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ABSTRACT 
This paper explains how a uniform, specification-based approach 
to reasoning about component-based programs can be used to 
reason about programs that manipulate pointers. No special axi-
oms, language semantics, global heap model, or proof rules for 
pointers are necessary. We show how this is possible by capturing 
pointers and operations that manipulate them in the specification 
of a software component. The proposed approach is mechanizable 
as long as programmers are able to understand mathematical 
specifications and write assertions, such as loop invariants. While 
some of the previous efforts in reasoning do not require such 
mathematical sophistication on the part of programmers, they are 
limited in the kinds of properties they can prove about programs 
that use pointers. We illustrate the idea using a “Splice” operation 
for linked lists, which has been used previously to explain other 
analysis techniques. Not only can the proposed approach be used 
to establish shape properties given lightweight specifications, but 
also it can be used to establish total correctness given more com-
plete specifications. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification –
correctness proofs, formal methods. D.3.3 [Programming Lan-
guages]: Language Constructs and Features – data types and 
structures.  

General Terms 
Languages, Verification. 

Keywords 
Pointer specification, reasoning, heap memory management. 

1. INTRODUCTION 
Reasoning about program code involving pointers or references is 
notoriously difficult [29]. Various logics have been developed for 
object-oriented languages such as Java and C# in which refer-
ences are implicit [1][18]. Reasoning about programs in these 
languages is complicated due to the possibility of aliasing. Vari-
ous static analysis techniques also have been applied to languages 
with and without explicit deallocation (e.g., [6][22][30]). These 
techniques are fast and flexible, but they are also limited in what 
they can prove about a program’s run-time behavior. Both object-
oriented logics and general program analysis techniques tend to 
rely on global reasoning about entire heap abstractions. Frame 
properties [3] make reasoning about heap locations somewhat less 
demanding in object-oriented logics, and a separation logic [20] 

has been suggested as a way to further localize reasoning to por-
tions of the heap structure. Nonetheless, a single heap abstraction 
is still assumed. Building on previous work in shape analysis [30], 
Hackett and Rugina [6] describe an approach that avoids global 
heap abstractions. Instead, it uses local reasoning about individual 
heap locations to find potential errors. 

In this paper, we consider from a language design perspective the 
problem of pointers and reasoning about programs that use them. 
We describe a way to implement and reason about programs in-
volving pointers by using a formally specified generic component 
that encapsulates pointer-like behavior and that is especially well 
suited for the implementation of linked data structures. Further-
more, no global heap abstraction is used in reasoning about point-
ers. Instead, shared conceptual (or specification-only) variables 
whose scope is at the component level are defined in the specifi-
cation. These variables record the state of the pointer structure, 
keeping track of such information as which locations are mapped 
to which objects and how the locations are linked to one another. 
The component permits explicit deallocation and thereby allows 
users to reason about memory errors that do not arise with gar-
bage collection, so it can accommodate situations and languages 
where no automatic garbage collection is assumed. Section 2 
briefly describes the specification of the pointer component ab-
straction and its operations.  

A key contribution of the specification-based approach to reason-
ing about programs with pointers is that programmers can use and 
reason about pointers using the same techniques that they use to 
reason about all other components in a program. This does not 
preclude a language designer from inventing special syntax for 
pointers as long as the meaning of that syntax can be described in 
terms of the operations specified in the component. In particular, 
for the component to exhibit the run-time performance of lan-
guage-supplied pointers, a compiler for a language with compo-
nent-provided pointers need not implement these component op-
erations as typical calls, but may consider them to be built-in 
constructs. For example, even though a programmer using our 
component will reason about the pointer assignment statement “p 
= q” as a call Relocate(p, q)—a procedure call that must conform 
to the contract specified by its precondition and postcondition—
the compiler may implement this statement as a single machine 
instruction that overwrites p’s value with the address stored in q. 

A second contribution of the specification-based approach is that 
it facilitates more powerful reasoning about properties of pointer-
based programs than previous static analyses relying on special 
rules to handle language-supplied pointers. This is the topic of 
Section 3. In that section, we illustrate the issues using an exam-



ple “Splice” operation for a linked list. The example is taken from 
a recent paper on a general approach to shape analysis [6].  In that 
paper, Hackett and Rugina introduce and use a region-based 
shape analysis algorithm to establish the “shape property” that the 
Splice code does not introduce cycles into lists. They describe a 
non-trivial algorithm that partitions memory into regions, keeping 
track of the relationships between regions using a unification-
based points-to analysis [27] that they augment with context sen-
sitivity. Individual “configurations” are used to track the state of 
individual heap locations. These configurations can be analyzed 
independently of each other, eliminating the need to keep track of 
how an entire heap abstraction changes over the course of a pro-
gram’s execution.  
Shape analysis is fully automatic and, unlike our specification-
based approach, does not require programmer-supplied assertions. 
However, the authors note, for example, that their analysis would 
not apply if the Splice code were written slightly differently. 
More importantly, shape analysis techniques—and other static 
analysis techniques—are limited in the kinds of properties they 
can be used to prove. We illustrate these issues using both light-
weight and heavyweight specifications for the “Splice” operation. 
Whereas the lightweight specification is sufficient to prove the 
assertion that an implementation of Splice does not introduce 
cycles, a more complete specification of the operation shows the 
potential of the pointer specification approach to analyze the full 
behavior of the operation and its implementation. 

2. SPECIFYING POINTER BEHAVIOR 
A formal specification of a component to capture pointer behavior 
is given in the technical report [12], where the design rationale for 
the specification and performance ramifications are discussed. 
The specification is general and it allows reasoning about any 
pointer-based data structures, including lists and trees. A skeleton 
of this specification is discussed in this subsection as a prelude to 
specification-based reasoning about pointers.  

2.1 Mathematical Modeling 
Without loss of generality, the specification in Figure 1 is given in 
the RESOLVE notation [23][25]. The specification defines Loca-
tion as a mathematical set. The exact set of addresses that corre-
spond to locations is an internal implementation detail, and it is 
suppressed in the specification. For the purposes of reasoning, the 
client programmer need only know that Location is a set and Void 
is a specific location element from that set. At any given program 
state, some locations are free, or available for allocation; and 
some locations are taken, or already allocated. A key aspect of the 
specification is to formalize how locations become linked to each 
other following various pointer manipulation operations. Hence 
the name Location_Linking_Template for the concept.  
The concept is parameterized by the type of information associ-
ated with each location and the number of links from each loca-
tion. If the nodes of a list contain GIF pictures, for example, then 
Info is a type representing GIF pictures. Similarly, the number of 
links depends on the application. For example, a singly linked list 
requires one link from each location, whereas a k-ary tree requires 
k links from each location. 
To capture the behavior of a system of linked locations, the con-
cept defines and uses three global, conceptual variables: Con-
tents(q) is the information at a given location q, Target(q, i) is the 
location targeted by the i-th link of q, and Is_Taken(q) is true if 

and only if a given location q is allocated, and therefore, taken. 
These variables are not programming variables; they are used 
solely for specification and reasoning. They are similar to specifi-
cation-only variables used in other formalisms for object-oriented 
programs [4][14]. 
Concept Location_Linking_Template (type Info; 
                                                                evaluates k: Integer);  

Defines Location: Set; 
Defines Void: Location; 

Var Target: Location × [1..k] → Location; 
Var Contents: Location → Info;  
Var Is_Taken: Location → B; 
 

 Initialization ensures ∀q: Location, ¬Is Taken(q); 
 Constraints ¬Is Taken(Void) and (∀q: Location, 
          if ¬Is Taken(q) then Info.Is_Initial(Contents(q)) and 
         ∀j: [1..k], Target(q, j) = Void) and … 

 Type Family Position is modeled by Location; 
  exemplar p; 
  Initialization ensures p = Void; 
 
 Operation Take_New_Location(updates p: Position);  
  … 
 Operation Abandon_Location(clears p: Position);  
  … 
 Operation Relocate(updates p: Position; 
                            preserves q: Position); 
  ensures p = q; 
 
 Operation Follow_Link(updates p: Position; 
                                          evaluates i: Integer);  
  requires Is Taken(p) and 1 ≤ i ≤ k; 
  ensures p = Target(#p, i); 
 
 Operation Redirect_Link(preserves p: Position;  
                                 evaluates i: Integer; preserves q: Position);  
  updates Target; 
  requires 1 ≤ i ≤ k and Is_Taken(p); 
  ensures ∀r: Location, ∀j: [1..k], 

                   Target(r, j) =   ;  
q if r = p and j = i
# Target(r,  j) otherwise

⎧ 
⎨ 
⎩ 

 
 Operation Check_Colocation(preserves p, q: Position; 
                                          replaces are_colocated: Boolean); 

  … 
Operation Swap_Locations(preserves p: Position;  

                   evaluates i: Integer; updates new_target: Position); 
  … 
 Operation Swap_Contents(preserves p: Position; 
                                              updates I: Info);  
  … 
 Operation Is_At_Void(preserves p: Position): Boolean;  
  … 
 Operation Location_Size(): Integer;  
  … 
end Location_Linking_Template; 
 

Figure 1. A Skeleton of Pointer Behavior Specification. 



The concept is constrained to behave as specified in the invariant 
constraints clause: the Void location can never be taken or allo-
cated, i.e., it is always free; and all locations that are freely avail-
able are in an initialized state, i.e., their contents have default 
information and their links point to Void. Finally, the number of 
locations available is related to the total available memory capac-
ity. Hence, locations are limited, and allocations without corre-
sponding deallocations will eventually deplete the pool. Initially, 
all locations are assumed to be free and, therefore, initialized, as 
specified in the constraints clause. This does not mean that an 
implementation of the pointer component must initialize every 
location at the beginning; of course, it would not. It just means 
that any newly allocated location is guaranteed to be initialized, 
and this objective can be achieved as and when it is needed. 
Given this model, a programming variable of type Position is 
simply viewed mathematically as a location. When a programmer 
declares a new pointer variable, it is initially just the Void loca-
tion. Only after allocation does the variable become a location 
that can contain information.  
A system of linked locations is established when a client instanti-
ates the pointer component with the type of information that each 
location holds and the number of links coming from each loca-
tion. Figure 2 gives an informal view of an example system of 
linked locations where type Info is assumed to be Greek letters 
and the number of links from each location is assumed to be one. 
Here, the circles represent locations that contain information 
(Greek letters) and a fixed number of links (just one in the exam-
ple) to other locations.  

 
Figure 2. A system of linked locations. 

The figure shows that some of the locations are taken and others 
are free. All the pointer variables (a, b, x, y, z) except for b are at 
allocated locations. For example, the information content at the 
location of variable x is β. The pointer variables y and z are colo-
cated, i.e., they are aliased, and the link from that location points 
to the location of x. The pointer variable b resides at the special 
Void location, which is perpetually free. Due to poor program-
ming or possible reliance on a garbage collector, some of the 
allocated locations have become inaccessible, such as the loca-
tions containing information χ and δ. To manipulate pointer vari-
ables to reach a state like the one in Figure 2, a programmer has to 
declare pointer variables and call suitable operations, as explained 
in the next subsection.  

2.2 Discussion of Pointer Operations  
The parameters in the specifications of operations in Figure 1 use 
various modes to help the programmer understand rough effects 
of a call to the arguments before reading the subsequent formal 
specification. The updates mode indicates that the operation 
modifies this argument; the clears mode ensures that the argu-
ment will return from the procedure with an initial value of its 

type; the preserves mode prohibits any changes to the argument’s 
value; the replaces mode indicates that the incoming argument 
value will be ignored but replaced; and the evaluates mode indi-
cates that the operation expects an expression in this position—it 
is typically used with types that are often returned from functions, 
such as integers. 
The Take_New_Location operation allows a programmer to asso-
ciate information with a specified pointer variable. Every call to 
this operation leads to a new location being taken. Internally, this 
operation allocates memory for a new object of type Info and 
makes p point to it. A taken location remains taken until the client 
abandons it, which she can do using the Abandon_Location opera-
tion. When a location is abandoned, memory for the information 
it contained is reclaimed and the pointer variable that is being 
explicitly abandoned is repositioned to the Void location. The 
Location_Size operation helps a programmer determine if there is 
sufficient memory for a new allocation, i.e., if there are any more 
free locations available for taking. A careful programmer may 
need this operation to check availability before calling the 
Take_New_Location operation. 

 
Figure 3. The effects of selected calls on a system. 

Now we consider the formal specification of operation Redi-
rect_Link. This operation redirects the i-th link at position p’s 
location to q’s location. The values of both p and q are preserved, 
since both occupy the same locations they did before the opera-
tion is invoked. The updates clause after the formal parameters 
lists any component-level conceptual variables that are affected 
by the operation. In this case, the Target variable will be modi-
fied, but the Contents and the Is_Taken variables will remain 
unchanged. The RESOLVE specification language adheres to an 
implicit frame property in that operation invocations may only 
affect explicit parameters to the operation or component concep-
tual variables listed in the updates clause. In this case, the opera-
tion specifies that the values of both position parameters are pre-
served and that any integer parameter is treated as an expression, 



so the only variable that is modified is Target. The postcondition 
describes how the Target variable is modified: the Target function 
does not change except that it now maps the tuple (p, i) to q. Note 
that the hash (#) symbol denotes the incoming value of a variable. 
The specifications for Relocate and Follow_Link are straightfor-
ward. 
The remaining operations allow a client to manipulate links and 
information at occupied locations. They also allow position vari-
ables to be associated with different locations. Figure 3 gives 
before and after views of a system for invocations of selected 
operations. Note that the box in the Swap_Contents operation is 
not a location. It simply indicates the value of Info variable t. In 
this case, t’s value is α before the operation and δ after the opera-
tion. In contrast, p’s value (which is a location) remains the same 
before and after the operation, but the Target variable will have 
been updated. All the operations shown here have formal specifi-
cations associated with them [12]. We have shown only a few of 
these in Figure 1, owing to space constraints. 
Because the pointer component supports explicit deallocation, 
memory errors can arise within the context of a system. A loca-
tion is considered accessible if there is a path to that location from 
a location occupied by some position variable. In Figure 2, for 
example, two taken locations are not accessible: the location con-
taining δ and the location containing χ. The location containing λ 
is accessible even though it is not occupied by a position variable 
because there is a path to it from the location occupied by x. A 
location that is taken but not accessible is a memory leak; a loca-
tion (other than Void) that is free but accessible is a dangling 
reference. The latter situation is not, perforce, a memory error; 
but it becomes one if that pointer variable is then used before 
being updated. 

3. EXAMPLE 
This section illustrates how the pointer component can be used for 
both lightweight and heavyweight specifications and subsequent 
reasoning. The Splice operation takes as input two singly-linked 
lists of locations: one that begins with a location occupied by 
position p and another that begins with a location occupied by 
position q. The length of q’s list must be less than or equal to the 
length of p’s list. The operation modifies the first list so that it is a 
perfect shuffle of the locations in the original lists. A shuffled list 
contains all the elements of both lists with their original orderings 
preserved, similar to what happens when you shuffle a deck of 
cards. If location x appears before location y in one of the original 
lists, then x appears before y in the shuffled list. A perfect shuffle 
interleaves elements from each of the lists. 

3.1 Simple Splice Specification 
Figure 5 gives a lightweight specification and code for Splice (a 
minor syntactic variation of the version in [6]). The specification 
is sufficient to meet the goal of a typical shape analysis for the 
operation, namely to “statically verify that, if the input lists […] 
are disjoint and acyclic, then the [output list] is acyclic” [6] (page 
3). Note that we use a syntactic shortcut throughout this section 
for ease of reading (and writing) the specifications. Since all loca-
tions in these examples have exactly one link, we leave out the 
link number where it is typically required. For example, we use 
Target(p) instead of Target(p, 1). 

The specification defines two mathematical functions used in the 
specification. Is_Reachable_in(n, p, q) is true if and only if loca-
tion q is reachable from location p in n hops. That is, if x is a 
variable at location p, this function is true if and only if x will 
arrive at location q by following his first link n times, but no 
fewer. The term Targetk(p) means k iterations of the function 
Target starting with p. The requirement that “if Targetk(p) = q 
then k ≥ hops” for all k, guarantees, for example, that 
Is_Reachable_in(10, p, q) is false if q links back to itself and it 
only takes 5 hops for p to reach q. Is_Reachable(p, q) is true iff q 
is reachable from p in any number of hops. When the Var key-
word follows Definition, it indicates that the value of the function 
may vary for the same input values in different program states. 
For example, Is_Reachable(p, q) may be true in one state and 
false in the next if one of the links between them was redirected. 
The Distance between p and q is the number of hops it takes to 
get from p to q if q is reachable from p; otherwise, the distance is 
zero. 

Definition Var Is_Reachable_in(hops: N; p, q: Location;): B =  
    Targethops(p) = q and ∀k: N, if Targetk(p) = q then k ≥ hops; 

Definition Var Is_Reachable(p, q: Location): B = 
    ∃k: N ∋ Is_Reachable_in(k, p, q); 

Definition Var Distance(p, q: Location): N 

 =   ; 
k if Is_Reachable_in(k, p,  q)
0 otherwise

⎧ 
⎨ 
⎩ 

Operation Splice(preserves p: Position; clears q: Position); 
    updates Target; 
    requires ( ∃k1, k2: N ∋ Is_Reachable_in(k1, p, Void) and  
        Is_Reachable_in(k2, q, Void) and k2 ≤ k1 ) and  
        ( ∀r: Location, if Is_Reachable(p, r) and 
 Is_Reachable(q, r) then r = Void ); 
    ensures Is_Reachable(p, Void); 
Procedure 
    Var r: Position; 
    Var s: Position; 
    Relocate(r, p); 
    While (not At_Void(q)) 
        decreasing Distance(q, Void); 
        maintaining Is_Reachable(p, Void); 
    do 
        Relocate(s, r); 
        Follow_Link(r); 
        Redirect_Link(s, q); 
        Follow_Link(s); 
        Follow_Link(q); 
        Redirect_Link(s, r); 
    end; 
end Splice; 

Figure 5. A lightweight specification for Splice. 

The Splice operation preserves p and clears q. In other words, p is 
unchanged and q is Void after the operation. The updates clause 
indicates that Target is the only conceptual variable that is modi-
fied.  

The requires clause is fulfilled only if the linked lists beginning 
at p and q are acyclic and disjoint. The only way that a location 
can reach Void is if there are no cycles in the linked structure 



beginning with that location. The Void location always links to 
itself. Provided that lists are free of cycles, k1 and k2 represent the 
lengths of lists p and q, respectively, and k1 must be greater than 
or equal to k2. Finally, if any location other than Void is reach-
able by both p and q, then the lists are not disjoint. The simple 
ensures clause is true when the output list p is acyclic. 
Figure 6 illustrates the execution of the splice operation when p is 
a linked list with four locations and q is a linked list with two 
locations. Part (a) represents the state of the system at the begin-
ning of the first loop, part (b) represents the system at the begin-
ning of the second loop iteration, and part (c) represents the state 
of the system when the loop terminates. 

 
Figure 6. An animation of the implementation for Splice. 

The correctness of the implementation can be proved using the 
formal proof system detailed in [7][10] and summarized in [25]. 
The proof process takes the programmer-supplied invariant for 
the loop, establishes that it is invariant, and employs it in com-
pleting the proof. For the present example, the loop invariant 
asserts that it is always possible to reach the Void location from 
p. It is obviously true at the beginning of the first iteration, since 
p does not change and we know from the precondition that Void 
is reachable from p. All that is left to prove is that the invariant 
holds from one iteration to the next. This follows from the fact 
that the following lemmas hold in each state in the loop. 
Lemma #1: Is_Reachable(q, Void); 
Lemma #2: Is_Reachable(r, Void); 
Lemma #3: Is_Reachable(p, r) or Is_Reachable(p, q); 
The proof of correctness of Splice follows from the invariant and 
the negation of the loop condition. For proving termination, the 
process uses a progress metric given in the decreasing clause. 
The progress metric states that the “distance” from q to Void 
decreases with each iteration of the loop. This argument estab-
lishes the same result as the intricate shape analysis proposed in 
[6]. A limitation of the Splice operation as specified in this sec-

tion is that it cannot be used as a meaningful guide to anyone 
who implements the operation. In fact, even an implementation 
that does nothing at all will guarantee the postcondition because 
it follows directly from the precondition. The next section pro-
vides a more detailed specification for the Splice operation. 

3.2 Full Splice Specification 
The full specification of the Splice operation is given in Figure 5.  

Definition Var Is_Reachable_in(hops: N; p, q: Location;): B =  
    Targethops(p) = q and ∀k: N, if Targetk(p) = q then k ≥ hops; 

Definition Var Is_Reachable(p, q: Location): B = 
    ∃k: N ∋ Is_Reachable_in(k, p, q); 

Definition Var Distance(p, q: Location): N 

 =   ; 
k if Is_Reachable_in(k, p,  q)
0 otherwise

⎧ 
⎨ 
⎩ 

Definition Var Is_Info_Str(p, q: Location; α: Str(Info)): B = 
    ∃n: N ∋ Is_Reachable_in(n, p, q) and  
    α = 〈Contents(Targetk (p))〉k=1

n∏ ; 
Operation Splice(preserves p: Position; clears q: Position); 
    updates Target; 
    requires ( ∃k1, k2: N ∋ Is_Reachable_in(k1, p, Void) and 
        Is_Reachable_in(k2, q, Void) and k2 ≤ k1 ) and  
        ( ∀r: Location, if Is_Reachable(p, r) and 
 Is_Reachable(q, r)  then r = Void ); 
    ensures ( ∀t: Location, if not Is_Reachable(#p, t) and 
           not Is_Reachable(#q, t) then Target(t) = #Target(t) ) and 
        ( ∀α, β, γ: Str(Info), if Is_Info_Str(p, Void, α) and 
           Is_Info_Str(#p, Void, β) and Is_Info_Str(#q, Void, γ) 
 then α ≤!≥ (β, γ) ); 

Procedure 
    Var r: Position; 
    Var s: Position; 
    Relocate(r, p); 
    While (not At_Void(q)) 
        decreasing Distance(q, Void); 
        maintaining ( ∀t: Location, if not Is_Reachable(#p, t) and 
            not Is_Reachable (#q, t) then Target(t) = #Target(t) ) and 
         ( ∀χ, δ, ε. β, γ, ρ: Str(Info), if Is_Info_Str(p, r, χ) and  
           Is_Info_Str(r, Void, δ) and Is_Info_Str(q, Void, ε) and  
           Is_Info_Str(#p, Void, β) and Is_Info_Str(#q, Void, γ) and 
            ρ ≤!≥ (δ, ε) then χ o ρ ≤!≥ (β, γ) ); 
    do 
        Relocate(s, r); 
        Follow_Link(r); 
        Redirect_Link(s, q); 
        Follow_Link(s); 
        Follow_Link(q); 
        Redirect_Link(s, r); 
    end; 
end Splice; 

Figure 7. A full specification for Splice. 

We assume the definitions given above and introduce another 
one: Is_Info_Str. The function Is_Info_Str(p, q, α) is true if and 
only if q is reachable from p and α is the string of all the objects 
of type Info contained in the locations between p and q. The 



string includes the object in p but not the object in q. For example, 
for the system of linked locations in Figure 2, Is_Info_Str(x, y, 〈β, 
λ〉) is true. 

The requires clause in this specification has not changed from the 
last one. However, the ensures clause is more detailed. It has two 
main conjuncts. The first conjunct indicates which portions of the 
Target variable do not change. It asserts that the links of locations 
do not change for locations that are not part of either input list. 
Note that we know that the contents and the taken status of all 
locations in the system are not affected by this operation because 
the variables Contents and Is_Taken are not included in the up-
dates clause. The second main conjunct in the ensures clause 
describes how the lists are modified. Essentially it says that α is 
the string of Info objects derived from the output list, β and γ are 
the strings of Info objects derived from the two input lists, and α 
is a perfect shuffle (or “interleaving”) of β and γ, which we denote 
by α ≤!≥ (β, γ). Recall that a perfect shuffle of two strings is a 
shuffle that interleaves the first n elements of each string, where n 
is the length of the shorter string. A perfect shuffle always starts 
with the first element of the first string. For example, 〈a, e, b, f, c, 
d〉 is a perfect shuffle of the strings 〈a, b, c, d〉 and 〈e, f〉.  
Since the postcondition has been strengthened, the loop invariant 
also needs to be stronger. Like the ensures clause, the loop in-
variant is divided into two main conjuncts. The first conjunct 
simply mirrors the first part of the ensures clause. The second 
conjunct asserts that if ρ is a perfect shuffle of the linked lists 
beginning with r and q, then when the string beginning with p and 
ending with r is concatenated with ρ, the resulting list is a perfect 
shuffle of the input lists. For convenience, we have chosen strings 
β and γ to designate the same strings in the invariant as they do in 
the ensures clause. The invariant includes a few extra strings: χ, 
which is the string of Info objects between q and Void; δ, which is 
the string of objects between r and Void; and ε, which is the 
string of objects between q and Void. 

At the beginning of the first iteration of the loop, χ is the empty 
string, while δ = β and ε = γ. So, when ρ ≤!≥ (δ, ε), we also know 
that χ o ρ ≤!≥ (β, γ). When the loop terminates, q = Void, so ε 
represents the empty string and therefore ρ = δ and χ o ρ = χ o δ. 
But χ o δ is the same as α in the ensures clause, so that α ≤!≥ (β, 
γ) follows directly from χ o ρ ≤!≥ (β, γ). 

Finally, the proof of correctness for the Splice operation must 
show that χ o ρ ≤!≥ (β, γ) is maintained in the invariant. If we 
assume that χ o ρ ≤!≥ (β, γ) at the beginning of some arbitrary 
iteration, we must then show that χ′ o ρ′ ≤!≥ (β, γ) at the begin-
ning of the next iteration, where χ′ and ρ′ are the new values of χ 
and ρ. (Note that β and γ are based on #p and #q, so they do not 
change from one iteration to the next.) Since r and q both advance 
exactly one location, we know that δ = 〈x〉 o δ′ and ε = 〈y〉 o ε′ for 
some Info objects x and y. A perfect shuffle of δ′ and ε′ will be 
the same as a perfect shuffle of δ and ε except that it will no 
longer hold x and y. In other words, ρ′ = 〈x〉 o 〈y〉 o ρ. While ρ 
loses these objects, the Info string χ picks them up. In the code, 
position s moves to the location containing x, redirects the link 
there to the location containing y, follows the link, and then redi-
rects the link at that location toward r’s new location. As a result 
of this traversal, χ′ = χ o 〈x〉 o 〈y〉. When χ′ and ρ′ are concate-

nated we get χ′ o ρ′ = χ o ρ, so that χ o ρ ≤!≥ (β, γ) implies χ′ o 
ρ′ ≤!≥ (β, γ). 

Of course, a formal proof of the invariant would be much more 
intricate, but this should give the reader an idea of how to pro-
ceed. 

4.  DISCUSSION 
Using programmer-supplied loop invariants (similar to our ap-
proach for handling loops), Jenson et al. have discussed in [9] 
how to prove heap-related properties and find counterexamples to 
claimed properties. Their implementation has been shown to be 
effective in practice. Their work differs from traditional pointer 
analyses because they can answer more questions that can be 
expressed as properties in first-order logic. While this work fo-
cuses on linear linked lists and tree structures, more recently 
Møller and Schwartzbach have extended the results to all data 
structures that can be expressed as “graph types” [17]. The Alloy 
approach “targets properties of the heap” [28] in a quest to root 
out erroneous implementations of linked data structures and null 
dereferences. The ESC/Java tool [15] has the ability to statically 
detect heap-related errors in Java. Though we have focused only 
on Hackett and Rugina’s work in this paper, there is significant 
other work in shape analysis, including work on parametric shape 
analysis that allows more questions to be answered concerning 
heaps [22]. None of these efforts is based on a general, formal 
specification of pointer behavior.  
The idea of capturing pointer behavior in the form of a component 
is not new. Safe pointers [16] and checked pointers [21] are ge-
neric C++ classes designed to alleviate memory errors in C++ by 
implementing all or part of the memory management code inside 
a pointer-like data structure. In contrast, our pointer specification 
supports manual memory management and the memory errors that 
can occur as the result of it. Though we have focused only on 
proving properties and correctness through reasoning, the results 
can be combined with previous work [26] to identify errors 
through analysis. In addition, these errors are statically predict-
able in the context of a formal specification and verification sys-
tem that does not treat reasoning about pointers different from 
reasoning about any other component.  

Despite the fact that many object-oriented languages avoid most 
memory errors by using automatic garbage collection, implicit 
pointers (references) remain a serious problem for both formalists 
and practitioners. This is due primarily to aliasing [8]. Aliasing—
in the absence of a complete model of pointers and their refer-
ents—breaks encapsulation [19] and hence thwarts modular rea-
soning [5]. When pointers are appropriately modeled, formal 
specification and verification is complicated because the model 
must cope with soundness [29]. Therefore, various proposals have 
been introduced to control object aliasing, such as [5][19]. Rea-
soning about programs that incorporate these techniques is typi-
cally done in the context of object-oriented logics that use a 
global heap abstraction. 
A complete formal specification of the pointer component de-
scribed here was omitted due to space considerations, but it can 
be found in [12]. Future research includes exploring how the 
specification can be adapted for languages with automatic gar-
bage collection, and how we can develop both lightweight and 



heavyweight performance specifications [11][24] towards analyz-
ing the performance of pointer-based programs. 
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