
A Specification-Based Approach
to Reasoning About Pointers

Gregory Kulczycki
Virginia Tech

Falls Church, VA

gregwk@vt. edu

Murali Sitaraman
Clemson University

Clemson, SC

murali@cs.clemson.edu

Bruce W. Weide
Atanas Rountev

The Ohio State University
Columbus, OH

weide@cse.ohio-state.edu
rountev@cse.ohio-state.edu

ABSTRACT
This paper explains how a uniform, specification-based approach
to reasoning about component-based programs can be used to
reason about programs that manipulate pointers. No special axi-
oms, language semantics, global heap model, or proof rules for
pointers are necessary. We show how this is possible by capturing
pointers and operations that manipulate them in the specification
of a software component. The proposed approach is mechanizable
as long as programmers are able to understand mathematical
specifications and write assertions, such as loop invariants. While
some of the previous efforts in reasoning do not require such
mathematical sophistication on the part of programmers, they are
limited in the kinds of properties they can prove about programs
that use pointers. We illustrate the idea using a “Splice” operation
for linked lists, which has been used previously to explain other
analysis techniques. Not only can the proposed approach be used
to establish shape properties given lightweight specifications, but
also it can be used to establish total correctness given more com-
plete specifications.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
correctness proofs, formal methods. D.3.3 [Programming Lan-
guages]: Language Constructs and Features – data types and
structures.

General Terms
Languages, Verification.

Keywords
Pointer specification, reasoning, heap memory management.

1. INTRODUCTION
Reasoning about program code involving pointers or references is
notoriously difficult [29]. Various logics have been developed for
object-oriented languages such as Java and C# in which refer-
ences are implicit [1][18]. Reasoning about programs in these
languages is complicated due to the possibility of aliasing. Vari-
ous static analysis techniques also have been applied to languages
with and without explicit deallocation (e.g., [6][22][30]). These
techniques are fast and flexible, but they are also limited in what
they can prove about a program’s run-time behavior. Both object-
oriented logics and general program analysis techniques tend to
rely on global reasoning about entire heap abstractions. Frame
properties [3] make reasoning about heap locations somewhat less
demanding in object-oriented logics, and a separation logic [20]

has been suggested as a way to further localize reasoning to por-
tions of the heap structure. Nonetheless, a single heap abstraction
is still assumed. Building on previous work in shape analysis [30],
Hackett and Rugina [6] describe an approach that avoids global
heap abstractions. Instead, it uses local reasoning about individual
heap locations to find potential errors.

In this paper, we consider from a language design perspective the
problem of pointers and reasoning about programs that use them.
We describe a way to implement and reason about programs in-
volving pointers by using a formally specified generic component
that encapsulates pointer-like behavior and that is especially well
suited for the implementation of linked data structures. Further-
more, no global heap abstraction is used in reasoning about point-
ers. Instead, shared conceptual (or specification-only) variables
whose scope is at the component level are defined in the specifi-
cation. These variables record the state of the pointer structure,
keeping track of such information as which locations are mapped
to which objects and how the locations are linked to one another.
The component permits explicit deallocation and thereby allows
users to reason about memory errors that do not arise with gar-
bage collection, so it can accommodate situations and languages
where no automatic garbage collection is assumed. Section 2
briefly describes the specification of the pointer component ab-
straction and its operations.

A key contribution of the specification-based approach to reason-
ing about programs with pointers is that programmers can use and
reason about pointers using the same techniques that they use to
reason about all other components in a program. This does not
preclude a language designer from inventing special syntax for
pointers as long as the meaning of that syntax can be described in
terms of the operations specified in the component. In particular,
for the component to exhibit the run-time performance of lan-
guage-supplied pointers, a compiler for a language with compo-
nent-provided pointers need not implement these component op-
erations as typical calls, but may consider them to be built-in
constructs. For example, even though a programmer using our
component will reason about the pointer assignment statement “p
= q” as a call Relocate(p, q)—a procedure call that must conform
to the contract specified by its precondition and postcondition—
the compiler may implement this statement as a single machine
instruction that overwrites p’s value with the address stored in q.

A second contribution of the specification-based approach is that
it facilitates more powerful reasoning about properties of pointer-
based programs than previous static analyses relying on special
rules to handle language-supplied pointers. This is the topic of
Section 3. In that section, we illustrate the issues using an exam-

ple “Splice” operation for a linked list. The example is taken from
a recent paper on a general approach to shape analysis [6]. In that
paper, Hackett and Rugina introduce and use a region-based
shape analysis algorithm to establish the “shape property” that the
Splice code does not introduce cycles into lists. They describe a
non-trivial algorithm that partitions memory into regions, keeping
track of the relationships between regions using a unification-
based points-to analysis [27] that they augment with context sen-
sitivity. Individual “configurations” are used to track the state of
individual heap locations. These configurations can be analyzed
independently of each other, eliminating the need to keep track of
how an entire heap abstraction changes over the course of a pro-
gram’s execution.
Shape analysis is fully automatic and, unlike our specification-
based approach, does not require programmer-supplied assertions.
However, the authors note, for example, that their analysis would
not apply if the Splice code were written slightly differently.
More importantly, shape analysis techniques—and other static
analysis techniques—are limited in the kinds of properties they
can be used to prove. We illustrate these issues using both light-
weight and heavyweight specifications for the “Splice” operation.
Whereas the lightweight specification is sufficient to prove the
assertion that an implementation of Splice does not introduce
cycles, a more complete specification of the operation shows the
potential of the pointer specification approach to analyze the full
behavior of the operation and its implementation.

2. SPECIFYING POINTER BEHAVIOR
A formal specification of a component to capture pointer behavior
is given in the technical report [12], where the design rationale for
the specification and performance ramifications are discussed.
The specification is general and it allows reasoning about any
pointer-based data structures, including lists and trees. A skeleton
of this specification is discussed in this subsection as a prelude to
specification-based reasoning about pointers.

2.1 Mathematical Modeling
Without loss of generality, the specification in Figure 1 is given in
the RESOLVE notation [23][25]. The specification defines Loca-
tion as a mathematical set. The exact set of addresses that corre-
spond to locations is an internal implementation detail, and it is
suppressed in the specification. For the purposes of reasoning, the
client programmer need only know that Location is a set and Void
is a specific location element from that set. At any given program
state, some locations are free, or available for allocation; and
some locations are taken, or already allocated. A key aspect of the
specification is to formalize how locations become linked to each
other following various pointer manipulation operations. Hence
the name Location_Linking_Template for the concept.
The concept is parameterized by the type of information associ-
ated with each location and the number of links from each loca-
tion. If the nodes of a list contain GIF pictures, for example, then
Info is a type representing GIF pictures. Similarly, the number of
links depends on the application. For example, a singly linked list
requires one link from each location, whereas a k-ary tree requires
k links from each location.
To capture the behavior of a system of linked locations, the con-
cept defines and uses three global, conceptual variables: Con-
tents(q) is the information at a given location q, Target(q, i) is the
location targeted by the i-th link of q, and Is_Taken(q) is true if

and only if a given location q is allocated, and therefore, taken.
These variables are not programming variables; they are used
solely for specification and reasoning. They are similar to specifi-
cation-only variables used in other formalisms for object-oriented
programs [4][14].
Concept Location_Linking_Template (type Info;
 evaluates k: Integer);

Defines Location: Set;
Defines Void: Location;

Var Target: Location × [1..k] → Location;
Var Contents: Location → Info;
Var Is_Taken: Location → B;

 Initialization ensures ∀q: Location, ¬Is Taken(q);
 Constraints ¬Is Taken(Void) and (∀q: Location,
 if ¬Is Taken(q) then Info.Is_Initial(Contents(q)) and
 ∀j: [1..k], Target(q, j) = Void) and …

 Type Family Position is modeled by Location;
 exemplar p;
 Initialization ensures p = Void;

 Operation Take_New_Location(updates p: Position);
 …
 Operation Abandon_Location(clears p: Position);
 …
 Operation Relocate(updates p: Position;
 preserves q: Position);
 ensures p = q;

 Operation Follow_Link(updates p: Position;
 evaluates i: Integer);
 requires Is Taken(p) and 1 ≤ i ≤ k;
 ensures p = Target(#p, i);

 Operation Redirect_Link(preserves p: Position;
 evaluates i: Integer; preserves q: Position);
 updates Target;
 requires 1 ≤ i ≤ k and Is_Taken(p);
 ensures ∀r: Location, ∀j: [1..k],

 Target(r, j) = ;
q if r = p and j = i
Target(r, j) otherwise

⎧
⎨
⎩

 Operation Check_Colocation(preserves p, q: Position;
 replaces are_colocated: Boolean);

 …
Operation Swap_Locations(preserves p: Position;

 evaluates i: Integer; updates new_target: Position);
 …
 Operation Swap_Contents(preserves p: Position;
 updates I: Info);
 …
 Operation Is_At_Void(preserves p: Position): Boolean;
 …
 Operation Location_Size(): Integer;
 …
end Location_Linking_Template;

Figure 1. A Skeleton of Pointer Behavior Specification.

The concept is constrained to behave as specified in the invariant
constraints clause: the Void location can never be taken or allo-
cated, i.e., it is always free; and all locations that are freely avail-
able are in an initialized state, i.e., their contents have default
information and their links point to Void. Finally, the number of
locations available is related to the total available memory capac-
ity. Hence, locations are limited, and allocations without corre-
sponding deallocations will eventually deplete the pool. Initially,
all locations are assumed to be free and, therefore, initialized, as
specified in the constraints clause. This does not mean that an
implementation of the pointer component must initialize every
location at the beginning; of course, it would not. It just means
that any newly allocated location is guaranteed to be initialized,
and this objective can be achieved as and when it is needed.
Given this model, a programming variable of type Position is
simply viewed mathematically as a location. When a programmer
declares a new pointer variable, it is initially just the Void loca-
tion. Only after allocation does the variable become a location
that can contain information.
A system of linked locations is established when a client instanti-
ates the pointer component with the type of information that each
location holds and the number of links coming from each loca-
tion. Figure 2 gives an informal view of an example system of
linked locations where type Info is assumed to be Greek letters
and the number of links from each location is assumed to be one.
Here, the circles represent locations that contain information
(Greek letters) and a fixed number of links (just one in the exam-
ple) to other locations.

Figure 2. A system of linked locations.

The figure shows that some of the locations are taken and others
are free. All the pointer variables (a, b, x, y, z) except for b are at
allocated locations. For example, the information content at the
location of variable x is β. The pointer variables y and z are colo-
cated, i.e., they are aliased, and the link from that location points
to the location of x. The pointer variable b resides at the special
Void location, which is perpetually free. Due to poor program-
ming or possible reliance on a garbage collector, some of the
allocated locations have become inaccessible, such as the loca-
tions containing information χ and δ. To manipulate pointer vari-
ables to reach a state like the one in Figure 2, a programmer has to
declare pointer variables and call suitable operations, as explained
in the next subsection.

2.2 Discussion of Pointer Operations
The parameters in the specifications of operations in Figure 1 use
various modes to help the programmer understand rough effects
of a call to the arguments before reading the subsequent formal
specification. The updates mode indicates that the operation
modifies this argument; the clears mode ensures that the argu-
ment will return from the procedure with an initial value of its

type; the preserves mode prohibits any changes to the argument’s
value; the replaces mode indicates that the incoming argument
value will be ignored but replaced; and the evaluates mode indi-
cates that the operation expects an expression in this position—it
is typically used with types that are often returned from functions,
such as integers.
The Take_New_Location operation allows a programmer to asso-
ciate information with a specified pointer variable. Every call to
this operation leads to a new location being taken. Internally, this
operation allocates memory for a new object of type Info and
makes p point to it. A taken location remains taken until the client
abandons it, which she can do using the Abandon_Location opera-
tion. When a location is abandoned, memory for the information
it contained is reclaimed and the pointer variable that is being
explicitly abandoned is repositioned to the Void location. The
Location_Size operation helps a programmer determine if there is
sufficient memory for a new allocation, i.e., if there are any more
free locations available for taking. A careful programmer may
need this operation to check availability before calling the
Take_New_Location operation.

Figure 3. The effects of selected calls on a system.

Now we consider the formal specification of operation Redi-
rect_Link. This operation redirects the i-th link at position p’s
location to q’s location. The values of both p and q are preserved,
since both occupy the same locations they did before the opera-
tion is invoked. The updates clause after the formal parameters
lists any component-level conceptual variables that are affected
by the operation. In this case, the Target variable will be modi-
fied, but the Contents and the Is_Taken variables will remain
unchanged. The RESOLVE specification language adheres to an
implicit frame property in that operation invocations may only
affect explicit parameters to the operation or component concep-
tual variables listed in the updates clause. In this case, the opera-
tion specifies that the values of both position parameters are pre-
served and that any integer parameter is treated as an expression,

so the only variable that is modified is Target. The postcondition
describes how the Target variable is modified: the Target function
does not change except that it now maps the tuple (p, i) to q. Note
that the hash (#) symbol denotes the incoming value of a variable.
The specifications for Relocate and Follow_Link are straightfor-
ward.
The remaining operations allow a client to manipulate links and
information at occupied locations. They also allow position vari-
ables to be associated with different locations. Figure 3 gives
before and after views of a system for invocations of selected
operations. Note that the box in the Swap_Contents operation is
not a location. It simply indicates the value of Info variable t. In
this case, t’s value is α before the operation and δ after the opera-
tion. In contrast, p’s value (which is a location) remains the same
before and after the operation, but the Target variable will have
been updated. All the operations shown here have formal specifi-
cations associated with them [12]. We have shown only a few of
these in Figure 1, owing to space constraints.
Because the pointer component supports explicit deallocation,
memory errors can arise within the context of a system. A loca-
tion is considered accessible if there is a path to that location from
a location occupied by some position variable. In Figure 2, for
example, two taken locations are not accessible: the location con-
taining δ and the location containing χ. The location containing λ
is accessible even though it is not occupied by a position variable
because there is a path to it from the location occupied by x. A
location that is taken but not accessible is a memory leak; a loca-
tion (other than Void) that is free but accessible is a dangling
reference. The latter situation is not, perforce, a memory error;
but it becomes one if that pointer variable is then used before
being updated.

3. EXAMPLE
This section illustrates how the pointer component can be used for
both lightweight and heavyweight specifications and subsequent
reasoning. The Splice operation takes as input two singly-linked
lists of locations: one that begins with a location occupied by
position p and another that begins with a location occupied by
position q. The length of q’s list must be less than or equal to the
length of p’s list. The operation modifies the first list so that it is a
perfect shuffle of the locations in the original lists. A shuffled list
contains all the elements of both lists with their original orderings
preserved, similar to what happens when you shuffle a deck of
cards. If location x appears before location y in one of the original
lists, then x appears before y in the shuffled list. A perfect shuffle
interleaves elements from each of the lists.

3.1 Simple Splice Specification
Figure 5 gives a lightweight specification and code for Splice (a
minor syntactic variation of the version in [6]). The specification
is sufficient to meet the goal of a typical shape analysis for the
operation, namely to “statically verify that, if the input lists […]
are disjoint and acyclic, then the [output list] is acyclic” [6] (page
3). Note that we use a syntactic shortcut throughout this section
for ease of reading (and writing) the specifications. Since all loca-
tions in these examples have exactly one link, we leave out the
link number where it is typically required. For example, we use
Target(p) instead of Target(p, 1).

The specification defines two mathematical functions used in the
specification. Is_Reachable_in(n, p, q) is true if and only if loca-
tion q is reachable from location p in n hops. That is, if x is a
variable at location p, this function is true if and only if x will
arrive at location q by following his first link n times, but no
fewer. The term Targetk(p) means k iterations of the function
Target starting with p. The requirement that “if Targetk(p) = q
then k ≥ hops” for all k, guarantees, for example, that
Is_Reachable_in(10, p, q) is false if q links back to itself and it
only takes 5 hops for p to reach q. Is_Reachable(p, q) is true iff q
is reachable from p in any number of hops. When the Var key-
word follows Definition, it indicates that the value of the function
may vary for the same input values in different program states.
For example, Is_Reachable(p, q) may be true in one state and
false in the next if one of the links between them was redirected.
The Distance between p and q is the number of hops it takes to
get from p to q if q is reachable from p; otherwise, the distance is
zero.

Definition Var Is_Reachable_in(hops: N; p, q: Location;): B =
 Targethops(p) = q and ∀k: N, if Targetk(p) = q then k ≥ hops;

Definition Var Is_Reachable(p, q: Location): B =
 ∃k: N ∋ Is_Reachable_in(k, p, q);

Definition Var Distance(p, q: Location): N

 = ;
k if Is_Reachable_in(k, p, q)
0 otherwise

⎧
⎨
⎩

Operation Splice(preserves p: Position; clears q: Position);
 updates Target;
 requires (∃k1, k2: N ∋ Is_Reachable_in(k1, p, Void) and
 Is_Reachable_in(k2, q, Void) and k2 ≤ k1) and
 (∀r: Location, if Is_Reachable(p, r) and
 Is_Reachable(q, r) then r = Void);
 ensures Is_Reachable(p, Void);
Procedure
 Var r: Position;
 Var s: Position;
 Relocate(r, p);
 While (not At_Void(q))
 decreasing Distance(q, Void);
 maintaining Is_Reachable(p, Void);
 do
 Relocate(s, r);
 Follow_Link(r);
 Redirect_Link(s, q);
 Follow_Link(s);
 Follow_Link(q);
 Redirect_Link(s, r);
 end;
end Splice;

Figure 5. A lightweight specification for Splice.

The Splice operation preserves p and clears q. In other words, p is
unchanged and q is Void after the operation. The updates clause
indicates that Target is the only conceptual variable that is modi-
fied.

The requires clause is fulfilled only if the linked lists beginning
at p and q are acyclic and disjoint. The only way that a location
can reach Void is if there are no cycles in the linked structure

beginning with that location. The Void location always links to
itself. Provided that lists are free of cycles, k1 and k2 represent the
lengths of lists p and q, respectively, and k1 must be greater than
or equal to k2. Finally, if any location other than Void is reach-
able by both p and q, then the lists are not disjoint. The simple
ensures clause is true when the output list p is acyclic.
Figure 6 illustrates the execution of the splice operation when p is
a linked list with four locations and q is a linked list with two
locations. Part (a) represents the state of the system at the begin-
ning of the first loop, part (b) represents the system at the begin-
ning of the second loop iteration, and part (c) represents the state
of the system when the loop terminates.

Figure 6. An animation of the implementation for Splice.

The correctness of the implementation can be proved using the
formal proof system detailed in [7][10] and summarized in [25].
The proof process takes the programmer-supplied invariant for
the loop, establishes that it is invariant, and employs it in com-
pleting the proof. For the present example, the loop invariant
asserts that it is always possible to reach the Void location from
p. It is obviously true at the beginning of the first iteration, since
p does not change and we know from the precondition that Void
is reachable from p. All that is left to prove is that the invariant
holds from one iteration to the next. This follows from the fact
that the following lemmas hold in each state in the loop.
Lemma #1: Is_Reachable(q, Void);
Lemma #2: Is_Reachable(r, Void);
Lemma #3: Is_Reachable(p, r) or Is_Reachable(p, q);
The proof of correctness of Splice follows from the invariant and
the negation of the loop condition. For proving termination, the
process uses a progress metric given in the decreasing clause.
The progress metric states that the “distance” from q to Void
decreases with each iteration of the loop. This argument estab-
lishes the same result as the intricate shape analysis proposed in
[6]. A limitation of the Splice operation as specified in this sec-

tion is that it cannot be used as a meaningful guide to anyone
who implements the operation. In fact, even an implementation
that does nothing at all will guarantee the postcondition because
it follows directly from the precondition. The next section pro-
vides a more detailed specification for the Splice operation.

3.2 Full Splice Specification
The full specification of the Splice operation is given in Figure 5.

Definition Var Is_Reachable_in(hops: N; p, q: Location;): B =
 Targethops(p) = q and ∀k: N, if Targetk(p) = q then k ≥ hops;

Definition Var Is_Reachable(p, q: Location): B =
 ∃k: N ∋ Is_Reachable_in(k, p, q);

Definition Var Distance(p, q: Location): N

 = ;
k if Is_Reachable_in(k, p, q)
0 otherwise

⎧
⎨
⎩

Definition Var Is_Info_Str(p, q: Location; α: Str(Info)): B =
 ∃n: N ∋ Is_Reachable_in(n, p, q) and
 α = 〈Contents(Targetk (p))〉k=1

n∏ ;
Operation Splice(preserves p: Position; clears q: Position);
 updates Target;
 requires (∃k1, k2: N ∋ Is_Reachable_in(k1, p, Void) and
 Is_Reachable_in(k2, q, Void) and k2 ≤ k1) and
 (∀r: Location, if Is_Reachable(p, r) and
 Is_Reachable(q, r) then r = Void);
 ensures (∀t: Location, if not Is_Reachable(#p, t) and
 not Is_Reachable(#q, t) then Target(t) = #Target(t)) and
 (∀α, β, γ: Str(Info), if Is_Info_Str(p, Void, α) and
 Is_Info_Str(#p, Void, β) and Is_Info_Str(#q, Void, γ)
 then α ≤!≥ (β, γ));

Procedure
 Var r: Position;
 Var s: Position;
 Relocate(r, p);
 While (not At_Void(q))
 decreasing Distance(q, Void);
 maintaining (∀t: Location, if not Is_Reachable(#p, t) and
 not Is_Reachable (#q, t) then Target(t) = #Target(t)) and
 (∀χ, δ, ε. β, γ, ρ: Str(Info), if Is_Info_Str(p, r, χ) and
 Is_Info_Str(r, Void, δ) and Is_Info_Str(q, Void, ε) and
 Is_Info_Str(#p, Void, β) and Is_Info_Str(#q, Void, γ) and
 ρ ≤!≥ (δ, ε) then χ o ρ ≤!≥ (β, γ));
 do
 Relocate(s, r);
 Follow_Link(r);
 Redirect_Link(s, q);
 Follow_Link(s);
 Follow_Link(q);
 Redirect_Link(s, r);
 end;
end Splice;

Figure 7. A full specification for Splice.

We assume the definitions given above and introduce another
one: Is_Info_Str. The function Is_Info_Str(p, q, α) is true if and
only if q is reachable from p and α is the string of all the objects
of type Info contained in the locations between p and q. The

string includes the object in p but not the object in q. For example,
for the system of linked locations in Figure 2, Is_Info_Str(x, y, 〈β,
λ〉) is true.

The requires clause in this specification has not changed from the
last one. However, the ensures clause is more detailed. It has two
main conjuncts. The first conjunct indicates which portions of the
Target variable do not change. It asserts that the links of locations
do not change for locations that are not part of either input list.
Note that we know that the contents and the taken status of all
locations in the system are not affected by this operation because
the variables Contents and Is_Taken are not included in the up-
dates clause. The second main conjunct in the ensures clause
describes how the lists are modified. Essentially it says that α is
the string of Info objects derived from the output list, β and γ are
the strings of Info objects derived from the two input lists, and α
is a perfect shuffle (or “interleaving”) of β and γ, which we denote
by α ≤!≥ (β, γ). Recall that a perfect shuffle of two strings is a
shuffle that interleaves the first n elements of each string, where n
is the length of the shorter string. A perfect shuffle always starts
with the first element of the first string. For example, 〈a, e, b, f, c,
d〉 is a perfect shuffle of the strings 〈a, b, c, d〉 and 〈e, f〉.
Since the postcondition has been strengthened, the loop invariant
also needs to be stronger. Like the ensures clause, the loop in-
variant is divided into two main conjuncts. The first conjunct
simply mirrors the first part of the ensures clause. The second
conjunct asserts that if ρ is a perfect shuffle of the linked lists
beginning with r and q, then when the string beginning with p and
ending with r is concatenated with ρ, the resulting list is a perfect
shuffle of the input lists. For convenience, we have chosen strings
β and γ to designate the same strings in the invariant as they do in
the ensures clause. The invariant includes a few extra strings: χ,
which is the string of Info objects between q and Void; δ, which is
the string of objects between r and Void; and ε, which is the
string of objects between q and Void.

At the beginning of the first iteration of the loop, χ is the empty
string, while δ = β and ε = γ. So, when ρ ≤!≥ (δ, ε), we also know
that χ o ρ ≤!≥ (β, γ). When the loop terminates, q = Void, so ε
represents the empty string and therefore ρ = δ and χ o ρ = χ o δ.
But χ o δ is the same as α in the ensures clause, so that α ≤!≥ (β,
γ) follows directly from χ o ρ ≤!≥ (β, γ).

Finally, the proof of correctness for the Splice operation must
show that χ o ρ ≤!≥ (β, γ) is maintained in the invariant. If we
assume that χ o ρ ≤!≥ (β, γ) at the beginning of some arbitrary
iteration, we must then show that χ′ o ρ′ ≤!≥ (β, γ) at the begin-
ning of the next iteration, where χ′ and ρ′ are the new values of χ
and ρ. (Note that β and γ are based on #p and #q, so they do not
change from one iteration to the next.) Since r and q both advance
exactly one location, we know that δ = 〈x〉 o δ′ and ε = 〈y〉 o ε′ for
some Info objects x and y. A perfect shuffle of δ′ and ε′ will be
the same as a perfect shuffle of δ and ε except that it will no
longer hold x and y. In other words, ρ′ = 〈x〉 o 〈y〉 o ρ. While ρ
loses these objects, the Info string χ picks them up. In the code,
position s moves to the location containing x, redirects the link
there to the location containing y, follows the link, and then redi-
rects the link at that location toward r’s new location. As a result
of this traversal, χ′ = χ o 〈x〉 o 〈y〉. When χ′ and ρ′ are concate-

nated we get χ′ o ρ′ = χ o ρ, so that χ o ρ ≤!≥ (β, γ) implies χ′ o
ρ′ ≤!≥ (β, γ).

Of course, a formal proof of the invariant would be much more
intricate, but this should give the reader an idea of how to pro-
ceed.

4. DISCUSSION
Using programmer-supplied loop invariants (similar to our ap-
proach for handling loops), Jenson et al. have discussed in [9]
how to prove heap-related properties and find counterexamples to
claimed properties. Their implementation has been shown to be
effective in practice. Their work differs from traditional pointer
analyses because they can answer more questions that can be
expressed as properties in first-order logic. While this work fo-
cuses on linear linked lists and tree structures, more recently
Møller and Schwartzbach have extended the results to all data
structures that can be expressed as “graph types” [17]. The Alloy
approach “targets properties of the heap” [28] in a quest to root
out erroneous implementations of linked data structures and null
dereferences. The ESC/Java tool [15] has the ability to statically
detect heap-related errors in Java. Though we have focused only
on Hackett and Rugina’s work in this paper, there is significant
other work in shape analysis, including work on parametric shape
analysis that allows more questions to be answered concerning
heaps [22]. None of these efforts is based on a general, formal
specification of pointer behavior.
The idea of capturing pointer behavior in the form of a component
is not new. Safe pointers [16] and checked pointers [21] are ge-
neric C++ classes designed to alleviate memory errors in C++ by
implementing all or part of the memory management code inside
a pointer-like data structure. In contrast, our pointer specification
supports manual memory management and the memory errors that
can occur as the result of it. Though we have focused only on
proving properties and correctness through reasoning, the results
can be combined with previous work [26] to identify errors
through analysis. In addition, these errors are statically predict-
able in the context of a formal specification and verification sys-
tem that does not treat reasoning about pointers different from
reasoning about any other component.

Despite the fact that many object-oriented languages avoid most
memory errors by using automatic garbage collection, implicit
pointers (references) remain a serious problem for both formalists
and practitioners. This is due primarily to aliasing [8]. Aliasing—
in the absence of a complete model of pointers and their refer-
ents—breaks encapsulation [19] and hence thwarts modular rea-
soning [5]. When pointers are appropriately modeled, formal
specification and verification is complicated because the model
must cope with soundness [29]. Therefore, various proposals have
been introduced to control object aliasing, such as [5][19]. Rea-
soning about programs that incorporate these techniques is typi-
cally done in the context of object-oriented logics that use a
global heap abstraction.
A complete formal specification of the pointer component de-
scribed here was omitted due to space considerations, but it can
be found in [12]. Future research includes exploring how the
specification can be adapted for languages with automatic gar-
bage collection, and how we can develop both lightweight and

heavyweight performance specifications [11][24] towards analyz-
ing the performance of pointer-based programs.

5. ACKNOWLEDGMENTS
We would like to acknowledge Bill Ogden for his insights into the
design of the pointer specification. We would also like to thank
Kunal Chopra and Jason Mashburn for intricate discussions of the
topics in this paper. This work is funded in part by the National
Science Foundation grant CCR-0113181.

6. REFERENCES
[1] Abadi, M. and Leino, K. R. M. A logic of object-oriented

programs. In M. Bidoit and M. Dauchet, editors, TAPSOFT
’97: Theory and Practice of Software Development, 7th In-
ternation Joint Conference, pages 682–696. Springer-Verlag,
New York, 1997.

[2] Barnett, M., Leino, K. R. M., and Schulte, W. The Spec#
programming system: An overview. In CASSIS 2004, LNCS
vol. 3362, Springer, 2004.

[3] Borgida, A., Mylopoulos, J., and Reiter, R. … and nothing
else changes?: The frame problem in procedure specifica-
tions. In Proceedings of the 15th International Conference
on Software Engineering. IEEE Computer Society Press,
pages 303–314, 1993.

[4] Cheon, Y., Leavens, G. T., Sitaraman, M., and Edwards, S.
Model variables: Cleanly supporting abstraction in design by
contract. Software, Practice, and Experience, 35 (6), pages
583–599, 2005.

[5] Clarke, D. G., Potter, J. M., and Noble, J. Ownership types
for flexible alias protection. In Proceedings OOPSLA ’98,
pages 48–64, 1998.

[6] Hackett, B. and Rugina, R. Region-based shape analysis with
tracked locations. In Proceedings POPL ’05, January 2005.

[7] Heym, W. Computer Program Verification: Improvements
for Human Reasoning. Ph.D. thesis, The Ohio State Univer-
sity, 1995.

[8] Hogg, J., Lea, D., Wills, A., deChampeaux, D., and Holt, R.
The Geneva Convention on the treatment of object aliasing.
OOPS Messenger, 3(2):11–16, 1992.

[9] Jensen, J. L., Jorgensen, M. E., Klarlund, N., and Schwartz-
bach, M. I. Automatic verification of pointer programs using
monadic second-order logic. In Proceedings SIGPLAN Con-
ference on Programming Language Design and Implementa-
tion, 1997.

[10] Krone, J. The Role of Verification in Software Reusability.
Ph.D. thesis, The Ohio State University, 1988.

[11] Krone, J., Ogden, W. F., and Sitaraman, M. Modular verifi-
cation of performance correctness. In OOPSLA 2001
SAVCBS Workshop Proceedings, 2001.
http://www.cs.iastate.edu/~leavens/SAVCBS/papers-
2001/index.html.

[12] Kulczycki, G., Sitaraman, M., Ogden, W. F., and
Hollingsworth, J. E. Component Technology for Pointers:
Why and How, Technical Report RSRG-03-03, Clemson
University, Clemson, SC. 2003. http://www.cs.clemson.edu/
~resolve/reports/RSRG-03-03.pdf

[13] Leavens, G. T., Cheon, Y., Clifton, C., Ruby, C., and Cok.
D. R. How the design of JML accommodates both runtime
assertion checking and formal verification. Science of Com-
puter Programming, vol. 55, pages 185-205, Elsevier, 2005.

[14] Leino, K. R. M. Data groups: specifying the modification of
extended state. In Proceedings OOPSLA ’98, pages 144–153,
1998.

[15] Leino, K. R. M., Nelson, G., and Saxe, J. B. ESC/Java
User’s Manual, Technical Note 2000-002, Compaq Systems
Research Center, October 2000.

[16] Meyers, S. More Effective C++. Addison-Wesley, 1995.
[17] Møller, A. and Schwartzbach, M. I. The pointer assertion

logic engine. In ACM SIGPLAN Notices, 36(5), pages 221–
231, May 2001.

[18] Müller, P. and Poetzsch-Heffter, A. Modular specification
and verification techniques for object-oriented software
components. In Foundations of Component-Based Systems,
G. T. Leavens and M. Sitaraman, editors, Cambridge Uni-
versity Press, Cambridge, United Kingdom, 2000.

[19] Noble, J., Vitek, J., and Potter, J. Flexible alias protection.
ECOOP ’98. Lecture Notes in Computer Science, vol. 1445,
pp. 158–185, 1998.

[20] O’Hearn, P., Reynolds, J., and Yang, H. Local reasoning
about programs that alter data structures. Lecture Notes in
Computer Science, 2142:1–19, 2001.

[21] Pike, S. M., Weide, B. W., and Hollingsworth, J. E. Check-
mate: concerning C++ dynamic memory errors with checked
pointers. In Proceedings of the 31st SIGCSE Technical Sym-
posium on Computer Science Education. ACM Press, March
2000.

[22] Sagiv, M., Reps, T., and Wilhelm, R. Parametric shape
analysis via 3-valued logic. In ACM Transactions on Pro-
gramming Languages and Systems, 24(3), pp. 217–298,
2002.

[23] Sitaraman, M. and Weide, B.W. Component-based software
using RESOLVE. ACM Software Engineering Notes, 19(4),
pp. 21–67, 1994.

[24] Sitaraman, M. Impact of performance considerations on
formal specification design. Formal Aspects of Computing,
8(6):716–736, 1996.

[25] Sitaraman, M., Atkinson, S., Kulczycki, G., Weide, B. W.
Long, T. J., Bucci, P., Heym, W., Pike, S., and
Hollingsworth, J. E. Reasoning about software-component
behavior. In Proceedings of the 6th International Conference
on Software Reuse, pages 266–283. Springer-Verlag, 2000.

[26] Sitaraman, M., Gandi, D. P., Kuechlin, W., Sinz, C., and
Weide, B. W. DEET for Component-Based Software, In
Proceedings FSE Workshop on Specification and Verifica-
tion of Component-Based Systems, October 2004.

[27] Steensgaard, B. Points-to analysis in almost linear time. In
Proceedings of the 23rd Annual ACM Symposium on the
Principles of Programming Languages, January 1996.

[28] Vaziri, M. and Jackson, D. Checking heap-manipulating
procedures with a constraint solver. TACAS ’03, Warsaw,
Poland, 2003.

[29] Weide, B.W., and Heym, W.D. Specification and verifica-
tion with references. In Proceedings OOPSLA Workshop on
Specification and Verification of Component-Based Systems,
October 2001.

[30] Wilhelm, R., Sagiv, M., and Reps, T. Shape analysis. In
Proceedings of the 2000 International Conference on Com-
piler Construction, Berlin, Germany, April 2000.

[31] Wing, J. M. A specifier’s introduction to formal methods.
IEEE Computer, 23(9):8–24, 1990.

	INTRODUCTION
	SPECIFYING POINTER BEHAVIOR
	Mathematical Modeling
	Discussion of Pointer Operations

	EXAMPLE
	Simple Splice Specification
	Full Splice Specification

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES

