values.Count);

values[i] == b + i};
for (int x = b; x ≤ e; x++)

invariant values.Count ≤ e + 1− b;
invariant forall{int i in (0 : values.Count);

values[i] == b + i};
invariant values.Count == x− b;

{
values.Add(x);
assert values.Count ≤ e + 1− b;
assert forall{int i in (0 : values.Count);

values[i] == b + i};
}
assert values.Count == e + 1− b;

Figure 3: Guarded command program generated as part of the
verification of method FromTo of Fig. 1.

1.4 Verification of for-each loops
Our formalism supports proving rich properties of for-each loops

by allowing their loop invariants to mention the keyword values,
analogously with our approach to method contracts for enumerator
methods. Here, too, the keyword is of type Seq<T>, where T is
the element type of the enumeration, and represents the sequence
of elements enumerated so far.

Here is an example of a client of our FromTo enumerator method:

int sum = 0;
foreach (int x in FromTo(1, 2))

invariant sum == SeqTools.Sum(values);
{ sum += x; }
assert sum == 3;

Now, consider a general for-each loop that uses a call of the gen-
eral enumerator method M declared above as its enumerable ex-
pression:

foreach (T x in M(~a)) invariant J ; { S }

To verify this for-each loop, we translate it into the following
for loop:

assert P [~a/~p]; Seq<T> values = new Seq<T>();
for (; ;)

invariant I[~a/~p]; invariant J ;
{

bool b; havoc b; if (¬b) break; T x; havoc x;
values.Add(x);
assume I[~a/~p];
S

}
assume Q[~a/~p];

This means that for our example client, the program of Fig. 4 needs
to be verified.

1.5 Exceptions
Our formalism supports the specification of enumerator meth-

ods that may throw checked exceptions, and the verification of the
iterator methods that implement these. Enumerator methods may
provide exceptional ensures clauses, and these may mention key-
word values. An example is in Fig. 5.

68

int sum = 0;
assert 1 ≤ 2 + 1; Seq<int> values = new Seq<int>();
for (; ;)

invariant values.Count ≤ 2 + 1− 1;
invariant forall{int i in (0 : values.Count);

values[i] == 1 + i};
invariant sum == SeqTools.Sum(values);

{
bool b; havoc b; if (¬b) break;
T x; havoc x; values.Add(x);
assume values.Count ≤ 2 + 1− 1;
assume forall{int i in (0 : values.Count);

values[i] == 1 + i};
sum += x;

}
assume values.Count == 2 + 1− 1; assert sum == 3;

Figure 4: Guarded command program generated as part of the
verification of the example client

class OneElementException : CheckedException {}
class ThreeElementsException : CheckedException {}

IEnumerable<int> Baz ()
ensures values.Count == 2;
throws OneElementException ensures values.Count == 1;
throws ThreeElementException ensures values.Count == 3;

int n = 0;
try {

foreach (int x in Baz ()) invariant n == values.Count ;
{ n++; }
assert n == 2;

} catch (OneElementException) { assert n == 1;
} catch (ThreeElementException) { assert n == 3; }

Figure 5: Enumerator methods that throw checked exceptions

Jx = new C; K ≡
x = new C;
tid.W [x] = true;
tid.R[x] = 0;
x.inv = false;

Jx = o.f ; K ≡
assert tid.R′[o];
x = o.f ;

Jo.f = v; K ≡
assert tid.W ′[o];
assert ¬o.inv ;
o.f = v;

Jread (o) SK ≡
assert tid.R′[o];
assert o.inv ;
tid.R[o]++;
foreach (p ∈ rep(o))

tid.R[p]++;
JSK
foreach (p ∈ rep(o))

tid.R[p]−−;
tid.R[o]−−;

Jpack o; K ≡
assert tid.W ′[o];
assert ¬o.inv ;
foreach (p ∈ rep(o)) {

assert tid.W ′[o];
assert o.inv ;

}
foreach (p ∈ rep(o))

tid.W [p] = false;
o.inv = true;

Junpack o; K ≡
assert tid.W ′[o];
assert o.inv ;
foreach (p ∈ rep(o))

tid.W [p] = true;
o.inv = false;

Jpar (S1, S2); K ≡
let R = tidpar.R;
par (JS1K, {

tidS2 .R = R;
JS2K

});

Figure 6: The programming methodology

1.6 Simplified alternative enumerator method
contract syntax

The general syntax presented above offers the flexibility of non-
deterministic specifications; that is, it allows underspecification.
Also, it allows a non-constructive description, as well as excep-
tional termination. However, often this flexibility is not needed,
and for these cases we provide a simpler syntax, as follows:

IEnumerable<T> M(~p)
requires P ;
returns {int i in (0:C); E};

For verification purposes, we expand this into the general syntax
as follows:

IEnumerable<T> M(~p)
requires P ;
invariant values.Count ≤ C;
invariant forall{int i in (0:values.Count);

values[i] == E};
ensures values.Count == C;

2. AVOIDING INTERFERENCE
As is apparent from the explanations above, the implementation

and the client of an enumerator method are verified as if they ex-
ecuted separately. However, they in fact execute in an interleaved
fashion. To ensure soundness, our method prevents each party from
observing side-effects of the execution of the other party.

Specifically, an enumerator method may not write fields of any
pre-existing objects. Also, an enumerator method may declare in
its contract a read set, using a reads clause, and it may only read
fields of those pre-existing objects that are in its read set (or that
are owned by such objects). Conversely, during the enumeration,
the client (i.e. the body of the for-each loop) may not write fields
of these objects.

Here’s an example of an Iterator pattern involving objects:

IEnumerable<int> EnumArray(int[]! a)
reads a; returns {int i in (0:a.Length); a[i]};

{
for (int i = 0; i < a.Length; i++)

invariant values.Count == i;
{ yield return a[i]; }

}

int[] xs = {1, 2}; int sum = 0;
foreach (int x in EnumArray(xs))

invariant sum == SeqTools.Sum(values);
{ sum += x; }
assert sum == 3;

The EnumArray method may read only the array, and the body
of the foreach loop may not modify it. The exclamation mark
indicates that the argument for parameter a must not be null.

To statically and modularly verify the restrictions outlined above,
our method for avoiding interference between the client and the im-
plementation of an enumerator method requires that the program be
written according to a programming methodology that is an exten-
sion of the Spec# object invariants methodology with support for
read-only access. First, we briefly review the relevant aspects of
the Spec# methodology. Then we present our extended version.

2.1 Spec# Methodology
In order to allow the object invariant for an object o to depend

on objects other than o, Spec# introduces an ownership system; the

69

object invariant for o may depend on o and on any object transi-
tively owned by o. A program assigns ownership of an object p
to o by writing p into a field of o declared rep while o is in the
unpacked state, and then packing o, which brings it into the packed
state. The packed or unpacked state of an object is conceptually
indicated by the value of a boolean field o.inv , which is true if
and only if o is in the packed state.

Packing object o succeeds only if object p and the other objects
pointed to by o’s rep fields are themselves already packed. Once
o is packed, its owned objects may not be unpacked. Unpacking
o again releases ownership of p and allows p to become owned by
another object, or to become unpacked itself.

2.2 Programming Methodology
To understand the approach, it is useful to think of both parties

in an enumeration as executing in separate threads. That is, the ex-
ecution of a for-each statement starts the enumerator method in a
new thread, executes the body of the for-each loop some number
of times in the original thread, and then waits for the enumerator
thread to finish. (We ignore for now the communication between
both threads implied by the yielding of values, and the exact num-
ber of times the for-each loop is executed.) Note that we use the
notion of threads as a reasoning tool only; we are not proposing
implementing iterators using threads.

In our proposed system, each such thread t has a write set t.W
and a read bag t.R, both containing object references. The write
set of a thread t contains those object that were created by t and that
are not currently committed to (i.e. owned by) some other object.
The read bag of t contains an object o if t currently has read-only
access to o. The read bag is not a set, for technical reasons which
will become clear later.

From t.W and t.R, we derive the effective write set t.W ′ =
t.W − t.R and the effective read set t.R′ = t.W + t.R. A thread t
may read fields of any object in t.R′, and it may write fields of any
object in t.W ′, provided the object is unpacked.

The for-each statement may conceptually be thought of as being
implemented in terms of a command par (B1, B2); for parallel
execution of two blocks B1 and B2. Execution of the par state-
ment is complete only when execution of both blocks is finished.
Suppose the par statement is being executed by a thread t1. B1 is
executed in t1, whereas B2 is executed in a new thread, say t2. The
initial write set t2.W of t2 is the empty set, and the initial read bag
is equal to that of t1.

The proposed methodology is formally defined in Fig. 6, where
tid denotes the current thread. The last rule translates a parallel
execution statement by inserting an assignment that initializes the
read bag of the newly created thread tidS2 with the read bag of the
creating thread tidpar. The write set of the new thread remains
initially empty. We use the following auxiliary definitions:

t.W ′[o]
def
= t.W [o] ∧ t.R[o] = 0 t.R′[o]

def
= t.W [o] ∨ t.R[o] > 0

rep(o)
def
= {o.f | f is a rep field of o and o.f 6= null}

The new read statement serves two purposes. Firstly, it allows
a thread to take an object to which it has write access and make
it read-only for the duration of the read statement, which enables
it to be shared with newly created threads. Secondly, it allows a
thread that has read access to an object o to gain access to o’s owned
objects. That is, it replaces the unpack and pack operations if
only read access is required. Note: in contrast to the unpack and
pack pair, read blocks are re-entrant; that is, it is allowed to nest
multiple read block executions on the same object. This is useful
e.g. when writing recursive methods. This is also the reason why
we need a read bag instead of a read set.

assert P [~a/~p];
read (R) {

par ({
Seq<T> values = new Seq<T>();
for (; ;) invariant I[~a/~p]; invariant J ;
{

bool b; havoc b; if (¬b) break;
T x; havoc x; values.Add(x); assume I[~a/~p];
S

}
assume Q[~a/~p];

}, {
Seq<T> values = new Seq<T>();
assert I; JBK assert Q;

});
}

Figure 7: Translation of the general for-each loop for the pur-
pose of applying the non-interference methodology

int[] xs = {1, 2}; int sum = 0;
read (xs) {

par ({
Seq<T> values = new Seq<T>();
for (; ;)

invariant values.Count ≤ xs.Length;
invariant forall{int i in (0:values.Count);

values[i] == xs[i]};
invariant sum == SeqTools.Sum(values);

{
bool b; havoc b; if (¬b) break; T x; havoc x;
values.Add(x);
assume values.Count ≤ xs.Length;
assume forall{int i in (0:values.Count);

values[i] == xs[i]};
sum += x;

}
assume values.Count == xs.Length;

}, {
Seq<T> values = new Seq<T>();
assert values.Count ≤ xs.Length;
assert forall{int i in (0:values.Count); values[i] == xs[i]};
for (int i = 0; i < xs.Length; i++)

invariant values.Count ≤ xs.Length;
invariant forall{int i in (0:values.Count);

values[i] == xs[i]};
invariant values.Count == i;

{
values.Add(xs[i]); assert values.Count ≤ xs.Length;
assert forall{int i in (0:values.Count);

values[i] == xs[i]};
}
assert values.Count == xs.Length;

});
}
assert sum == 3;

Figure 8: Translation of the array example for the purpose of
applying the non-interference methodology

Consider the general for-each statement shown in Section 1.4.
For the purpose of applying the proposed methodology, it is equiv-
alent with the program in Fig. 7, assuming that method M has a
reads R; clause. For the array example above, this yields the pro-
gram in Fig. 8.

70

Specifying Java Iterators with JML and Esc/Java2

David R. Cok
Eastman Kodak Company

1999 Lake Avenue Rochester, NY 14650, USA
david.cok@kodak.com

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Program Verification

General Terms
Design, verification

Keywords
JML, ESC/Java2, static analysis, specification, verification

1. INTRODUCTION
The 2006 SAVCBS Workshop1 has posed a Challenge Prob-

lem on the topic of specifying iterators. This note provides
a specification in the Java Modeling Language (JML) [1,
2] for the Java interfaces Iterator and Iterable that cap-
tures the interactions between these two interfaces. An
example program that uses these interfaces is checked us-
ing Esc/Java2 [3, 4, 5], demonstrating by example that the
Esc/Java2 tool checks that the interfaces are used only as
required by the specifications. The concluding section con-
tains some observations on the limitations of JML for this
specification task.

2. THE PROBLEM
The Challenge Problem2 asks for a specification of the

Iterator interface as provided in the Java programming lan-
guage or its equivalent in another language. An Iterator
provides an abstract mechanism for sequentially retrieving
the elements of an object for which such an operation is
appropriate, that is, of an Iterable object. There are two
aspects of the behavior of an iterator.

The first is the mechanism for keeping track of which ob-
jects of the iterable collection have already been returned by

1http://www.cs.iastate.edu/∼leavens/SAVCBS/2006/
index.shtml.
2http://www.cs.iastate.edu/∼leavens/SAVCBS/2006/
challenge.shtml.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Fifth International Workshop on Specification and Verifica-
tion of Component-Based Systems (SAVCBS 2006), November
10-11, 2006, Portland, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11 ...$5.00.

the iterator and which are yet to be returned. This mecha-
nism is dependent on the particular kind of iterable object
(e.g., set, array, list, infinite sequence) and its implementa-
tion. In fact there is actually quite little one can specify
about this aspect of an iterator’s behavior within the Iter-
ator interface itself. Space limitations preclude discussing
the specification of that mechanism here.

The more interesting aspect of an iterator’s behavior is
the interaction among multiple iterators and with the iter-
able object, particularly with respect to modifications of the
iterable object. In particular, the solution presented here
provides specifications for three conditions: (a) an iterator
may remove the object of the iterable at the current position
of the iterator, but it may not remove it more than once; (b)
if an iterable object is modified by its own methods, then all
subsequent behavior of iterators referring to that iterable is
undefined; (c) if an iterable object is modified by an iterator,
then all subsequent behavior of any other iterator referring
to that iterable is undefined.

Here we consider only sequential programs and provide
a solution for Java 1.5 using JML. The reader is presumed
to be familiar with Java and its iterator classes as well as
with JML. In actuality, JML is implemented only for Java
1.4. However, the only use of Java 1.5 features here is the
parameterization of the interfaces by the element type E,
and that does not affect the discussion below. On the other
hand, Java 1.4 does not have the equivalent of the Iterable
interface, a point that is discussed further below.

3. THE JML SPECIFICATION
The proposed specifications of these two interfaces are

shown in Figs. 1 and 2. A partial specification of the Col-
lection interface is also shown.

The solution has the following elements:

• Because the conditions above require certain behavior
subsequent to other behavior, a concept of time (or,
more precisely, of an ordered sequence of events) is
maintained in the specification by nondecreasing inte-
ger values.

• An Iterator maintains a reference to the Iterable whose
contents it returns, contained in the model field iterable.
This field is initialized at construction time (in the
method Iterable.iterator()) and does not change
thereafter, as indicated by the constraint clause.

• An Iterator uses the model field iteratorTime to keep
track of when it was created or last used to modi-
fiy the iterable. An initial value is specified by the

71

http://www.cs.iastate.edu/~leavens/SAVCBS/2006/index.shtml
http://www.cs.iastate.edu/~leavens/SAVCBS/2006/index.shtml
http://www.cs.iastate.edu/~leavens/SAVCBS/2006/challenge.shtml
http://www.cs.iastate.edu/~leavens/SAVCBS/2006/challenge.shtml

package java.util;

public interface Iterator<E> {

//@ public instance model Iterable iterable;

//@ public instance model int iteratorTime;

//@ public instance model boolean removeOK;

//@ initially !removeOK;

//@ public invariant iterable != null;

//@ public constraint iterable == \old(iterable);

// This returns false if the parent Iterable has

// been modified by means other than this Iterator.

/*@ public normal_behavior

@ ensures \result ==

@ (iteratorTime > iterable.lastModifiedTime);

@ public pure model boolean isValid() {

@ return iteratorTime > iterable.lastModifiedTime;

@ }

@*/

//@ public normal_behavior

//@ requires isValid();

/@ pure @*/ public boolean hasNext();

//@ public normal_behavior

//@ requires isValid() && hasNext();

//@ assignable removeOK;

//@ ensures removeOK;

//@ also public exceptional_behavior

//@ requires isValid() && !hasNext();

//@ signals_only NoSuchElementException;

public E next();

/*@ public behavior

@ requires isValid() && removeOK;

@ assignable removeOK, iteratorTime;

@ assignable iterable.maxIteratorTime;

@ assignable iterable.lastModifiedTime;

@ ensures !removeOK;

@ ensures iterable.lastModifiedTime >

@ \old(iterable.maxIteratorTime);

@ ensures isValid();

@ ensures iteratorTime <= iterable.maxIteratorTime;

@ also public exceptional_behavior

@ requires isValid() && !removeOK;

@ signals_only IllegalStateException;

@*/

public void remove();

}

Figure 1: The specification of the Iterator interface.

method Iterable.iterator() and it is modified only
by Iterator.remove().

• The model field Iterator.removeOK indicates whether
it is permissible to call the method Iterator.remove().
The field is initially false and is also set false upon any
call of remove; it is set true on a call of next. Thus
informal requirement (a) above is satisfied.

package java.lang;

public interface Iterable<E> {

//@ public instance model int lastModifiedTime;

//@ public instance model int maxIteratorTime;

//@ initially maxIteratorTime == -1;

//@ initially lastModifiedTime == 0;

/*@ constraint lastModifiedTime >=

\old(lastModifiedTime); @*/

//@ public normal_behavior

//@ assignable maxIteratorTime;

//@ ensures \result != null;

//@ ensures \fresh(\result);

//@ ensures \result.iterable == this;

//@ ensures \result.isValid();

//@ ensures maxIteratorTime >= \result.iteratorTime;

public Iterator<E> iterator();

}

package java.util;

public interface Collection<E> extends Iterable<E> {

// Something like the following specification

// case must be present for any method that

// modifies the Iterable object.

//@ public normal_behavior

//@ assignable lastModifiedTime;

//@ ensures lastModifiedTime > maxIteratorTime;

public void clear();

}

Figure 2: The specification of the Iterable interface
and a partial specification of Collection.

• Requirements (b) and (c) above need the distinction
between an Iterator’s behavior being defined and not
defined. This distinction is provided by the pure model
method Iterator.isValid(). If the method returns
true, the behavior is defined. The method is imple-
mented to return true if the iterator’s iteratorTime is
larger than the corresponding iterable’s lastModifiedTime.

• An Iterable maintains the “time” of its last modifica-
tion in the field lastModifiedTime. If the Iterable is
modified, as shown by the method Collection.clear,
the value of lastModifiedTime is increased to be larger
than the iteratorTime of any of its associated Iter-
ators. For convenience, Iterable.maxIteratorTime

holds a value at least as large as any associated It-
erator ’s iteratorTime. This satisfies requirement (b)
above. Note that any method in any subtype of Iterable
that modifies the collection of elements within the It-
erable (e.g., add, remove, clear) must require a speci-
fication case like that shown for Collection.clear.

• Requirement (c) is satisfied as follows. The specifica-
tion of Iterator.remove requires that when called on
an object iter (and for normal termination), the corre-
sponding iterable’s lastModifiedTime is increased to
make all other iterators invalid, and the iteratorTime
of iter itself also is increased so that iter is still valid.

72

4. STATICALLY CHECKING PROGRAMS
USING ESC/JAVA2

The Iterator and Iterable interfaces do not have imple-
mentations that can be checked against specifications. How-
ever, we can check programs that use those interfaces. To
do so with JML and Esc/Java2, however, we must recast the
above solution in Java 1.4. For this exercise we fold the spec-
ifications from Iterable into Java 1.4’s Collection interface.
Then we attempt to check a number of combinations of uses
of these methods, as shown in Figs. 3 and 4. Esc/Java23

successfully finds the incorrect uses of these methods and
has no false reports on legal sequences of method calls. The
problems in generating and checking the specifications were
all in specification errors (not in Esc/Java2). For example,
in method m6, if Line A is omitted, allowing aliasing between
the two arguments (a common error), then Line B cannot
be established: iterator ii will not be valid if c==cc.

5. OBSERVATIONS
The combination of JML and Esc/Java2 successfully spec-

ifies the Iterator example and checks uses of the interfaces
in test programs. However, this exercise prompts a number
of observations about the current state of JML.

5.1 Java 1.4 vs. Java 1.5
This style of solution will not work well in Java 1.4 be-

cause there is no abstract Iterable object. For the static
checking above, we utilized the Collection interface as the
generic iterable. However, not all iterators extend the Col-
lection interface. Thus in Java 1.4 an Iterator can only refer
to its associated object as a generic Object, and there is
no place to put the declarations of the model fields defined
above. An alternative, but messy, design is to declare a new
associated IterableData class containing the model fields
declared above in Iterable and used as Iterable is above;
then we associate an IterableData object with each iter-
able Object by maintaining a Map from objects that would
be Iterables to associated instances of IterableData.

5.2 Ghost field vs. Model field vs. Model
method

In the specification above, various pieces of specification
information are held in model fields. These might also be
declared as ghost fields or model methods. Each of these
choices has its disadvantages.

• Ghost fields. Iterators and Iterables are interfaces, not
classes. Furthermore, they are defined in the Java li-
brary and not in user-written code. Ghost fields must
be modified by JML set statements within the imple-
mentation of a method. In this situation, for these in-
terfaces there is no place to put those set statements.
This is not a problem for static checking, but runtime
checking (such as with the jmlrac[2] tool) would fail to
work correctly if ghost fields were used.

• Model fields. The intended use of a model field is as a
means to hold an abstract representation of the state
of an object; in a concrete class each model field would

3The experiments were performed using the version in CVS
HEAD as of 1 September 2006, but only using the specifi-
cations given here, not the library of system specifications
provided by Esc/Java2.

import java.util.Collection;

import java.util.Iterator;

public class Test {

public void m1(/*@ non_null @*/Collection c) {

Iterator i = c.iterator();

i.remove(); // should FAIL

}

//@ signals (java.util.NoSuchElementException);

//@ signals_only RuntimeException;

public void m2(/*@ non_null @*/Collection c) {

Iterator i = c.iterator();

//@ assume i.hasNext();

i.next();

i.remove(); // OK

}

public void m3(/*@ non_null @*/Collection c) {

Iterator i = c.iterator();

//@ assume i.hasNext();

i.next();

i.remove();

i.remove(); // should FAIL

}

public void m4a(/*@ non_null @*/Collection c) {

Iterator i = c.iterator();

//@ assert i.iteratorTime > c.lastModifiedTime;

//@ assert i.iterable == c;

//@ assert i.isValid();

}

public void m4(/*@ non_null @*/Collection c) {

Iterator i = c.iterator();

//@ assert i.isValid();

c.clear();

//@ assert !i.isValid();

}

}

Figure 3: A set of test methods (in Java 1.4).

be provided a representation. In this case, a field such
as removeOK does abstract part of the state of the Iter-
ator, but that abstraction is not necessarily a represen-
tation of any concrete fields of an implementation. A
typical way to provide such a concrete representation
is by means of some ghost fields that essentially dupli-
cate the model fields. The model fields work well for
static checking without ghost fields and without repre-
sentations. However, runtime checking would require
the model fields to have some concrete representation.

• Model methods. Model methods are an alternate way
of providing the functionality of a model field.4 For
example, instead of the field removeOK, we could have
a pure, argument-less model method removeOK() with-
out any implementation given. The specification of its

4Model fields also have implications for data groups, which
model methods do not have.

73

import java.util.Collection;

import java.util.Iterator;

public class Test2 {

public void m5(/*@ non_null @*/Collection c) {

Iterator i = c.iterator();

Iterator ii = c.iterator();

//@ assert i.isValid();

//@ assert ii.isValid();

//@ assume i.hasNext();

i.next();

i.remove();

//@ assert i.isValid();

//@ assert !ii.isValid();

}

//@ requires c != cc; // Line A

public void m6(/*@ non_null @*/Collection c,

/*@ non_null @*/Collection cc) {

Iterator i = c.iterator();

Iterator ii = cc.iterator();

//@ assert i.isValid();

//@ assert ii.isValid();

//@ assume i.hasNext();

i.next();

i.remove();

//@ assert i.isValid();

//@ assert ii.isValid(); // Line B

}

public void m7(/*@ non_null @*/Collection c) {

Iterator i = c.iterator();

//@ assume i.hasNext();

c.clear();

i.hasNext();//FAILS - precondition isValid()

} // is not satisfied

}

Figure 4: Additional test methods (in Java 1.4).

result and its use on other specifications would mimic
the specification and use of the model field. Static
checking with such model methods is just as easy (and
as hard) as when using model fields. Runtime checking
has the same problems as with model fields: we need
an implementation in terms of concrete or ghost fields.

One enhancement of JML that would help the above is-
sues with runtime checking would be to provide syntax in
which updates to ghost fields could be specified and com-
piled by a runtime checker even for methods for which the
runtime checker did not compile the Java implementation of
the method itself.

5.3 Specifying mutating methods
As stated earlier, the specification described here requires

that all methods (of any subtype) that modify an Iterable
object must specify that the values of lastModifiedTime

and maxIteratorTime are appropriately changed. This re-
quirement is easily forgotten. Any method that calls remove()
will encounter those requirements in that method’s specifi-
cation, but other methods, such as add, will not. Aside

from the specifications of overridden methods, there is no
way within JML to require that all methods with certain
properties have certain specifications without individually
annotating the methods to indicate the desired property.

5.4 Specifying sequences of calls
The main limitation of JML in this context is that it pro-

vides no means to write specifications about sequences of
method calls. The specification above essentially encodes
two state machines: a simple one using removeOK and a more
complicated one involving the other model fields. These
machines are used to specify implicitly the behavior of se-
quences of method calls. However, there is no way in JML
to write a specification requirement about this behavior that
can be checked by some reasoning engine; in Section 3 we
were only able to argue the correctness of the specifications
informally. The best we can do in current JML is to write
example programs and then check using a static checker that
those examples are properly handled; that process, like run-
time testing, does not ensure that all possible examples will
behave correctly. Another common restriction is when a
class has an initialization method that must be called be-
fore any other method of the class is called.

To express these conditions, JML would need to have syn-
tax that could encode, for example, the following require-
ments: that two calls of Iterator.remove with no interven-
ing call of Iterator.next must result in particular behav-
ior; that a call of a class method not preceded by a call of
the class’s init method results in an exception being thrown;
that a call of a particular method will render calls of another
set of methods undefined. These all would require syntax
enabling the expression of combinations of parameterized
sequences of method calls, with options such as are found
in regular expressions. In addition, we would need trans-
lation to verification conditions in an appropriate logic and
suitable for a logical prover.

6. REFERENCES
[1] Many references to papers on JML can be found on the

JML project website, http:
//www.cs.iastate.edu/∼leavens/JML/papers.shtml.

[2] L. Burdy, et al. An overview of JML tools and
applications. In T. Arts and W. Fokkink, editors,
Eighth International Workshop on Formal Methods for
Industrial Critical Systems (FMICS 03), volume 80 of
Electronic Notes in Theoretical Computer Science
(ENTCS), pages 73–89. Elsevier, June 2003.

[3] D. R. Cok and J. Kiniry. ESC/Java2: Uniting
ESC/Java and JML. Technical report, University of
Nijmegen, 2004. NIII Technical Report NIII-R0413.

[4] D. R. Cok and J. Kiniry. ESC/Java2 : Uniting
ESC/Java and JML. Progress and issues in building
and using ESC/Java2 and a report on a case study
involving the use of ESC/Java2 to verify portions of an
internet voting tally system. Lecture Notes in
Computer Science, 3362:108–128, Jan. 2005.

[5] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,
J. B. Saxe, and R. Stata. Extended static checking for
Java. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and
Implementation (PLDI’02), volume 37, 5 of SIGPLAN,
pages 234–245, New York, June 2002. ACM Press.

74

http://www.cs.iastate.edu/~leavens/JML/papers.shtml
http://www.cs.iastate.edu/~leavens/JML/papers.shtml

75

SAVCBS 2006 Challenge: Specification of Iterators
Bruce W . W eide

Department of Computer Science and Engineering
The Ohio State University

+1-614-292-1517
weide.1@osu.edu

ABSTRACT
A method for formal specification of iterators, which can be
used to verify both clients and implementations, is illustrated
with a Set abstraction as the underlying collection.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/program verification.

General Terms
Design, Verification.

Keywords
Formal specification, iterators, Resolve, verification.

1. INTRODUCTION
This short paper is a response to the SAVCBS 2006

Challenge Problem: “We invite participants to illustrate their
specification and verification techniques on the problem of
specifying the behavior of iterators and clients that use them”.
Our solution illustrates, and slightly improves on (i.e.,
simplifies) the iterator design and specification techniques we
previously published in [8], using a Set abstraction with an
active iterator that does not permit interleaved client
modification of the elements of a Set. The conclusion of [8] is:

Previously published iterator designs are unsatisfactory
along several dimensions. The iterator design developed
incrementally [in this paper] addresses the deficiencies of
prior approaches in the following specific ways:

• It is designed to support efficient implementations:
neither the implementer nor the client needs to copy the
data structure representing the Collection, or any of the
individual Items in it.

• Its abstract behavior (including the non-interference
property) is formally specified.

• Its implementations and clients can be verified
independently, i.e., modularly in the sense of [3].

• It can be specified as a schema for an independent
generic concept that defines an iterator abstraction for
arbitrary Collections, so all iterator abstractions in a
system share a common interface model.

“Non-interference” means [8] that it “should not be
permissible for a (correct) client program to iterate over a
collection while interleaved operations on that collection
might be changing it.” Extensions and variants discussed in
[8] also address issues involved when iteration over a
collection modifies the collection or the items in it, when
iteration might encounter items in different orders, and when
iteration terminates early. None of these latter issues i s
explicitly discussed here.

The answers to the specific questions posed in the
Challenge Problem are as follows:

• The solution is intended for use with a sequential
programming language, though concurrency-hardening
does not seem to pose any special problems.

• The level of annotation required (both in the contract
specification and in a client program) is full behavioral
specification—but no more than what is necessary and
sufficient to modularly verify client correctness. In
principle, it might be possible to specify or prove weaker
properties with less annotation, but we see no reason to
do so; this solution seems fully manageable in terms of
specification and verification complexity.

• The solution is based on using a language, such as
Resolve [2] or the disciplined use of C++ that we call
Resolve/C++ [6], that has value semantics, with no visible
references and hence no visible aliasing. We emphasize
that this does not imply inefficiency compared to
languages that make references manifest to the
programmer. This is one of the main points of [8]—but
one that we do not elaborate here except to claim the
result that our design permits optimally efficient iterator
implementations in the big-O sense, so introducing the
reasoning complications of reference semantics would not
result in efficiency improvements.

• Fully automated verification of client programs using our
iterator design and specification approach is certainly
possible in principle. We know how to generate
mechanically the verification conditions for Resolve
programs. However, there is no evidence yet to suggest
that a system like Hoare’s “verifying compiler”, that
would produce fully automatic proofs of these
verification conditions, is just over the horizon. The
verification conditions that arise from using our iterators
are not particular difficult for humans to discharge. They
do seem generally near or beyond what existing theorem
provers can handle without human advice.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Fifth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2006). November 10-11, 2006,
Portland, Oregon, USA.

Copyright 2006 ACM ISBN 1-59593-586-X/06/11 … $5.00

76

We regrettably have no fundamentally new observations
about specifying iterators since the 1994 paper [8]. We hope
the attendees at the workshop provide some additional food
for thought.

2. EXAMPLE: A SET COMPONENT
Understanding our iterator design and specification requires
understanding the specification of the collection over which
iteration is to be done. The iterator design technique we
proposed in [8] is a schema that can be used with arbitrary
collections and is illustrated there with a Queue abstraction.
Here we use for variety a Set abstraction: a parameterized
component in which the type Item (of a Set’s elements) is a
template parameter. This is its specification:

contract Set_Template (type Item)
type family Set is modeled by

finite set of Item
exemplar s
initialization ensures
s = { }

operation Add (s: Set, x: Item)
requires
x is not in s

ensures
s = #s union {#x}

operation Remove (s: Set, x: Item,
x_copy: Item)

requires
x is in s

ensures
x = x_copy = #x and
s = #s - {x_copy}

operation Remove_Any (s: Set, x: Item)
requires
s /= { }

ensures
s = #s - {x}

operation Is_Member (s: Set, x: Item):
Boolean

ensures
Is_Member = (x is in s)

operation Size (s: Set): Integer
ensures
Size = |s|

end Set_Template

The type specification says that a Set variable should be
considered to have a value that is a finite mathematical set of
the parameter type Item, and that such a variable’s initial value
(i.e., upon declaration) is an empty set. The operation Add can
be used to add an element to a Set; the operation Remove to
remove a particular element whose value is x , the removed
element being returned in x_copy; the operation Remove_Any
to remove and return an arbitrary implementation-determined
element, which is needed for functional completeness of this
component [7] in the absence of an accompanying iterator; the
function operation Is_Member to test set membership; and the
function operation Size to determine the number of elements.
In operation specifications, the prefix “#” on a variable name

in a postcondition denotes the parameter’s incoming value.
Function operations may not change the values of their
arguments, so this fact is not specified explicitly.

Two important points must be kept in mind. First, there
are no hidden references here. The simplicity of the
specification is the result neither of hoping/assuming that
there are no aliases (i.e., aliases really aren’t possible), nor of
syntactic sugar that makes s, x, #s, etc., simply appear to act
like mathematical variables rather than the names of objects
(i.e., they really do act like mathematical variables). This
might surprise readers who are used to similar-looking
specifications that deal with references. Second, the only other
operations that are available for a Set type are those available
for any type in Resolve: Clear, which resets a variable to an
initial value for its type, and a swap operator “:=:” that
exchanges the values of two variables of the same type [8].
Assignment “:=” is available only when the right-hand side i s
a call to a function operation. Readers who are unfamiliar with
this style of programming under design-by-contract—value
types only, built-in swapping but not variable-to-variable
assignment, fully parameterized components, etc.—also might
be surprised to learn that it is possible and practical to
develop “real” software this way with disciplined use of C++.
In fact, experience with a commercial Windows application of
over 100,000 SLOC developed in this style shows that real
software is not only feasible but also of notably higher quality
than software built using traditional methods [4]. In other
words, this proposal for how to specify iterators is not based
on an unrealistic closed-world assumption; it also is not based
on business-as-usual in C++ or Java.

3. CLIENT AND COMPONENT DESIGN
In our design, an iterator’s abstract model value includes a
string of Items called past, which is essentially the Items
iterated over so far (in the order they have been processed, with
the value of the Item currently “out” of the collection at the
end of this string), a string of Items called future, i.e., those to
be iterated over in the future (in the order to be processed,
unless the iteration terminates early), and a set called original,
which is the original value of the Set over which iteration i s
being done. For the complete rationale behind this style of
design, see [8]. The formal specification is on the next page
(Section 5). Here is a fragment of a typical client program that
iterates completely over the Set s:

Start_Iterator (i, s, x)
loop
maintaining
i.past * i.future =
#i.past * #i.future and

<x> is suffix of i.past and
i.original = #i.original

decreasing
|i.future|

while Length_Of_Future (i) > 0 do
Get_Next_Item (i, x)
/* process x, with no net change to it */

end loop
Finish_Iterator (i, s, x)

Bracketing calls to Start_Iterator and Finish_Iterator
move the elements of the original Set s into the Set_Iterator i

77

and back again. This prevents interference between iteration
over i and interleaved modifications to s: client code that does
this might be useless because the changes to s are lost when
Finish_Iterator executes, but that client is not necessarily
incorrect. Users of C++ or Java or other similar iterators might
find this behavior unsettling. However, possible interference
between interleaved modifications to a collection and iteration
over it leads to informal and difficult-to-specify warnings in
component libraries, such as this one for the remove method in
the java.util package, interface Iterator<E> [5]:

The behavior of an iterator is unspecified if the
underlying collection is modified while the iteration is in
progress in any way other than by calling this method.

We did not feel obligated to keep such problematic
behavior regardless of its familiarity (in 2006 even more so
than in 1994), opting instead for simpler, easily explicable
behavior that can be specified without introducing either new
specification constructs or extra-specificational warnings.

Start_Iterator records the value of x in the string i.past at
the start of the loop—important to meet the precondition of
the first call of Get_Next_Item. Parsimony, as well as a Resolve
design rule urging “conservation of data”, suggest that
eventually x should have this value again after completion of
Finish_Iterator. The loop invariant is that the concatenation
of i.past and i.future does not change, that i.original does not
change, and that the last entry in i.past equals x. Of course,
there is more to the loop invariant to prove the correctness of
what the client program is doing while iterating over the
elements of s, but this is the part required to show that the
iterator i is being used properly.

Given the stylized nature of the client code, it is easy to
imagine special iteration syntax for collections, such as that
now available in Java, but with a semantics that matches this
common interface model [1] for iterators rather than Java’s
Iterable<T> and Iterator<E> interfaces.

4. REFERENCES
[1] Edwards, S.H., “Common Interface Models for Reusable

Software”, Intl. J. of Softw. Eng. and Knowledge Eng. 3, 2
(June 1993), 193-206.

[2] Edwards, S.H., Heym, W.D., Long, T.J., Sitaraman, M., and
Weide, B.W., “Specifying Components in RESOLVE,”
Software Eng. Notes 19, 4 (October 1994), 29-39.

[3] Ernst, G.W., Hookway, R.J., and Ogden, W.F., “Modular
Verification of Data Abstractions with Shared
Realizations”, IEEE TSE 20, 4 (Apr 1994), 288-207.

[4] Hollingsworth, J.E., Blankenship, L., and Weide, B.W.,
“Experience Report: Using RESOLVE/C++ for Commercial
Software”, Proc. ACM SIGSOFT 8th Intl. Symp. on the
Foundations of Softw. Eng., ACM Press, 2000, 11-19.

[5] java.util Package, Interface Iterator <E>, remove Method
Detail, http://java.sun.com/j2se/1.5.0/docs/api/java/util/-
Iterator.html, viewed 6 Oct. 2006.

[6] Resolve/C++, http://www.cse.ohio-state.edu/sce/now,
viewed 6 Oct. 2006.

[7] Weide, B.W., Ogden, W.F., and Zweben, S.H., “Reusable
Software Components”, in Advances in Computers, vol.
33, M.C.Yovits, ed., Academic Press, 1991, 1-65.

[8] Weide, B.W., Edwards, S.H., Harms, D.E., and Lamb, D.A.,
“Design and Specification of Iterators Using the
Swapping Paradigm,” IEEE TSE 20, 8 (August 1994), 631-
643.

5. APPENDIX: THE SPECIFICATION
contract Set_With_Iterator_Template

enhances Set_Template
type family Set_Iterator is modeled by (

past: string of Item,
future: string of Item,
original: finite set of Item

)
exemplar i
initialization ensures
i = (< >, < >, { })

operation Start_Iterator (i: Set_Iterator,
s: Set, x: Item)

ensures
there exists f: string of Item
(elements (f) = #s and
 |f| = |#s| and

 i = (<x>, f, #s)) and
s = { } and
x = #x

operation Finish_Iterator (
i: Set_Iterator, s: Set, x: Item)

requires
<x> is suffix of i.past

 ensures
is_initial (i) and
s = #i.original and
<x> is prefix of #i.past

operation Get_Next_Item (i: Set_Iterator,
x: Item)

requires
i.future /= < > and
<x> is suffix of i.past

 ensures
there exists f: string of Item
(#i.future = <x> * f and
 i = (#i.past * <x>, f, #i.original))

operation Length_Of_Future (
i: Set_Iterator): Integer

ensures
Length_Of_Future = |i.future|

end Set_With_Iterator_Template

78

Iterator Specification with Typestates

Kevin Bierhoff
Institute for Software Research

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213, USA

kevin.bierhoff @ cs.cmu.edu

ABSTRACT
Java iterators are notoriously hard to specify. This paper
applies a general typestate speci�cation technique that sup-
ports several forms of aliasing to the iterator problem. The
presented speci�cation conservatively captures iterator pro-
tocols and consistency rules. Two limitations of the speci�-
cation are discussed.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Speci�ca-
tion�Languages; D.2.2 [Software Engineering]: Design
Tools and Techniques�Modules and interfaces; D.2.4 [Soft-
ware Engineering]: Software/Program Veri�cation

General Terms
Design, languages, veri�cation

Keywords
Iterator, typestate, speci�cation, aliasing, veri�cation

1. INTRODUCTION
The Java Collection API de�nes various rules for using

iterators. It de�nes a protocol for accessing individual it-
erators. It also imposes restrictions on modifying iterated
collections in order to keep iterators consistent. Similar rules
are de�ned for C# enumerators.
Typestates augment the �xed type of a (mutable) object

with a variable �condition� that describes the object's ab-
stract state in its lifecycle [7]. A type system like Fugue's
[4] that is based on this idea lets the programmer essen-
tially de�ne a state machine for each class. However, Fugue
cannot fully capture iterator behavior due to its restrictions
regarding aliasing and non-determinism.
This paper presents a speci�cation of Java iterators based

on a technique for typestate speci�cations in the presence of
aliasing. The following section introduces some of the key

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Fifth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2006), November 10–11, 2006, Port-
land, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11 ...$5.00.

concepts of this technique. The actual iterator speci�cation
is presented in section 3. Limitations of the speci�cation are
discussed in section 4 and section 5 concludes.

2. TYPESTATE SPECIFICATIONS
This section introduces a general technique for typestate

speci�cations to the extent necessary for specifying iterators.

Hierarchical state spaces. We de�ne orthogonal state di-
mensions with sets of mutually exclusive states [2]. The idea
is to model separate aspects of object behavior separately.
For example, we model Java iterators with three orthogonal
dimensions (�gure 1). At runtime, an iterator object will
be in exactly one of the states from each dimension. The
root state alive basically stands for �any state� and can be
re�ned in an arbitrary number of dimensions. Similarly, a
dimension stands for �any state� in that dimension.
States and dimensions are explicitly de�ned as part of an

interface. For example, the next dimension depicted in �gure
1 could be de�ned as follows.

states available, end refine alive as next

Dimensions or states do not correspond to implementation
�elds but information about �elds can be tied to states, al-
lowing implementation veri�cation (see section 3.5).

Access permissions. Di�erent variables could alias the
same object and care must be taken to keep the �views�
of those aliases onto the object consistent. Our approach
is to associate variables with access permissions that are
guaranteed to remain consistent.
A permission perm(x, n, A) grants di�erent levels of access

to a part n of the state space (e.g., a state dimension) to
a variable x. Permissions optionally carry additional infor-
mation A about the exact state inside the part of the state
space they cover (omitted otherwise). We use the following
access levels.

• unique permissions guarantee that the variable is the
only one that has access.

• full permissions guarantee that the variable is the only
one that can change state.

• pure permissions give read-only access. There may be
other pure permissions and at most one full permission
around.

79

76 5401 23alive Legend: 76 5401 23state

next

44iiiiiiiiiiiiiiiiiiiiiii
previous

OO

mode

eeKKKKKKKKKK

dimension

re�nement

OO

76 5401 23available

;;vvvvvvvvv 76 5401 23end

OO

76 5401 23unavailable

99rrrrrrrrrr 76 5401 23retrieved

OO

76 5401 23readonly

OO

76 5401 23modifying

eeKKKKKKKKKK

Figure 1: Iterator state space

As an example, pure(this, next, available) represents a pure
permission on the next dimension of an (Iterator) receiver
that is currently in the available state.
We use fractions [3] to keep track of splits. This lets

us �collect� the full and all pure permissions and regain a
unique permission. We omit fractions in speci�cations if they
do not change (these permissions are universally quanti�ed
for all fractions).

Method specifications. Methods are speci�ed with the de-
cidable multiplicative-additive fragment of linear logic [5]
(MALL). Pre- and post-conditions are separated with a lin-
ear implication (() and use conjunction (⊗), internal choice
(&), and external choice (⊕). We include quanti�ers for re-
ceiver this and return value result to make speci�cations
self-su�cient. In one case we explicitly quantify over frac-
tions.
The following example speci�es the hasNext method for

Java iterators. It requires a pure permission for the receiver's
next dimension. The post-condition on the right-hand side of
the implication is an external choice between conjunctions.
The external choice indicates that the caller has no in�uence
on whether hasNext will return true or false.

∀this : Iterator. ∃result : boolean.
pure(this, next) ((pure(this, next, end)⊗ result = false)

⊕ (pure(this, next, available)⊗ result = true)

The expressiveness of linear logic speci�cations is similar to
our earlier work based on union and intersection types [2].
Tracking permissions with linear logic ensures that permis-
sions cannot be duplicated. This is essential for sound static
veri�cation in a permission-based approach.
The notation used in this paper is fully explicit for clarity

but we envision a more practical surface notation. In partic-
ular, quanti�ers are implied by standard method signatures
(see �gure 2). Permissions could by default apply to the
receiver or the position of a permission could imply which
variable it applies to [2].

3. JAVA ITERATOR SPECIFICATION
This section presents an iterator speci�cation using the

techniques introduced in the last section. We state assump-
tions and goals before specifying iterators and iterables. Fi-
nally, we discuss how the speci�cation can be used in veri�-
cation.

3.1 Assumptions
This speci�cation assumes single-threaded execution. We

also assume that a unique permission is needed to modify a

collection directly. This can be enforced with an appropri-
ate speci�cation of modifying methods in the Collection
interface (which extends Iterable, speci�ed below).

3.2 Specification Goals
Goals of the presented speci�cation include the following.

• Allow creating an arbitrary number of iterators over
collections (�iterables�).

• Invalidate iterators before modi�cation of the iterated
collection.

• Capture the usage protocol of Java iterators.

3.3 Specifying Iterators
The Iterator speci�cation is primarily concerned with

capturing the protocol for using iterators (�gure 2). In or-
der to capture the expected usage of the hasNext and next
methods we introduce a state dimension next with mutu-
ally exclusive states available and end. Calling hasNext con-
ceptually performs a dynamic state test on this dimension:
a true (false) return value corresponds with the available
(end) state. A subsequent Boolean test on the return value
allows a client to deduce the state of the iterator.
Notice that we do not change state with a call to hasNext,

expressed by only requiring a pure permission for this call.
Conversely, a call to next can potentially change the state
of the next dimension and therefore needs a full permission
to the receiver. It requires the next element to be available.
Which of the two states in the next dimension will apply
after the call is unknown. Thus our speci�cation enforces
the characteristic alternation of calls to hasNext and next.
The speci�cation of remove requires two additional state

dimensions. The mode dimension characterizes iterators as
readonly or modifying. This dimension is immutable in the
sense that an iterator cannot change between these states.
The remove method can only be called on modifying itera-
tors. Notice how the speci�cation preserves that state like a
side condition. With regard to the other dimension, remove
prescribes that the previous element must be retrieved in or-
der to remove it, making it also unavailable. Notice that
the speci�cation for next changes the previous dimension to
retrieved. This enforces that remove can be called at most
once after each call to next. (A newly created iterator will
be in the unavailable state.)

3.4 Specifying Iterables
The Iterable interface is used to create iterators. We de-

�ne two cases for this method. One case creates a read-only

80

interface Iterator<c : Iterable, g : alive→ Fract> {
states available, end refine alive as next
states unavailable, retrieved refine alive as previous
states readonly, modifying refine alive as mode

boolean hasNext() :
∀this : Iterator. ∃result : boolean.

pure(this, next) ((pure(this, next, available)⊗ result = true)
⊕ (pure(this, next, end)⊗ result = false)

Object next() :
∀this : Iterator. ∃result : Object.

full(this, previous)⊗ full(this, next, available) (
full(this, previous, retrieved)⊗ full(this, next)⊗ pure(result, alive)

void remove() :
∀this : Iterator.

full(this, previous, retrieved)⊗ pure(this,modifying) (full(this, previous, unavailable)⊗ pure(this,modifying)

void finalize() :
∀this : Iterator.

(unique(this, alive, readonly) (pure(c, alive, g)) & (unique(this, alive,modifying) (full(c, alive, g))
}

Figure 2: Iterator interface speci�cation

iterator and divides the fraction on the receiver's permis-
sion in half. The second half is given as a pure permission
to the resulting readonly iterator. The other case requires a
unique permission to the receiver in order to create a mod-
ifying iterator. Only a pure permission to the receiver is
retained. Notice that our iterators are parameterized with a
collection and a fraction (�gure 2). These parameters help
describing an iterator's permission to a collection.
Calling iterator with a full permission will always yield

a read-only iterator (because only the �rst case applies).
When calling it with a unique permission, on the other hand,
both cases could apply. Thus iterator conceptually returns
a readonly & modifying iterator, i.e., one of the two at the
caller's choice, but not both. Another call to iterator forces
readonly while calling remove on an iterator forces it to be
modifying. As would be expected, retrieving elements from
an iterator does not force one or the other. Thus we delay
the choice between these two cases until it is inevitable. A
full reference to an iterable indicates the existence of read-
only iterators. A pure reference to an iterable indicates a
modifying iterator.

3.5 Verification
Clients that use iterators as speci�ed above can be veri�ed

by tracking linear permissions of bound variables. If rea-
soning about a decidable fragment of linear logic (MALL),
dependently typed objects, and splitting and coalescing of
permissions can be automated then veri�cation can proceed
automatically. Capabilities like Fugue's �state predicates�
[4] let us reason about correctness of iterator implementa-
tions as well.
The last section described how speci�cations of Iterable

and Iterator allow creating and using iterators in the right
way. The question arises, how can a collection ever be mod-
i�ed again after an iterator was created? And how can we

create a modifying iterator after other iterators were cre-
ated?
A simple variable liveness analysis can determine when an

iterator is no longer needed. If a variable dies that carries a
unique permission to an iterator then the iterator becomes
inaccessible and is subject to garbage collection. As soon as
the iterator is dead we can get back its permission to the
underlying collection.
We use the �nalizer to specify this. A finalize method

is de�ned for all Java objects and intended to be called in
the process of garbage collection to release resources. We
use it to release the permission to the iterated collection
(�gure 2; notice how the permission depends on the itera-
tor's mode). Once released, the permission can be coalesced
with any other permissions to the collection. Finalizing all
created iterators restores the original unique permission to
the collection, enabling direct modi�cations and creation of
a modifying iterator.

4. LIMITATIONS AND COMPARISON
We identi�ed the following two limitations of the speci�-

cation presented here.

• The speci�cation prevents the following legal use of
Java iterators. A client can create two iterators and
iterate over them in parallel until it decides to start
modifying the collection through one of the iterators.
This is legal if the other iterator is never used again.
Our speci�cation does not permit the modi�cation be-
cause creating two iterators forces both to be read-
only (see above) unless the second one is created after
the �rst one dies. We are working on overcoming this
problem by implicitly changing the iterator mode.

• As discussed above, the speci�cation requires collec-
tions to be linear in order to be modi�ed directly. This

81

interface Iterable {
Iterator iterator() :
∀this : Iterable.

(∀g : alive→ Fract. ∃result : Iterator<this, g/2>.
full(this, alive, g) (full(this, alive, g/2)⊗ unique(result, alive, readonly))

& (∃result : Iterator<this, alive 7→ 1/2>.
unique(this, alive) (pure(this, alive, alive 7→ 1/2)⊗ unique(result, alive,modifying))

}

Figure 3: Iterable interface speci�cation

is stronger than one would expect; a full permission to
the collection should su�ce. The problem is that it-
erators expect collections to be immutable. We could
model this with a state change of the collection (from
�mutable� to �immutable�), but then we would need a
dynamic test to know when the collection is mutable
again. Instead we use fractions to count the number
of iterators. Thus we trade states against aliasing re-
strictions and ease of use against �exibility in order
to meet the Java speci�cation (that does not include
dynamic state tests on iterators).

The presented iterator speci�cation uses a general tech-
nique that allows veri�cation of iterator clients and imple-
mentations. We are aware of general techniques for func-
tional speci�cation (e.g. the JML [6], Spec# [1]) that rely
on manual veri�cation or automatic decision procedures but
that are undecidable in general. Our technique supports cer-
tain forms of aliasing and is restricted to reasoning about
typestates. The technique can capture many uses of itera-
tors but we pay (modulo a cleverer speci�cation) with the
limitations mentioned above.

5. CONCLUSIONS
This paper presents a speci�cation of Java iterators that

may allow automatic veri�cation of clients. The speci�ca-
tion is conservative in that it respects the rules de�ned in
the Java Collection API. To this end it limits aliasing of
collections beyond what seems necessary and forbids a legal
(albeit unusual) use of iterators.

6. ACKNOWLEDGMENTS
The author wishes to thank Ciera Christopher, Nels Beck-

man, and Jonathan Aldrich for helpful feedback on an ear-
lier draft of this paper. This work was supported in part
by NASA cooperative agreement NNA05CS30A, NSF grant
CCF-0546550, and the Army Research O�ce grant num-
ber DAAD19-02-1-0389 entitled �Perpetually Available and
Secure Information Systems�.

7. REFERENCES
[1] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino,

and W. Schulte. Veri�cation of object-oriented
programs with invariants. Journal of Object Technology,
3(6):27�56, June 2004.

[2] K. Bierho� and J. Aldrich. Lightweight object
speci�cation with typestates. In ACM Symposium on
the Foundations of Software Engineering, pages
217�226, Sept. 2005.

[3] J. Boyland. Checking interference with fractional
permissions. In R. Cousot, editor, Static Analysis: 10th
International Symposium, volume 2694 of Lecture Notes
in Computer Science, pages 55�72. Springer, 2003.

[4] R. DeLine and M. Fähndrich. Typestates for objects.
In European Conference on Object-Oriented
Programming. Springer, 2004.

[5] J.-Y. Girard. Linear logic. Theoretical Computer
Science, 50:1�102, 1987.

[6] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
design of JML: A behavioral interface speci�cation
language for Java. Technical Report 98-06-rev28, Iowa
State University, Department of Computer Science,
July 2005.

[7] R. E. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliability.
IEEE Transactions on Software Engineering,
12:157�171, 1986.

82

Reasoning About Iterators With Separation Logic

Neelakantan R. Krishnaswami
Carnegie Mellon University

neelk@cs.cmu.edu

ABSTRACT
Separation logic is an extension of Hoare logic which per-
mits reasoning about imperative programs that use shared
mutable heap structure. In this note, we show how to use
higher-order separation logic to reason abstractly about an
iterator protocol.

Categories and Subject Descriptors
D.2 [Software/Program Veri�cation]: Correctness Proofs

General Terms
Languages, Veri�cation

Keywords
separation logic, iterators, aliasing, challenge problem

1. JAVA STYLE ITERATORS
The iterator interface[3] in Java works roughly as follows.

First, we have a mutable collection type. This type supports
a number of operations, some of which like add-ing an ele-
ment to a collection will mutate the collection, and others,
like checking to see if it is empty, which do not modify the
collection.
To get the elements of a collection, we create another mu-

table object called an iterator. This object has a method
next, which returns a new element of the collection each
time it is called, �nally failing when there are no more ele-
ments within it.
However, both the collection and the iterator are imper-

ative objects, and correct usage of an iterator also requires
observing some additional restrictions to ensure that the
state of an iterator and its underlying collection remain in
sync. Speci�cally, a client program:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Fifth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2006), November 10–11, 2006, Port-
land, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11 ...$5.00.

• may create as many iterators on a single collection as
they like,

• may freely call any methods on the collection that do
not change the collection's observable state (such as
empty),

• may freely call next on the iterators in any order, and

• may NOT call next on an iterator after calling add

on the underlying collection.

The general idea is that an iterator maintains a pointer
into some part of the collection during its traversal, and that
updating the collection may cause the iterator's reference to
point to an incorrect part of the collection. So while an
iterator is live, dangerous method calls to its underlying
collection should be forbidden, and only safe method calls
permitted.

2. SEPARATION LOGIC
Separation logic [5, 6] is an extension of Hoare logic [4]

intended to simplify reasoning about aliasing with mutable
data structures. We have developed a version of separation
logic that permits reasoning about imperative programs in
high level languages (such as Java or ML), and which uses
features of higher-order logic [2] to reason abstractly about
high-level aliasing behavior.
Separation logic extends the logical language of precondi-

tions and postconditions with two new logical connectives,
the separating conjunction �A ∗ B�, and the magic wand
�A −∗ B�. Intuitively, A ∗ B means that A holds in one
part of the heap, and B holds in a disjoint part of the heap.
This contrasts with the regular conjunction A ∧ B, which
means that both A and B hold in the current heap. The
magic wand A −∗ B means that if you added a piece of
storage which validated A to the current heap, the whole
thing would validate B. (Likewise, the informal meaning
of A ⊃ B is that if A holds in the current heap, then B
will too.) Finally, the separating and ordinary connectives
can be freely mixed, which lets us describe quite complex
aliasing behaviors.
We use the propositions of separation logic to describe

the pre- and post-conditions of commands, and describe
the behavior of commands with Hoare triples of the form
{P} c {a : τ . Q}. The P is the state the heap must be in be-
fore the command can be run, and Q describes the changed
heap after the command �nishes. Since side-e�ecting oper-
ations can also return values, we use the a : τ notation to
name the return value in the postcondition.

83

∃new_coll, size, add, new_iter, next.
∃coll : ((ref list× ref N)× seq nat× prop) ⇒ prop.
∃iter : (ref list× (ref list× ref N)× seq nat× prop) ⇒ prop.

{>} new_coll() {a : (ref list× ref N). ∃P. coll(a, [], P)} and

∀P, c, x, xs. {coll(c, xs, P)}
add(c, x)
{a : 1. ∃P ′. coll(c, x :: xs, P ′)} and

∀P, c, xs. {coll(c, xs, P)}
empty(c)
{a : bool. coll(c, xs, P)} and

∀c, xs, P. {coll(c, xs, P)}
new_iter(c)
{a : ref list. iter(a, c, xs, P)} and

∀i, c, xs, P. {iter(i, c, xs, P)}
next(i)
{a : 1 + nat. iter(i, c, xs, P)} and

∀i, c, xs, P. {iter(i, c, xs, P) ⊃ coll(c, xs, P)∗
coll(c, xs, P)−∗ iter(i, c, xs, P)}

Figure 1: Iterator Speci�cation

Since a triple only speci�es the behavior of a single rou-
tine, we combine triples into speci�cations, which are logical
formulas that use triples as their atomic propositions. So we
can specify an interface to a module by taking the conjunc-
tion of the triples for each operation, and then existentially
quantifying over the implementations.

3. THE ITERATOR PROBLEM

3.1 Iterator Interface Specification
We give a concrete example of this idea in Figure 1, which

is the speci�cation for iterators. In this example, our overall
collection type is the pair ref list× ref N. The �rst �eld has
type ref list, which is the type mutable linked lists of inte-
gers, and the second �eld is a pointer to a natural number.
This �eld tracks the number of times a harmless method
like empty, which helps illustrate the fact that the concrete
state of an object can change even while its abstract state
remains the same.
To describe the heap behavior, we introduce a pair of ex-

istentially quanti�ed predicates, coll and iter. These predi-
cates permit us to talk about the mutable state associated
with collections and iterators, without revealing their con-
crete implementation. The predicate coll(c, xs, P) asserts
that the collection object c represents the abstract sequence
xs, and that it is in an abstract state P . We represent
abstract states using propositions, which is why we need
higher-order logic. The assertion iter(i, c, xs, P) asserts that
i is an iterator over the collection c with elements xs and
abstract state P .
For example, the speci�cation

{>} new_coll() {a : τc. ∃P. coll(a, [], P)}

states that starting from any heap, calling new_coll will
return a new mutable list and heap structure corresponding
to that list. The speci�cation

{coll(c, xs, P)} empty(c) {a : bool. coll(c, xs, P)}

1 {coll(c, xs, P)}
2 letv b = empty(c) in
3 {coll(c, xs)}
4 letv i1 = new_iter(c) in
5 {iter(i1, c, xs, P)}
6 {(coll(c, xs, P) ∗ (coll(c, xs, P)−∗ iter(i1, c, xs, P))}
7 letv i2 = new_iter(c) in
8 {iter(i2, c, xs, P) ∗ (coll(c, xs, P)−∗ iter(i1, c, xs, P))}
9 {coll(c, xs, P)∗

(coll(c, xs, P)−∗ iter(i1, c, xs, P))∗
(coll(c, xs, P)−∗ iter(i2, c, xs, P))}

10 letv b′ = empty(c) in
11 {coll(c, xs, P)∗

(coll(c, xs, P)−∗ iter(i1, c, xs, P))∗
(coll(c, xs, P)−∗ iter(i2, c, xs, P))}

12 {iter(i1, c, xs, P))∗
(coll(c, xs, P)−∗ iter(i2, c, xs, P))}

13 letv v = next(i1) in
14 {iter(i1, c, xs, P))∗

(coll(c, xs, P)−∗ iter(i2, c, xs, P))}
15 {coll(c, xs, P)∗

(coll(c, xs, P)−∗ iter(i1, c, xs, P))∗
(coll(c, xs, P)−∗ iter(i2, c, xs, P))}

16 {iter(i2, c, xs, P))∗
(coll(c, xs, P)−∗ iter(i1, c, xs, P))}

17 letv v = next(i2) in
18 {iter(i2, c, xs, P))∗

(coll(c, xs, P)−∗ iter(i1, c, xs, P))}
19 {coll(c, xs, P)∗

(coll(c, xs, P)−∗ iter(i1, c, xs, P))∗
(coll(c, xs, P)−∗ iter(i2, c, xs, P))}

20 letv _ = add(c, x) in
21 {∃Q. coll(c, xs, Q)∗

(coll(c, xs, P)−∗ iter(i1, c, xs, P))∗
(coll(c, xs, P)−∗ iter(i2, c, xs, P))}

Figure 2: Iterator Client

asserts that the empty function will return a boolean, and
that it will leave the abstract state unchanged. Note that
we could give a more precise speci�cation (e.g., that the
empty function returns true if the collection is empty and
false otherwise). We choose not to in order to focus this
example on aliasing.
By way of contrast, the speci�cation for add

{coll(c, xs, P)} add(c, x)
˘
a : 1. ∃P ′. coll(c, x :: xs, P ′)

¯
says that adding an element to the collection will alter the
abstract state of the object. We existentially quantify over
the abstract state in the postcondition, to show we can no
longer assume that P ′ is the same as P .
The speci�cation for new_iter

{coll(c, xs, P)} new_iter(c) {a. iter(a, c, xs, P)}

says that if we start with a collection c, then we can consume
it to construct an iterator.
The next function has the speci�cation

{iter(i, c, xs, P)} next(i) {a : 1 + nat. iter(i, c, xs, P)} ,

which says that if we have an iterator i, then next(i) will
give us an integer or signal a failure. As with empty, we
do not model the behavior of the iterator in any further
detail � the spec could easily be re�ned further, but that
detail would not be relevant to the issue of reasoning about
aliasing. The detail that is relevant is the fact that the
iterator preserves the abstract collection state P , which is

84

how we describe the fact that the iterator does not modify
the underlying collection.
That said, a natural question is how we can create two

iterators on the same collection, because the new_iter func-
tion transforms a coll(c, xs) state to an iter(i, c, xs, P) state,
which means that the precondition to call new_iter no longer
holds. This is where the sharing axiom comes into play �
the �nal invariant in the speci�cation:

iter(i, c, xs, P) ⊃[coll(c, xs, P)∗
coll(c, xs, P)−∗ iter(i, c, xs, P)]

is a separation logic formula that describes how to recover a
collection from an iterator state. It says that if we have an
iterator state iter(i, c, xs, P), then that state can be viewed
as two disjoint pieces, one of which is the original collection
(with the invariant P maintained), and one piece that can
be combined with the collection to restore the iterator.
The sharing axiom makes use of the fact we have both

standard implication and separating implication available
in the same logic. We use implication to reason that the
same piece of state can be viewed in multiple ways, and the
separating implication to reason about one isolated part of
the state.

3.2 Iterator Client Usage
We can see an example of how a client would make use

of this speci�cation in Figure 2. On line 1, we see that the
precondition for our program is that the variable c holds a
collection. On line 4, we create an iterator i1, consuming the
collection to produce an iterator, as seen in the state on line
5. We now apply the sharing axiom on line 6 to break the
iterator state into two pieces, which lets us create a second
iterator bound to i2.
The program state on line 8 contains an iterator for i2,

and some state that will let us reconstruct i1's iterator. On
line 9 we apply the sharing axiom once more, to break out
the collection state again, and this lets us call empty on line
10.
On line 12, we use the collection and an i1's iterator frag-

ment to recover the precondition for calling next(i1) on line
13, and then on lines 14-16, we apply the sharing axiom and
combine the iterator state fragment for i2, so that we can
call next(i2) on line 17.
The informal idea should be coming into focus now � we

are transferring ownership of the collection between the dif-
ferent collections, using the sharing axiom to get a collection
out of an iterator, and the deduction rule for magic wand
(A ∗ (A−∗ B) entails B) to put it back in.
On line 18 and 19, we once again use the sharing axiom

to disassemble the iterator and get back the collection, and
then call add(c, x) on line 21. This gives us a state in which
∃Q. coll(c, x :: xs, Q) holds. We can no longer apply the sep-
arating implication law to get a full iterator state, because
we need a hypothesis of the form coll(c, xs, P) to recover an
iter state, and we don't know whether Q is the same as P .
As a result, we can no longer call next on either i1 or i2 any
longer, just as we desire.
So the Hoare triples and sharing axioms put us in a situ-

ation where we can create multiple iterators, and can freely
call methods on the collection which don't change its ab-
stract state, but which also enforce the property that there

can be no calls to next after modifying the collection � and
the client was able to do this without knowing anything
about the details of the internal heap structure of the col-
lection.
Interestingly, the abstract states in our spec are reminis-

cent of a consistency check the Java collection libraries per-
form. The Java libraries keep a sequence number for each
collection, and update it when the collection is modi�ed.
Iterators save the sequence number when they are created,
and will raise a runtime error if the underlying collection's
sequence number ever di�ers from their saved value. With
our speci�cation, the abstract state changes whenever we
call a dangerous method, and our (static) veri�cation is kept
from proceeding.

3.3 Iterator Implementation
Finally, in Figure 3, we give an example implementations

for this speci�cation. The speci�cation is a big existential
quanti�er, and so our implementations are the witnesses to
this existential type. For the abstract program variables
(such as next or empty) we give function de�nitions. A
collection is a linked list and a counter, and an iterator is a
pointer to the interior of a list.
Most of these de�nitions manipulate imperative linked

lists in the obvious way, but it's worth examining empty.
A call to this function modi�es the state of the collection,
but in a safe way. It updates the counter, but does not mod-
ify the linked list, so iterators over the collection will not be
invalidated. More elaborate examples might be something
like a collection that does memoization or a splay tree that
rebalances after each query. In each of these cases, the ab-
stract state of the object does not change, even though its
in- memory representation might.
We demonstrate this idea in the de�nitions of the exis-

tentially quanti�ed predicates. These predicate de�nitions
are given as functions of their input, which take in data and
return propositions. The de�nition of the coll(c, xs, P) pred-
icate is an assertion that a collection value's �rst �eld points
to an integer counter, and that its second �eld is a linked
list representing xs, and is also in state P . The linked_list
predicate is a recursive function on xs, which permits us to
de�ne an inductive predicate characterizing linked lists.
The iter predicate, for example, is an assertion stating

that the iterator points to an interior pointer of the linked
list, and that the predicate variable P is preserved for the
whole list.
In this example, we have focused on being able to ab-

stractly specify and reason about the imperative aspects of
modules. Of course, one would also like the iterator speci�-
cation to be abstract in the implementation types used for
collections and iterators (here ref list × ref N), i.e., to have
existential quanti�cation over types to model abstract data
types. We plan on addressing this in future work.

4. CONCLUSIONS
Theorem proving in higher-order logic has a long and

notorious history of being very di�cult to automate, and
the addition of separation logic will not make this task any
easier. However, di�erent kinds of partial automation are
probably feasible, and what follows are hopefully-educated,
possibly-wild, guesses about the di�culty of di�erent levels
of automation.
The simplest level is just verifying that an annotated pro-

85

gram is actually correct with respect to our program logic.
This should be quite straightforward to implement using a
tactical theorem prover such as Coq or Isabelle, though we
have not actually implemented this.
The next easiest task will be to automatically verify that

a client program respects a given speci�cation. The sorts
of manipulations we performed in the sample client code
did not make essential use of higher-order logic, since the
predicate variables representing abstract states were never
instantiated. Assuming this is a general pattern, checking
client code should not require more know-how than checking
programs that use �rst-order separation logic. This is still
a fairly di�cult problem, though substantial progress has
been made with Smallfoot [1].
Automatically checking that implementations satisfy a given

speci�cation is almost certainly a much harder problem. We
must construct functions that show how to realize abstract
predicates (such as coll(c, xs, P)), and �nding them can re-
quire real creativity. However, it may be possible to par-
tially automate checking the function bodies given all the
predicate de�nitions.
Finally, inferring speci�cations and module boundaries

from programs seems completely out of reach, since the rel-
evant abstraction boundaries simply are not evident in the
code, and even skilled human programmers �nd identifying
them a very di�cult task.
However, the main purpose of this line of research is not

to produce ready-to-use tools. Instead, we are trying to
construct a very rich speci�cation language capable of de-
scribing how aliasing is used as concisely and naturally as
possible. Our hope is that having simple mathematical char-
acterizations of the realistic aliasing patterns will make it
easier to construct and validate more limited (and hence
more automatable) methods that verify exactly and only
the forms of aliasing used in well structured programs.

5. REFERENCES
[1] J. Berdine, C. Calcagno, and P. W. O'Hearn. Smallfoot:

Modular automatic assertion checking with separation
logic. In Proceedings of the Fourth International
Symposium on Formal Methods for Components and
Objects, Amsterdam, The Netherlands, 2001.

[2] B. Biering, L. Birkedal, and N. Torp-Smith.
BI-hyperdoctrines and higher order separation logic. In
Proc. of ESOP 2005: The European Symposium on
Programming, pages 233�247, Edinburgh, Scotland,
April 2005.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Elements of reusable object-oriented
software. Addison-Wesley, 1995.

[4] C. A. R. Hoare. An axiomatic approach to computer
programming. Communications of the ACM,
12(583):576�580, 1969.

[5] S. Ishtiaq and P. W. O'Hearn. BI as an assertion
language for mutable data structures. In Proceedings of
the 28th Annual ACM SIGPLAN - SIGACT
Symposium on Principles of Programming Languages
(POPL'01), London, 2001.

[6] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. In Proc. of the 17th Annual
IEEE Symposium on Logic in Computer Science
(LICS'02), pages 55�74, Copenhagen, Denmark, July
2002. IEEE Press.

new_coll () ≡ letv counter = newN0 in
letv list = newlistnil in

(list, counter)

add(c, x) ≡ letv cell = !(fst c) in
letv t = newlistcell in
c := cons(x, t)

empty(c) ≡ letv cell = !(fst c) in
letv _ = increment(snd c) in
listcase(cell, true, (h, t). false)

new_iter(c) ≡ newref list(fst c)

next(i) ≡ letv c = [!i] in
letv cell = [!c] in
letv ans =listcase(cell,None,

(h, t). letv _ = i := t in
Some h) in

ans

coll(c, xs, P) ≡ ∃n. snd c ↪→ n ∗ (linked_list(fst c, xs) ∧ P)

linked_list(c, x :: xs) ≡ ∃c′. c ↪→ cons(x, c′) ∗ linked_list(c′, xs)
linked_list(c, []) ≡ c ↪→ nil

seg(l, l′, x :: xs) ≡ ∃l′′. l ↪→ cons(x, l′′) ∗ seg(l′′, xs)
seg(l, l′, []) ≡ l = l′

iter(i, c, xs, P) ≡ ∃l, n,xs1, xs2.
(P ∧ (seg(fst c, l, xs1) ∗ coll(l, xs2))) ∗
i ↪→ l ∗ snd c ↪→ n ∧
xs = xs1 · xs2

Figure 3: Iterator Implementation

86

87

SAVCBS 2006
POSTER ABSTRACTS

88

Automatic Data Environment Construction for Static
Device Drivers Analysis

(Extended Abstract)

Hendrik Post, Wolfgang Küchlin
University of Tübingen / Symbolic Computation Group

72076 Tübingen, Germany

{post,kuechlin}@informatik.uni-tuebingen.de

ABSTRACT
Linux contains thousands of device drivers that are devel-
oped independently by many developers. Though each in-
dividual driver source code is relatively small�≈10k lines
of code�the whole operating system contains a few million
lines of code. Therefore Linux device drivers o�er a useful
application area for modular analysis.
Our �nding is that despite the precise modeling of most
features of the standard systems programming language C,
model checking software veri�cation tools for C fail to pro-
vide means for modular analysis of device drivers. We in-
spected CBMC [2], SLAM-SDV [3], MAGIC [1], BLAST [4]
and others and found that a rich additional environment
model for every device driver is needed. This model must
provide information on out-of-scope initialized pointers and
complex data structures. We present strategies to automat-
ically create feasible, bounded data environments for Linux
device drivers instead of creating them manually. Our so-
lution di�ers from general interface generation mechanisms
(e.g. CUTE[5]), because is it specialised on bounded model
checking of Linux device drivers written in C. Our contri-
bution is a preprocessing step that extends the usability of
CBMC for modular Linux device driver analysis.

Categories and Subject Descriptors
D.2.4 [Software]: Software Veri�cation�Model Checking ;
D.4.5 [Operating Systems]: Reliability�Veri�cation

General Terms
Veri�cation, Experimentation

Keywords
Linux, Bounded Model Checking, Environment Modelling,
Software Veri�cation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Fifth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2006), November 10–11, 2006, Port-
land, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11 ...$5.00.

1. INTRODUCTION
Software veri�cation is commonly interpreted as the anal-

ysis of a software system concerning latent or possible errors.
Though the degree of precision and the tradeo� between
completeness and a low false-positive rate di�ers, a common
pragmatic aim of veri�cation is to �nd and eliminate errors.
As veri�cation requires lots of resources, it is preferably ap-
plied to systems where a stable, speci�ed behavior of the
software is of high importance.
The problem we identify with modular veri�cation of Linux

device drivers is external data representation. Data ini-
tialization and data usage are performed on multiple op-
erating system layers. The data interface between layers
includes pointers, and especially those that are subject to
pointer arithmetic. Hence modular analysis faces the prob-
lem that pointers are used extensively, but exact information
about their initialization or targets is commonly not avail-
able within the scope of analysis as discussed in Section 2.2.
As many tools for the analysis or even veri�cation of C

programs exist, we aim to provide preprocessing such that
one of these can be used on device drivers. Our sugges-
tion is to provide concrete targets for all externally initial-
ized pointers, whereas all external variables of primitive data
types remain unconstrained symbolic values. This approach
is therefore located between pure abstract static analysis
and concrete software testing.
The tools for the analysis of C programs we explicitly

reviewed are CBMC[2], BLAST [4], Meta-Compilation [9],
SATURN [8], MAGIC[1] and the Static Driver Veri�er from
the SLAM project [3]. The modular analysis tool MAGIC
for example does not support dereferencing of pointers on
the left side of an assignment at all. The analysis performed
with BLAST in [4] has been made possible by writing a test
driver. The static driver veri�er from the SLAM project
[3] also requires a manually created operating system model
prior to analysis. The Meta-Compilation project also put
an extensive amount of work into the generation of a test
environment via abstracting the Linux kernel [9].
Several sophisticated tools for environment generation ex-

ist, though they target di�erent or more general application
areas and hence provide di�erent strategies. Symstra[7] and
CUTE[5] seem closest to our approach. Symstra generates
environments for static analysis as we do, but its current im-
plementation covers only programs written in Java. CUTE
includes a mechanism to expand the object graph on the �y,
should its analysis indicate the necessity. Its approach is a
mixture of Symbolic Execution and Testing while we aim

89

to provide only preprocessing for model checking tools. As
both tools target general applications instead of the limited
area of Linux device drivers, a direct support of common
Linux abstract data types was not considered. Instead of a
general approach we present a minimal environment gener-
ation in order to facilitate the analysis of device drivers.
We chose the software veri�cation tool CBMC as our anal-

ysis backend due to its extensive support of C language fea-
tures as summarized in Section 2.1. We will also discuss
problems when using CBMC for modular analysis.

2. VERIFICATION TOOLS AND TARGETS

2.1 CBMC
CBMC 2.1 is a bounded model checker intended to be

used for the analysis of C programs and Verilog descrip-
tions. When running in C analysis mode, it translates ANSI-
C programs into propositional logic. Loops and recursion
are handled by code unwinding. CBMC supports pointer
arithmetic, integer operators, type casts, side e�ects, func-
tion calls, calls through function pointers, non-determinism,
assumptions, assertions, arrays, structs, named unions, and
dynamic memory. Therefore this tool is a good choice to an-
alyze systems code written in C that makes use of these fea-
tures. CBMC itself is capable of �nding double-free and free-
after-use errors beside bounds and pointer validity checking.
CBMC o�ers an extensive treatment of pointers that es-

sentially tracks the object and the o�set a pointer points
to. Nevertheless two technical problems remain unsolved in
the documentation. First, pointers�when dereferenced�
must point to a valid object. Though this is a reasonable
assumption for the runtime behavior of programs, it is not
useful for modular static analysis of programs where tar-
gets of pointers are often unknown. The second shortcom-
ing is the modeling of possible aliases between pointers to
unknown targets. We illustrate both problems by a short
example:

1: struct person_t {
2: int age;
3: } a_person;
4: void set_age_difference(struct person_t* p1,

struct person_t* p2, int diff) {
5: p2->age = p1->age + diff;
6: assert(p2->age == p1->age + diff);
7: }
8: void main() {
9: struct person_t* p1 = &a_person;
10: struct person_t* p2 = &a_person;
11: set_age_difference(p1, p2, 20);
12: }

The example is arti�cial for the sake of simplicity. In
function set_age_difference() two structs are passed by
reference. The age of the second person's record should be
set to the age of the �rst person's record plus an age di�er-
ence. Line 6 contains a check if the assignment was made
correctly. The assertion is invalid because both pointers may
alias each other. In this case both dereferences of the age
�elds are equal which violates the assertion if diff 6= 0.
The two di�erent entry points for an analysis are main and
set_age_difference. Moreover CBMC allows to either en-
able or disable checks for invalid dereferences of pointers.

The latter feature is almost undocumented. We assume that
disabling pointer checks globally disables checks for null or
uninitialized pointers. We identify four di�erent analyses
entering the module either at main or set_age_difference
and either checking for invalid pointers.

1. Entry at main, Pointer Checks disabled. When CBMC
starts at main, p1 and p2 are explicitely aliased and
passed as a reference to set_age_difference. Hence
dereferencing them is allowed and writing to one of the
pointer targets correctly modi�es the aliased pointer
dereferences as well. The assertion is invalid as ex-
pected.

2. Entry at main, Pointer Checks enabled. This case leads
to the same result as case 1.

3. Entry at set_age_difference, Pointer Checks enabled.
This direct entry re�ects the interleaving of modules
within the Linux kernel where dispatch routines may
be directly called from outside the module, and the
environment as provided by main is unknown. When
set_age_difference is analyzed with enabled pointer
checks, CBMC correctly emits a warning that deref-
erencing the parameters in line 5 might be incorrect.
This is due to the correct modeling that unconstrained
pointers may be null. Though the result is technically
correct it seems more reasonable for modular analysis
to assume that the environment is correctly initialized.

4. Entry at set_age_difference, Pointer Checks disabled.
Dereferencing the parameters is not a problem any
more, but nevertheless the assertion is ful�lled. This is
an incorrect analysis result when the scope of analysis
is limited to set_age_difference. CBMC does not
model a possible aliasing between uninitialized point-
ers.

Cases 3 and 4 o�er signi�cant shortcomings to device driver
analysis. The impact on our work is twofold.
The user of CBMC has two choices which both lead to

disadvantages: the user may globally disable pointer checks
which might only be desirable for interface pointers, but
not for pointers manipulated inside the module. Second,
the user of CBMC faces the problem that alias relationships
induced by an unknown operating system environment are
not modelled or taken into account. This leads to an even
less appropriate analysis. We assume that interface objects
are set up correctly and hence we must perform the correct
initialization before calling the entry function of the module.

2.2 Linux Device Driver Interfaces
Linux device drivers often operate on structs, each of

which represents one device [6]. The generic CD-Rom device
driver cdrom.c, for example, may service several hardware
drives, each represented by one struct cdrom_device_info.
This struct is of course passed by reference to all service
routines found in the driver. The struct is partially listed in
Figure 1. Devices are organized in a linked list via the �eld
struct cdrom_device_info * next. When another system
layer steps into the driver dispatch routines, it passes the
currently serviced device via a reference to a struct. The
struct itself is not initialized within any cdrom driver, but in
other system layers. Invoking a veri�cation tool on any ser-
vice routine in cdrom.c leads to a problem. It is not evident

90

struct cdrom_device_ops {
int (*open) (struct cdrom_device_info *, int);
void (*release) (struct cdrom_device_info *);
int (*drive_status)

(struct cdrom_device_info *, int);
...

};
...
/* Uniform cdrom data structures for cdrom.c */
struct cdrom_device_info {

struct cdrom_device_ops *ops;
struct cdrom_device_info *next;
struct gendisk *disk;
...
int speed; ...

};

Figure 1: The operation interface struct and

the cdrom_drive_info struct listed from �le

drivers/cdrom/cdrom.c of Linux kernel 2.6.15.

that all references passed as a parameter are correctly ini-
tialized. Hence CBMC would correctly emit a warning that
dereferencing one of them may lead to a potential null deref-
erence. Though this message may be suppressed the better
assumption would be to assume that the device structs are
properly initialized.
In the next section we give a solution to this problem using

automatically created data environments.

3. CREATING DATA ENVIRONMENTS
The general approach to create a suitable environment is

to identify potentially uninitialized pointers that are either
declared in the global scope of the module, or parameters to
the analyzed entry point in the module. For each pointer, a
fresh object can be created and the pointer is initialized by
pointing to this object. This strategy is also used in Sym-
stra[7] and CUTE[5]. This could lead to new uninitialized
pointers if the object created is of a pointer type, contains
�elds of pointer type or is an array with elements of pointer
type. In all three cases fresh objects are created for these
pointers as well, up to a bounded object graph depth. This
depth-bound re�ects the size of a recursive data structure,
e.g. a list. For binary trees this bound limits the depth of
the tree. For bounded model checking this depth should be
smaller than or equal to the CBMC bound for loops and
recursion, as a loop iterating over all elements of a list or a
recursive search for an element in a tree won't violate the
unwinding assertions. Then CBMC may capture the exact
behavior of functions on bounded data structures.
We identify two sources of pointers that must be initial-

ized:

1. Pointers within the global scope of the translation unit.

2. Parameters of pointer type within the module entry
function to be analyzed.

The main algorithm performs a breadth-�rst search on
the object graph with bounded depth:

1: worklist = union(global_pointers(file),
parameters(entry_function));

2: object stub_obj; depth = 1;
3: new_worklist = {};
4: while (!is_empty(worklist)

&& depth < depth_bound) {
5: for each pointer p in worklist {
6: stub_obj = create_object_for_pointer(p);
7: create_assignment_for(p,stub_obj);
8: new_worklist = union(new_worklist,

pointer_members(stub_obj);
9: }
10: worklist = new_worklist;
11: new_worklist = {};
12: depth = depth +1;
13:}

The search for uninitialized pointers begins with param-
eters of the entry function and all globally declared point-
ers (line 1). We do not restrict the seed set of pointers to
extern variables (CUTE) as a routine may also rely on ob-
jects created within the module. If the global scope de�nes
nested structs, pointer members of substructs are included
recursively. Then a breadth-�rst search is performed un-
til no new pointers are exhibited or a �xed depth bound
is exceeded (line 4-13). The search follows the well known
worklist pattern.
Some considerations complement the algorithm though

they are not included in the above pseudo-code.

• In order to create a reasonable environment for point-
ers we face the problem that an int * may point to
a single int or to an int []. We propose to decide
whether to create an array or a single object dependent
on a source code analysis that reports if the pointer is
subject to any pointer arithmetic or index operation.
In this case it seems reasonable to create an array of
simple objects instead of a single one.

• If the depth bound terminates our algorithm, we must
decide how the uninitialized pointers in the current
worklist are treated. We suggest that these should be
initialized to null.

• Common abstract data types in Linux can be created
by detailed templates. The most prominent example
is the de�nition of linked lists. List elements are then
required to be structs with one �eld having the type
struct list_head from include/linux/list.h. For
each list implemented in this way, we suggest to create
a bounded stub of this list with pointers pointing to
the next list element. The last element terminates the
list by a null next �eld. For other prede�nied data
types initialization can be accomplished in a similar
fashion.

• Class invariants over primitive data types, e.g. sorted
lists with a int key �eld, can be encoded by assume
statements.

• The unrolling depth of each single data structure may
be independently, non-deterministically chosen.

Using this strategy, aliasing occurs only when it is ex-
plicitely speci�ed by a Linux abstract data type template.
A short example of results produced by our algorithm is
presented in Figure 2. For further aliasing between other
arbitrary objects we o�er a generic model in the next sec-
tion.

91

struct cdrom_device_info_stub1;
struct cdrom_device_info_stub2;
struct cdrom_device_info_stub3;
...
void init_environment() {
// pointer initialization

struct cdrom_device_info *
parameter_stub = &cdrom_device_info_stub1;

cdrom_device_info_stub1.next =
&cdrom_device_info_stub2;

cdrom_device_info_stub2.next =
&cdrom_device_info_stub3;

// bound reached
cdrom_device_info_stub3.next = null;

// call to entry point of module
int parameter_stub2;
open(parameter_stub,parameter_stub2);

}

Figure 2: Result of a manual execution of our algo-

rithm.

3.1 Alias Modeling
In the above section we initialized all pointers by di�erent

objects. Though many device driver environments might
be modeled successfully using this conservative alias policy,
a �ner-grained analysis might be included into our environ-
ments. A classical must / may alias analysis, or a user speci-
�ed equivalent description, could specify which pointers may
alias each other. These speci�cations may be implemented
easily in a small initialization code block that can be auto-
matically generated.
For each must alias analysis we insert a new assignment

statement into the code block: we translate p1 must alias p2
into a statement p1 = p2; . For may alias relationships,
we could exploit the modeling of non-deterministic data val-
ues in CBMC. The built-in CBMC function nondet_bool()
returns either true or false. Hence we may easily translate
may alias relations: p1 may alias p2 results in a statement

if (nondet_bool()) p2 = p1;

The aliasing may hence lead to an exponential number of
di�erent initialization paths.

4. SUMMARY
Many tools for model checking C code exist. Though these

tools o�er a sophisticated treatment of most features of the
language, our �nding is that they are not yet stand-alone
solutions for the modular analysis of Linux device drivers.
In most cases the tools have to be complemented by an ex-
tensive operating systems model or at least a test driver that
invokes and initializes all necessary members in the driver.
It has been described that the construction of environments
needs considerable e�ort. In [9] the e�ort dominated the
overall work.
The contribution of our paper is an algorithm to automat-

ically construct simple data environments for device drivers.
We have shown that these environments might improve the
precision of CBMC when analysing Linux device drivers.
Other solutions for interface generations exist, though they
seem either dedicated to Java programs (e.g. [7]) or they

aim to provide a general solution loosing the advantages the
prede�ned Linux abstract data types. Our solution only
needs a speci�ed entry point for each module and templates
for the few abstract data types in Linux.
Despite the expected advance by widening the applica-

tion domain in CBMC to modular programs, we left sev-
eral problems unsolved. The creation of the environment is
heuristic and requires an external speci�cation of possible
alias relationships. The identi�cation of abstract data types
is heuristically inferred and must be checked and potentially
corrected by the user. The same situation is given for the
inference whether a pointer points to a single element or an
element within an array.
Early prototypes result in hundreds of generated initial-

ization code lines even for small list bounds of 3. CBMC was
able to process the examples and �nd some known pointer
errors that could not have been checked without our data
environment.

5. REFERENCES
[1] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith.

Modular veri�cation of software components in c. In
Proc. of the 25th Int. Conf. on Software Engineering
(ICSE), pages 385�395, Washington, DC, USA, 2003.
IEEE Computer Society.

[2] E. Clarke, D. Kroening, and F. Lerda. A tool for
checking ANSI-C programs. In K. Jensen and
A. Podelski, editors, Tools and Algorithms for the
Construction and Analysis of Systems (TACAS),
volume 2988 of LNCS, pages 168�176. Springer, 2004.

[3] V. Contributors. The SLAM Project.
http://research.microsoft.com/slam/, 2006.

[4] T. Henzinger, R. Jhala, R. Majumdar, and G. SUTRE.
Software veri�cation with BLAST. In Proc. 10th Int.
SPIN Workshop (SPIN'2003), Portland, OR, USA,
May 2003, volume 2648 of LNCS, pages 235�239.
Springer, 2003.

[5] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic
unit testing engine for c. In Proc. of the 10th European
Software Engineering Conference (ESEC/FSE-13),
pages 263�272, New York, NY, USA, 2005. ACM Press.

[6] D. van Leeuwen, E. Anderson, and J. Axboe. A Linux
Cdrom Standard, kernel 2.6.15 edition, March 1999.
Found in Documentation/cdrom.

[7] T. Xie, D. Marinov, W. Schulte, and D. Notkin.
Symstra: A framework for generating object-oriented
unit tests using symbolic execution. In Tools and
Algorithms for the Construction and Analysis of
Systems (TACAS), pages 365�381, Edinburgh, UK,
April 2005.

[8] Y. Xie and A. Aiken. Scalable error detection using
boolean satis�ability. In Proc. of the 32nd ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages (POPL), pages 351�363, New
York, NY, USA, 2005. ACM Press.

[9] J. Yang, P. Twohey, D. R. Engler, and M. Musuvathi.
Using model checking to �nd serious �le system errors.
In Proc. of the 16th Int. Conf. on Computer Aided
Veri�cation (CAV), volume 3114 of LNCS, pages
273�288. Springer Berlin / Heidelberg, 2004.

92

