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ABSTRACT
The most challenging issue of component-based software is
about component composition. Current component specifi-
cation, in addition to the syntactic level, is very limited in
dealing with semantic constraints. Even so, only static as-
pects of components are specified. This paper gives a formal
approach to make component specification more comprehen-
sive by including component semantic. Fundamentally, the
component semantic is expressed via the powerful tempo-
ral logic CTL. There are two semantic aspects in the paper,
component dynamic behavior and consistency - namely a
component does not violate some property in another when
composed. Based on the proposed semantic, components
can be efficiently cross-checked for their consistency by an
incremental verification method - OIMC, even for many fu-
ture component extensions.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—formal methods, model checking

1. INTRODUCTION
As an unanimity within the software engineering commu-

nity, high quality software are structured from lowly coupled
components. Within the component-based approach, com-
posing components properly is very essential. Component-
based software idealizes the plug-and-play concept. The cur-
rent component technology generally supports component
matching at the syntactic level. Components can be syn-
tactically checked and hence plugged. However, they do not
play as expected. A major issue of concern is the mismatches
of the components in the context of an assembled system.
A main source of this phenomenon is because a component
violates some property inherent to another. In our opin-
ion, the problem is two-fold: the underlying logic is not
powerful enough to express component properties; and even
if formally specified, it is difficult to verify the properties
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in an open way - future components are not known in ad-
vance. For instance, temporal inter-component constraints
are difficult to formally specify, much harder to check among
components with the current specification methods. In this
paper, the introduction of the temporal logic CTL [4] into
component semantic is exactly towards that goal. This pa-
per addresses two points: how to explicitly specify such a
component semantic; and given that kind of information in
the component interface, how to efficiently analyze compo-
nents and to decide whether they are safe to be composed
together.

Most current approaches for component interface defini-
tion deal with primarily syntactic issues among static inter-
face elements such as operations and attributes, like those of
the CORBA Interface Definition Language (IDL) [9]. Re-
garding a component’s exact capability, essential semantic
aspects of the component should also be described. In this
paper, the dynamic behavior and component consistency are
introduced, while the encapsulation principle is enforced.
The dynamic behavior of a component is represented by a
state transition model. Besides, associated with a compo-
nent’s behavior is a certain set of inherent properties. Cer-
tainly, another component, when interacting with that com-
ponent, must preserve constraints at the interface of the
former so that those inherent properties continue to hold.
This characteristic is called component consistency. More-
over, as written in CTL, many complex semantic constraints
of component consistency can be formally specified. The
paper then presents an efficient algorithm to analyze consis-
tency between components. Further, the algorithm is also
scalable, not only the direct component extension but also
many future compositions, as long as the consistency con-
straints at the interfaces are preserved.

In this paper, Section 3 introduces the formal dynamic
behavior model of components. Section 4 is about compo-
nent consistency and how to verify it. Later, Section 5 is
concerned with specification of components and their com-
position.

2. BACKGROUND
The most common form of component deployment in prac-

tice, namely Commercial-Off-The-Shelf (COTS), is on very
independent components. The computation paths of these
components rarely interleave with each other. The rela-
tionship between COTS can be named functional addition.
Besides COTS, there is another aspect of components in-
volving in-house component development and integration.
Components evolve through functional refinement. These



components are relatively coupled thus COTS is not a rec-
ommended option in this situation. There is a strong depen-
dency from the refining component to the base component.
Even though the discussion in this paper focuses on com-
ponent refinement, the results can be well applied to COTS
because analyzing COTS is obviously simpler. In practice,
there is a trade-off between the simplicity of component
specification and proper use of components. For COTS,
component specification at the syntactical level may prove
to be sufficient for component deployment in most of the
cases. However, for component refinement where compo-
nents are fairly coupled, semantic specification is vital.

Unlike the current component technology using UML (Uni-
fied Modeling Language) and OCL (Object Constraint Lan-
guage) [16] to express semantic constraints, constraints in
this paper are related to the temporal logic CTL. CTL∗

logic is formally expressed via two quantifiers A (“for all
paths”) and E (“for some path”) together with five tempo-
ral operators X (“next”), F (“eventually”), G (“always”),
U (“until”) and R (“release”) [4]. CTL (Computation Tree
Logic) is a restricted subset of CTL∗ in which each tempo-
ral operator must be preceded by a quantifier. An incre-
mental verification technique for CTL properties has been
attempted by [6, 13]. It is named open incremental model
checking (OIMC) for the open and incremental character-
istics of the algorithm. Suppose that a base component is
refined by another component. The approach consists of the
following activities:

1. Deriving a set of preservation constraints at the inter-
face states of the base such that if those constraints
are preserved, the property inherent to the base under
consideration is guaranteed.

2. The refining component does not violate the above
property of the base if, during its execution, the above
constraints are preserved.

3. DYNAMIC BEHAVIOR SPECIFICATION
There are two types of semantic mentioned in this paper:

component dynamic behavior (this section) and component
consistency (Section 4).

In the typical case of component refinement, there are two
interacting components: base and extension (or refinement).
Between the base and its extension, on the base side, is an
interface consisting of exit and reentry states [6, 13]. An exit
state is the state where control is passed to the extension.
A reentry state is the point at which the base regains con-
trol. Correspondingly, the extension interface contains in-
and out-states at which the refinement component receives
and returns system control. Let AP be a set of atomic
propositions. The dynamic behavior of a component is in-
dependently represented by a state transition model.

Definition 1. A state transition model M is represented
by a tuple 〈S, Σ, s0, R, L〉 where S is a set of states, Σ is
the set of input events, s0 ∈ S is the initial state, R ⊆
S × PL(Σ) → S is the transition function (where PL(Σ)
denotes the set of guarded events in Σ whose conditions are
propositional logic expressions), and L : S → 2AP labels each
state with the set of atomic propositions true in that state.

A base is expressed by a transition model B = 〈SB, ΣB ,
soB , RB , LB〉 and an interface I . The interface is a tuple

of two state sets I = 〈exit, reentry〉, where exit, reentry ⊆
SB . An extension is similarly represented by a model E =
〈SE , ΣE ,⊥, RE, LE〉. ⊥ denotes no-care value. Its interface
is J = 〈in, out〉.

E can be semantically plugged with B via compatible in-
terface states. Logically, along the computation flow, when
the system is in an exit state ex ∈ I.exit of B matched
with an in-state i ∈ J.in of E, denoted as ex ↔ i, it can
enter E if the conditions to accept extension events, namely
the set of atomic propositions at i, are satisfied. That
is,

V
LB(ex) ⇒ V

LE(i), where
V

is the inter-junction of
atomic propositions. Similar arguments are made for the
matching of a reentry state re ∈ I.reentry and an out-
state o ∈ J.out. The conditions resemble to pre- and post-
conditions in design by contract [12].

Definition 2. Within interfaces I and J of B and E, the
pairs 〈ex, i〉 and 〈re, o〉 can be respectively mapped according
to the following conditions.

• ex ↔ i if
V

LB(ex) ⇒ V
LE(i).

• re ↔ o if
V

LE(o) ⇒ V
LB(re).

The actual mapping configuration is decided by the modeler
at composition time. Subsequently, ex and re will be used
in place of i and o respectively in this paper.

Definition 3. Composing the base B with the extension
E, through the interface I produces a composition model C =
〈SC , ΣC , s0C , RC , LC〉 as follows:

• SC = SB ∪ SE; ΣC = ΣB ∪ ΣE ; s0C = s0B ;

• RC is defined from RB and RE in which RE takes
precedent, namely any transition in B is overridden by
another transition in E if they share the same starting
state and input event;

• ∀s ∈ SB , s �∈ I.exit ∪ I.reentry : LC(s) = LB(s);

• ∀s ∈ SE , s �∈ J.in ∪ J.out : LC(s) = LE(s);

• ∀s ∈ I.exit ∪ I.reentry : LC(s) = LB(s).

In this formal specification, the behavior of B can be par-
tially overridden by E because E takes precedent during
composition.

Definition 4. The closure of a property p, cl(p), is the
set of all sub-formulae of p including itself.

• p ∈ AP : cl(p) = {p}
• p is one of AX f, EX f,AF f, EF f,AG f,EG f :

cl(p) = {p} ∪ cl(f)

• p is one of A [f U g],E [f U g],A [f R g],E [f R g] :
cl(p) = {p} ∪ cl(f) ∪ cl(g)

• p = ¬f : cl(p) = cl(f)

• p = f ∨ g or p = f ∧ g : cl(p) = cl(f) ∪ cl(g)

Definition 5. The truth values of a state s with respect
to a set of CTL properties ps within a model M = 〈S, Σ, s0, R,
L〉, denoted as VM (s, ps), is a function: S × 2CTL → 2CTL.

• VM (s, ∅) = ∅



• VM (s, {p} ∪ ps) = VM (s, {p}) ∪ VM (s, ps)

• VM (s, {p}) =

j {p} if M, s |= p
{¬p} otherwise

Hereafter, VM (s, {p}) = {p} (or {¬p}) is written in the
shorthand form as VM (s, p) = p (or ¬p) for individual prop-
erty p.

OIMC is rooted at assumption model checking [11]. This
method is particularly useful for open systems - future exten-
sions are not known in advance. Hence, OIMC is applicable
to component-based software. The idea to the component
refinement context is explained in the following. The com-
posite model C can be treated as the combination of two
sequential components B and E. In addition to existing ex-
ecution paths defined in B, a typical execution path in C
consists of three parts: initially in B, next in E and then
back to B. Associated with each reentry state re of E is a
computation tree rooted at the state and lying completely in
B. This tree possesses a set of temporal properties. If these
properties at re are known, without loss of correctness, we
can efficiently derive the properties at the upstream states
in E by ignoring model checking in B to find the properties
at re. Instead, we start from these reentry states with the
associated properties; check the upstream of the extension
component, and then the base component if needed 1. The
properties associated with a reentry state re are assumed
with truth values from B, As(re) = VB(re, cl(p)). As is the
assumption function of this assumption model checking. Of
course, this method relies on whether As(re) is proper.

The assumption As at a reentry state re is proper if the
seeding values are exactly the properties associated with the
tree at re in C, i.e. VB(re, cl(p)) = VC(re, cl(p)). The as-
sumption As is definitely proper if re is not affected by E.
The problem arises if ex is reachable from re in B. On
the other hand, re is reachable from ex in E. This situa-
tion creates a circular dependency between interface states
ex and re. Dealing with such a circular structure is in-
deed very important to the verification result of assumption
model checking. In fact, this is the weak point of assump-
tion model checking. In this paper, that topic is out of the
scope. Subsequent discussions consider As is proper.

4. INTER-COMPONENT CONSISTENCY
Given a structure B = 〈SB, ΣB , s0B , RB, LB〉 as in Defini-

tion 1, a property p holding in B is denoted by B, s0B |= p.
C is formed by composing B and E, C = B + E. B and E
are consistent with respect to p if C, s0B |= p.

4.1 A Theorem on Component Consistency
Due to the inherently inside-out characteristic of model

checking, after checking p in B, at each state s, VB(s, cl(p))
are recorded.

Definition 6. B and E are in conformance at an exit
state ex (with respect to cl(p)) if VB(ex, cl(p)) = VE(ex, cl(p)).

In this definition, VE(ex, cl(p)) are derived from the assump-
tion model checking within E, and the seeded values at any
reentry state re are As(re) = VB(re, cl(p)).

1There is no need to model check the base again if the con-
sistency constraints associated with the exit states of B are
preserved at the respective in-states of E.

Theorem 7. Given a base B and a property p holding on
B, an extension E is attached to B at some interface states.
E does not violate property p if B and E conform with each
other at all exit states.

The proof details are in [13]. Even though this paper fo-
cuses on component refinement, with regards to COTS, the
above theorem also holds. A COTS component can be in-
deed regarded as a special case of refinement in which there
is only a single exit state and no reentry state with the base.
The computation tree of the COTS deviates from the base
and never joins the base again. After being composed with
a COTS, instead of an assumption model checking within
the COTS, a standard model checking procedure can be ex-
ecuted entirely within the COTS to find the properties at the
exit state. The conformance condition to ensure the consis-
tency between the two components can be applied as usual.
The only difference in Definition 6 lies in VE(ex, cl(p)) for
each exit state ex. In component refinement, these truth val-
ues are derived from the assumption model checking within
E with the assumption values VB(re, cl(p)) at any reentry
state re. On the contrary, in COTS, there is no assumption
at all. Hence, the model checking procedure in E is then
exactly standard CTL model checking.

Figure 1 depicts the composition preserving the property
p = A [f U g] when B and E are in conformance. The com-
position is done via a single exit state ex. The reentry state
re is not shown but it does not affect the subsequent argu-
ments 2. E overrides the transition ex-s3 in B. B′ is the
remainder of B after removing the overridden transition. In
the figure, within B, p = A [f U g] holds at s1, s2 and ex.
The figure only shows VE(ex, p) = VB(ex, p) = A [f U g].
In fact, B and E conform at ex with regards to cl(p). Af-
ter removing the edge ex-s3, the new paths in E together
with the remaining computation tree in B′ still preserve p
at ex directly; and consequently s2 and s1 indirectly. As p
is preserved at the initial state s1, B and E are consistent.

By Theorem 7, component semantic specification requires
VB(s, cl(p)) for tuples of any potential interface state s and
any CTL property p inherent to B. They serve as constraints
for component consistency (Section 5.2).

4.2 Open Incremental Model Checking
Components can be verified to be consistent via OIMC.

Initially, a CTL property p is known to hold in B. We
need to check that E does not violate p. From Theorem 7,
the incremental verification method only needs to verify the
conformance at all exit states between B and E. Corre-
sponding to each exit state ex, within E, the algorithm to
verify preservation constraints VB(ex, cl(p)) can be briefly
described as follows:

1. Seeding VB(re, cl(p)) at any reentry state re. The as-
sumption function As is: As(re) = VB(re, cl(p)).

2. Executing a CTL assumption model checking proce-
dure in E to check φ, ∀φ ∈ cl(p). In case of COTS,
a standard CTL model checking is executed within E
instead.

3. Checking if VE(ex, cl(p)) = VB(ex, cl(p)).

2In fact, this figure is intended to represent both component
refinement and COTS.
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Figure 1: An illustration of conformance VE(ex, cl(p)) = VB(ex, cl(p)) where E overrides B. The property
p = A [f U g] is preserved in B due to the conformance.

At the end of the algorithm, if at all exit states, the truth
values with respect to cl(p) are matched respectively, B and
E are consistent with respect to p.

4.3 Scalability of OIMC
This section addresses the scalability of the algorithm in

Section 4.2. We consider the general case of the n-th ver-
sion of the component (Cn) during software evolution as a
structure of components B, E1, E2, ..., En where Ei is the
refining component to the (i−1)-th evolved version (C(i−1)),

i = 1, n. The initial version is C0 = B and Ci = Ci−1 + Ei.
We check for any potential conflict between B and Ei regard-
ing p via OIMC. Theorem 8 claims that OIMC is scalable.
The detailed proof is in [13].

Theorem 8. If all respective pairs of base (C(i−1)) and
refining (Ei) components conform, the complexity of OIMC
to verify the consistency between En and B is independent
from the n-th version Cn, i.e. it only executes within En.

5. COMPONENT SPECIFICATION
This paper advocates the inclusion of two additional se-

mantic aspects of component specification to facilitate proper
component composition. Given a base component B =
〈SB , ΣB , soB , RB , LB〉, the semantic aspects are: dynamic
behavior (via state transition model in which only poten-
tial future interface states are visible to other components -
Section 3) and their associated consistency constraints (via
the truth values of VB(s, cl(p)) at such an interface state s,
where p is a CTL property holding in the base component -
Section 4).

5.1 Interface Signature
Component signatures are the fundamental aspect to the

component interface. As commonly recognized, the tradi-
tional interface signature of a component contains attributes
and operations. First, through attributes 3, the current state
of a software component may be externally observable. The
component’s clients can observe and even change the values

3Attribute is termed as property in [9] which is essentially
the entities expressing states of components. To distinguish
them from temporal properties inherent to components in
Section 5.2, those entities are named as attributes.

of those attributes. Second, the environment interacts with
the component through operations. The operations repre-
sent services or functions the component provides.

Unlike above two static aspects, the introduction of dy-
namic behavior of a component to the interface is recom-
mended in this paper. Components in reality resemble classes
in the object-oriented (OO) approach. This specification
style hence follows the encapsulation principle of OO tech-
nology so that only essential information is exposed. Only
the partial dynamic model of the component consisting of
potential future interface states is visible to clients. The
rest of the model can be hidden. Associated with a visible
interface state s is the set of atomic propositions L(s) (Def-
inition 1). These propositions are often expressed via logic
expressions among attributes above.

5.2 Interface Constraints
The interface signature only shows the individual elements

of the component for interaction with clients in syntactic
terms. In addition to the constraints imposed by their asso-
ciated types, the attributes and operations of a component
interface may be subject to a number of further semantic
constraints regarding their use. In general, there are two
types of such constraints: internal to individual components
and inter-component relationships. The first type is simple
and has been thoroughly mentioned in many component-
related works [9, 16]. The notable examples are the oper-
ation semantics according to pre-/post-conditions of opera-
tions; and range constraints on attributes. For the second
type, current component technology such as CORBA IDL
(Interface Definition Language), UML and OCL [16] etc. is
limited to a very weak logic in terms of expressiveness. For
example, different attributes in components may be inter-
related by their value settings; or an operation of a compo-
nent can only be invoked when a specific attribute value of
another is in a given range etc [9]. The underlying logic only
expresses the constraint at the moment an interface element
is invoked, i.e. static view, regardless of execution history.

The paper introduces two inter-component semantic con-
straints. The first constraint is based on the plugging com-
patibility for a refining component to be plugged at a special
state of the base. This situation resembles the extension of
use-case scenarios. The base gives the basic interacting sce-
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Figure 2: The dynamic behavior model of the
“black” component.

narios of the component with clients. The refining compo-
nent refines some of those scenarios further at a certain point
from which the component deviates from the pre-defined
course to enter new traces in the extension component. Such
a point corresponds to an exit state in Definition 2.

On the other hand, the second semantic constraint em-
phasizes on how to make components play once they are
plugged. Importantly, this constraint type is expressed in
terms of CTL so its scope of expressiveness is enormous. In
contrast to the logic above, CTL can describe whole execu-
tion paths of a component, i.e. dynamic view. Via OIMC in
Section 4.2, a refining client E to a base component B can
be efficiently verified on whether it preserves the property p
of B.

Once composed, the new component C = B + E exposes
its new interface signatures and constraints. Static aspects
like attributes and operations are simply the sum of those in
B and E. The dynamic behavior of C is exposed according
to the composition of corresponding visible parts of B and
E. In terms of constraints, any potential interface state s
is exposed with the set of propositions LC(s) = LB(s) ac-
cording to Definition 3. On the other hand, the consistency
constraint at s is derived either from VB(s, cl(p)) (for any
s ∈ SB) or VE(s, cl(p)) which is resulted from the above
execution of OIMC within E (if s ∈ SE). Subsequent re-
finements to C follow the same manner as the case of E to
B because of Theorem 8.

5.3 Component Specification and Composition
Component specification can be represented via interface

signatures and constraints written in an illustrative speci-
fication language below. The major goal of this language
is to minimize the “conceptual distance” between architec-
tural abstractions and their implementation [1]. Encoding
state diagrams directly into the interface; and refining ex-
isting component specifications in pure programming lan-
guages are difficult. Instead, a language similar to that of [1]
for declaring and refining state machines in layering manner
is used. Based on the exemplary specification, components
are implemented as classes in typical object-oriented lan-
guages. Component composition is then done via class ag-
gregation/merging. Component attributes and operations
are declared in the object-oriented style like C++. The
virtual keyword is used to only name an element without
actual memory allocation. The element will be subsequently
mapped to the actual declaration in another component.
This mechanism resembles mergeByName in Hyper/J [15] in
which component entities sharing the same label are merged
into a single entity during component composition.

Figure 2 shows the dynamic model of a simple compo-

nent, while below is the corresponding specification of the
component. The interface signatures should declare: edges
with name, start state, end state, transition guard and input
event; as well as transition action. At the end are the se-
mantic constraints of the component written in both types
shown in Section 5.2, namely plugging compatible condi-
tions and inherent temporal properties at potential interface
states. For illustration purpose and due to space limitation,
this producer-consumer example is very much simplified so
that only some key transitions and states are shown. Be-
cause of this over-simplified model, the whole dynamic be-
havior of the component is visible to clients. In practice,
regarding the encapsulation principle, only essential part of
the model for future extension is visible. The rest of the
model is hidden from clients. There are three components:
“black” (the base B of Figure 3a with solid transitions -
item-producing function); “brick” (the first refinement E of
Figure 3b expressed via dashed transitions - variable-size
buffer and item-consuming function); and “white” (the sec-
ond refinement E′ of Figure 3c depicted in dotted transitions
- optimizing data buffer).
Component B {
Signature:

states 1 black, 2 black, 3 black;

/* edge declarations */

edge t1: 1 black -> 2 black

condition test // OK if adding k items to buffer

input event e1 // producing k items

do { produce(k)... }; /* t1 action */

edge t2: 1 black -> 3 black;

... /* similarly defined */

// operations and attributes declaration

boolean test;

int cons, prod;// consumed, produced items

int buffer[];// a bag of data items

...

init(){ state = 1 black; ...};
produce(n){ prod = prod + n;...};

Constraint:

/* compatible plugging conditions - CC */

1 black cc: cons = prod;// empty buffer

2 black cc: test = true, cons < prod;

3 black cc: test = false, cons ≤ prod;

/* Inherent properties - IP */

1 black ip: AG (cons ≤ prod), cons ≤ prod;

2 black ip: AG (cons ≤ prod), cons ≤ prod;

3 black ip: AG (cons ≤ prod), cons ≤ prod;

}

As components are composed with each other, they can
be progressively refined/extended in layering manner. The
process adds states, actions, edges to an existing component.
The original component and each refinement are expressed
as separate specifications that are encapsulated in distinct
layers. Figure 3 shows this hierarchy: the root component is
generated by the specification from Figure 2 or Figure 3a; its
immediate refinements are in turn generated from compo-
nent specifications according to the order in the Figures 3b
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Figure 3: Component refinements and component composition via class aggregation.

and 3c.
Component E {/* for refining black */

Signature:

states 1 brick, i1 brick, i2 brick, i3 brick;

/* edges declaration */

edge t3: i2 brick -> i3 brick

condition ... // ready to consume

input event ... // consuming k items

do { consume(k)... }; /* t3 action */

edge t4: i1 brick -> 1 brick

condition ... // ready to change buffer size

input event ... // change the size

do { changesize();... }; /* t4 action */

edge t5: 1 brick -> i3 brick;

edge t6: i2 brick -> i2 brick;

// buffer inquiry only, consuming zero item

... /* similarly defined */

// operations and attributes declaration

virtual int cons;// mapped with cons in B
virtual int prod;// mapped with prod in B
virtual int buffer[];// mapped with buffer in B
consume(n){ cons = cons + n;...};
changesize(){ buffer = malloc();...};

Constraint:

1 brick cc: cons ≤ prod;

i1 brick cc: cons ≤ prod;

i2 brick cc: test = true, cons < prod;

i3 brick cc: test = false, cons < prod;

}

Component E′ {/* for refining black + brick */

Signature:

states 1 white, i2 white, i3 white;

/* edges declaration */

edge t7: i2 white -> 1 white

condition ... // ready to compact buffer

input event ...// compact the data buffer

do { resetbuffer();... }; /* t7 action */

edge t8: 1 white -> i3 white;

... /* similarly defined */

// operations and attributes declaration

virtual int cons;// mapped with cons in B
virtual int prod;// mapped with prod in B
virtual int buffer[];// mapped with buffer in B
resetbuffer(){ prod = prod - cons; cons = 0;...};

Constraint:

1 white cc: cons ≤ prod, cons = 0;

i2 white cc: test = true, cons ≤ prod;

i3 white cc: test = false, cons ≤ prod;

}

Aggregation then plays a central role in this component
implementation style. All the states and edges in Figure 3a
are aggregated with the refinement of Figure 3b; and this
figure is in turn united with the refinement of Figure 3c.
The component to be executed is created by instantiating
the bottom-most class of the refinement chain of Figure 3d.

The following explains the preservation of the constraint
in B by all subsequent two component refinements E and
E′. Informally, the property means that under any circum-
stance, the number of produced items by the component is
always greater or equal to that of consumed items. In terms
of CTL notation, p = AG (cons ≤ prod). The closure set of
p is hence cl(p) = {p, a}, where a = (cons ≤ prod).

Initially, B is composed with E. Interface plugging con-
ditions are used to map compatible interface states among
components. The base exposes three interface states 1 black,
2 black and 3 black. On the other hand, the refinement
component exposes four interface states, namely 1 brick,
i1 brick, i2 brick and i3 brick. Based on the respective
atomic proposition sets at those states, corresponding in-
terface states are mapped accordingly.

For instance, first
V

LB(1 black) = (cons = prod) ⇒V
LE(i1 brick) = (cons ≤ prod). According to Defini-

tion 2, i1 brick ↔ 1 black. On the other hand, becauseV
LE(i2 brick) =

V
LB(2 black), i2 brick ↔ 2 black. Simi-

larly,
V

LE(i3 brick) ⇒ V
LB(3 black), i3 brick ↔ 3 black.

Here, i1 brick and i2 brick perform exit states of the base
component, while i2 brick and i3 brick are reentry states.

The composite model of the two components C1 = B +E
is shown in Figure 3b. After the designer decides on the
mapping configuration between interface states, and prop-
erly resolves any mismatches at the syntactic level between
B and E, the semantic constraint of consistency between the
two due to p is in focus. The OIMC algorithm in Section 4.2
is applied as follows:

1. Copying VB(s, cl(p)) to the respectively mapped out-
states i2 brick and i3 brick in E for any reentry state
s such as 2 black and 3 black.

2. Executing assumption model checking within E to find
VE(i1 brick, cl(p)) and VE(i2 brick, cl(p)). Note that,
the model checking procedure is executed within the
dashed part in Figure 3b. The solid transitions belong
to the base component B and are hence ignored.

3. Checking if VE(i1 brick, cl(p)) = VB(1 black, cl(p)) and



VE(i2 brick, cl(p)) = VB(2 black, cl(p)). If so, B and
E conform.

The model checking is very simple and hence its details
are skipped. At the end, B and E components conform at
all exit states. According to Theorem 7, p is preserved by
the second component after evolving to C1 = B + E.

C1 is then extended with E′. Notably, the interface of the
new component C1 is derived from B and E as below:
Component C1 {
Signature:

states 1 black, 2 black, 3 black, 1 brick;

/* edge declarations */

edge t1: 1 black -> 2 black;

edge t2: 1 black -> 3 black;

edge t3: 2 black -> 3 black;

edge t4: 1 black -> 1 brick;

edge t5: 1 brick -> 3 black;

edge t6: 2 black -> 2 black;

/* identical to each component’s declaration */

// operations and attributes declaration

boolean test;

int cons, prod;// consumed, produced items

int buffer[];

init(){ state = 1 black; ...}
consume(n){ cons = cons + n;...};
produce(n){ prod = prod + n;...};
changesize(){ buffer = malloc();...};

Constraint:

/* compatible plugging conditions - CC */

1 black cc: cons = prod;

2 black cc: test = true, cons < prod;

3 black cc: test = false, cons ≤ prod;

1 brick cc: cons ≤ prod;

/* Inherent properties - IP */

1 black ip: AG (cons ≤ prod), cons ≤ prod;

2 black ip: AG (cons ≤ prod), cons ≤ prod;

3 black ip: AG (cons ≤ prod), cons ≤ prod;

1 brick ip: AG (cons ≤ prod), cons ≤ prod;

}

The approach in composing E′ with C1 is similar to the
above, we have the following mapping configuration between
interface states: i2 white ↔ 2 black, i3 white ↔ 3 black.
The same result is achieved, p is preserved by E′. More
importantly, the verification method is executed within E′

only, i.e. the dotted part in Figure 3c. After composing E′,
the component becomes C2 = C1 + E′ shown below:
Component C2 {
Signature:

states 1 black, 2 black, 3 black, 1 brick, 1 white;

/* edge declarations */

edge t1: 1 black -> 2 black;

edge t2: 1 black -> 3 black;

edge t3: 2 black -> 3 black;

edge t4: 1 black -> 1 brick;

edge t5: 1 brick -> 3 black;

edge t6: 2 black -> 2 black;

edge t7: 2 black -> 1 white;

edge t8: 1 white -> 3 black;

/* identical to each component’s declaration */

// operations and attributes declaration

boolean test;

int cons, prod;// consumed, produced items

int buffer[];

init(){ state = 1 black; ...}
consume(n){ cons = cons + n;...};
produce(n){ prod = prod + n;...};
changesize(){ buffer = malloc();... };
resetbuffer(){ prod = prod - cons; cons = 0;...};

Constraint:

/* compatible plugging conditions - CC */

1 black cc: cons = prod;

2 black cc: test = true, cons < prod;

3 black cc: test = false, cons ≤ prod;

1 brick cc: cons ≤ prod;

1 white cc: cons ≤ prod, cons = 0;

/* Inherent properties - IP */

1 black ip: AG (cons ≤ prod), cons ≤ prod;

2 black ip: AG (cons ≤ prod), cons ≤ prod;

3 black ip: AG (cons ≤ prod); cons ≤ prod;

1 brick ip: AG (cons ≤ prod); cons ≤ prod;

1 white ip: AG (cons ≤ prod); cons ≤ prod;

}

In brief, p is preserved by both extensions E and E′. In
this example, the scalability of incremental model checking
is maintained as it only runs on the refinements, indepen-
dently from the bases B and C1 respectively.

6. RELATED WORK
Modular model checking is rooted at assume-guarantee

model checking [10, 14]. However, unlike the counterpart
in hardware verification [8, 10] focusing on parallel com-
position of modules, software modular verification [11] is
restricted by its sequential execution nature. Incremen-
tal model checking inspires verification techniques further.
There is a fundamental difference between those conven-
tional modular verification works [8, 10, 14] and the pro-
posed approach including this paper and [6]. Modular ver-
ification in the former works is rather closed. Even though
it is based on component-based modular model checking,
it is not prepared for change. If a component is added to
the system, the whole system of many existing components
and the new component are re-checked altogether. On the
contrary, the OIMC approach in this paper and [6] is incre-
mentally modular and hence more open. It only checks the
new system’s consistency within the new component. Cer-
tainly, this merit comes at the cost of “fixed” preservation
constraints at exit states. These constraints can deliver a
false negative for some cases of component conformance.

Regarding the assumption aspect in component verifica-
tion, [7] presents a framework for generating assumption on
environments in which the component satisfies its required
property. This work differs OIMC in some key points. First,
the constraints in OIMC are explicitly fixed at VB(ex, cl(p))
for any exit state ex, whereas based on a fully specified
component model including error states, [7] generates as-
sumption about operation calls by which the environment



does not lead the component to any error state. Second, the
approach in [7] is viewed from a static perspective, i.e. the
component and the external environment do not evolve. If
the component changes after adapting some refinements, the
assumption-generating approach is re-run on the whole com-
ponent, i.e. the component model has to be re-constructed;
and the assumption about the environment is then gener-
ated from that model.

The OIMC technique introduced in this paper is similar to
[6]. However, our work proposes more precisely and explic-
itly the conformance condition between components. Fur-
ther, to enable the plug-and-play idea in component-based
software, the corresponding component specification are sep-
arately specified. Their composition is based on plugging
condition among compatible interface states. In addition,
the scalability of component consistency is not mentioned
in [6]. Without Theorem 8, the approach is not applicable
for future component composition.

Finally, like the proposal in Section 5 about encapsulat-
ing dynamic behavior model into component interface, i.e.
state-full interface, two closely related works [3, 5] also ad-
vocate the use of light-weight formalism to capture temporal
aspects of software component interfaces. More specifically,
this paper simply relies on state transition model in the most
general sense, while the approach in [3, 5] presents a finer re-
alization of state-full model in which states are represented
by control points in operations of components; and edges
are actually operation calls. That approach focuses on the
order of operation calls in a component 4. By formalizing a
component through a set of input, output and internal oper-
ations, the compatibility between component interfaces with
regards to the structure of component operations is defined
and checked. In addition, the two approaches target dif-
ferent aspects of consistency. This paper is concerned with
component consistency in terms of CTL properties, whereas
the approach in [3, 5] is involved with the correctness and
completeness of operation declarations within components.

7. CONCLUSION
This paper focuses on the refinement aspect of compo-

nents in which components are relatively coupled. However,
the results of this paper can be equally applied to COTS.
This paper advocates the inclusion of dynamic behavior and
component consistency written in CTL to the component
interface to better deal with component matching. Besides
the traditional static elements such as operations and at-
tributes, component interface should include potential inter-
face states together with the associated plugging conditions
and consistency constraints at those states. Next, based on
the proposed specification structure, an efficient and scal-
able model checking method (OIMC) is utilized to verify
whether components are consistent.

Current well-known model checkers do not support as-
sumption model checking. A future work is to encapsulate
the assumption feature into an open-source model checker
such as NuSMV [2].
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