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ABSTRACT
The development of flexible and reusable abstractions for
software composition has suffered from the inherent prob-
lem that reusability and extensibility are hampered by the
dependence on position and arity of parameters. In order
to address this issue, we have defined λF , a substitution-
free variant of the λ-calculus where names are replaced with
first-class namespaces and parameter passing is modeled us-
ing explicit contexts. We have used λF to define a model for
classboxes, a dynamically typed module system for object-
oriented languages that provides support for controlling both
the visibility and composition of class extensions. This model
not only illustrates the expressive power and flexibility of λF
as a suitable formal foundation for compositional abstrac-
tions, but also assists us in validating and extending the
concept of classboxes in a language-neutral way.

1. INTRODUCTION
In recent years, component-oriented software technology has
become increasingly popular to develop modern, large-scale
software systems [17]. The primary objective of component-
based software is to take elements from a collection of re-
usable software components (i.e., components-off-the-shelf ),
apply some required domain-specific incremental modifica-
tions, and build applications by simply plugging them to-
gether. Moreover, with each reuse, it is expected that a
component’s quality improves, as potential defects are dis-
covered and eliminated [15].

However, in order to be successful, the component-based
software development approach needs to provide abstrac-
tions to represent different component models and compo-
sition techniques [1]. Furthermore, we need a canonical set
of preferably language-neutral composition mechanisms that
allows for building applications as compositions of reusable

software components [14]. However, precise semantics is es-
sential if we are to deal with multiple component models
within such a common, unifying framework. As a conse-
quence, we argue, any abstractions suitable for component-
based software development need to be based on an appro-
priate formal foundation [8].

We have previously been studying a substitution-free vari-
ant of the λ-calculus, called λF , where names are replaced
by forms and parameter passing is modeled using explicit
contexts [8]. Forms are first-class namespaces that, in com-
bination with a small set of purely asymmetric operators,
provide a core language to define extensible, flexible, and
robust software abstractions [9]. Explicit contexts, on the
other hand, mimic λ-calculus substitutions, which are used
to record named parameter bindings. For example, the λF-
term a[b] denotes an expression a, the meaning of which is
refined by the context [b]. That is, all occurrences of free
variables in a are resolved using form b. Thus, the context
[b] expresses the requirements posed by the free variables
of a on its environment [13].

But is the λF-calculus a suitable formal foundation for defin-
ing compositional abstractions? As a proof of concept, we
have used the λF-calculus to define a model for class exten-
sions based on classboxes [2, 3]. Classboxes constitute a kind
of module system for object-oriented languages that defines
a packaging and scoping mechanism for controlling the vis-
ibility of isolated extensions to portions of complex, class-
based systems. More precisely, classboxes define explicitly
named scopes within which classes, methods, and variables
are defined. In addition, besides the “traditional” operation
of subclassing, classboxes support also the local refinement
of imported classes by adding or modifying their features
without affecting the originating classbox. Thus, classboxes
allow one to import a class and apply some extensions to it
without breaking the protocol defined between clients of that
class in other classboxes. Consequently, classboxes and their
associated operations provide a better control over changes,
as they strictly limit the impact of changes to clients of the
extending classbox.

The rest of this paper is organized as follows: in Section 2,
we give a brief introduction into the λF-calculus, followed
by a summary of the main characteristics of classboxes in



Section 3. In Section 4, we use λF to define a general model
of classes and classboxes. In Section 5, we present our λF
encodings of classbox operations. We conclude this paper
in Section 6 with a summary of the main observations from
our classbox modelings and outline future work in this area.

2. THE λF CALCULUS
The design of the λF-calculus is motivated by our previ-
ous observations that the definition of general purpose com-
positional abstractions is hampered by the dependence on
position and arity of parameters [7, 16]. Requiring parame-
ters to occur in a specific order, to have a specific arity, or
both, imposes a specification format in which programming
abstractions are characterized not by the parameters they
effectively use, but by the parameters they declare. This,
however, limits our ability to combine them seamlessly with
other, possibly unknown or weakly specified programming
abstractions, because any form a parameter mismatch has
to be resolved explicitly and, in general, manually.

To address this issue, we champion the concept of dynamic
binding that allows for a software development approach in
which new functionality can be added to an existing piece
of code without affecting its previous behaviour [5]. Con-
sequently, the λF-calculus is an attempt to combine the
expressive power of the λ-calculus with the flexibility of
position-independent data communication as well as late
binding in expressions. In the following, we will briefly il-
lustrate the main abstractions of λF ; the interested reader
is referred to [8] for further details.

The syntax of the λF-calculus is given in Figure 1. We pre-
suppose a countably infinite set, L, of labels, and let l, m, n
range over labels. We also presuppose a countably infinite
set, V, of abstract values, and let a, b, c range over abstract
values. We think of an abstract value as a representation
of any programming value like integers, objects, types, and
even forms themselves. However, we do not require any
particular property except that equality and inequality be
defined for elements of V. We use F, G, H to range over the
set of forms and M, N to range over the set of λF-terms.

Every form is derived from the empty form 〈〉, a form that
does not define any bindings. A form F can be extended
by adding a binding for a label l with a value V , written
F 〈l = V 〉. With projections we recover variable references
of the λ-calculus. We require, however, that the subject of a
projection denote a form. For example, the meaning of F.l
is the value bound by label l in form F. A projection a.l,
where a is not a form yields E , which means “no value.”

The expressive power of forms is achieved by the two asym-
metric operators form extension and form restriction, writ-
ten F⊕ G and F\G, respectively. Form extension allows one
to add or redefine a set of bindings simultaneously, whereas
form restriction can be seen as a dual operation that denotes
a form, which is restricted to all bindings of F that do not
occur in G. In combination, these operators provide the main
building block in a fundamental concept for defining adapt-
able, extensible, and more robust software abstractions [10].

Forms can also occur as values in binding extensions, de-
noted as nested forms. As in the case of binding extensions,

F, G, H ::= 〈〉 empty form
| X form variable
| F 〈l = V 〉 binding extension
| F ⊕G form extension
| F\G form restriction
| F → l form dereference
| F [G] form context

V ::= E empty value
| a abstract value
| M λF − value

M, N ::= F form
| M.l projection
| λ(X) M abstraction
| M N application
| M [F ] λF − context

Figure 1: Syntax of the λF-Calculus.

nested forms are bound by labels. However, rather than us-
ing a projection F.l to extract the nested form bound by
label l, we use F→ l, called form dereference. The reason
for this is that we want to explicitly distinguish between
components, which are encoded as forms, and plain compo-
nent services, which are denoted by some values other than
forms. If the binding involving label l does not actually map
a nested form, then the result of F→ l is 〈〉.

A form context F[G] denotes a closed form expression that
is derived from F by using G as an environment to look up
what would otherwise be free variables in F. We use form
dereference to perform the lookup operation and a free vari-
able is reinterpreted as a label. For example, if X is a free
variable in F and [G] is a context, then the meaning of X in
F is determined by the result of evaluating G→ X. In the
case that G does not define a binding for X, the result is 〈〉,
which effectively removes the set of bindings associated with
X from F. This allows for an approach in which a sender and
a receiver can communicate open form expressions. The re-
ceiver of an open form expression can use its local context to
close (or configure) the received form expression according
to a site-specific protocol.

Forms and projections replace variables in λF . A form can
be viewed as an explicit namespace, which can comprise an
arbitrary number of bindings. The form itself can contain
free variables, which will be resolved in the deployment envi-
ronment or evaluation context, allowing for a computational
model with late binding.

Both abstraction and application correspond to the notions
used in the λ-calculus, that is, X in λ(X) a stands for the
parameter in an abstraction. But unlike the λ-calculus, we
do not use substitution to replace free occurrences of this
name in the body of an abstraction – parameter passing is
modeled by explicit contexts.

A λF-context is the counterpart of a form-context. A λF-
context denotes a lookup environment for free variables in
a λF-term. Moreover, λF-contexts provide a convenient
mechanism to retain the bindings of free variables in the
body of a function. For example, let λ(X) a be a function



and [F] be a creation context for it. Then we can use [F]

to build a closure of λ(X) a. A closure is a package mech-
anism to record the bindings of free variables of a function
at the time it was created. That is, the closure of λ(X) a is
λ(X) (a[F]).

Denotational semantics is used to formalize the interpreta-
tion of forms and λF-terms. The underlying semantic model
of forms is that of interacting systems [11]. Informally, the
interpretation of forms (i.e., their observable behavior) is de-

fined by an evaluation function [[]]F , which guarantees that
feature access is performed from right-to-left [8]. In contrast
to standard records, however, a given binding may not be
observable in a form and, therefore, may not be used to re-
define or hide an existing one. A binding is not observable
if it cannot be distinguished from E or 〈〉. For example, the
forms 〈〉〈m = E〉, 〈〉〈m = 〈〉〉, and 〈〉 are all considered to be
equivalent. Furthermore, the meaning of a λF-term depends
on its deployment context. We write [[a]]LF [H] to evaluate
the λF-expression a in a deployment context H. Consider,
for example, the following deployment context B that pro-
vides a Church encoding of Booleans. This context defines
three bindings: True, False, and Not:

B =〈〉〈True = λ(X) X.true〉
〈False = λ(X) X.false〉
〈Not = λ(B) λ(V) B V〈true = V.false〉〈false = V.true〉〉

Now, assume we want to determine the value denoted by
the λF-expression (Not True). We can use B as a lookup
environment for the free occurrences of the names Not and
True, respectively. Thus, we have to evaluate

[[(Not True)]]LF [B]
= (λ(B) λ(V) B V〈true = V.false〉〈false = V.true〉) λ(X) X.true
= λ(V) B V〈true = V.false〉〈false = V.true〉 [〈〉〈B = λ(X) X.true〉]
= λ(V) (λ(X) X.true) V〈true = V.false〉〈false = V.true〉

which is a function that is equivalent to False. Due to lack
of space, we omit the details of the definition of [[]]F ; the
interested reader is referred to [8].

3. CLASSBOXES IN A NUTSHELL
In order to address some of the problems of object-oriented
programming languages with regard to incrementally chang-
ing the behaviour of existing classes, Bergel et al. have pro-
posed the concept of classboxes [2, 3]. In their approach,
a classbox can be considered as a kind of module that de-
fines a controllable context in which incremental changes are
visible. Besides the “traditional” operation of subclassing,
classboxes support the operations of class import and class
extension, respectively. In essence, a classbox exhibits the
following main characteristics [3]:

1. It is a unit of scoping where classes (and their asso-
ciated methods) are defined. A class belongs to the
classbox it is first defined, but it can be made visible
to other classboxes by either importing or extending it.
When a classbox imports a class from another class-
box (i.e., the originating classbox), the class behaves
as if it was directly defined in this classbox. In order
to resolve any dependencies, all ancestors of this class
are implicitly imported also. A class extension can be
viewed as an encapsulated import (i.e., self calls are

bound early), combined with adding and/or overrid-
ing any of the original methods or instance variables.

2. Any extensions to a class are only visible to the class-
box in which they are defined and any classboxes that
either explicitly or implicitly import the extended class.
Hence, overriding a particular method of a class in a
given classbox will have no effect in the originating
classbox.

3. Although class extensions are only locally visible, their
effect extends to all collaborating classes within a given
classbox, in particular to any subclasses that are either
explicitly imported, extended, or implicitly imported.

In order to illustrate the concept of classboxes, consider the
three classboxes OriginalCB, LinearCB, and ColorCB, re-
spectively, given in Figure 2. The class Point defined in Orig-
inalCB contains two protected instance variables x and y, a
method move which moves a point by a given offset (dx,dy),
and a method double that doubles the values of the x and y
coordinates. The reader should note that the method move
is invoked by double (using a self call). The class Bounded-
Point is a direct specialization of Point. It ensures that the y
coordinate of an instance never exceeds a given upper bound
by. This bound is a constant in BoundedPoint, although this
behaviour can be altered (as shown below).

The classbox LinearCB imports the class BoundedPoint from
OriginalCB. As a consequence, Point is also implicitly im-
ported, making it visible as the direct superclass of Bound-
edPoint. In order to define a non-constant bound, the class
LinearBoundedPoint specializes BoundedPoint in LinearCB
by overriding the method bound in an appropriate way (i.e.,
move checks if the y coordinate is smaller than the x coor-
dinate).

The classbox ColorCB extends the class Point from Origi-
nalCB by adding a protected instance variable c and a cor-
responding accessor method getColor. As a consequence, all
instances of Point in ColorCB as well as the instances of any
of its subclasses posses this additional behaviour. Therefore,
the class LinearBoundedPoint imported from LinearCB also
possesses the color property.

ColorCB also contains a new class BoundedPoint as a spe-
cialization of the extended class Point (restricting the x co-
ordinate of its instances). Although it has the same name
as BoundedPoint defined in OriginalCB, the two classes are
not related. Hence, BoundedPoint defined in ColorCB is
not the direct superclass of LinearBoundedPoint – the di-
rect superclass of LinearBoundedPoint in ColorCB remains
BoundedPoint defined in OriginalCB. This class is implicitly
imported by LinearBoundedPoint and co-exists with Bound-
edPoint defined in ColorCB.

The semantics of extension operator deserves some further
analysis. In [3, p. 118], it is stated that importing a class
into a classbox is the same as extending this class with an
empty set of methods. Furthermore, to guarantee the lo-
cality of changes, class extensions are purely local to the
classbox within which they occur. Hence, it should be pos-
sible to use the operator extend to add a tracing mechanism



self.move (x, y)

x=x+dy; y=y+dy

return x

super.move (dx, dy)
if (x + dx) < bound() then

return bx

LinearBoundedPoint

OriginalCB LinearCB

+ bound () : Integer

LinearBoundedPoint

Point

# bx : Integer

Point

+ move (dx, dy: Integer)
+ double ()

# y : Integer

super.move (dx, dy)

return by

if (y + dy) < bound() then

+ move (dx, dy: Integer)
+ bound () : Integer

+ move (dx, dy: Integer)
+ bound () : Integer

ColorCB

BoundedPointBoundedPoint

# x : Integer

# by : Integer

+ getColor ()

# c : Color

CB C

foo ()

BoundedPoint

Import of a classClassbox definition Import of C and extension with method foo

Figure 2: Sample classboxes.

to the class Point that logs all invocations of move in a new
classbox, say TraceCB.

However, considering the way extend is formally defined in
[3], we come to the conclusion that the semantics is slightly
different and that extend should behave like C#’s new speci-
fier [12], which can be used to hide any superclass method
by declaring a new method with the same signature in a sub-
class. The effect is similar to binding self calls in superclass
methods early (i.e., confine self calls occurring within su-
perclass methods to the superclass). As a consequence, any
instance derived from TraceCB’s Point class will not invoke
the most recent definition of method move when required,
but rather the original move defined in OriginalCB.

Therefore, to clarify the semantics of the classbox operators,
we propose a revised notion of extending classes, which in-
corporates two separate extension operations: (i) extension
of classes in which self calls are encapsulated to the context
in which they occur, and (ii) inclusion of new behaviour by
means of late binding of self calls. Such a separation will also
allow us to seamlessly integrate the concept of accessing the
original method (i.e., accessing the original implementation
of method being redefined) presented in [2].

4. THE MODEL
As we have shown in earlier work [14], object- and component-
oriented abstractions can most easily be modeled if classes
are represented as first-class entities. This approach can be
further generalized using a form-based framework (see Fig-
ure 3), which defines a hierarchy of meta-level abstractions
to model meta-classes, classes, and objects [10]. The core of
this meta-level framework is MetaModel, an abstraction that

provides support for the instantiation of an object-oriented
programming infrastructure. The underlying semantics of a
specific programming infrastructure is captured by so-called
model generators, model wrappers, and model composers, de-
noted by Gm, Wm, and Cm, respectively. The model ab-
stractions Gm, Wm, and Cm define the rules by which a
concrete object-oriented programming system (e.g., the Java
programming model) is governed. For example, to construct
a Java-like programming infrastructure, we need to specify
a generator GJava

m , which defines the mechanism required
for dynamic method lookup, and the single inheritance ab-
stractions W Class

m and CClass
m . To instantiate the Java-like

infrastructure, we apply these three abstractions to Meta-
Model. The result is an infrastructure meta-object that can
be used to create classes that adhere to Java semantics.

P ∆

I

incremental
derivation

arguments
constructor

semantic model:

derivation policy
method dispatch,

composition

mixin
application,

mG

Objects

Infrastructure
Metaobjects

Class
Metaobjects

parent behaviour

MetaModel

mW mC

Figure 3: A form-based meta-level framework.

The behaviour of a class, on the other hand, is captured
by an incremental modification, denoted by ∆, and by a
(possibly empty) parent behaviour, denoted by P , that cap-



tures the behaviour of its superclass(es). For example, to
create a new class C, one has to define a new class gener-
ator GC

1 that combines C’s incremental modification ∆C

with C’s parent behaviour P . To instantiate objects of the
class C, one has to apply GC to some suitable constructor
arguments, denoted by I. The result is a prototype instance
that has to be passed to a model-specific wrapper, in order
to establish the desired binding of self references within the
newly created object.

In order to define classboxes in λF , we shall adapt an ap-
proach that is as close as possible to the original definition
of classesboxes defined by Bergel et al. [3] with the ex-
ception that we shall define two separate extension opera-
tors. Furthermore, the reader should note that our classbox
model does not require the composer abstraction which is
mainly used for mixin application and composition [4, 19].
Hence, we shall only use incremental modifications, genera-
tors, and wrappers, respectively, to define a λF representa-
tion of classes and classboxes.

We use the Greek letters α, β, and γ to denote classboxes,
and A, B, C to range over class names. A class C in classbox
α is represented by a named form Cα = 〈G, W 〉, where

• Cα is a so-called decorated class name for class C [3]
in which α identifies the originating classbox;

• G is the generator for class C combining C’s incre-
mental modification ∆C with C’s parent behaviour P ;
and

• W is a wrapper yielding instances of class C when
applied to suitable constructor arguments.

Classboxes are actually open class namespaces. As a conse-
quence, G and W are also open with respect to the environ-
ment being used to invoke them. Therefore, both G and W
are parameterized over an activation classbox. An activa-
tion classbox is the fixed-point of classbox in which the cor-
responding class Cα = 〈G, W 〉 occurs explicitly by means of
either import, subclassing, or extension. Thus, passing the
activation classbox to G and W , respectively, closes both
abstractions and provides them with an appropriate lookup
environment. This technique enables a late binding of G,
which is the key mechanism for extending classes. The gen-
eral structure of a class definition follows a format as shown
below:

Cα =
let

∆C = λ(State) ( MethodsC ) [State]

GC = λ(γ) λ(I ) Pβ ⊕∆C〈 I ⊕ ( StateC ) 〉

WC = λ(γ) µself〈((γ → Cα).G (β ⊕ γ)) [self]〉
in
〈G = GC , W = WC〉

1The reader should note that a class generator GC defines
the protocol between ∆C and P , whereas a model generator
Gm defines the protocol between classes.

A class is characterized by the three abstractions ∆C , GC ,
and WC , respectively, all defined within the scope of Cα.
We use the syntactic form “let v1 = M1 ... vn = Mn in N”
to define a λF-context containing the required private def-
initions of ∆C , GC , and WC , respectively, to capture the
behaviour of Cα.

The incremental modification ∆C captures the behaviour
defined by class C. In order to represent C’s behaviour, we
use an approach based on the way traits are defined in the
language Self [18]. However, to maintain a strict encapsu-
lation of state, we do not blend state and methods. Instead,
we model state as an explicit context, written [State], that
provides an environment for each method to resolve the oc-
currences of private instance variables and the self reference.

The generator GC builds a prototype instance of class C.
GC takes an activation classbox to provide a correct lookup
environment to the parent behaviour Pβ originating from
classbox β. Upon receiving the constructor arguments, de-
noted by I, the generator GC extends Pβ with the result of
applying C’s incremental modification ∆C to the combina-
tion of the constructor arguments and C’s state template.

The wrapper WC yields an object of class C by building
the fixed-point (denoted by µself) of the prototype instance
being created within WC . In order to create a prototype
instance for class C, the wrapper uses the activation classbox
γ to a look up C′s generator. The expression (γ → Cα).G
denotes the fact that we look up the most recent definition
of the named form Cα = 〈G, W 〉 in classbox γ to invoke C’s
generator. We apply this generator to (β ⊕ γ) that combines
the classbox β containing C’s parent behaviour Pβ with the
activation classbox γ. The resulting classbox will contain
not only the most recent definitions that class C depends
upon, but also the ones that have been implicitly imported.
More specifically, (β ⊕ γ) denotes a lookup environment that
is a transitive closure of C’s dependency graph.

A classbox is also represented as a form. The general struc-
ture of a classbox follows a format as shown in the example
below:

ColorCB =
let

Point = 〈GPoint, WPoint〉
BoundedPoint = 〈GBoundedPoint, WBoundedPoint〉
LinearBoundedPoint =

〈GLinearBoundedPoint, WLinearBoundedPoint〉
in
〈PointOriginalCB = Point,
BoundedPointColorCB = BoundedPoint,
LinearBoundedPointLinearCB = LinearBoundedPoint〉

A classbox is a form that contains mappings from decorated
class names to class definitions. Each decorated class name
uniquely identifies the originating classbox of a class, that
is, the classbox in which a class was first defined. For exam-
ple, the classbox ColorCB, as shown in Figure 2, contains
three classes Point, BoundedPoint, and LinearBoundedPoint,
respectively. However, each class has a different originating
classbox. Only class BoundedPoint originates in ColorCB.
The classes Point and LinearBoundedPoint originate in Orig-



inalCB and LinearCB, respectively. In fact, both Point and
LinearBoundedPoint occur as extended classes in ColorCB.

Decorated class names are the key ingredient in an approach
that provides support for class extensions [3]. However, as
labels are not first-class values in the λF-calculus, we cannot
directly express decorated class names. But, λF provides
another abstraction that can be used instead: it is possible
to denote operations involving decorated class names by so-
called abstract applications. An abstract application (a M)
is an λF-expression in which the function a is abstract, that
is, a is defined outside λF . The intuition here is that a λF-
term (i.e., (a M)) has to be embedded into a concrete target
system that provides an interpretation of the abstract func-
tion. When applied to some argument, an abstract function
has to yield a value that is again in λF .

To handle decorated class names in our λF-based model for
classboxes, we need four abstract functions:

buildDecoratedName〈C, α〉 = Cα

lookupDecoratedName〈C, α〉 =

{
Cβ , if ∃!β, (α → Cβ) 6= 〈〉
⊥, otherwise

lookupClass〈C, α〉 = α → lookupDecoratedName〈C, α〉

buildClass〈C = 〈G, W 〉, α〉 =
〈lookupDecoratedName〈C, α〉 = 〈G, W 〉〉

The function buildDecoratedName takes a class name C and
a classbox name α and returns a decorated class name Cα

that is a valid λF-label. The function lookupDecoratedName
takes a class name C and a classbox name α and returns a
λF-label that denotes a valid decorated class name Cβ , if
such a name exists in the classbox α. The function lookup-
Class takes a class name C and a classbox name α and re-
turns a form that represents class C, as defined in classbox
α. Finally, the function buildClass takes a class C = 〈G, W 〉
and a classbox name α and yields a binding in which the
label denotes a valid decorated class name for C in α.

5. MODELING CLASSBOX OPERATIONS
In this section, we present our λF encodings of classbox
operations. More precisely, we show the encoding of import
of classes, introduction of subclasses, extension of classes,
and inclusion of new behaviour. The latter two operations
are deduced from the original extend operator [3] by the
refining process outlined in Section 3.

5.1 Import of classes
The import of a class C from classbox β into classbox α is
defined as shown below.

Cα =
let
WC = λ(γ) (lookupClass〈C, β〉).W (β ⊕ γ)

in
(lookupClass〈C, β〉)〈W = WC〉

To import class C, we acquire its definition from classbox β
using the expression (lookupClass〈C, β〉). However, the class
C may depend on some behaviour for which an extended
definition is given in classbox α (or the activation classbox

γ containing the extensions specified by classbox α). There-
fore, an imported class requires a new wrapper that com-
bines the definitions of a class’ originating classbox and the
actual activation classbox. The result (i.e., (β⊕γ)) is passed
to the class’ original wrapper that will use it to incorporate
pertinent definitions into the class’ behaviour. Finally, if not
stated otherwise, the decorated class name Cα in this and
all following encodings is the result of applying lookupDeco-
ratedName to the class name C and the originating classbox
name β (i.e., Cα = lookupDecoratedName〈C, β〉).

5.2 Subclassing
We can define a class C as a subclass of class B originating
from classbox β using the following specification:

Cα =
let

∆C = λ(State) ( MethodsC ) [State]

GC = λ(γ) λ(I )
let

P = ((lookupClass〈B, γ〉).G γ) I
in

P ⊕ ∆C〈I ⊕
(

StateC

〈super = P〉

)
〉

WC = λ(γ) µself〈((lookupClass〈C, γ〉).G (β ⊕ γ)) [self]〉
in
〈G = GC , W = WC〉

To construct class C, we acquire its superclass behaviour P
using the expression ((lookupClass〈B, γ〉).G γ) I and com-
bine it with C’s incremental modification ∆C . To acquire C’s
superclass behaviour, we dynamically look up B’s generator
with respect to the activation classbox γ, which guarantees
that any relevant extensions to B’s behaviour are also incor-
porated in class C. Methods in ∆C may override methods
in the superclass B. Overridden methods are accessible by
means of the additional binding 〈super = P〉 passed to ∆C .

Since class B may also depend on some behaviour visible
only to classbox β, we need to provide a reference of β to
C’s wrapper WC . This approach not only guarantees that
references to class B can be resolved, but also that refer-
ences to any superclasses of B can be resolved in classbox
α without adding them to the visible scope of classbox α.
For example, the class LinearBoundedPoint in classbox Lin-
earCB, as shown in Figure 2, implicitly depends on class
Point defined in classbox OriginalCB. This dependency is
resolved by providing the originating classbox of Bounded-
Point to the wrapper of LinearBoundedPoint.

Finally, the classbox model as defined by Bergel et al. [3]
requires that when defining a subclass, its class name must
occur fresh in the defining classbox. Therefore, the deco-
rated class name Cα is not derived from classbox β, but
constructed with respect to the defining classbox α (i.e.,
Cα = buildDecoratedName〈C, α〉).

5.3 Extending imported classes
To specify the semantics of the refined extend operation, we
need to define an information hiding protocol that, when



applied to a concrete class, renders the features of the ex-
tensions invisible to the class’ behaviour. Hence, the extend
operation yields a membrane for a class that permits super
calls originating from extensions, but prevents the class’ be-
haviour to see the extensions. This protocol is established
by confining self calls to the context within which they occur
(i.e., the original class or the extensions). The extension of
class C with some behaviour B can be defined as follows:

BE
β =
let

∆B = λ(State) ( MethodsB ) [State]

GB = λ(Class)
λ(γ) λ(I )

let
P = µself〈 (Class.G γ) [self] 〉 I

in

P ⊕ ∆B〈 I ⊕
(

StateB

〈super = P〉

)
〉

in
〈G = GC〉

Cα = (lookupClass〈C, α′〉)〈G = BE
β .G (lookupClass〈C, α′〉)〉

The abstraction BE
β captures the behaviour of the extension

B being used to modify class C. The extend operator requires
that we encapsulate C’s behaviour in order to protect it from
any changes defined by B. That is, we have to combine the
fixed-point of C’s prototype instance with the incremental
modification ∆B defined by extension B.

The structure of BE
β is similar to the one required to de-

fine subclassing. However, an extension cannot be instanti-
ated independently. Therefore, no wrapper is needed. When
combined with a concrete class, the class’ wrapper is respon-
sible for providing a suitable environment to create objects
of that class. Moreover, the definition of the revised ex-
tend operator guarantees that the extensions are local to
the classbox in which they occur and that they do not af-
fect the class’ original behaviour, as it is shielded from the
extensions by binding self calls in the class’ methods early.

The purely functional λF-based encoding of the extend op-
erator is, however, a source for a serious problem. Func-
tional update of state yields a new object. The new object
is created by passing the new state values to the wrapper
of the object’s class. However, the wrapper of an extended
class (i.e., µself〈(Class.G γ)[self]〉) does not include the ex-
tensions. Therefore, functional update yields an instance of
the original class, not one of the extended class.

5.4 Include behaviour into imported classes
Inclusion is a new operator that enables down calls to class
extensions. The inclusion operator is like the extension op-
erator, excepted that we do not encapsulate the class’ be-
haviour. This approach roughly corresponds to the concept
of mixin application [19]. That is, if we apply an extension
B to class C, then the class C stands for an abstract subclass,
which is instantiated with the superclass B. The inclusion of
extension B into class C is defined as follows:

BI
β =
let

∆B = λ(State) ( MethodsB ) [State]

GB = λ(Class)
λ(γ) λ(I )

let
P = (Class.G γ) I

in

P ⊕ ∆B〈 I ⊕
(

StateB

〈original = P〉

)
〉

in
〈G = GB〉

Cα =
let
GC = λ(γ) (BI

β .G lookupClass〈C, α′〉) γ

WC = λ(γ) (lookupClass〈C, α′〉).W (β ⊕ γ)
in
〈G = GC , W = WC〉

Inclusion extension is an operation that combines extend
and import. However, unlike extension, we do not build
the fixed-point of the parent behaviour P in BI

β to enable
down calls to the extensions. In addition, methods in ∆B

may override methods in class C. The overridden methods of
C are, however, accessible by means of the additional bind-
ing 〈original = P〉 passed to ∆B . This approach was recently
proposed by Bergel et al. [2] in their Classbox/J model. Fi-
nally, the functions GC and WC define the protocol required
to properly link class C and the inclusion extension B.

6. CONCLUSIONS, FUTURE WORK
In this paper, we have used the λF-calculus to define a
model for classboxes, a dynamically typed module system for
object-oriented languages that provides support for control-
ling both the visibility and composition of class extensions,
and validated our model using a prototype implementation
of the λF-calculus.

This work has shown that λF is a powerful tool to model
compositional abstractions such as classes, classboxes as well
as their associated operations. Replacing λ-calculus names
by first-class namespaces and parameter passing by explicit
contexts, we argue, are the key concepts in obtaining the re-
sulting flexibility and extensibility. Both asymmetric form
extension as well as the late binding of free variables in form
expressions due to explicit form contexts are essential fea-
tures to express the model in such an elegant way. It has also
shown that the meta-level framework we defined in previous
work [10] where object-oriented abstractions were modeled
as compositions of appropriately parameterized generator,
wrapper, and composer abstractions offers enough flexibil-
ity to incorporate classboxes.

As we have discussed in Section 3, the formal definition of
class extension presented in [3] does not fully match its in-
formal description. As a consequence, extend has limited
applicability when hook methods [6] are to be extended by
independent behavioural properties such as, for example,
extending the class Point with a tracing mechanism on the



method move. Therefore, we have proposed a revised notion
of class extension, incorporating two separate extension op-
erations: (i) extension of classes in which self calls are encap-
sulated to the context in which they occur, and (ii) inclusion
of new behaviour by means of late binding of self calls. Such
a separation has allowed us to clarify the semantics of the
classbox operators and seamlessly integrate the concept of
accessing the original method as defined in the Classbox/J
model [2]. In this context we have also illustrated that the
early binding of self calls is the source of a serious problem
when object-oriented abstractions are modeled in a purely
functional setting such as λF .

However, this work has also shown that not all abstractions
needed to define a model for classboxes can be expressed
within λF , that is, we were forced to use abstract applica-
tions to model the decoration of class names. It is however
not yet fully understood whether this is a limitation of λF
or a result of how classboxes have been formalized both in
[3] and in our model. Therefore, we will investigate whether
the expressiveness of classboxes can also be achieved without
using explicitly decorated classnames, allowing us to model
classboxes entirely in λF .

Furthermore, the concept of classboxes does not allow for
an explicit co-existence of both the original of a class as well
as an extension thereof. For example, it could become nec-
essary for the class Point defined in OriginalCB and its ex-
tension with the color property to co-exist within the class-
box ColorCB. Currently, both classes may implicitly co-exist
within ColorCB and it is possible to create instances of the
extended version of Point, but not of Point defined in Origi-
nalCB. It is, however, not yet clear how to extend classboxes
with this feature and whether this extension is of real prac-
tical value.
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