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ABSTRACT
In the paper, we present a new approach to component in-
teraction specification and verification process which com-
bines the advantages of both architecture description lan-
guages (ADLs) at the beginning of the process, and a general
formal verification-oriented model connected to verification
tools at the end. After examining current general formal
models with respect to their suitability for description of
component-based systems, we propose a new verification-
oriented model, Component-Interaction automata, and dis-
cuss its features. The model is designed to preserve all the
interaction properties to provide a rich base for further veri-
fication, and allows the system behaviour to be configurable
according to the architecture description (bindings among
components) and other specifics (type of communication
used in the synchronization of components).

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.11 [Software Engineering]: Software Archi-
tecture

General Terms
Component-based specification languages
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1. INTRODUCTION
Verification of interaction properties in component-based
software systems is highly dependent on the chosen specifica-
tion language. There are many possibilities how to specify
component behaviour and interaction in component-based
software systems. The specification languages typically fall
into two classes with diverse pros and cons.

The first set of specification languages is called Architecture
Description Languages (ADLs). Architecture description
languages, like Wright [3], Darwin/Tracta [15, 16], Rapide
[11], and SOFA [17, 2], are very suitable for specification of
hierarchical component architecture with defined intercon-
nection among components and behaviour constraints put
on component communication and interaction. Moreover
they are very comprehensible for software engineers and of-
ten provide a tool support. The essential drawback of the
ADLs is that their specification power is limited by the un-
derlying model which is often not general enough to preserve
all the interaction properties which might arise through
the component composition. Additionally, the verification
within an ADL framework usually supports a verification
of only a small fixed set of properties often unique for the
language.

The second set consists of general formal models usually
based on the automata theory (I/O automata [14, 12], In-
terface automata [8], Team automata [5]). These automata-
based models (as opposite to ADLs) are highly formal and
general, and usually supported by automated verification
tools (model-checkers in particular). However, these models
are designed for modelling of component interaction only
and therefore are unable to describe the interconnection
structure of hierarchical component architecture which also
influences the behaviour. That is one of the reasons why
these models are often considered to be unusable in soft-
ware engineering practice.

The point we want to address in our research is to com-
bine these two approaches to gain the benefits of both of
them. In particular, we would like to develop a general
automata-based formalism which allows for the specification
of component interactions according to the interconnection
structure described in particular ADL. The transition set of
the model should be therefore configurable according to the
architecture description (bindings among components) and
other specifics (type of communication used in the synchro-
nization of components). In addition, the formalism should
allow for an easy application of available automated verifica-



tion techniques. The idea is to support the specification and
verification process automatically or semi-automatically so
that it is accessible also for users with no special theoretical
knowledge of the underlying model. The specification and
verification process will constitute of the following phases.

1. The user selects an appropriate ADL and specifies the
system architecture and component behaviour using
an ADL tool.

2. Component behaviour description is transformed into
the general formal model automatically using the
model framework.

3. The hierarchical component composition is build
within the framework with respect to the architecture
description and synchronization type.

4. The result is verified directly within the model frame-
work or transformed to a format accepted by verifica-
tion tools.

In this paper we want to address the first step towards
this goal. We propose an appropriate general verification-
oriented specification formalism which covers all important
features of component interaction in component-based sys-
tems, including hierarchical interconnection interaction, and
enables its adjustment to the ADL specification. At the
same time, the model is defined in such a way that a direct
application of model checking techniques is possible.

The paper is organised as follows. After discussing related
work in Section 2, Section 3 focuses on the automata-based
models appropriate for component interaction specification,
and gives the reasons for introduction of a new model in
Section 4. Section 5 concludes by discussion the most im-
portant features of the proposed model, and presents the
plans for future work.

2. RELATED WORK
Our approach to support the specification and verification
process by combining ADL specification and a general for-
mal model verification has not been considered yet. The
reason is that the architecture description languages usually
support some kind of verification of the interaction proper-
ties and therefore there is no visible need for use of a new
general verification-oriented model.

Some of the architecture description languages addressing
the issue of formal verification of behaviour properties of
the system composed from components are Wright [3], Dar-
win/Tracta [15, 16], Rapide [11] and SOFA [17, 2]. Wright
uses consistency and completeness checks defined in terms
of its underlying model in CSP. Verification of component
behaviour in Darwin is supported by the Tracta approach
which defines component interactions using labelled transi-
tion systems (LTS) and employs model checking [10] to ver-
ify some of its properties (reachability analysis, safety and
liveness properties). Rapide generates a system execution in
a form of partially ordered set of events and allows its check
against properties. SOFA uses behavior protocols to spec-
ify behaviour of a component frame (black-box specification
view) and architecture (grey-box implementation view) and
employs a compliance checking to verify their conformance.

As we emphasised in the introduction, these languages typi-
cally support verification of a limited set of interaction prop-
erties. Even if some ADLs attempt to support an exhaus-

tive verification [10], they are limited by the underlying be-
haviour model which is usually designed for one particular
type of communication and notion of erroneous behaviour
and thus does not cover some important interaction proper-
ties. For example the parallel composition operator ‖ used
in Tracta does not assure, that we will be later able to detect
all states where one of the (sub)components is ready to syn-
chronize on a shared action but the others are not because
in Tracta’s notion of communication it is not an interesting
behaviour to capture.

Another approach is a support of the specification and veri-
fication process using the formal general language only (I/O
automata [14], Interface automata [8], Team automata [5]).
The essential drawback of this approach is that the mod-
els specify just the interaction behaviour without describing
the underlying architectural framework. That is restrictive
especially when the interconnection structure of a system
differs from the complete interconnection space determined
by the actions shared among components.

3. AUTOMATA-BASED LANGUAGES
As already mentioned in the introduction, automata-based
models are typically supported by automated verification
tools. In this section we primarily concentrate on their ap-
plicability for capturing of behaviours of component-based
systems, especially the interaction among components of the
system. The best known models used in this context are I/O
automata, Interface automata, and Team automata. For
each of the models we give a brief definition and review its
main features interesting in a light of modelling component-
based systems.

Notation: Let I ⊆ N be a finite set with cardinality k, and
let for each i ∈ I, Si be a set. Then Πi∈ISi denotes the
set {(xi1 , xi2 , . . . , xik ) | (∀j ∈ {1, . . . , k} : xij ∈ Sij ) ∧
{i1, i2, . . . , ik} = I ∧ (∀j1, j2 ∈ {1, . . . , k} : j1 < j2 ⇒ ij1 <
ij2)}. If I = ∅ then Πi∈ISi = ∅. For j ∈ I, projj denotes the
function projj : Πi∈ISi → Sj for which projj((qi)i∈I) = qj .

3.1 I/O automata
The Input/Output automata model (I/O automata for
short) was defined by Nancy A. Lynch and Mark R. Tut-
tle in [18, 13] as a labelled transition system model based
on nondeterministic automata. The I/O automata model
is suitable for modelling distributed and concurrent systems
with different input, output and internal actions. I/O au-
tomata can be composed to form a higher-level I/O automa-
ton and thus form a hierarchy of components of the system.

Definition: A (safe) I/O automaton is a tuple A =
(Q, Σinp, Σout, Σint, δ, I), where

• Q is a set of states.

• Σinp, Σout, Σint are pairwise disjoint sets of input, out-
put and internal actions, respectively. Let Σ = Σinp ∪
Σout ∪ Σint be called a set of actions.

• δ ⊆ Q × Σ × Q is a set of labelled transitions such
that for each a ∈ Σinp and q ∈ Q there is a transition
(q, a, q′) ∈ δ (input enableness).

• I ⊆ Q is a nonempty set of initial states.

Important feature to mention is that I/O automata are input
enabled in all states, they can never block the input. It



means that in I/O automata we are unable to directly reason
about properties capturing that a component A is ready to
send output action a to a component B which is not ready
to receive it (e.g. needs to finish some computation first).
Other feature to notice is that the sets of input, output
and internal actions of I/O automaton have to be pairwise
disjoint. It can limit us in modelling some practical systems.
For example when we want to model a system in Figure 1,
consisting of n component instances of the same type that
enable event delegation (the component Ci can delegate the
method call which received from the component Ci−1 to the
component Ci+1), we cannot do it directly. We have to use
appropriate relabelling.

Figure 1: Delegation of a method call, UML 2.0

A set of I/O automata is strongly compatible if the sets of
output actions of component automata are pairwise disjoint
and the set of internal actions of every component automa-
ton is disjoint with the action sets of all other component
automata. Therefore a set of automata where two or more
automata have the same output action is not strongly com-
patible and cannot be composed according to the next de-
finition. At the same time this property is quite often in
practical component-based systems, for example when two
components are using the same service of another compo-
nent. This problem could be solved by relabelling of the
transitions. Note that simple including the identity of the
component in the action name would not suffice because I/O
automata are able to synchronize only on actions with the
same name.

Definition: Let S = {(Qi, Σi,inp, Σi,out, Σi,int, δi, Ii)}i∈I ,
where I ⊆ N is finite, be a strongly compatible set of I/O
automata. An I/O automaton (Πi∈IQi, Σinp, Σout, Σint, δ,
Πi∈IIi) is a composition of S iff

• Σinp =
�S

i∈I Σi,inp

�
\
�S

i∈I Σi,out

�
,

• Σout =
S

i∈I Σi,out,

• Σint =
S

i∈I Σi,int and

• for each q, q′ ∈ Πi∈IQi and a ∈ Σ, (q, a, q′) ∈ δ iff for
all i ∈ I if a ∈ Σi then (proji(q), a, proji(q

′)) ∈ δi and
if a 6∈ Σi then proji(q) = proji(q

′).

In the composition of strongly compatible I/O automata
each input action a, for which an appropriate output action
a exists, is removed to preserve the condition of disjoint
input and output action sets. The input actions then cannot
be delegated out of the composed component to be linked
in a higher level of composition. Another property of I/O
automata to mention is that they do not allow to specify
which outputs and inputs should be bound and which should
stay unbound (according to the architecture description or
type of synchronization).

3.2 Interface automata
The Interface automata model [8] was introduced in [7] by
Luca de Alfaro and Thomas A. Henzinger. The model is
designed for documentation and validation of systems made
of components communicating throw their interfaces. Inter-
face automata, as distinct from I/O automata, are not input
enabled in all states and allow composition of two automata
only. Moreover, composition is based on synchronization of
one output and one input action (with the same name) which
becomes hidden after the composition. That is natural for
practical component-based systems.

An interface automaton is defined in the same way as I/O
automaton with the only difference that interface automaton
need not to be input enabled. The sets of input, output, and
internal (called hidden in this case) actions again have to be
pairwise disjoint.

Definition: Let Ai = (Qi, Σi,inp, Σi,out, Σi,int, δi, Ii),
i = 1, 2, be interface automata. Then the set Σ1 ∩ Σ2 is
called shared(A1,A2). Automata A1,A2 are composable iff

shared(A1,A2) = (Σ1,inp ∩ Σ2,out) ∪ (Σ2,inp ∩ Σ1,out).

It means that, except of actions which are input of the first
and output of the second automaton or vice versa, the sets
of actions of two composable automata have to be disjoint.

Definition: Let Ai = (Qi, Σi,inp, Σi,out, Σi,int, δi, Ii),
i = 1, 2, be composable interface automata. Then (Q1 ×
Q2, Σinp, Σout, Σint, δ, I1 × I2) is a product of A1 and A2 iff

• Σinp = (Σ1,inp ∪ Σ2,inp) \ shared(A1,A2),

• Σout = (Σ1,out ∪ Σ2,out) \ shared(A1,A2),

• Σint = (Σ1,int ∪ Σ2,int) ∪ shared(A1,A2) and

• ((q1, q2), a, (q′1, q
′
2)) ∈ δ iff

a 6∈ shared(A1,A2) ∧ (q1, a, q′1) ∈ δ1 ∧ q2 = q′2
a 6∈ shared(A1,A2) ∧ q1 = q′1 ∧ (q2, a, q′2) ∈ δ2

a ∈ shared(A1,A2) ∧ (q1, a, q′1) ∈ δ1 ∧ (q2, a, q′2) ∈ δ2.

The definition implies that the linking of input and output
action, from the set of shared actions, is compulsory as in
the I/O model. Additionally, the model does not permit
multiple binding on the interfaces directly without renaming
(e.g. two components using the same service provided by
other component). Each input (output) action after linking
to an appropriate output (input) action becomes internal
action and therefore is not allowable for other linking.

The transition set of the product of two interface automata
contains all syntactically correct transitions. Composition
of two interface automata is a restriction of the product au-
tomaton. The restriction is defined with the help of error
and compatible states, and compatibility of two automata
(for formal definitions see [8]). The product state (q1, q2)
of two composable interface automata is an error state if it
corresponds to a state where one of the automata is able to
send an output action a and the other one is not able to
receive the action a (a is a shared action). A state q is com-
patible if no error state is reachable from q performing only
output and internal actions. Two interface automata with
initial states q1, q2 are compatible, if they are composable
and the initial state (q1, q2) of their product is a compatible
state.



Definition: Let A1 and A2 be compatible interface au-
tomata and (Q, Σinp, Σout, Σint, δ, I) be their product. In-
terface automaton (Q, Σinp, Σout, Σint, δ

′, I) is a composition
of A1 and A2 iff δ′ = δ\{(q, a, q′) | q is compatible, a ∈ Σinp,
and q′ is not compatible}.

The composition of interface automata is defined in two
steps. In the first step the product automaton is built and
the set of error and compatible states are formed. In the sec-
ond step the transition function of the product automaton
is restricted to disable transitions to incompatible states. It
follows the optimistic assumption that two automata can be
composed if there exists some environment that can make
them work together properly. Then the composition of the
automata consists of the transitions available in such envi-
ronment.

The shortcoming of this approach is the explicit indication
of erroneous behaviour (error states) that limits this ap-
proach to modelling solely the component-based systems
with equivalent notion of what is and is not considered as
an error (respecting one type of synchronization).

3.3 Team automata
The Team automata model [5] was first introduced in [9] by
Clarence A. Ellis. This complex model is primary designed
for modelling groupware systems with communicating teams
but can be also used for modelling component-based sys-
tems. It is inspired by I/O automata. Team automata, as
a main distinct from the previous models, allow freedom of
choosing the transition set of the automaton obtained when
composing a set of automata, and thus are not limited to
one synchronization only.

A team automaton is defined in the same way as I/O au-
tomaton with the only difference that team automaton need
not to be input enabled. A set of component automata is
composable if the set of internal actions of every component
automaton is disjoint with the action sets of all other com-
ponent automata. The composition of team automata is
defined over a complete transition space.

Definition: Let S = {(Qi, Σi,inp, Σi,out, Σi,int, δi, Ii)}i∈I ,
where I ⊆ N is finite, be a composable system of component
automata and a ∈

S
i∈I Σi. Then a complete transition

space of a in S is denoted ∆a(S) and defined as

∆a(S) = {(q, a, q′) | q, q′ ∈ Πi∈IQi ∧
∃j ∈ I : (projj(q), a, projj(q

′)) ∈ δj ∧
∀i ∈ I : ((proji(q), a, proji(q

′)) ∈ δi ∨ proji(q) =
proji(q

′))}.

T = (Πi∈IQi, Σinp, Σout, Σint, δ, Πi∈IIi) is a team automa-
ton over S iff

• Σinp =
�S

i∈I Σi,inp

�
\
�S

i∈I Σi,out

�
,

• Σout =
S

i∈I Σi,out,

• Σint =
S

i∈I Σi,int and

• δ ⊆ Πi∈IQi×Σ×Πi∈IQi, such that for all a ∈ (Σinp∪
Σout), δ restricted to a is a subset of ∆a(S), and for
all a ∈ Σint, δ restricted to a is equal to ∆a(S).

The important fact to mention is that the composition hides
every input action which is an output action of some other

automaton in the composition. Therefore the input action
cannot be used on a higher level of compositional hierarchy
later on. Another important feature is that, when com-
posing automata, we can loose some information about the
behaviour of the system. For example, let us consider the
component automata A1, A2 and A3 from Figure 2 where
A1 has one transition over output action a and both A2 and
A3 have one transition over input action a. After composing
these three automata to the automaton A over {A1,A2,A3}
(with one transition over output action a), we cannot differ-
entiate between synchronization of the input of A2 with the
output of A1 and synchronization of A3 with A1. This can
be quite restrictive for verification of properties capturing
which components participated in the computation. More-
over, if we would need to express that an automaton A1 in
a state q0 can synchronize with A2 only, we cannot include
this information in the composition withou renaming.

A1 : A2 : A3 :

q076540123 a // q176540123 q076540123
BCED aGF��

q076540123
BCED aGF��

A : p76540123 a // q76540123

Figure 2: Composition of automata (p states for
(q0, q0, q0), q states for (q1, q0, q0))

3.4 Summary
The characteristics of the current models described in this
section make their applicability for the full description of
interactions in component-based systems difficult. It is
natural because studied models were often designed for a
slightly different purpose (I/O automata, Team automata)
and usually are limited to one strict type of synchronization
(I/O automata, Interface automata) which we do not want
to limit to. In some cases, relabelling and transformation
of the component automata before each composition would
be sufficient to express desired properties. But the price we
would have to pay for it is in considerable state expand-
ing, untransparency and uncomfortable use of the model.
Moreover there are features (like strict synchronization at
Interface automata or input enableness at I/O automata)
which would be nontrivial to overcome.

4. COMPONENT-INTERACTION
AUTOMATA

The issues mentioned in the previous section has motivated
us to evolve a new verification-oriented automata-based for-
mal model, Component-Interaction automata, designed for
specification of interacting components in component-based
systems with respect to several aspects of the systems (ADL
interconnection structure, way of communication among
components). The Component-Interaction automata make
it possible to model all interesting aspects of component in-
teraction in hierarchical component-based software systems
without loosing any behaviours, and verify interaction be-
haviour of the systems as well. The model respects current
ADLs to enable direct transformation of the ADL descrip-
tion to Component-Interaction automata, and current ver-
ification tools as Component-Interaction automata can be
translated into their specification languages.



The Component-Interaction automata model is inspired by
the Team automata model, mainly in freedom of choosing
the transition set of the composed automaton what enables
it to be architecture and synchronization configurable. How-
ever, Component-Interaction automata differ from Team au-
tomata in many aspects to be more comfortable in use for
component-based systems, and to preserve important infor-
mation about the interaction among synchronized compo-
nents and hierarchical structure of the composed system.

Component-interaction automaton over a set of components
S is a nondeterministic automaton where every transition is
labelled as an input, output, or internal. Sets of input, out-
put and internal actions need not to be pairwise disjoint.
Input (output) action is associated with the name of a com-
ponent which receives (sends) the action. Internal action
is associated with a tuple of components which synchronize
on the action. In composition of component-interaction au-
tomata, only two components can synchronize and the infor-
mation about their communication is preserved. If a com-
ponent has an input (output) action a, the composition also
can have a as its input (output) action even after the linking
of the action.

Notation: Let I ⊆ N be a finite nonempty set with cardini-
nality k, and let {Si}i∈I be a set. Then (Si)i∈I denotes the
tuple (Si1 , Si2 , . . . , Sik ), where {i1, i2, . . . , ik} = I and for
all j1, j2 ∈ {1, 2, . . . , k} if j1 < j2 then ij1 < ij2 .

4.1 Definition
Definition: A component-interaction automaton is a tuple
C = (Q, Act, δ, I, S) where

• Q is a finite set of states,

• Act is a finite set of actions,
Σ = ((X∪{−})×Act×(X∪{−}))\({−}×Act×{−})
where X = {n | n ∈ N, n occurs in S}, is a set of
symbols called an alphabet,

• δ ⊆ Q× Σ×Q is a finite set of labelled transitions,

• I ⊆ Q is a nonempty set of initial states and

• S is a tuple corresponding to a hierarchy of component
names (from N) whose composition C represents.

Symbols (−, a, B), (A, a,−), (A, a, B) ∈ Σ are called input,
output and internal symbols of the alphabet Σ, respectively.
Accordingly, transitions are called input, output, and inter-
nal.

• The input symbol (−, a, B) represents that the com-
ponent B receives an action a as an input.

• The output symbol (A, a,−) represents that the com-
ponent A sends an action a as an output.

• The internal symbol (A, a, B) represents that the com-
ponent A sends an action a as an output, and synchro-
nously the component B receives the action a as an
input.

Remark, that component-interaction automaton need not
have disjoint sets of input actions (those involved in input
transitions), output actions (involved in output transitions),
and internal actions (involved in internal transitions).

As it can be seen from the structure of symbols, only two
components can synchronize on the same action. It is a
natural way of component communication according to a
client–server principle. If we would like to address multi-way
synchronization, the model could be naturally extended to
Multi Component-Interaction automata, where the symbols
would be represented as tuples (A, a, B) where A stands for
a set of sending components and B for a set of receiving
components.

Example 4.1.: Let us consider the system from Figure 3
(modelled in UML 2.0). The component C1 sends an action
a through the interface I2 and sends an action b through
the interface I1. The component C2 receives an action a
through the interface I3. C3 sends a through I6, C4 receives
a through I4 and sends b through I5. Finally, C5 sends b
through I7.

Figure 3: Component model of a simple system

Component-interaction automata A1, A2, and A3, mod-
elling components C1, C2, and C3 from Figure 3, respec-
tively, follows (their graphical representation is in Figure 4).

A1 = ({q0, q1}, {a, b}, {(q0, (1, a,−), q1),
(q1, (1, b,−), q1)}, {q0}, (1))

A2 = ({q0}, {a}, {(q0, (−, a, 2), q0)}, {q0}, (2))

A3 = ({q0}, {a}, {(q0, (3, a,−), q0)}, {q0}, (3))

A1 : // q076540123 (1,a,−) // q176540123
BCED (1,b,−)GF��

A2 : // q076540123
BCED (−,a,2)GF��

A3 : // q076540123
BCED (3,a,−)GF��

Figure 4: Automata A1, A2, and A3 modelling com-
ponents C1, C2, and C3.



Component-interaction automata can be composed and
form a hierarchical structure which is preserved as visible
from the next definition.

Definition: Let S = {(Qi, Acti, δi, Ii, Si)}i∈I , where I ⊆ N
is finite, be a system of component-interaction automata
such that sets of components represented by the automata
are pairwise disjoint. Then C = (Πi∈IQi,∪i∈IActi, δ,
Πi∈IIi, (Si)i∈I) is a component-interaction automaton over
S iff
δ = ∆OldInternal ∪ δNewInternal ∪ δInput ∪ δOutput where

∆OldInternal = {(q, (A, a, B), q′) | ∃i ∈ I :
(proji(q), (A, a, B), proji(q

′)) ∈ δi, ∀j ∈ I, j 6= i :
(projj(q)) = projj(q

′)}

∆NewInternal = {(q, (A, a, B), q′) | ∃i1, i2 ∈ I, i1 6= i2 :
(proji1(q), (A, a,−), proji1(q

′)) ∈ δi1 ∧
∧ (proji2(q), (−, a, B), proji2(q

′)) ∈ δi2 ∧
∧ ∀j ∈ I : i1 6= j 6= i2 projj(q) = projj(q

′)}

δNewInternal ⊆ ∆NewInternal

∆Input = {(q, (−, a, B), q′) | ∃i1 ∈ I :
(proji1(q), (−, a, B), proji1(q

′)) ∈ δi1 ∧ ∀j ∈ I : i1 6= j :
(projj(q) = projj(q

′))}

δInput ⊆ ∆Input

∆Output = {(q, (A, a,−), q′) | ∃i2 ∈ I :
(proji2(q), (A, a,−), proji2(q

′)) ∈ δi2 ∧ ∀j ∈ I : j 6= i2 :
(projj(q) = projj(q

′))}

δOutput ⊆ ∆Output

Transitions in ∆OldInternal are internal transitions of the
component automata. Transitions in δNewInternal arise from
synchronization of two components. δInput and δOutput are
input and output transitions of the composed automaton
provided by components of the composed automaton.

In the definition, we use auxiliary sets ∆s, s ∈
{NewInternal, Input, Output}. Each of these sets repre-
sents all possible transitions (complete transition space) over
a specific set of symbols determined by the index s. The
architecture of the modelled component-based system and
other advanced characteristics determine which transitions
from the complete transition space are included in the com-
posed automaton. The idea is that the final transition set
δ is formed automatically according to the rules specifying
the complete transition space, interconnection rules gener-
ated from the ADL description and other specified charac-
teristics.

Example 4.2.: Let us illustrate the composition on automata
from Example 4.1. Automaton A4 (modelling the compo-
nent C4 from Figure 3) is a component-interaction automa-
ton over A1 and A2. Automaton A5 (modelling the compo-
nent C5 from Figure 3) is a component-interaction automa-
ton over A3 and A4. The architecture of the composition
is determined by the UML 2.0 description of the system in
Figure 3.

A4 = ({s0, s1}, {a, b}, {(s0, (−, a, 2), s0), (s0, (1, a, 2)s1),
(s1, (1, b,−), s1), (s1, (−, a, 2), s1)}, {s0}, ((1), (2)))
∆OldInternal = ∅
∆NewInternal = {(s0, (1, a, 2), s1)}

δNewInternal = {(s0, (1, a, 2), s1)}
∆Input = {(s0, (−, a, 2), s0), (s1, (−, a, 2), s1)}
δInput = {(s0, (−, a, 2), s0), (s1, (−, a, 2), s1)}
∆Output = {(s0, (1, a,−), s1), (s1, (1, b,−), s1)}
δOutput = {(s1, (1, b,−), s1)}
Here s0 and s1 represent the states (q0, q0) and (q1, q0), re-
spectively. For the graphical representation of A4 see Fig-
ure 5.

// s076540123
BCED (−,a,2)GF��

(1,a,2)
// s176540123 EDBC (1,b,−)@AOO
BCED (−,a,2)GF��

Figure 5: Automaton A4 modelling component C4

A5 = ({p0, p1}, {a, b}, {(p0, (3, a, 2), p0), (p0, (1, a, 2), p1),
(p1, (3, a, 2), p1), (p1, (1, b,−), p1)}, {p0}, (((1), (2)), (3)))
∆OldInternal = {(p0, (1, a, 2), p1)}
∆NewInternal = {(p0, (3, a, 2), p0), (p1, (3, a, 2), p1)}
δNewInternal = {(p0, (3, a, 2), p0), (p1, (3, a, 2), p1)}
∆Input = {(p0, (−, a, 2), p0), (p1, (−, a, 2), p1)}
δInput = ∅
∆Output = {(p0, (3, a,−), p0), (p1, (1, b,−), p1), (p1, (3, a,−), p1)}
δOutput = {(p1, (1, b,−), p1)}
Here p0 and p1 represent the states ((q0, q0), q0) and
((q1, q0), q0), respectively. For the graphical representation
of A5 see Figure 6.
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Figure 6: Automaton A5 modelling component C5

The operation of composition let us model the hierarchi-
cal structure of component-based systems. The base of the
composition are primitive component-interaction automata.
A component-interaction automaton is primitive if it repre-
sents one individual component only. AutomataA1,A2, and
A3 from Example 4.1 are primitive. In the modelling and
verification process we often need to consider only input and
output transitions of a component-interaction automaton,
which corresponds to the notion of primitiveness. Therefore
we define a relation primitive to which enables us to trans-
form any component-interaction automaton to a primitive
one if we want to make the system less complex for further
verification.

Definition: Let C = (Q, Act, δ, I, S) be a component-
interaction automaton. Then component-interaction au-
tomaton C′ = (Q, Act, δ′, I, (n)) is primitive to the
component-interaction automaton C iff

• n ∈ N does not occur in S,

• (q, (n, a, n), q′) ∈ δ′ iff ∃n1, n2 ∈ N : (q, (n1, a, n2), q
′)

∈ δ,

• (q, (−, a, n), q′) ∈ δ′ iff ∃n2 ∈ N : (q, (−, a, n2), q
′) ∈ δ,

• (q, (n, a,−), q′) ∈ δ′ iff ∃n1 ∈ N : (q, (n1, a,−), q′) ∈ δ.

Example 4.3.: Automaton B4 (see Figure 7) is primitive to
the automaton A4 from Example 4.2. (s0 and s1 represent
the states (q0, q0) and (q1, q0), respectively).
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Figure 7: Automaton B4

4.2 Verification
For a given component-interaction automaton its behaviour
can be defined through its executions and traces.

Definition: An execution fragment of a component-
interaction automaton C = (Q, Act, δ, I, S) is an infinite al-
ternating sequence q0, x0, q1, x1, . . . of states and symbols of
the alphabet Σ such that (qi, xi, qi+1) ∈ δ for all 0 ≤ i.
An execution of C is an execution fragment q0, x0, q1, x1, . . .
such that q0 ∈ I. An execution fragment is closed if all its
symbols are internal. A trace of C is a sequence x0, x1, . . .
of symbols for which there is an execution q0, x0, q1, x1, . . ..

In real component-based systems one needs to verify various
properties of system behaviour. If the system is modelled
as a component-interaction automaton the behaviour cap-
turing the interaction among components and architectural
levels are the traces. Both linear and branching time tempo-
ral logics have proved to be useful for specifying properties of
traces. There are several formal methods for checking that
a model of the design satisfies a given specification. Among
them those based on automata [6] are especially convenient
for our model of Component-Interaction automata.

We have experimentally verified several specifications of
a component-based systems modelled as a component-
interaction automata with the help of DiVinE [1, 4]. DiVinE
(Distributed Verification Environment) is a model checking
tool that supports distributed verification of systems. The
DiVinE native input language si based on finite automata
and the component-interaction automata can be translated
into the DiVinE language. The tool supports verification of
LTL properties.

5. CONCLUSIONS AND FUTURE WORK
The paper presents a new formal verification-oriented
component-based specification language named Component-
Interaction automata. This model is defined with the aim to
support specification and verification of component interac-
tions according to the interconnection architecture and other
aspects of modelled system. On the one hand, Component-
Interaction automata are close to architecture description
languages which can be (semi)automatically transformed
into Component-Interaction automata without loosing im-
portant behavioural characteristics. On the other hand, the
proposed model is close to Büchi automata model and this
admits automata-based verification of temporal properties
of component interactions.

The Component-Interaction automata model aims to pro-
vide a direct and desirable way of modelling component-
based systems which is meant to be more transparent and
understandable thanks to the primary purpose oriented to
component-based systems and their specifics. The model
is inspired by some features of previously discussed models
and differs in many others. It allows the freedom of choosing
the transition set what allows its configurability according
to the architecture description (inspired by Team automata)
and is based on synchronization on one input and one out-

put action with the same name which becomes internal later
on (inspired by Interface automata). The model is designed
to preserve all important interaction properties to provide
a rich base for further verification. As a distinct from the
models discussed in Section 3, it naturally preserves infor-
mation about the components which participated in the syn-
chronization and about the hierarchical structure, directly
without renaming that would make the model less readable
and understandable. Even if some component-based sys-
tems could be modeled by previously discussed models (I/O
automata, Interface automata, Team automata) with ap-
propriate relabelling, it would be for a price of considerable
state expanding, untransparency and uncomfortable use of
the model.

Nowadays we are developing an automatic transformation
from SOFA ADL specification to Component-Interaction
automata and from Component-Interaction automata to
DiVinE model checking tool native input language. In
the future, we intent to study Component-Interaction au-
tomata model in a more detailed way, considering mathe-
matical (expressiveness), verification (properties and algo-
rithms) and software engineering (reusability and composi-
tionality) point of view.
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