
A Categorical Characterization for the Compositional
Features of the # Component Model

Francisco Heron de Carvalho Junior
∗

Departamento de Computação
Universidade Federal do Ceará

Bloco 910, Campus do Pici
Fortaleza, Brazil

heron@lia.ufc.br

Rafael Dueire Lins
†

Departamento de Eletrônica e Sistemas
Universidade Federal de Pernambuco

Rua Acadêmico Hélio Ramos, s/n
Recife, Brazil

rdl@ufpe.br

ABSTRACT
The # programming model attempts to address the needs of
the high performance computing community for new paradigms
that reconcile efficiency, portability, abstraction and gener-
ality issues on parallel programming for high-end distributed
architectures. This paper provides a semantics for the com-
positional features of # programs, based on category theory.

1. INTRODUCTION
Due to the advent of clusters and grids, the processing power
of large-scale distributed architectures is now accessible for a
wider number of academic and industrial users, most of them
non-specialists in computers and programming. This new
context in high-performance computing (HPC) has brought
new challenges to computer scientists. Contemporary par-
allel programming technologies that can exploit the poten-
tial performance of distributed architectures, such as mes-
sage passing libraries like MPI and PVM, still require a fair
amount of knowledge on the architecture and the strategy
of parallelism used. This knowledge goes far beyond the
reach of naive users [7]. The high-level approaches available
today do not join efficiency with generality. The scientific
community still looks for a parallel programming paradigm
that reconciles portability and efficiency with generality and
a high-level of abstraction [4].

The # component model attempts to meet the needs of the
HPC community [5], by moving parallel programming from
a process-based perspective to a concern-oriented one based
on components, separating concerns of specification of com-
putations from concerns related to their coordination, and
providing a number of features for abstraction in topological
composition of components. This paper provides a categor-
ical [2] foundation for the # component model, focused on
the semantics of its compositional features.

2. THE # COMPONENT MODEL
The # component model moves parallel programming from
a process-based perspective towards a concern-oriented one.
Without any loss of generality, in the former perspective,
a parallel program may be seen as a set of processes that

∗Supported by FUNCAP and CNPq.
†Supported by CNPq.

synchronize by means of communication channels. Appli-
cation concerns [10] are scattered across the implementa-
tion of processes. In fact, a process may be decomposed in
a set of slices, each one describing the role of the process
with respect to a concern. In the latter outlook, compo-
nents are programming abstractions that address concerns.
In # programming, a component is described as a set of
units organized in a network topology through synchroniza-
tion channels that connect their interfaces. The interface
of a unit comprises a set of input and output ports, whose
activation order is dictated by a protocol, specified using
a formalism with the expressiveness of labeled Petri nets.
Component units have direct correspondence to processes
slices. In fact, a # process is defined by the unification of
a set of units from distinct components. Each unit from
a component corresponds to a slice that describes the role
of a process with respect to its concern. It is not difficult
to see that processes are orthogonal to concerns (Figure 1)
and that concern-oriented parallel programming fits better
modern software engineering methodologies.

In # programming, the concerns about computations and
the ones related to their coordination are separated in com-
posed and simple components, respectively. Composed com-
ponents comprise the coordination medium of # programs,
while simple components comprise their computation medium.
Components may be combined with other components yield-
ing new components, through nesting or overlapping compo-
sition. Nesting composition occurs when a simple/composed
component is assigned to a unit of another composed compo-
nent. Overlapping composition occurs when units from dis-
joint composed components are unified. Component mod-
els of today allow only nesting composition [1, 3] and does
not support separation of cross-cutting concerns. The #
model also brings the support to skeletal programming [6]
to component-based programming. The essence of # pro-
gramming is to provide compositional features for raising
the level of abstraction in dealing with basic channel-based
parallel programming. It is supposed that any parallel pro-
gramming artifact may be defined in terms of # program-
ming abstractions. This section provided only an overview
of the # component model features. Details about composi-
tional and abstraction issues in # programming will be given
in the categorical semantics presented in the next sections,
where concepts like compositional interfaces and interface

1



programmer
only by

!

# compiler
(front−end)

# compiler
(back−end)

Process Slice
# Process

intervention

Process ViewComponent View

# Program

(Structured, High Level of Abstraction)

computable

computable

computable

computable

# Programming

Channel
Port
Unit
Component

Message Passing Programming
(Efficient, Portable, Expressive)

Process

P1

P2P0 P4

P3

C1

C2
C0

C3

?
? !

!

?
? !

!

!
!
!

P0 P2

P1

!
?

? P3
!

P4
?

!?

?
?

?

Process View

Figure 1: Components versus Processes

input

R PI POCS

C GP

allG anyGCB

groupingcomm_pair

anyallready
sync

buf

group_owner U
output

C

Figure 2: GH (Graph of Sketch H)

K2

bufsync ready

C

C C CRBS

K3

I PO

P
input output

P

K4

GallG

G
all any

any

Figure 3: LC (Cocones of Sketch C)

abstractions are introduced.

IPC
D1

comm_pair;input

OPC
D2

comm_pair;output

P Ggrouping
D3

G Ugroup_owner
D4

Figure 4: DC (Diagrams of Sketch C)

3. THE CATEGORICAL # MODEL
For better understanding of this section, knowledge about
basic category theory and graph theory concepts are re-
quired. However, some intuition behind the introduced for-
mal concepts will be provided whenever possible. The con-
cepts of sketch [2] and institution [8] are the only advanced
categorical concept employed herein. Sketches were firstly
proposed for the specification of certain mathematical struc-
tures. They play the same role as traditional techniques
from first-order logic and universal algebra, but they seem
to be more appropriate for dealing with multi-sorted struc-
tures and with models in categories other than sets. Institu-
tions were proposed by Goguen and Burnstal for providing
a unified theory for algebraic specification systems, which

in general differs by the underlying logical system used for
expressing properties.

3.1 The Category of Units
The sketch H is defined by (GH, DH, ∅, KH). The graph
GH, the diagrams DH, and the cocones KH are presented
in Figures 2, 4, and 3, respectively. A # component is de-
fined by a model (sketch homomorphism) of the sketch H
on Set, the category of sets, satisfying the commutative
diagram in Figure 5, where Unit is the category of units,
defined further, and M, M’ are # components. Therefore,
a homomorphism µ between # components M and M ′ is a
homomorphism of models, defined by a natural transforma-
tion µ : M → M ′. The category of # components, named
Hash, has components as objects and homomorphisms be-
tween components as morphisms. As usual for categories of
functors (components are functors), the vertical composition
of natural transformations defines composition in Hash.

Let M be a component. M(U) is a set of units. M(G) is a set
of references to groups of ports. M(P) is a set of ports. M(C)
is a set of communication channels. M(CB), M(CR), and
M(CS) are sets of buffered, ready and synchronous channels,
respectively. The Cocone K1 states that M(CB), M(CR),
and M(CS) are disjoint subsets of M(C). M(Gany ) and
M(Gall ) are sets of references to groups of ports of kind any
and all, respectively. The Cocone K3 yields that M(Gany )
and M(Gall ) are disjoint subsets of M(G). M(PI), and
M(PO) are sets of input and output ports, respectively. The
Cocone K2 states that M(PI), and M(PO) are disjoint sub-
sets of M(P). The function M (grouping) associates ports to

µ

(U)

M(U)

U

Set Unit

u

u’M’

in_comp

H
M

M’

Figure 5: Sketch Restriction

2



2
^ 

G1
*

î

G1

G2

G2
^ 

G1

IDAGr

i

L

Set

leaves

Gr

free

free

leaves

Gleaves

Figure 6: The functor iG

their groups of ports. Diagram D3 is an epimorphism, for-
bidding empty groups. The function M (group owner) de-
fines the unit for which a group of ports belongs to. Diagram
D4 ensures that it is an epimorphism too, forbidding units
with an empty set of ports. The function M(comm pair)
defines the channel where a port is a communication pair.
Together, D1, D2 and K3 ensure that channels are unidi-
rectional. The restriction in Figure 5 ensures that the map-
ping between units induced by Hash-homomorphisms obeys
morphisms in the category of units (Unit).

The next sections define categories for units and interfaces.
The relation between interfaces and units resembles the re-
lation between signatures and algebras in universal algebra.
For this reason, an institution will be employed for charac-
terizing the relation between interface signatures and units.

3.2 The Category of Interface Signatures
The objects of category InterfaceSig represent interface
signatures. They are defined as tuples 〈G, E, ν〉. G is a
finite, connected, directed, and acyclic graph 〈V, A, ∂0, ∂1〉
with exactly one root node. Graphs of this kind are re-
ferred as IDAG’s. Leave nodes represent ports and branch
nodes represent interface slices. The category of IDAG’s
is IDAGr, with a special notion of morphism that will be
defined further on. As usual, Gr denotes the category of
graphs. E is the set of exposed nodes of G (E ⊂ nodes(G)).
Each path in G must have exactly one exposed node.
ν : V → N is a total function that maps nodes of G onto a
stream nesting factor.

Let I1 and I2 be interface signatures. A morphism ı : I1 →
I2, in InterfaceSig, is defined by a tuple 〈iG, iE , iν〉. The
IDAGr-morphism iG : G1 → G2 maps G1 to a branch (also

a IDAG) of G2, called Ĝ2, in such way that there is an

Gr-morphism ı̂G : Ĝ2 → free(G1) that preserves leaves,

e.g. leaves(Ĝ2) = leaves ◦ free(G1). This is illustrated in
Figure 6. The function iE maps exposed nodes from the
interface signatures. It must satisfy iE(E1) ⊆ E1, which is
a sufficient condition to ensure the preservation of exposed
nodes between I1 and I2. iν(ν1) = ν2, satisfying the commu-
tativity of the diagram in Figure 7 (preservation of stream
nesting factors).

3.3 The Institution of Units
In terms of the theory of institutions, a unit is essentially a
model for an interface signature, as well as Σ-algebras are
models for an algebra signature Σ. Units augment interface
signatures with a notion of behavior, defined by a protocol
that generates a formal language whose alphabet is com-
posed by the set of exposed nodes of the interface signature
of the unit.

Let I be an arbitrary interface signature. The functor Sen :
InterfaceSig → Set maps I to the set E∗ (Kleene closure
of E). A unit is defined by a tuple 〈P, R, δ, π〉, where P
is a set of ports, R is a set of slice references, δ : P →
{input, output} is a total function defining direction of ports,
and π is a protocol. A protocol expression is defined by the
syntactic class Π, whose definition is

Πi ::= seq {Π1, Π2, . . . , Πk} | par {Π1, Π2, . . . , Πk} |
alt {Π1, Π2, . . . , Πk} | pi? | po! | do r | s+ | s-

where pi ∈ {p ∈ P | δ(p) = Input}, po ∈ {p ∈ P | δ(p) =
Input}, r ∈ R, and s is a semaphore symbol. The proto-
col combinators seq, par and alt denote respectively se-
quence, concurrency and alternative. The symbols ! and
? are the basic primitives for sending and receiving data
in distributed synchronization channels, respectively. The
primitive do, the unfolding primitive, denotes the protocol
underlying the slice reference r. It can be viewed as a macro
expansion operator. The symbols + and - mean the usual
signal (V) and wait (P) semaphore primitives. Protocols of
units may generate a terminal Petri net formal language on
the alphabet P [9]. The motivation for Petri nets is to build
dynamic models for the behavior and interaction of units,
making possible the analysis of formal properties and per-
formance evaluation of programs using Petri net tools and
their variants. The formal language generated by a protocol
π is denoted by Λ(π).

A unit U complies with an interface I if the following con-
dition holds: (1) P = E ∩ leaves(G) (ports are exposed
leaf exposed nodes of G), and (2) R = E − leaves(G) (slice
references are exposed non-leaf nodes of G). The covariant
functor Mod : InterfaceSig → Catop maps each interface
signature I onto the category of units that complies with I.

Let I be an interface signature. The relation |=I : Sen(I)×
Mod(I) associates units with the activation sequences sup-
ported by their protocols. For instance, let w ∈ Sen(I) be a

Cat

1

G2

N1

N2

Νiν
iG iN

^

ν1

ν2

Set

nodes

IDAGr

G

Figure 7: Commutative Diagram for iν

3



2

N
^

Cat op

i

Unit

Mod

u1

u2

U

U2

1I1

I

InterfaceSig interface_sig

i

Figure 8: The Category of Units

word in E∗, U be a unit, and π be the protocol of U . Then,
U |=I w iif w ∈ Λ(π).

The category InterfaceSig, the functors Sen and Mod and
the relation |=I , as defined before, forms an institution.
In fact, for some morphism i : I → I ′ in InterfaceSig,
the required satisfaction condition u′ |=I′ Sen(i)(w) ⇔
Mod(i)(u′) |=I w holds for each u′ ∈| Mod(I ′) | and for
each w ∈ Sen(I)

3.4 The Category of Units
The institution of units splits the category of units in classes
of units that complies to the same signature. Also, it natu-
rally expresses the unusual behavior preservation prop-
erty between units. The functor interface sig : Unit →
InterfaceSig maps units to their interfaces. The commu-
tative diagram in Figure 8 must be satisfied.

3.5 Composition of Components
The category HashFDDiag has all discrete diagrams in
Hash as objects and the graph homomorphisms between
them as morphisms. Let h : D1 → D2 be a morphism
in HashFDDiag , and let 〈C1, C2〉 be a pair of nodes in
D1 and D2, respectively. Then h(C1) = C2 implies that
f : C1 → C2 is a morphism in HashFDDiag.

Let D be a HashFDDiag-object formed by n components.
D is the start diagram for overlapping them. The vertex
of its co-limit is conventionally called MD

0 . For the sake of
simplicity, M0 may be used instead of MD

0 whenever this
does not cause confusion. M0 is called initial component of
D , obtained from the disjoint overlapping of the components
in D. From M0, new components are formed by applying the
composition operations unification, factorization, replication
and superseding. The functor overlap : HashFDDiag →

Hash

0

Y

X

M

f

f ’g

g ’

M

Figure 9: A Commutative Diagram for overlap

Cat associates a diagram D with the sub-category of Hash
containing all objects M such that there are epimorphisms
f : M0 ³ X, f ′ : M ³ X, g : Y ³ M0, and g′ : Y ³ M ,
for some pair of objects X and Y , such that the diagram in
Figure 9 commutes.

4. CONCLUSIONS
This paper introduced a categorical interpretation for the
compositional features of # component model. Further works
will use the formal framework introduced herein for formaliz-
ing concepts and proving properties regarding the structure
of # components. Another source of work is to study the
expressiveness of component models, by mapping # compo-
nents onto components from other component models using
functors and natural transformations. In fact, this is the
main motivation for adopting category theory as an under-
lying mathematical foundation.

5. REFERENCES
[1] R. Armstrong et al. Towards a Common Component

Architecture for High-Performance Scientific
Computing. In The Eighth IEEE International
Symposium on High Performance Distributed
Computing. IEEE Computer Society, 1999.

[2] M. Barr and C. Wells. Category Theory for
Computing Science. Prentice Hall, 1990.

[3] F. Baude, D. Caromel, and M. Morel. From
Distributed Objects to Hierarchical Grid Components.
In International Symposium on Distributed Objects
and Applications. Springer-Verlag, 2003.

[4] Bernholdt D. E. Raising Level of Programming
Abstraction in Scalable Programming Models. In
IEEE International Conference on High Performance
Computer Architecture (HPCA), Workshop on
Productivity and Performance in High-End Computing
(P-PHEC), pages 76–84. Madrid, Spain, 2004.

[5] F. H. Carvalho Junior and R. D. Lins. The # Model
for Parallel Programming: From Processes to
Components with Insignificant Performance
Overheads. In Workshop on Components and
Frameworks for High Performance Computing
(CompFrame 2005), June 2005.

[6] M. Cole. Bringing Skeletons out of the Closet: A
Pragmatic Manifesto for Skeletal Parallel
Programming. Parallel Computing, 30:389–406, 2004.

[7] J. Dongarra, et al. Sourcebook of Parallel Computing.
Morgan Kauffman Publishers, 2003.

[8] J. Goguen and R. Burnstal. Institutions: Abstract
Model Theory for Specification and Programming.
Journal of ACM, 39(1):95–146, 1992.

[9] T. Ito and Y. Nishitani. On Universality of Concurrent
Expressions with Synchronization Primitives.
Theoretical Computer Science, 19:105–115, 1982.

[10] H. Milli, A. Elkharraz, and H. Mcheick.
Understanding Separation of Concerns. In Workshop
on Early Aspects - Aspect Oriented Software
Development (AOSD’04), pages 411–428, March 2004.

4


