

SAVCBS 2004
Specification and Verification of

Component-Based Systems

SIGSOFT 2004/FSE-12
12th ACM SIGSOFT Symposium on the
Foundations of Software Engineering

Newport Beach, California, USA
October 31-November 5, 2004

Technical Report #04-09, Department of Computer Science, Iowa State University

226 Atanasoff Hall, Ames, IA 50011-1041, USA

SAVCBS 2004
PROCEEDINGS

Specification and Verification of Component-

Based Systems

http://www.cs.iastate.edu/ SAVCBS/

October 31-November 1, 2004
Newport Beach, California, USA

Workshop at SIGSOFT 2004/FSE-12
12th ACM SIGSOFT Symposium on the

Foundations of Software Engineering

v

SAVCBS 2004
TABLE OF CONTENTS

ORGANIZING COMMITTEE ix

WORKSHOP INTRODUCTION xi

PAPERS 1

SESSION 1
Verification of Multithreaded Object-oriented Programs with Invariants 2

Bart Jacobs (Katholieke Universiteit Leuven),
K. Rustan M. Leino, and Wolfram Schulte (Microsoft Research)

SESSION 2
Encapsulating Concurrency as an Approach to Unification 10

Santosh Jumar, Bruce W. Weide, Paolo A.G. Sivilotti (The Ohio State University),
Nigamanth Sridhar (Cleveland State University),
Jason O. Hallstrom (Clemson University),
and Scott M. Pike (Texas A&M University)

Basic Laws of Object Modeling 18

Rohit Gheyi, Tiago Massoni, and Paulo Borba (Federal University of Pernambuco)

Selective Open Recursion: Modular Reasoning about Components and Inheritance 26
Jonathan Aldrich (Carnegie Mellon University) and Kevin Donnelly (Boston University)

SESSION 3
CTL Model-checking for Systems with Unspecified Components 32

Gaoyan Xie and Zhe Dang (Washington State University)

Automatic Extraction of Sliced Object State Machines for Component Interfaces 39
Tao Xie and David Notkin (University of Washington)

SESSION 4
Formalizing Lightweight Verification of Software Component Composition 47

Stephen McCamant and Michael D. Ernst (Massachusetts Institute of Technology)

Verification of Evolving Software 55
Sagar Chaki, Natasha Sharygina, and Nishant Sinha
(Carnegie Mellon University)

vi

SESSION 5
Compositional Quality of Service Semantics 62

Richard Staehli and Frank Eliassen (Simula Research Laboratory)

An Analysis Framework for Security in Web Applications 70
Gary Wassermann and Zhendong Su (University of California, Davis)

SESSION 6
Synthesis of "Correct" Adaptors for Protocol Enhancement in Component-based
Systems 79

Marco Autili, Paola Inverardi, Massimo Tivoli (University of L’Aquila),
and David Garlan (Carnegie Mellon University)

Monitoring Design Pattern Contracts 87

Jason O. Hallstrom (Clemson University),
Neelam Soundarajan, and Benjamin Tyler (The Ohio State University)

DEET for Component-based Software 95

Murali Sitaraman, Durga P. Gandi (Clemson University),
Wolfgang Küchlin, Carsten Sinz (Universität Tübingen),
and Bruce W. Weide (The Ohio State University)

POSTER ABSTRACTS 105
UML Automatic Verification Tool (TABU) 106

M. Encarnación Beato (Universidad Pontificia de Salamanca),
Manuel Barrio-Solórzano, and Carlos E. Cuesta (Universidad de Valladolid)

Integration of Legacy Systems in Software Architecture 110

Maria Wahid Chowdhury (University of Victoria)
and Muhammad Zafar Iqbal (Shah Jala University of Science and Technology)

Toward Specification and Composition of BoxScript Components 114

H. Conrad Cunningham, Yi Liu, and Pallavi Tadepalli (University of Mississippi)

Hierarchical Presynthesized Components for Automatic Addition of Fault-tolerance:
A Case Study 118

Ali Ebnenasir and Sandeep S. Kulkarni (Michigan State University)

Using Wrappers to Add Run-Time Verification Capability to Java Beans 122
Vladimir Glina and Stephen H. Edwards (Virginia Tech)

Integrating Specification and Documentation in an Object-oriented Language 126

Jie Liang and Emil Sekerinski (McMaster University)

Designing a Programming Language to Provide Automated Self-testing for Formally
Specified Software Components 130

Roy Patrick Tan and Stephen H. Edwards (Virginia Tech)

vii

Open Incremental Model Checking 134
Nguyen Truong Thang and Takuya Katayama
(Japan Advanced Institute of Science and Technology)

Toward Structural and Behavioral Analysis for Component Models 138

Hanh-Missi Tran (Université des Sciences et Technologies de Lille),
Phillippe Bedu (Electricité de France—Research Division),
Laurence Duchien (Université des Sciences et Technologies de Lille),
Hai-Quan Nguyen, and Jean Perrin (Electricité de France—Research Division)

viii

ix

SAVCBS 2004
ORGANIZING COMMITTEE

Mike Barnett (Microsoft Research, USA)
Mike Barnett is a Research Software Design Engineer in the Foundations of Software
Engineering group at Microsoft Research. His research interests include software
specification and verification, especially the interplay of static and dynamic verification.
He received his Ph.D. in computer science from the University of Texas at Austin in
1992.

Stephen H. Edwards (Dept. of Computer Science, Virginia Tech, USA)
Stephen Edwards is an associate professor in the Department of Computer Science at
Virginia Tech. His research interests are in component-based software engineering,
automated testing, software reuse, and computer science education. He received his Ph.D.
in computer and information science from the Ohio State University in 1995.

Dimitra Giannakopoulou (RIACS/NASA Ames Research Center, USA)
Dimitra Giannakopoulou is a RIACS research scientist at the NASA Ames Research
Center. Her research focuses on scalable specification and verification techniques for
NASA systems. In particular, she is interested in incremental and compositional
model checking based on software components and architectures. She received
her Ph.D. in 1999 from the Imperial College, University of London.

Gary T. Leavens (Dept. of Computer Science, Iowa State University, USA)
Gary T. Leavens is a professor of Computer Science at Iowa State University. His
research interests include programming and specification language design and semantics,
program verification, and formal methods, with an emphasis on the object-oriented and
aspect-oriented paradigms. He received his Ph.D. from MIT in 1989.

Natasha Sharygina (Carnegie Mellon University, SEI, USA)
Natasha Sharygina is a senior researcher at the Carnegie Mellon Software Engineering
Institute and an adjunct assistant professor in the School of Computer Science at Carnegie
Mellon University. Her research interests are in program verification, formal methods in
system design and analysis, systems engineering, semantics of programming languages
and logics, and automated tools for reasoning about computer systems. She received her
Ph.D. from The University of Texas at Austin in 2002.

x

Program Committee:
Jonathan Aldrich (Carnegie Mellon University)
Mike Barnett (Microsoft Research)
Manfred Broy (Universität München)
Betty H. C. Cheng (Michigan State University)
Edmund M. Clarke (Carnegie Mellon University)
Matthew Dwyer (University of Nebraska)
Stephen H. Edwards (Virginia Tech)
Dimitra Giannakopoulou (RIACS /NASA Ames Research Center)
Gary T. Leavens (Iowa State University)
K. Rustan M. Leino (Microsoft Research)
Jeff Magee (Imperial College, London)
Rupak Majumdar (UCLA)
Peter Müller (ETH Zürich)
Wolfram Schulte (Microsoft Research)
Natalia Sharygina (Carnegie Mellon University, SEI)
Murali Sitaraman (Clemson University)
Clemens Szyperski (Microsoft Research)

Sponsors:

xi

SAVCBS 2004
WORKSHOP INTRODUCTION

This workshop is concerned with how formal (i.e., mathematical) techniques can be or should be used to
establish a suitable foundation for the specification and verification of component-based systems.
Component-based systems are a growing concern for the software engineering community. Specification
and reasoning techniques are urgently needed to permit composition of systems from components.
Component-based specification and verification is also vital for scaling advanced verification techniques
such as extended static analysis and model checking to the size of real systems. The workshop will
consider formalization of both functional and non-functional behavior, such as performance or
reliability.

This workshop brings together researchers and practitioners in the areas of component-based software
and formal methods to address the open problems in modular specification and verification of systems
composed from components. We are interested in bridging the gap between principles and practice. The
intent of bringing participants together at the workshop is to help form a community-oriented
understanding of the relevant research problems and help steer formal methods research in a direction
that will address the problems of component-based systems. For example, researchers in formal methods
have only recently begun to study principles of object-oriented software specification and verification,
but do not yet have a good handle on how inheritance can be exploited in specification and verification.
Other issues are also important in the practice of component-based systems, such as concurrency,
mechanization and scalability, performance (time and space), reusability, and understandability. The aim
is to brainstorm about these and related topics to understand both the problems involved and how formal
techniques may be useful in solving them.

The goals of the workshop are to produce:

1. An outline of collaborative research topics,
2. A list of areas for further exploration,
3. An initial taxonomy of the different dimensions along which research in the area can be

categorized. For instance, static/dynamic verification, modular/whole program analysis,
partial/complete specification, soundness/completeness of the analysis, are all continuums along
which particular techniques can be placed, and

4. A web site that will be maintained after the workshop to act as a central clearinghouse for
research in this area.

SAVCBS 2004
PAPERS

1

Verification of Multithreaded Object-Oriented Programs
with Invariants

Bart Jacobs
∗

Dept. of Computer Science
Katholieke Universiteit Leuven

Celestijnenlaan 200A
3001 Leuven, Belgium

bart.jacobs@cs.kuleuven.ac.be

K. Rustan M. Leino
Microsoft Research
One Microsoft Way

Redmond, WA, USA

leino@microsoft.com

Wolfram Schulte
Microsoft Research
One Microsoft Way

Redmond, WA, USA

schulte@microsoft.com

ABSTRACT
Developing safe multithreaded software systems is difficult due
to the potential unwanted interference among concurrent threads.
This paper presents a sound, modular, and simple verification tech-
nique for multithreaded object-oriented programs with object in-
variants. Based on a recent methodology for object invariants in
single-threaded programs, this new verification technique enables
leak-proof ownership domains. These domains guarantee that only
one thread at a time can access a confined object.

0. INTRODUCTION
A primary aim of a reliable software system is ensuring that all

objects in the system maintainconsistentstates: states in which all
fields, and all fields of other objects on which they depend, contain
legal meaningful values. In this paper, we formalize consistency
constraints asobject invariants, which are predicates over fields.

An object is consistent if it is in a state where its invariant must
hold. We also allow an object to be in a mutable state, where its
invariant may temporarily be violated.

It is hard to maintain object invariants in sequential programs,
and it is even harder in concurrent programs. For example, consider
the following method:

void Transfer(DualAccounts o, int amount) {
o.a := o.a − amount ;
o.b := o.b + amount ;

}

Suppose this method is to maintain the invariant that for all dual
accountsd : d .a + d .b = 0. In a concurrent setting, this invariant
can be violated in several ways. Even if the programming system
ensures that each read or write of a field is atomic, the interleavings
might cause the invariant to be violated. For example, if one thread
executes methodTransfer and readso.a, but before the thread

∗Bart Jacobs co-authored this paper during an internship at Mi-
crosoft Research. Bart Jacobs is a Research Assistant of the Fund
for Scientific Research - Flanders (Belgium) (F.W.O.-Vlaanderen).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAVCBS2004 Newport Beach, CA, USA
.

performs the write too.a, another thread causes some update of
o.a, then the invariant will not be maintained.

In a concurrent setting, consistency of an object can be ensured
by exclusion at a level coarser than individual reads and writes.
For example, while one thread updates an object, another is not
allowed to perform any operation on the object. In contemporary
object-oriented languages, exclusion is implemented via locking.

Guaranteed exclusion simplifies the automatic verification of mul-
tithreaded code a lot. It means that we can simply split the proof of
the concurrent program into a proof for exclusion and a proof for a
sequential program [17].

In this paper, we present a new programming methodology for
sound modular verification of multithreaded object-oriented pro-
grams with object invariants. The methodology not only guarantees
that every object protects itself from consistency violations, but it
also allows aggregates of objects to defineleak-proof ownership
domains. These domains guarantee that only one thread at a time
can access an object of the aggregate.

The methodology achieves modular static verification by requir-
ing methods to be annotated with simple ownership requirements.
The methodology is a extension of the Boogie methodology for se-
quential code, as described in our previous work [1].

The paper proceeds as follows. The next three sections gradually
introduce our methodology: Section 1 introduces object invariants,
Section 2 introduces confinement within objects, and Section 3
presents our extension to confinement within threads. In Section 4,
we sketch a proof of the soundness of our verification method. We
discuss additional issues of static verification in Section 5, of im-
plementation in Java and C# in Section 6, and of run-time checking
in Section 7. Sections 8 and 9 mention related work and conclude.

1. OBJECT INVARIANTS
We consider an object-oriented programming language with clas-

ses, for example like the class in Figure 0. Each class can declare
an invariant, which is a predicate on the fields of an object of the
class.

To allow a program temporarily to violate an object’s invariant,
the Boogie methodology [1] introduces into each object an auxil-
iary boolean field calledinv .0 We say that an objecto is consistent
if o.inv = true, otherwise we say the object ismutable. Only in
the mutable state is the object’s invariant allowed to be violated.
The inv field can be mentioned in method contracts (i.e., pre- and
postconditions). It cannot be mentioned in invariants or in program

0The Boogie methodology also deals with subclasses, but for
brevity we here consider only classes without inheritance. Extend-
ing what we say to subclasses is straightforward.

2

class IntList {
rep int[] elems := new int[10] ;
int count := 0 ;
invariant 0 ≤ count ∧ count ≤ elems.Length ;

void Add(int elem)
requires inv ;
{

unpack (this) ;
if (count = elems.Length)
{ elems := elems.Copy(count ∗ 2) ; }

elems[count] := elem ;
count := count + 1 ;
pack (this) ;
}
}

Figure 0: An example class, representing a extensible list of in-
tegers. The invariant links thecount field with the array length
of the elems field. The Add method maintains the invariant.

code. Theinv field can be changed only by two special statements,
unpack andpack. These statements delineate the scope in which
an object is allowed to enter a state where its invariant does not
hold.

The rules for maintaining object invariants are as follows:

• A new object is initially mutable.

• Packing an object takes it from a mutable state to a consistent
state, provided its invariant holds.

• Unpacking an object takes it from a consistent state to a mu-
table state.

• A field assignment is allowed only if the target object is mu-
table.

We formalize these rules as follows, whereInvT (o) stands for the
invariant of classT applied to instanceo.

packT o ≡
assert o 6= null ∧ ¬o.inv ∧ InvT (o) ;
o.inv← true

unpackT o ≡
assert o 6= null ∧ o.inv ;
o.inv← false

o.f := E ≡
assert o 6= null ∧ ¬o.inv ;
o.f ← E

In this formalization, anassert statement checks the given condi-
tion and aborts program execution if the condition does not hold.

Our methodology guarantees the following program invariant for
all reachable states, for each classT :

PROGRAM INVARIANT 0.

(∀ o : T • o.inv =⇒ InvT (o))

Here and throughout, quantifications are over non-null allocated
objects.

class Account {
rep IntList hist := new IntList() ;
int bal := 0 ;
invariant bal =

(Σ i
>
>
> 0 ≤ i < hist .count • hist .elems[i]) ;

void Deposit(int amount)
requires inv ;
ensures bal = old(bal) + amount ;
{

unpack (this) ;
hist .Add(amount) ;
bal := bal + amount ;
pack (this) ;
}
}

Figure 1: An example class illustrating aggregate objects.

2. CONFINEMENT WITHIN OBJECTS
The accessibility modifiers (likeprivate andpublic) in con-

temporary object-oriented languages cannot guarantee consistency.
Consider for example the classAccount in Figure 1, which uses
anIntList object to represent the history of all deposits ever made
to a bank account. A bank account also holds the current balance,
which is the same as the sum of the history, as is captured by the
invariant.

We say anAccount object is anaggregate: its part is the ob-
ject referenced through the fieldhist . Part objects are also known
asrepresentation objects. We qualify fields holding representation
objects with arep modifier (cf. [16]).

A part is said to beleakedif it is accessible outside the aggregate.
In a sequential setting, leaking is not considered harmful, as long
as the parts are leaked only for reading [15, 1].

An aggregateownsits parts. Object ownership, here technically
defined viarep fields, establishes a hierarchy among objects. In-
variants and ownership are related as follows: the invariant of an
objecto can depend only on the fields ofo and on the fields of ob-
jects reachable fromo by dereferencing onlyrep fields. (We don’t
allow an invariant to mention any quantification over objects.)

To formulate ownership properly, we introduce for each object
anowner field. Like inv , theowner field cannot be mentioned in
program code. We say an objecto is free if o.owner = null . An
object issealedif it has a non-null owner object and that owner is
consistent. Theownership domainof an objecto is the set collect-
ing o and all objects thato transitively owns. The rules forpack
andunpack enforce that ownership domains are packed and un-
packed only according to their order in the ownership hierarchy.
Furthermore,pack andunpack change the ownership of repre-
sentation objects as described by the following rules, which extend
the ones given earlier.1 We use the functionRepFieldsT to denote
the fields markedrep within classT .

packT o ≡
assert o 6= null ∧ ¬o.inv ∧ InvT (o) ;
foreach (f ∈ RepFieldsT where o.f 6= null)
{ assert o.f .inv ∧ o.f .owner = null ; }

foreach (f ∈ RepFieldsT where o.f 6= null)
{ o.f .owner← o ; }

o.inv← true

1This is a slightly different use of theowner field than in [13].

3

unpackT o ≡
assert o 6= null ∧ o.inv ;
o.inv← false ;
foreach (f ∈ RepFieldsT where o.f 6= null)
{ o.f .owner← null ; }

For illustration purposes, let us inspect a trace of the invocation
acct .Deposit(100) for a non-nullAccount objectacct that sat-
isfies the precondition ofDeposit , where we focus only on the in-
volvedinv andowner fields of the involved objects. First,Deposit
unpacksacct : acct is made mutable,hist is made free. Next,Add
is called, which first unpackshist and makes it mutable. Next, the
updates happen. On return from theAdd method,hist is packed
again: the invariant ofhist is checked andhist is made consistent.
Finally, theDeposit method packsacct : the invariant ofacct is
checked,acct is made consistent, andhist is sealed. And that’s
exactly our pre-state restricted toinv andowner fields of the ob-
jects in the ownership domain.

Generalizing from this example, we observe that the methodol-
ogy ensures the following program invariant, for each classT :

PROGRAM INVARIANT 1.

(∀ o : T • o.inv =⇒ InvT (o)) ∧
(∀ f ∈ RepFieldsT , o : T •

o.inv =⇒ o.f = null ∨ o.f .owner = o) ∧
(∀ o : T • o.owner 6= null =⇒ o.inv)

3. CONFINEMENT WITHIN THREADS
In the object ownership scheme above, objects are either part of

an aggregate object or they are free, which means they do not have
any owner. For modular verification of multithreaded code, we now
refine this scheme again. We say that an object can either befree,
it can beowned by an aggregate object, or it can beowned by a
thread. Correspondingly, the owner field isnull , an object, or a
thread.2

To support sequential reasoning about field accesses, we require
a thread to have exclusive access to the fields during the execution
of the program fragment to which the sequential reasoning applies.
We require a thread to transitively own an object whenever it reads
one of its fields, and to directly own an object whenever it writes
one of its fields. Since no two threads can (transitively) own the
same object concurrently, this guarantees exclusion.

The rules for thread ownership are as follows:

• A thread owns any object that it creates, and the new object
is initially mutable.

• A thread can additionally attempt toacquire any object.
This operation will block until the object is free. At that
point, we know that the object is consistent and the thread
gains ownership of the object.

• A thread can relinquish ownership of a consistent object us-
ing therelease statement.

• A thread that owns a consistent aggregate object can gain
ownership of its sealed representation objects by unpack-
ing the aggregate object using theunpack statement. This
transfers ownership of the representation objects from the ag-
gregate object to the thread.

2In this text, threads are not objects. In some languages, like Java
and C#, a thread has a representation as an object; we can avoid
ambiguity in these languages by requiring that thread objects have
no rep fields, which allows us to stipulate that when a thread object
appears as an owner, it denotes the thread, not the object.

• A thread can, via apack statement, transfer ownership of a
consistent object that it owns to an aggregate object.

• A thread can perform a field assignment only if it owns the
target object and the target object is mutable.

• A thread can read a field only if it transitively owns the tar-
get object. We actually enforce this rule by a slightly stricter
rule: a thread can evaluate an access expressiono.f1. · · · .fn .g
only if it ownso and each object in the sequenceo.f1. · · · .fn
owns the next one.

These rules are an extension of the rules presented in the previous
section. They give rise to the object lifecycle shown in Figure 2.
Fully spelled out, they are formalized as follows, where we denote
the currently executing thread bytid .

packT o ≡
assert o 6= null ∧ o.owner = tid ∧ ¬o.inv ;
foreach (f ∈ RepFieldsT where o.f 6= null)
{ assert o.f .owner = tid ∧ o.f .inv ; }

foreach (f ∈ RepFieldsT where o.f 6= null)
{ o.f .owner← o ; }

assert Legal [[InvT (o)]] ∧ InvT (o) ;
o.inv← true

unpackT o ≡
assert o 6= null ∧ o.owner = tid ∧ o.inv ;
o.inv← false ;
foreach (f ∈ RepFieldsT where o.f 6= null)
{ o.f .owner← tid ; }

acquire o ≡
assert o 6= null ∧ o.owner 6= tid ;
await (o.owner = null) { o.owner← tid ; }

release o ≡
assert o 6= null ∧ o.owner = tid ∧ o.inv ;
o.owner← null

o.f := v ≡
assert o 6= null ∧ o.owner = tid ∧ ¬o.inv ;
o.f ← v

x := E ≡
assert Legal [[E]] ;
x← E

In the above, we writeLegal [[E]] to denote the predicate that says
that every access expression inE is transitively owned by the cur-
rent thread, as stipulated by the last bullet above. In particular,

Legal [[x]] ≡ true
Legal [[E0 opE1]] ≡ Legal [[E0]] ∧ Legal [[E1]]
Legal [[o.f1. · · · .fn .g]] ≡

o.owner = tid ∧
o.f1.owner = o ∧
· · · ∧
o.f1. · · · .fn .owner = o.f1. · · · .fn−1

When a thread attempts to execute a statementawait (P) { S },
it blocks until the conditionP is true, at which point the statement
S is executed; the evaluation ofP that findsP to betrue and the
execution ofS are performed as one indivisible action.

4

owned by
thread t and
consistent

created by
thread t

owned by
object p and
consistent
and sealed

free and
consistent

owned by
thread t and

mutable

thread t packs
object p and p.f = o
and f is a rep field

thread t
unpacks
owner p

unpacked
by thread t

packed by
thread t

released by
thread t

acquired by
thread t

modified by
thread t

Figure 2: Object lifecycle for an arbitrary object o.

class Account {
void Deposit(int amount)

requires owner = tid ∧ inv ;
. . .

}

class IntList {
void Add(int value)

requires owner = tid ∧ inv ;
. . .

}

Figure 3: The example classesAccount and IntList , revised for
their use in a multithreaded environment.

Now let us extend our running example, so that we can verify
it in a multithreaded environment. First, we have to make sure
thatAccount andIntList objects are accessed only when they are
owned by the current thread. We choose to relegate the respon-
sibility of exclusion to the client, a pattern which is often called
client-side locking. We indicate this by including the requirement
owner = tid in the preconditions for methodsDeposit andAdd ,
see Figure 3. A program is allowed to mentiono.owner only in
the formo.owner = tid and only in method contracts.

We extend the example with aBank class, which allows trans-
fers between different accounts, see Figure 4. The methodTransfer
requires that thefrom and to accounts are owned by the current
thread. If the precondition holds,Transfer performs the intended
account operations without blocking. The methodTransaction
does the same thing, but has no requirement on thread ownership.
Therefore,Transaction acquires thefrom andto objects, each of
which might block.

Note that methodTransfer declares a postcondition, whereas
methodTransaction does not. In fact,Transaction cannot en-
sure the same postcondition asTransfer , since other threads might
intervene as soon as the account objects are released. For method
Transfer , on the other hand, the postcondition is stable, since the
calling thread owns the account objects, which affords it exclusive
access.

Our methodology ensures the following program invariant, for

class Bank {
static void Transfer(Account from,

Account to,
int amount)

requires from 6= null ∧ to 6= null ∧ from 6= to ∧
from.owner = tid ∧ to.owner = tid ;

ensures from.bal = old(from.bal)− amount ∧
to.bal = old(to.bal) + amount ;

{
from.Deposit(−amount) ;
to.Deposit(amount) ;
}
static void Transaction(Account from,

Account to,
int amount)

requires from 6= null ∧ to 6= null ∧ from 6= to ;
{

acquire from ;
acquire to ;
Transfer(from, to, amount) ;
release to ;
release from ;
}
}

Figure 4: A safe multithreaded bank example.

each classT :

PROGRAM INVARIANT 2.

(∀ o : T • o.inv =⇒ InvT (o)) (0)

(∀ f ∈ RepFieldsT , o : T •
o.inv =⇒ o.f = null ∨ o.f .owner = o)

(1)

(∀ o : T • o.owner 6∈ thread =⇒ o.inv) (2)

4. SOUNDNESS
In this section, we prove two results for our methodology. First,

there are no data races. Second, if an object is consistent, its invari-
ant holds.

A data raceoccurs when a field is accessed concurrently by two
threads and at least one of the threads is performing a write to the
field. If a data race occurs, the values read or written by a thread
may be unpredictable, which severely complicates reasoning about
the program.

As we have formalized our methodology in the previous section,
there actually are data races, in particular on theowner field. For-
tunately, we can eliminate these data races by introducing redun-
dant thread-local data into our program state, as follows:

• With each threadt , we associate a thread-local tableowns,
which maps object references to booleans.

• We extend the semantics of all statements that perform up-
dates onowner fields so that they also update the local thread’s
owns variable. These updates will maintain the following in-
variant, for any objecto and threadt :

t .owns[o] =⇒ o.owner = t

• We modify the semantics of all statements whose precon-
ditions requireo.owner = tid for someo, so that these
preconditions instead requiretid.owns[o].

• We assume any write to theowner field of an object to be an
indivisible action.

With these modifications, we can now prove the following lemma
and theorem:

LEMMA 0. The methodology guarantees that (1) holds in all
reachable states.

THEOREM 1 (RACE FREEDOM). Consider any objecto in an
execution of a program. Ift is a thread that transitively ownso,
thent is the only thread that can read or write a field ofo or change
the transitive ownership ofo. Furthermore, if the transitive owner
of o is null , then the only field ofo that a thread reads or writes
is o.owner , and the thread reads and writeso.owner only at a
moment wheno.owner = null .

We prove Lemma 0 and Theorem 1 together:

PROOF. Consider an arbitrary execution of the program. We
prove by induction that the required properties hold in every prefix
of the execution.

We look at our formalization of each program construct, as given
in the previous section. Except for theunpack and acquire
statement, these rules guarantee that each read or write of a field
o.f1. · · · .fn .g is protected by an expression equivalent to the ex-
pansion ofLegal [[o.f1. · · · .fn .g]] (we assume the evaluation of∧ to
be conditional-and). By the induction hypothesis, these conditions
are stable (with respect to the execution of other threads).

This property is also guaranteed for theunpack statement, ex-
cept for its update ofo.f .owner . Here’s where we need the lemma.
By the inductive hypothesis of the lemma, we have the disjunction
o.f = null ∨ o.f .owner = o immediately after checkingo.inv .
By the inductive hypothesis of the theorem, this disjunction is sta-
ble. Therefore,o.f .owner = o holds inside theforeach loop
(unless a previous iteration of theforeach loop has already as-
signedtid to o.f .owner , which is also okay; this situation arises
if o has tworep fields referencing the same part).

For theacquire statement, the reading and writing ofo.owner
happens at a time wheno.owner = null , as required by the theo-
rem.

For the lemma, (1) holds in the empty prefix of the execution,
since no objects are allocated then, which means the quantifica-
tions are vacuously true. We now turn to nonempty prefixes of the
execution.

Condition (1) can be violated if the quantifier’s range is enlarged
to a newly allocated object. But new objects are initially mutable,
so (1) is maintained.

Condition (1) can be violated if aninv field is set totrue, which
happens only in thepack statement. There, the update ofo.inv
is preceded by assignments too.f .owner for representation fields
o.f . By the theorem, the effect of these assignments is stable, and
thuspack maintains (1).

Condition (1) can also be violated if a representation fieldo.f
is changed to a non-null value wheno.inv holds. But only the
field update statement writes to fields, and its update is protected
by¬o.inv , which by the theorem is stable.

Finally, condition (1) can be violated ifp.owner is changed to a
valueq , when there is an objectr and representation fieldg such
that

r 6= q ∧ r .inv ∧ r .g = p

for then, after the assignment, we would have

r .inv ∧ r .g 6= null ∧ r .g .owner = q

The assignment too.f .owner in the pack statement is okay,
because we argue that there are nor andg such thatr .g = o.f ∧
r .inv : For a contradiction, suppose there are such anr and g .
Then, by the induction hypothesis of (1),r .g = null∨r .g .owner =
r . It can’t ber .g = null , becauseo.f 6= null . And it can’t be
r .g .owner = r , because thepack statement checkso.f .owner
to be a thread, not the objectr .

Theunpack statement changeso.f .owner , so we again argue
that there are nor andg such thatr .g = o.f ∧ r .inv . At the time
theunpack statement checkso.inv , the induction hypothesis of
(1) tells us thato.f = null ∨o.f .owner = o for all representation
fields f . The update ofo.f .owner happens only ifo.f 6= null ,
so if o.f .owner is updated, theno.f .owner starts off aso. So
the onlyr in danger iso itself. But at the time of the update of
o.f .owner , o.inv is false.

Theacquire statement changeso.owner , but does so from a
state whereo.owner is null .

The release statement changeso.owner , but does so from a
state whereo.owner is a thread, not an object.

Because of Theorem 1, we no longer have to argue about race
conditions. That is, in the proof of the Soundness Theorem below,
we can assume values to be stable.

THEOREM 2 (SOUNDNESS). The methodology guarantees that
Program Invariant 2 holds in all reachable states.

PROOF. Lemma 0 already proves (1), so it remains to prove (0)
and (2).

Consider an arbitrary execution of the program. We prove by
induction that Program Invariant 2 holds in every prefix of the exe-
cution.

Program Invariant 2 holds in the empty prefix of the execution,
since no objects are allocated then, which means the quantifications
are vacuously true.

Consider any prefix of the execution leading to a state in which
Program Invariant 2 holds. Lett be the thread that is about to
execute the next atomic action. We prove by case analysis that this
action maintains Program Invariant 2. In all cases, we make use of
the fact that theowner field is not mentioned in invariants.

• Casecreation of a new objecto. This operation affects only
quantifications over objects, since the operation enlarges the
range of such quantifications. Sinceo.owner = t and¬o.inv ,
and since for allp, InvT (p) does not mention quantifications
over objects, all conditions are trivially satisfied.

• CasepackT o. (0) and (2) follow directly from the seman-
tics.

• CaseunpackT o. (0) and (2) follow directly from the se-
mantics.

• Caseacquire o. (0) is vacuously maintained. (2) follows
directly from the semantics.

• Caserelease o. (0) is vacuously maintained. (2) follows
directly from the semantics.

• Caseo.f := v . (2) is vacuously maintained. We prove the
maintenance of (0) for an arbitrary objectp of a typeT . Sup-
pose for a contradiction thatp.inv holds and thatInvT (p)
depends ono.f . Theno must be reachable fromp via non-
null rep fields. Through repeated application of (1) and (2),
we obtain thato.inv holds. This contradicts the action’s pre-
condition, which incorporates¬o.inv .

6

This concludes the proof.

Having proved the Soundness Theorem, we can simplify the de-
finition of Legal . In particular, we only need to check that the
current thread owns the root object of an access expression and that
all fields in the intermediate dereferences in the access expression
arerep fields:

Legal [[o.f1. · · · .fn .g]] ≡
o.owner = tid
andf1, . . . , fn are allrep fields

Program invariant (1) takes care of the rest.
The soundness proof assumes an interleaving semantics. This

implies that memory accesses are sequentially consistent. Sequen-
tial consistency means that there is a total order on all memory
accesses, such that each read action yields the value written by the
last write action.

Unfortunately, most execution platforms do not actually guar-
antee sequential consistency. However, many do guarantee the
following property, see for instance Manson and Pugh’s proposed
memory model for Java [14]:

If in all sequentially consistent executions of a pro-
gram P , all conflicting accesses are ordered by the
happens-before relation, then all executions ofP are
sequentially consistent.

Since Theorem 1 proves the absence of data races, our Soundness
Theorem is relevant even in these systems, provided a happens-
before edge exists between writing theowner field in therelease
statement and reading theowner field in theacquire statement.

5. STATIC VERIFICATION
Our Soundness Theorem proves three properties that hold in every

reachable state. These properties can therefore be assumed by a sta-
tic program verifier at any point in the program.

By Theorem 1, we know that the values read by a thread are
stable with respect to other threads. That is, as long as an object
remains in the thread’s ownership domain, the fields of the object
are controlled exactly in the same way that fields of objects are
controlled in a sequential program. Therefore, static verification
proceeds as for a sequential program.

For objects outside the thread’s ownership domain, all bets are
off (as we alluded to in the discussion of theTransaction method
in Figure 4). But since a thread cannot read fields of such objects
(Theorem 1), static verification is unaffected by the values of those
fields.

When an objecto enters a thread’s ownership domain, we know
that the invariants of all objects ino’s ownership domain hold. In
particular, due to our non-reentrantacquire statement and pro-
gram invariant (2) of the Soundness Theorem, we haveo.inv . To
model the intervention of other threads between exclusive regions,
a static verifier plays havoc on the fields of all objects ino’s own-
ership domain after eachacquire o operation. The static verifier
can then assumeo.inv . By repeated applications of program in-
variants (1) and (2), the verifier infersp.inv for all other objectsp
in the ownership domain ofo. Thus, by program invariant (0), the
verifier infers that the invariants of all of these objects hold.

To check our methodology at run time, we only need to check
the assertions prescribed in Section 3. However, to reason modu-
larly about a program, as in static modular verification, one needs
method contracts. We have already seen examples of pre- and
postconditions, but method contracts also need to includemodifies
clauses, which frame the possible effects a method can have within
the thread’s ownership domain, see [1].

public class AcqRel {
private boolean free ;
public final synchronized void acquire()
{while (!free) { wait() ; } free = false ; }

public final synchronized void release()
{ free = true ; notify() ; }

}

Figure 5: Example implementation ofacquire and release in
Java.

6. SAFE CONCURRENCY IN JAVA AND C#
Our methodology usesacquire andrelease as synchroniza-

tion primitives. But how, if at all, does this apply to thesynchronized
of Java (or, equivalently, C#’slock statement)? One might think
that it would suffice to map Java’ssynchronized statement to
acquire andrelease statements as follows:

J synchronized (o) { S } K =
acquire o ;
try { S } finally { release o ; }

Unfortunately, this approach is incorrect. Specifically, entering a
synchronized statement is not semantically equivalent to the
acquire statement because Java considers an object to be initially
not owned, whereas our methodology considers an object to be ini-
tially owned by the thread that creates it. This manifests itself in the
following specific behavior: in Java, the first thread that attempts
to enter a synchronized statement always succeeds immediately;
in our methodology, arelease operation must occur on an object
before any thread can successfully acquire it, even the first time.

Additionally, in this approach there is no syntax for an object’s
initial release operation; as a result, an object could never become
free. One might suggest having an implicit release operation when
an object is created, and requiring even the creating thread to syn-
chronize on the object, even in the object’s constructor. But this is
problematic, since it would not give the creating thread a chance to
establish the object’s invariant before it is released.

But there are at least two ways to achieve a correct mapping be-
tween our methodology and Java and C#. The first consists of im-
plementingacquire andrelease methods on top of the language’s
built-in primitives. An example implementation in Java is shown
in Figure 5. With this implementation, acquiring an objecto would
correspond to calling theacquire method of theAcqRel object as-
sociated with objecto. The latter association could be achieved
usinge.g.a hash table, or, depending on platform constraints, more
efficient methods, such as merging theAcqRel class into class
Object .

The second way to apply our methodology to Java and C#, is
by modifying the methodology. Specifically, a modified method-
ology exists such that executing anacquire or release state-
ment on an object corresponds exactly with entering or exiting a
synchronized statement that synchronizes on the object. The
modification involves the introduction of an additional boolean field,
calledshared , in each object. The field is initiallyfalse, it can be
mentioned only in method contracts, and it can be updated only
through a specialshare statement.

In the modified methodology, the semantics of the statements

7

share, acquire, andrelease are as follows:

acquire o ≡
assert o 6= null ∧ o.shared ∧ o.owner 6= tid ;
await (o.owner = null) { o.owner← tid ; }

release o ≡
assert o 6= null ∧ o.owner = tid ∧ o.shared ∧ o.inv ;
o.owner← null

share o ≡
assert o 6= null ∧ o.owner = tid ∧ ¬o.shared ∧ o.inv ;
o.owner← null ;
o.shared← true

In the modified methodology, exclusive access to an object by
its creating thread during initialization is ensured not through run-
time synchronization, but through constraints on the the newly in-
troducedshared field imposed by the methodology.

7. RUN-TIME CHECKING
Our methodology supports both static verification and run-time

checking. The advantage of static verification is that it decides
the correctness of the program for all possible executions, whereas
run-time checking decides whether the running execution complies
with the methodology. The disadvantage of static verification is
that it requires method contracts, including preconditions, postcon-
ditions, and modifies clauses, whereas run-time checking does not.

If a program has been found to be correct through static verifi-
cation, no run-time checks would ever fail and they can be omit-
ted. When running a program without run-time checks, the only
run-time cost imposed by our methodology is the implementation
of the acquire andrelease statements (as in Figure 5, for ex-
ample); none of the fields or other data structures introduced by
our methodology need to be present, and none of theassert state-
ments need to be executed. In particular, thepack andunpack
statements become no-ops.

For run-time checking, two fields, theinv field and theowner
field, need to be inserted into each object. To prove race freedom,
we eliminated the races on theowner fields by introducing an
owns table for each thread; however, on most platforms, includ-
ing Java and C#, these races are in fact benign and theowns tables
can be omitted.

8. RELATED WORK
The Extended Static Checkers for Modula-3 [6] and for Java [8]

attempt to statically find errors in object-oriented programs. These
tools include support for the prevention of data races and dead-
locks. For each field, a programmer can designate which lock pro-
tects it. However, these two tools trade soundness for ease of use;
for example, they do not take into consideration the effects of other
threads between regions of exclusion. Moreover, various engineer-
ing trade-offs in the tools notwithstanding, the methodology used
by the tools was never formalized enough to allow a soundness
proof.

Method specifications in our methodology pertain only to the
pre-state and post-state of method calls. Some systems [18, 9] ad-
ditionally support specification and verification of the atomic trans-
actions performed during a method call, even though this informa-
tion does not translate into knowledge about the post-state (because
of intervening transactions by other threads).

A number of type systems have been proposed that prevent data
races in object-oriented programs. For example, Boyapatiet al. [4]

parameterize classes by the protection mechanism that will protect
their objects against data races. The type system supports thread-
local objects, objects protected by a lock (i.e., another object), read-
only objects, and unique pointers. However, the ownership rela-
tionship that relates objects to their protection mechanism is fixed.
Also, their type system does not support object invariants.

Quite similar to ours is the methodology used by Vault (cf. [5]),
which can be applied in a concurrent setting. In Vault, linear types
guarantee that objects are owned by a single thread only. Thepack
andunpack operations are implicit in Vault. Theacquire oper-
ation is not supported, because the object to be acquired may have
been deleted; however, it would be possible to add therelease
acquire operation pair to a version of Vault for a garbage-collected
language. Vault’s methodology is enforced by a static type system,
which has advantages but limits its supported invariants. For ex-
ample, Vault supports neither general predicates on the fields of
an object nor relations on the fields of more than one object in an
aggregate.

Atomizer [7] dynamically checks the atomicity of unannotated
methods. It ensures that all statements in the method can be rea-
soned about sequentially. However, Atomizer does not easily sup-
port atomicity at different abstraction levels, which our methodol-
ogy does.

Ábrah́am-Mummet al. [0] propose an assertional proof system
for Java’s reentrant monitors. It supports object invariants, but these
can depend only on the fields ofthis. No claim of modular verifi-
cation is made.

The rules in our methodology that an object must be consistent
when it is released, and that it can be assumed to be consistent
when it is acquired, are taken from Hoare’s work on monitors and
monitor invariants [10].

There are also tools that try dynamically to detect violations of
safe concurrency. A noteable example is Eraser [19]. It finds data
races by looking for locking-discipline violations. The tool has
been effective in practice, but does not come with guarantees about
the completeness nor the soundness of the method.

The basic object-invariant methodology that we have built on [1]
has also been extended in other ways for sequential programs [13,
3, 12].

9. CONCLUSIONS
Our new sound, modular, and simple locking methodology helps

in defining leak-proof ownership domains. Several aspects of this
new approach are noteworthy. First, sequentially verifiable pro-
grams are race free. Due to the necessary preconditions for reading
and writing, only one thread at a time can access the objects of
an ownership domain. Second, the owner of an object can change
over time. In particular, an object may move between ownership
domains. Third, our methodology can be efficient; it acquires only
one lock per ownership domain, where the domain consists of many
objects. Further, at run time, we only need to keep track of a bit per
object that says whether or not there exists a thread that transitively
owns the object.

We are in the process of adding support for this methodology to
Spec#, an extension of C# with contracts [2]. Spec# performs both
run-time checking and static verification (via the program verifier
Boogie).

But there is obviously much more left to be done. One important
area of work is the assessment and optimization of the efficiency
of both static verification and run-time checking on realistic exam-
ples. Also, we are currently extending the approach to deal with
other design patterns, like traversals, wait and notification, condi-
tion variables, multiple reader writers,etc. In fact, our ambition is

8

to cover many of the design patterns described by Doug Lea [11].
Another area of future work is the treatment of liveness properties,
such as deadlock freedom.

Since our methodology is an extension of an object-invariant
methodology for sequential programs, it would be interesting to au-
tomatically infer for given sequential programs the additional con-
tracts necessary for concurrency.

Acknowledgments. We thank Manuel F̈ahndrich, Tony Hoare,
the members of the Boogie team, and the referees for insightful
remarks and suggestions.

10. REFERENCES
[0] Erika Ábrah́am-Mumm, Frank S. de Boer, Willem-Paul

de Roever, and Martin Steffen. Verification for Java’s
reentrant multithreading concept. InFoundations of Software
Science and Computation Structures, 5th International
Conference, FoSSaCS 2002, volume 2303 ofLecture Notes
in Computer Science, pages 5–20. Springer, April 2002.

[1] Mike Barnett, Robert DeLine, Manuel Fähndrich,
K. Rustan M. Leino, and Wolfram Schulte. Verification of
object-oriented programs with invariants.Journal of Object
Technology, 3(6):27–56, 2004.

[2] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte.
The Spec# programming system: An overview. In
Construction and Analysis of Safe, Secure and Interoperable
Start devices (CASSIS), Lecture Notes in Computer Science.
Springer, 2004. To appear.

[3] Mike Barnett and David Naumann. Friends need a bit more:
Maintaining invariants over shared state. In Dexter Kozen,
editor,Mathematics of Program Construction, Lecture Notes
in Computer Science, pages 54–84. Springer, July 2004.

[4] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard.
Ownership types for safe programming: Preventing data
races and deadlocks. InProceedings of the 2002 ACM
SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications, OOPSLA 2002,
volume 37, number 11 inSIGPLAN Notices, pages 211–230.
ACM, November 2002.

[5] Robert DeLine and Manuel F̈ahndrich. Enforcing high-level
protocols in low-level software. InProceedings of the 2001
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), volume 36, number 5 in
SIGPLAN Notices, pages 59–69. ACM, May 2001.

[6] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and
James B. Saxe. Extended static checking. Research Report
159, Compaq Systems Research Center, December 1998.

[7] Cormac Flanagan and Stephen N. Freund. Atomizer: A
dynamic atomicity checker for multithreaded programs. In
Proceedings of the 2004ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 2004),
volume 39, number 1 inSIGPLAN Notices, pages 256–267.
ACM, January 2004.

[8] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge,
Greg Nelson, James B. Saxe, and Raymie Stata. Extended
static checking for Java. InProceedings of the 2002 ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), volume 37, number 5 in
SIGPLAN Notices, pages 234–245. ACM, May 2002.

[9] Stephen N. Freund and Shaz Qadeer. Checking concise
specifications for multithreaded software.Journal of Object
Technology, 3(6):81–101, June 2004.

[10] C. A. R. Hoare. Monitors: An operating system structuring

concept.Communications of the ACM, 17(10):549–557,
October 1974.

[11] Doug Lea.Concurrent Programming in Java. Addison
Wesley, 2000.

[12] K. Rustan M. Leino and Peter M̈uller. Modular verification
of global module invariants in object-oriented programs.
Technical Report 459, ETH Z̈urich, 2004.

[13] K. Rustan M. Leino and Peter M̈uller. Object invariants in
dynamic contexts. In Martin Odersky, editor,European
Conference on Object-Oriented Programming (ECOOP),
volume 3086 ofLecture Notes in Computer Science, pages
491–516. Springer-Verlag, 2004.

[14] Jeremy Manson and William Pugh. Requirements for a
programming language memory model. Workshop on
Concurrency and Synchronization in Java Programs, in
association with PODC, July 2004.

[15] Peter M̈uller. Modular Specification and Verification of
Object-Oriented Programs, volume 2262 ofLecture Notes in
Computer Science. Springer-Verlag, 2002. PhD thesis,
FernUniversiẗat Hagen.

[16] James Noble, Jan Vitek, and John Potter. Flexible alias
protection. In Eric Jul, editor,ECOOP’98—Object-oriented
Programming: 12th European Conference, volume 1445 of
Lecture Notes in Computer Science, pages 158–185.
Springer, July 1998.

[17] S. S. Owicki and D. Gries. An axiomatic proof technique for
parallel programs.Acta Informatica, 6:319–340, 1976.

[18] Shaz Qadeer, Sriram K. Rajamani, and Jakob Rehof.
Summarizing procedures in concurrent programs. In
Proceedings of the 2004 ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL 2004), volume 39, number 1 inSIGPLAN Notices,
pages 245–255. ACM, January 2004.

[19] Stefan Savage, Michael Burrows, Greg Nelson, Patrick
Sobalvarro, and Thomas E. Anderson. Eraser: A dynamic
data race detector for multi-threaded programs.ACM
Transactions on Computer Systems, 15(4):391–411,
November 1997. Also appears inProceedings of the
Sixteenth ACM Symposium on Operating System Principles,
pages 27–37, Operating System Review 31(5), 1997.

9

Encapsulating Concurrency as an Approach to Unification

Santosh Kumar∗, Bruce W. Weide∗, Paolo A.G. Sivilotti∗, Nigamanth Sridhar†,
Jason O. Hallstrom‡, Scott M. Pike#

∗ The Ohio State University, Computer Science & Engineering, {kumars,weide,paolo}@cse.ohio-state.edu
† Cleveland State University, Electrical & Computer Engineering, n.sridhar1@csuohio.edu

‡ Clemson University, Computer Science, jasonoh@cs.clemson.edu
Texas A&M University, Computer Science, pike@cs.tamu.edu

ABSTRACT
We extend traditional techniques for sequential specification
and verification to systems involving intrinsically concur-
rent activities. Our approach uses careful design of compo-
nent specifications to encapsulate inherent concurrency, and
hence isolate clients from associated verification concerns.
The approach has three parts: (i) relational specifications to
capture the interleaved effects of concurrent threads of ex-
ecution, (ii) intermediate components to support a client’s
view of being the only active thread of computation, and
(iii) a new specification clause to express requirements on a
client’s future behavior. We illustrate these ideas, and dis-
cuss their merits, in the context of a case study specified
using RESOLVE.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tion—Methodologies; D.2.4 [Software Engineering]: Soft-
ware/Program Verification—Design By Contract

General Terms
Verification

Keywords
Unification problem, sequential verification techniques, con-
current systems, relational specification, mutual exclusion,
expects clause.

1. INTRODUCTION
Design-by-contract [10] has long been recognized as a foun-

dation for component-based specification and verification.
For sequential systems, contract specification mediates in-
teractions between a component and its client. By contrast,
for concurrent systems the contract specification is between

Specification and Verification of Component-Based Systems
(SAVCBS’04) Workshop at the12th ACM SIGSOFT Symposium on
Foundations of Software Engineering. Newport Beach CA, USA. Oct
31 – Nov 1, 2004.

a component and its environment. The difference is signifi-
cant since in a sequential system, the client and component
operate in the same thread of execution, whereas in a con-
current system, the environment may include other threads
of execution. Taking a sequential system view leads to tra-
ditional input-output specifications and Hoare-style verifica-
tion techniques. On the other hand, taking a concurrent sys-
tem view leads to explicit progress requirements and guar-
antees, where circularities in reasoning must be carefully
avoided. As a result, research in these nominally related
areas has focused on separate and largely orthogonal issues.
There has been remarkably little cross-fertilization.

Specification and verification techniques for sequential sys-
tems (particularly component-based systems) generally in-
volve showing that, given acceptable input values, a com-
putation produces specified output values. The operational
model is normally a standard von Neumann machine. Some
issues that arise include (1) the contract style (e.g., alge-
braic or model-based), (2) the impact of aliased references
on sound reasoning, and (3) the difficulties introduced by
modern programming language constructs (e.g., inheritance,
user-defined types, etc).

Specification and verification techniques for concurrent
systems generally involve showing that cooperating processes
adhere to specified temporal properties. Models of compu-
tation may vary, with message passing or shared memory,
various degrees of synchrony, etc. Programming language
features and variable types tend to be simpler in order to ab-
stract away from complex details concerning “what is being
computed” in the more traditional sense. Still, there are new
communication constructs that are not present in the se-
quential case. Some issues that arise include (1) the expres-
siveness of various temporal logics, (2) the non-determinism
introduced by interleaved access to shared resources, (3)
progress and fairness properties for scheduling individual
processes, and (4) non-interference requirements to guar-
antee sound proof systems, etc.

1.1 The Unification Problem
The unification problem in the title refers to the following

impediment to fully successful specification and verification
of component-based software: There is a need for a unified
theory that reconciles work in the now largely disjoint re-
search areas of specification and verification of sequential
systems, and of concurrent systems. This problem is impor-
tant because modern software systems involve both aspects.
A typical modern program is charged not only with com-

10

puting specified data values, but with doing so reliably in
the context of concurrent threads of activity that may be
accessing resources that it shares with them.

This paper partially develops an approach to addressing
the unification problem. Based on an early case study, we
believe it will permit extending the realm of traditional se-
quential specification and verification techniques to systems
that involve intrinsically concurrent activities. The idea is
to use certain component design and contract specification
techniques to create what appear to be ordinary sequential
components for the purposes of client interaction, and to
“bury” or encapsulate concurrency inside the implementa-
tions of those components. This shields otherwise sequential
clients of shared resources from the complications normally
associated with concurrency. Among other things, for exam-
ple, specification and verification of client correctness need
not be extended from the sequential situation by introduc-
ing temporal logic whenever the client also has to deal with
concurrent activities.

To give the flavor of the approach—and to emphasize that
we are claiming novelty from the standpoint of specification
and verification issues and not from the standpoint of, say, a
new software design pattern—consider a nominally sequen-
tial program that needs to use a printer. The printer is
a shared physical device that other programs like it might
also be using. Without some method to encapsulate a pro-
tocol for ensuring mutually exclusive access to the printer,
each program that shares it must understand how to nego-
tiate access with the printer’s other clients. This necessarily
involves modeling the other clients, specifying liveness and
safety properties associated with mutual exclusion, detailing
some particular protocol for mutual exclusion, etc. But if
there is a carefully-designed printer-monitor component that
allows each client to create its own logical printer object and
simply print to it as though it were alone in the world, all
the complications associated with sharing—indeed, all the
problems associated with specifying and reasoning about the
concurrency involved in accessing the physical printer—are
moved down one level in the system. The clients of the
printer-monitor component see an ordinary sequential com-
ponent. The problem of concurrency is not moved over the
horizon, just down one level. But the impact is that there
are more clients for which sequential contract specifications
and verification techniques can be used.

This is, of course, just one possible approach to the unifi-
cation problem. It is premature to discuss whether it might
be the best one or whether it could ultimately lead to a
complete solution to the problem. Instead, the goal of this
paper is to report on progress and to describe some open
issues in the hope that others will step forward to address
the unification problem, too.

Paper Organization.The rest of the paper is organized
as follows. Section 2 outlines the main technical features of
our approach. Section 3 presents the case study. Section 4
sketches some related work. Section 5 concludes the paper
and Section 6 points to open issues.

2. TECHNICAL FEATURES
There are three main technical features to the approach

we present. Individually, each is not new; the primary con-
tribution is combining them in a special new way. Each
feature is highlighted during the case study in Section 3.

2.1 Using Relational Specifications
The first idea is to use relational specifications to model

potential interference from concurrent threads of execution.
In this way, each client of a component can maintain an
especially simple view of the system: it is as though there
are no other threads of execution. The hoped-for result is
that specification and reasoning can be done using ordinary
techniques for sequential systems — so long as they admit
relational behavior (i.e., are not restricted to purely func-
tional input-output specifications).

There is an interesting connection between relational spec-
ifications and the philosophical theory of epistemic solip-
sism. Roughly stated, this doctrine draws a methodological
distinction between ontology (that which exists) and episte-
mology (that which we can know exists). Epistemic solip-
sism witnesses a gap between these concepts, such that it is
possible for certain entities to exist, despite our inability to
know them. We make no judgment here about the coher-
ence of solipsism as a philosophical doctrine, but only about
the similarity in principle between solipsism and the use of
relational specifications to mask concurrency.

By encapsulating concurrency inside an observably se-
quential component, we seek to create a cover story that
makes it appear to the client programmer as though all state
changes in all objects are the result of method calls made
by the client. In particular, no object’s value ever changes
spontaneously; indeed, nothing changes unless the client ini-
tiates such a change. Concurrency may exist in the imple-
mentations of such components, but it cannot be known to
the client insofar as it is unobservable through any compo-
nent interface. Consequently, there is never a need for the
client programmer to postulate the existence of concurrent
threads of activity to explain or verify the correctness of
the observed behavior with respect to the given sequential
specifications.

2.2 Separating Proxy and Core Components
Direct application of the above idea in principle might

lead to a sequential-component contract specification for the
client. But it is not necessarily a pretty one. One can make
visible, in the client’s nominally sequential view of behavior,
all the state needed to capture the underlying concurrency
in the implementation of the component. The specification
merely says that this state changes in bizarre though tech-
nically explainable ways. But probably most of this state is
not needed to explain the same behavior, i.e., the specifica-
tion is not fully abstract. So, the second idea is to simplify
the contract specification for the client by introducing an in-
termediate component that acts as a proxy in client dealings
with the underlying component that encapsulates concur-
rency (which we call the core component).

Figure 1 illustrates how this works in the case study.
Round-cornered boxes stand for contract specifications, rect-
angles for implementations, and arrows for the relationships
on their labels. For example, the top box represents the
client specification, which involves only sequential constructs.
The rectangle below it stands for the implementation of this
specification—what we have been calling the client program.
This program claims to implement the specification above it,
which is something that needs to be verified. It uses some
implementation of the Mutex Proxy specification, which in
turn hides the concurrency inherent in the Mutex Core spec-
ification below it. The client program could, in principle,

11

directly use something like the specification Mutex Core (al-
though the specification details would be quite different than
those developed in the case study). However, that specifica-
tion would be unnecessarily complex compared to the much
simpler Mutex Proxy specification.

2.3 Additional Client Obligations
In reasoning about the correctness of implementations of

the core and proxy components, one is faced with the usual
verification situation for traditional sequential components:
clients of a contract specification are responsible for estab-
lishing preconditions on calls, implementations are respon-
sible for establishing postconditions. However, because of
the need to reason about properties that otherwise would
involve temporal logic specifications, we must introduce an
additional reciprocal obligation on every client of the proxy.
This is needed to show that other clients will make progress.
The objective of proving total correctness of the client can-
not be achieved if other clients—whose very existence is not
knowable to any one of them—can thwart termination of
any of the calls to proxy methods.

The third idea, then, is to introduce an additional specifi-
cation construct in the sequential specification language. We
call this new construct the expects clause. While a method’s
requires clause defines an obligation the client must meet be-
fore calling the method, its expects clause describes an obli-
gation the client must meet at some point after calling the
method. This obligation is given as a set of method calls
that must be made in the future.

For example, consider the following path expression spec-
ification for a read-only file:

(Open; Read*; Close)

This expression stipulates that once a file has been opened,
the Read() operation can be invoked several times (or never
at all), and finally the file must be closed. That is, as a con-
sequence of invoking Open(), the client is required to invoke
Close() in the future. This obligation could be reflected in
the contract as follows:

operation Open()
requires true
ensures self .Is_Open
expects self .Close()

A brief operational sketch of the semantics of the expects
clause is as follows. In addition to the program context and
variable values in each state of a program, we maintain a
“promises set” PS of all the method calls that the program
has promised to other components via expects clauses, and
has not yet discharged. Whenever an operation is invoked, it
is removed from PS, if it is there. If the call is to an operation
that has its own expects clause, the calls in that clause are
added to PS. For other statements, PS is not modified. At
termination, if the program has honored all the promises it
made, then PS is empty. Therefore, the client, in addition
to dispatching proof obligations for all pre-conditions, also
has to dispatch an additional proof obligation that PS is an
empty set at the point of termination. (Please see Section 6
for issues raised by this over-simplified view.)

3. CASE STUDY: MUTUAL EXCLUSION
In this section, we present our specification of a mutual

exclusion component we call Mutex, using the RESOLVE

Figure 1: Component coupling diagram (CCD) for a system
using the Mutex component

specification language [7]. This single-object component
is divided into two parts — the first, called Mutex Proxy,
presents a sequential view to the client, and the second,
called Mutex Core, encapsulates a conflict resolution pro-
tocol for mutual exclusion. All aspects of concurrency in
the conflict resolution protocol are encapsulated inside Mu-
tex Core, and do not bleed through to the client. In effect,
there are several instances of Mutex Proxy in a distributed
system (one for each client), all of which interact with a
single instance of Mutex Core. The design of this system
structure is shown in Figure 1.

3.1 Mutex Proxy
Listing 1 shows the specification of our Mutex Proxy ab-

stract component. The mathematical model of the Mu-
tex Proxy type is defined by MUTEX PROXY MODEL (Lines
8—14). This is a 3-tuple of two booleans, requested and avail-
able, and a NATURAL NUMBER, wait index. If the client
that uses this proxy has requested access to the critical sec-
tion, requested becomes true, and when it is safe for the
client to access the critical section, available becomes true.
The purpose of wait index is to allow a client to prove its
progress, i.e., if it requests access to the resource, it will
eventually have it available. For a given proxy, available can
only become true if requested is also true (the client has
requested access to the critical section). Upon initialization,
every instance of Mutex Proxy has both requested and avail-
able equal to false and wait index equal to 0 (Lines 16—18).

The Mutex Proxy component exports the following opera-
tions:

Request() (Lines 20—26): A client invokes the Request()
method when it wants access to the critical section.
The various preconditions make sure that this method
can only be invoked once per “cycle” — once a client
requests access, it cannot make another request until it
has either used the critical section and then released it,
or simply canceled its request by calling Release(). The
post-condition of the Request() operation says that re-
quested becomes true and wait index assumes some
natural number value (which, it turns out, the client
has no way to observe, except to know whether it is

12

zero). In addition, as a consequence of this invocation,
the client is committed to invoking Release() in every
possible future computation.

Is Requested() (Lines 28—30): This operation can be in-
voked to check whether the client has requested access
to the resource. (It is provided for functional com-
pleteness but plays no other substantive role.)

Check If Available() (Lines 32—40): After a client has re-
quested access to the resource, a call to this procedure
returns with b equal to true when the client can safely
access the resource. Also, with every invocation of this
method, the value of wait index decreases if it is posi-
tive. Finally, if and only if wait index is already 0, then
it stays the same and available becomes true (as does
b). Notice that Check If Available(), by virtue of its
relational specification, has the property that (some-
times) it makes the client believe that available changes
as a result of the Check If Available() call. That is,
there is no reason for the client to explain the change
in the value of available by postulating the existence
of some other process having concurrent access; the
client’s call to Check If Available() is what has caused
available to change.

Release() (Lines 42—46): The Release() operation is in-
voked to signal the end of the critical section or to
cancel an outstanding request. This operation results
in requested and available both becoming false.

3.2 Mutex Core
Listing 2 shows the mathematical model of Mutex Core.

PROXY SET (Lines 3—4): This denotes a mathematical
set of proxy identities, each of which is a natural num-
ber.

WAITING PROXY (Lines 6—8): This denotes a pair of nat-
ural numbers, id to represent the identity of the proxy,
and ticket to represent some metric that determines
when the proxy will get access to the resource.

WAITING PROXY SET (Lines 10—16): This denotes a set
of waiting proxies, i.e., those that have requested ac-
cess to the resource.

MUTEX CORE MODEL (Lines 18—35): The mathemati-
cal model of the Mutex Core type is a tuple that con-
sists of the set, all proxies, of all the proxies that have
“registered” with this Mutex Core instance; the set,
waiting proxies, of just those proxies in all proxies that
have requested access to the resource but have not yet
released it or canceled the request; and the integer, cur-
rent id, which is the (non-negative integer) identity of
the proxy that currently has access to the resource be-
cause it has a minimum ticket value among all waiting
proxies (or a negative number if there are no waiting
proxies). Notice that a proxy can request access to a
resource only after registering with the Mutex Core in-
stance that is responsible for that resource. Upon ini-
tialization, a Mutex Core instance has no proxies reg-
istered (and hence no waiting proxies) and current id
is -1 (no proxy is accessing the resource).

Listings 3 and 4 present the specifications of the opera-
tions that the Mutex Core component exports.

Listing 1: Specification of abstract Mutex Proxy component

1 abstract component Mutex_Proxy
2

3 math subtype NATURAL_NUMBERis integer
4 exemplar n
5 constraint
6 n >= 0
7

8 math subtype MUTEX_PROXY_MODELis
9 (requested: boolean ,

10 available: boolean ,
11 wait_index: NATURAL_NUMBER)
12 exemplar mpm
13 constraint
14 if mpm.available then mpm.requested
15

16 Mutex_Proxy is modeled by MUTEX_PROXY_MODEL
17 initialization ensures
18 self = (false , false , 0)
19

20 procedure Request ()
21 requires
22 not self .requested
23 ensures
24 there exists i: NATURAL_NUMBER such that
25 (self = (true , false , i))
26 expects self .Release()
27

28 function Is_Requested (): Boolean
29 ensures
30 Is_Requested = self .requested
31

32 procedure Check_If_Available (replaces b: Boolean)
33 requires
34 self .requested
35 ensures
36 self .requested and
37 (if #self .wait_index /= 0
38 then self .wait_index < # self .wait_index
39 else #self .wait_index = self .wait_index) and
40 b = self .available = (self .wait_index = 0)
41

42 procedure Release ()
43 requires
44 self .requested
45 ensures
46 self = (false , false , 0)

13

Listing 2: Specification of abstract Mutex Core component

1 abstract component Mutex_Core
2

3 math subtype PROXY_SETis
4 finite set of NATURAL_NUMBER
5

6 math subtype WAITING_PROXYis
7 (id: NATURAL_NUMBER,
8 ticket: NATURAL_NUMBER)
9

10 math subtype WAITING_PROXY_SETis
11 finite set of WAITING_PROXY
12 exemplar wps
13 constraint
14 for all p,q: WAITING_PROXY
15 where ({p,q} is subset of wps)
16 (if p.id = q.id then p = q)
17

18 math subtype MUTEX_CORE_MODELis
19 (all_proxies: PROXY_SET,
20 waiting_proxies: WAITING_PROXY_SET,
21 current_id: integer)
22 exemplar mcm
23 constraint
24 for all p: WAITING_PROXY
25 where (p is in mcm.waiting_proxies)
26 (p.id is in mcm.all_proxies) and
27 if mcm.waiting_proxies = {}
28 then mcm.current_id < 0
29 else
30 there exists p: WAITING_PROXY such that
31 (p is in mcm.waiting_proxies and
32 mcm.current_id = p.id and
33 (for all q: WAITING_PROXY
34 where (q is in mcm.waiting_proxies)
35 (q.ticket >= p.ticket)))
36

37 Mutex_Core is modeled by MUTEX_CORE_MODEL
38 initialization ensures
39 self = ({}, {}, -1)

Listing 3: Operations of abstract Mutex Core component

1 math definition IS_REQUESTED
2 (id: integer , wps: WAITING_PROXY_SET): boolean
3 explicit definition
4 there exists wp: WAITING_PROXY such that
5 ((wp is in wps) and (wp.id = id))
6

7 math definition MIN_TICKET
8 (wps: WAITING_PROXY_SET): NATURAL_NUMBER
9 explicit definition

10 min ({0} union {wp: WAITING_PROXY
11 where (wp is in wps) (wp.ticket)})
12

13 procedure Add_Proxy (replaces id: Integer)
14 ensures
15 self .waiting_proxies = # self .waiting_proxies and
16 self .current_id = # self .current_id and
17 id is not in #self .all_proxies and
18 self .all_proxies = # self .all_proxies union {id}

Listing 4: Operations of abstract Mutex Core component
(contd.)

1 procedure Remove_Proxy (evaluates id: Integer)
2 requires
3 id is in self .all_proxies and
4 not IS_REQUESTED(id, self .waiting_proxies)
5 ensures
6 self .waiting_proxies = # self .waiting_proxies and
7 self .current_id = # self .current_id and
8 self .all_proxies = # self .all_proxies - {id}
9

10 procedure Request (evaluates id: Integer)
11 requires
12 id is in self .all_proxies and
13 not IS_REQUESTED(id, self .waiting_proxies)
14 ensures
15 self .all_proxies = # self .all_proxies and
16 there exists ticket: NATURAL_NUMBER such that
17 ((if #self .waiting_proxies = {}
18 then (ticket = 0 and self .current_id = id)
19 else (ticket >
20 MIN_TICKET(self .waiting_proxies) and
21 self .current_id =
22 #self .current_id)) and
23 self .waiting_proxies =
24 #self .waiting_proxies union
25 {(id, ticket)})
26 expects self .Release(id)
27

28 function Is_Requested (id: Integer): Boolean
29 requires
30 id is in self .all_proxies
31 ensures
32 Is_Requested =
33 IS_REQUESTED(id, self .waiting_proxies)
34

35 procedure Check_If_Available
36 (evaluates id: Integer , replaces b: Boolean)
37 requires
38 id is in self .all_proxies and
39 IS_REQUESTED(id, self .waiting_proxies)
40 ensures
41 self .all_proxies = # self .all_proxies and
42 self .current_id = # self .current_id and
43 b = there exists wp: WAITING_PROXY such that
44 (wp is in #self .waiting_proxies and
45 id = wp.id = self .current_id)
46

47 procedure Release (preserves id : integer)
48 requires
49 id is in self .all_proxies and
50 IS_REQUESTED(id, self .waiting_proxies)
51 ensures
52 self .all_proxies = # self .all_proxies and
53 there exists wp: WAITING_PROXY such that
54 (wp is in #self .waiting_proxies and
55 wp.id = id and
56 self .waiting_proxies =
57 #self .waiting_proxies - {wp}) and
58 if self .waiting_proxies = {}
59 then self .current_id = -1
60 else
61 (self .current_id,
62 MIN_TICKET (self .waiting_proxies)) is in
63 self .waiting_proxies

14

Useful Mathematical Definitions
IS REQUESTED (Lines 1—5): Is the proxy with the given

id in the set of waiting proxies?

MIN TICKET (Lines 7—11): The minimum value of ticket
in the set of waiting proxies.

Operations
Add Proxy() (Lines 13—18): This operation adds a new

proxy to the set of proxies that want to use the re-
source. The operation ensures the uniqueness of id’s
in the set of all proxies. It returns the id of the newly
created proxy.

Remove Proxy() (Lines 1—8): Given an id, this operation
removes the proxy with this id. The proxy can no
longer request access to the resource once it is removed.

Request() (Lines 10—26): When this operation is invoked
by a valid proxy, the proxy is given a ticket, whose
value can not be directly observed by any proxy. The
proxy’s id and the associated ticket are added to the
set of waiting proxies. If, at the time of invocation, no
other proxy had requested access to the resource, the
proxy invoking Request() gets access to the resource,
i.e., the current id becomes this proxy’s id. This means
that the proxy will be able to access the resource im-
mediately after its first call to Check If Available(). If
there are pending requests from other proxies at the
time of invocation, the ticket assigned is some larger
value than MIN TICKET(waiting proxies).

Is Requested() (Lines 28—33): This operation returns true
if the given id belongs to a waiting proxy, and false
otherwise.

Check If Available() (Lines 35—45): After requesting ac-
cess to the resource, a proxy invokes this operation to
see if the resource is available to it. The procedure
returns with b equal to true if the given id is equal
to current id and the waiting proxy with this id has a
ticket value equal to MIN TICKET(waiting proxies).

Release() (Lines 47—63): Once a proxy is done using the
resource, it invokes Release(). This removes it from
the set of waiting proxies, and results in current id be-
coming either -1 (in case there are no other waiting
proxies), or the id of some still-waiting proxy whose
ticket is equal to MIN TICKET(waiting proxies). The
next time the proxy whose id equals current id invokes
Check If Available(), it will be granted access to the
resource.

3.3 Proofs of Implementations
As shown in Figure 1, there are four implements relations.

Each of these has a set of associated proof obligations to
show that the implementations meet the specifications. We
focus on the new aspects of these (the impl(1) and impl(2)
relations in Figure 1) in this paper and defer the other two,
which will be similar to each other, for future work.

3.3.1 Proof of Client Progress
We notice that the proof of the client implementation will

be similar to any sequential component, although it is using

a concurrent program. As mentioned in Section 2.1 and Sec-
tion 2.2, the verification for client implementation is reason-
ably simple because it is using the sequential specification
of the proxy as opposed to that of the core. For example, the
client will be able to prove loop termination in the following
code snippet:

1 proxy1.Request();
2 while(not b) {
3 proxy1.Check_If_Available(b); }
4 proxy1.Release();

When it calls Request() on proxy1, which is an instance of
Mutex Proxy 1, wait index assumes the value of some natural
number. With every call to Check If Available() this number
goes down. Eventually, it will hit zero and the client will be
able to access the critical section. We also notice that the
client is able to prove, based on the termination of the loop,
that it satisfies the expects obligation it acquired by calling
Request().

3.3.2 Proof of Proxy Implementation
The key part to prove in this proof obligation is that the

proxy can meet the ensures clause of Check If Available() by
using the specification of Mutex Core.

A sketch of the implementation of the Mutex Proxy is as
follows: In the constructor, it calls Add Proxy() and gets an
id. In Request(), it calls Request(id) on Mutex Core and sets
its requested to true. In the Check If Available(), it sets b
and available to true, if it gets a true answer from the Mu-
tex Core. In Release(), it calls the corresponding operation
of the Mutex Core and sets both requested and available to
false.

In the following lemmas and theorems, we assume that
mc is the common instance of a Mutex Core implementa-
tion that all proxies are using. Further, we use MP to de-
note the Mutex Proxy type. We also use min ticket to de-
note MIN TICKET(mc.waiting proxies). Lastly, we use the
terms “getting access to the resource” for a proxy synony-
mously with the event that the associated id becomes equal
to mc.current id.

Lemma 3.1. ∀ wp∈ mc.waiting proxies,
(wp.ticket-min ticket,k), where k is the number of proxies
with ticket equal to min ticket, decreases with every call to
mc.Release() by proxies who get access to the critical section,
until mc.current id = wp.id.

Proof. The value of wp.ticket is unchanged once it is
assigned by mc.Request(). If |mc.waiting proxies| = 0 at
the time wp calls mc.Request(), it follows from the post-
condition of Request() that mc.current id = wp.id. On the
other hand, if at the time of wp’s call to mc.Request(),
|mc.waiting proxies|> 0, then (from the constraint in lines 29-
35 in Listing 2), as long as |mc.waiting proxies-wp|> 0, there
is some proxy ap such that mc.current id = ap.id. From the
expects clause of mc.Request(), ap eventually calls mc.Release().
With this call to mc.Release(), either min ticket increases (if
there were no other waiting proxies with the same value of
ticket as ap.ticket) or k decreases. In either case, the tuple
(wp.ticket-min ticket,k) decreases1. The same situation now

1We use the standard ordering relation on tuples, where (a,
b) < (c, d) iff (a < c) or a = c and b < d.

15

recurs with some other proxy np taking the place of ap until
mc.current id = wp.id. This completes the proof.

Theorem 3.1. ∀ wp ∈ mc.waiting proxies eventually
mc.current id = p.id, unless wp cancels its request by calling
mc.Release() prematurely.

Proof. From Lemma 3.1, (wp.ticket - min ticket, k) de-
creases with every call to mc.Release() by proxies who get ac-
cess to the resource before wp. When the value of (wp.ticket
- min token, k) becomes (0, 0), wp is guaranteed to have
mc.current id = p.id, although it may get access to the re-
source earlier when min ticket = 0 and k > 0.

Theorem 3.1 ensures that every proxy can meet the en-
sures clause of its Check If Available() method. A more for-
mal proof of this claim can be done by using an abstraction
relation [12] to relate wait index to its associated ticket in
mc.

3.4 Proof of Safety and Starvation Freedom
The entire mutual exclusion program is making some guar-

antees to the system designer. These are the safety and
progress guarantees [2]. The safety specification says that
“at most one client gets access to the critical section at a
time.” The progress specification says that “every request-
ing client eventually gets access to the critical section.” The
system uses the Mutex Proxy and Mutex Core components to
meet these specifications.

The progress property follows immediately from Theo-
rem 3.1. We prove the safety property below. In the fol-
lowing, we assume that the id assigned by the Mutex Core
to a proxy is one of the fields of proxy. We use the definitions
and assumptions from Section 3.3.2.

Lemma 3.2. The following invariant holds in the system:
∀ p ∈ MP : p.available⇒ (p.id = mc.current id).

Proof. The invariant vacuously holds at initialization
since available is false for all proxies. Now, when p.available
changes from false to true (in a call to mc.Check If Available())
for some proxy p, it is only when p.id = mc.current id. There-
fore, the invariant is preserved by this transition. When the
assertion p.id = mc.current id changes from true to false (in
a call to mc.Release()), p.available is set to false, thus pre-
serving the invariant in this transition too. Therefore, the
invariant holds.

Theorem 3.2. ∀ p ∈ MP : p.available ⇒ (∀ op ∈ MP :
op 6= p ⇒ ¬ op.available).

Proof. The theorem holds vacuously if ∀ p ∈ MP : ¬
p.available. So, let us assume ∃ p ∈ MP: p.available. From
Lemma 3.2, p.id = mc.current id. Further, from the con-
straint on Line 16, ids are unique. Now, the assignment
p.id = mc.current id is done either in mc.Request() or in
mc.Release(). If the assignment was done in mc.Request(),
then there were no other waiting proxies and p is the unique
proxy with available set to true. If the assignment was done
in mc.Release(), then the proxy with available set to true
previously, had set its available to false at the time that
mc.current id was assigned to p.id. Therefore, in this case

also p is the unique proxy with its available set to true. From
the uniqueness of ids, no other proxy can get an affirma-
tive answer in a call to mc.Check If Available(), as long as p
does not call mc.Release(). Therefore, p remains the unique
proxy with its available set to true as long as it does not call
mc.Release(). When p calls mc.Release(), either there are no
more waiting proxies, in which case no proxy has its avail-
able set to true, or some waiting proxy q takes the place of
p. This completes the proof.

4. RELATED WORK
Concurrent systems often exhibit reactive behavior, so

specification techniques for such systems usually include ex-
plicit treatment of both safety and progress properties. Many
different compositional approaches have been investigated,
including rely-guarantee [13, 1, 8], hypothesis-conclusion [4],
and assumption-commitment [5]. All of these techniques
address the problem of circularities in proofs in some way,
for example by restricting the properties on which a com-
ponent relies to be safety properties only. In contrast, the
expects clause introduced here allows a component to explic-
itly require a progress property of its client. Circularities are
avoided by preventing a client from requiring any progress
properties from the components it uses, apart from termi-
nation of each called method.

A common way to model concurrency is with nondeter-
ministic interleaving, as in Unity [4] and TLA [9]. Our use
of relational specifications to capture the potential effects of
concurrently executing threads of execution is certainly not
new. The introduction of an intermediary component (the
proxy), however, facilitates a solipsistic view on the part of
a client, and in this way promotes a novel way to composi-
tionally reason about program behavior.

The Seuss methodology [11] is similar to our proposed
approach in that it draws on both concurrent and sequen-
tial techniques. Whereas we begin with a sequential frame-
work (RESOLVE) and add elements to address concurrency,
Seuss begins with a concurrent framework (similar to Unity)
and incorporates program structures such as processes and
methods with sequential invocation semantics.

5. CONCLUSION
We proposed an approach to unify the specification and

verification of sequential systems with those of concurrent
ones. We proposed a specification approach that charac-
terizes concurrent programs as a pair of components — a
Proxy and a Core component. The Proxy component uses re-
lational specifications to present a sequential veneer over the
Core component, allowing clients of a concurrent program to
be verified without concern for concurrency. We also intro-
duced a new expects clause in the contractual specification
of operations to formalize the well-behavedness requirements
from the clients. We illustrated our approach in the context
of the traditional mutual exclusion problem. In our case
study, we also demonstrated how the proof obligation as-
sociated with the expects clause can be carried out by the
clients.

6. OPEN ISSUES
As the work presented in this paper is preliminary, there

are a number of avenues for future investigation. We plan

16

to investigate the utility of the expects construct in specify-
ing other RESOLVE components. We also plan to investi-
gate other possible versions of the mathematical structure
involved in the operational semantics of the expects clause,
i.e. multi-set, string or some other model in place of a set.
Further, we plan to investigate what proof obligations a non-
terminating program should have with respect to the expects
clauses in the components it uses. We would like to point
out here that it is tempting to make the structure and se-
mantics of the expects clause very rich, but it is not yet clear
whether that will be useful. For example, in our case study
of the Mutex component, nested calls to methods with ex-
pects clause do not arise, although this may have been the
case had we designed our component in a different way.

Another area of investigation is the evaluation of the ap-
plicability limits of our approach. A successful application
of our approach to the case study of mutual exclusion pro-
gram in this paper is evidence that our approach can work
for conflict resolution programs, also called competitive sys-
tems, such as dining philosophers [6] and drinking philoso-
phers [3]. Currently, we are in the process of applying this
approach to some systems in the other domain of concur-
rent programming, cooperative systems. In particular, we
are working on designing components for barrier synchro-
nization and network protocol stack, both of which are rep-
resentative of cooperative concurrent systems.

In the more distant future, we plan to focus on a proof
system for verifying the correctness of concurrent component
implementations.

7. ACKNOWLEDGMENTS
We thank the anonymous referees for their helpful in-

sights, and especially for more suggestions for future work
than we could elaborate here. We also thank the Reusable
Software Research Group (RSRG) at the Ohio State Uni-
versity for their comments and criticisms on this work.

8. REFERENCES
[1] Abadi, M., and Lamport, L. Composing

specifications. TOPLAS 15, 1 (Jan 1993), 73–132.

[2] Alpern, B., and Schneider, F. B. Defining
liveness. Information Processing Letters 21, 4 (Oct
1985), 181–185.

[3] Chandy, K. M., and Misra, J. The drinking
philosophers problem. ACM Trans. Program. Lang.
Syst. 6, 4 (1984), 632–646.

[4] Chandy, K. M., and Misra, J. Parallel Program
Design: A Foundation. Addison-Wesley, Reading, MA,
USA, 1988.

[5] Collette, P. Composition of
assumption-commitment specifications in a UNITY
style. SCP 23 (Dec 1994), 107–125.

[6] Dijkstra, E. W. Hierarchical ordering of sequential
processes. Acta Informatica 1, 2 (Oct 1971), 115–138.

[7] Edwards, S. H., Heym, W. D., Long, T. J.,

Sitaraman, M., and Weide, B. W. Specifying
Components in RESOLVE. Software Engineering
Notes 19, 4 (1994), 29–39.

[8] Jones, C. B. Tentative steps toward a development
method for interfering programs. TOPLAS 5, 4
(1983), 596–619.

[9] Lamport, L. The temporal logic of actions. TOPLAS
16, 3 (May 1994), 872–923.

[10] Meyer, B. Design by contract. Prentice Hall, 1992,
ch. 1.

[11] Misra, J. A Discipline of Multiprogramming.
Monographs in Computer Science. Springer-Verlag,
2001.

[12] Sitaraman, M., Weide, B. W., and Ogden, W. F.

On the practical need for abstraction relations to
verify abstract data type representations. IEEE
Transactions on Software Engineering 23, 3 (1997),
157–170.

[13] Stark, E. W. A proof technique for rely guarantee
properties. In Foundations of software technology and
theoretical computer science, no. 306 in LNCS.
Pergamon-Elsevier Science Ltd., 1985, pp. 369–391.

17

Basic Laws of Object Modeling

Rohit Gheyi
∗

rg@cin.ufpe.br
Tiago Massoni

†

tlm@cin.ufpe.br
Paulo Borba

‡

phmb@cin.ufpe.br

Informatics Center
Federal University of Pernambuco

Recife, Brazil

ABSTRACT
Semantics-preserving model transformations are usually pro-
posed in an ad hoc way because it is difficult to prove that
they are sound with respect to a formal semantics. So, sim-
ple mistakes lead to incorrect transformations that might,
for example, introduce inconsistencies to a model. In or-
der to avoid that, we propose a set of simple modeling
laws (which can be seen as bi-directional transformations)
that can be used to safely derive more complex semantics-
preserving transformations, such as refactorings which are
useful, for example, to introduce design patterns into a model.
Our laws are specific for Alloy, a formal object-oriented mod-
eling language, but they can be leveraged to other object
modeling notations. We illustrate their applicability by for-
mally refactoring Alloy models with subtypes in order to
improve the analysis performed by the Alloy Analyzer tool.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal Meth-
ods, Model Checking; F.3.1 [Specifying and Verifying
and Reasoning about Programs]: Mechanical verifica-
tion

General Terms
Design, Verification

Keywords
Model Transformations, Refactorings, Formal Methods, Ver-
ification

1. INTRODUCTION
Laws of programming [14] are important not only to define
the axiomatic semantics of programming languages but also

∗Supported by CNPq.
†Supported by CAPES.
‡Partially supported by CNPq (521994/96-9).

to assist in the software development process. In fact, these
laws can be used as the foundation for informal develop-
ment practices, such as refactorings [7], widely adopted due
to modern methodologies, in particular Extreme Program-
ming [1].

Modeling laws might bring similar benefits, such as refactor-
ing models, but with a greater impact on cost and produc-
tivity, since they are used in earlier stages of the software
development process. However, semantics-preserving model
transformations are usually proposed in an ad hoc way be-
cause it is difficult to prove that they are sound with respect
to a formal semantics. So, simple mistakes lead to incorrect
transformations that might, for example, introduce incon-
sistencies to a model.

In this paper, we propose a set of modeling laws [9] for Al-
loy [15], a formal object-oriented modeling language. Each
law proposed here defines two small-grained model transfor-
mations that preserve semantics. We proved their soundness
based on a denotational semantics for Alloy [9]. We regard
them as basic because they are simple and able to derive
more complex transformations. This set can be considered
comprehensive, if compared to what have been proposed so
far [6, 12, 18]. In addition, we propose an equivalence notion
for Alloy models.

These laws can be useful to refactor Alloy models with sub-
types in order to improve the analysis performed by the
Alloy Analyzer tool. Moreover, these laws can be applied
to derive refactorings [9], which are useful, for instance to
introduce design patterns [8] into a model. Additionally,
they can be applied to reason whether one component, an-
notated with Alloy, can be reused or substituted by another.
Our laws can also be used for educational purposes in ob-
ject modeling, since they clarify the meaning of a number of
important constructs.

Related work [6, 18, 12] has proposed transformations for
Unified Modeling Language (UML) [2] class diagrams. How-
ever, they do not offer a comprehensive set of modeling laws
that can derive more complex transformations. In addition,
some of them do not completely preserve semantics. We
proposed laws for Alloy, rather than UML and the Object
Constraint Language (OCL) [17], due to Alloy’s simpler se-
mantics, although expressive enough to model a broad va-
riety of applications. Nevertheless, our laws can also be
useful for reasoning about UML class diagrams, by provid-

18

ing a semantics for UML class diagrams based on Alloy [20].
Similarly, the results can also be leveraged to other object
modeling notations.

The remainder of this paper is organized as follows. Section
2 overviews the Alloy language. Section 3 presents some
basic laws for Alloy. In Section 4, we show applications for
the laws. The following section discusses some related work.
Finally, Section 6 concludes the paper.

2. ALLOY
Alloy is formal object-oriented specification language that
is strongly typed and assumes a universe of elements par-
titioned into subsets, each of which associated with a basic
type. Alloy can be used for specifying, verifying and validat-
ing properties about object and component-based systems.

An Alloy model or specification is a sequence of paragraphs
of two kinds: signatures that are used for defining new types,
and formula paragraphs, namely facts and functions, used to
record constraints. Each signature contains a set of objects
(elements). These objects can be related by the relations de-
clared in the signatures. A signature paragraph introduces
a basic type and a collection of relations, called fields, along
with the types of the fields and other constraints on the
values they relate. Besides subtyping with signature exten-
sion, Alloy includes other important structures and opera-
tors such as modules, predicates and commands for analyz-
ing the specification, which are discussed elsewhere [15].

Figure 1: Bank System Object Model

Suppose that we want to model part of a banking system
in Alloy, on which each bank contains a set of accounts and
a set of customers. Each account is owned by a customer.
Also, accounts may be checking or savings. Figure 1 de-
scribes the object model [19] of the system. Each box in
an object model represents a set of objects. The arrows are
relations and indicate how objects of a set are related to
objects in other sets. For instance, the arrow labeled owner

shows that each object from Account has a field whose value
object is a Customer object.

An arrow with a closed head form, such as from ChAcc to
Account, denotes a subset relationship. In this case, ChAcc
is a subset of Account. If two subsets share an arrow, they
are disjoint. For instance, ChAcc and SavAcc are disjoint. If
the arrowhead is filled, the subsets exhaust the superset, so
there are no members of the superset that are not members
of one of the subsets. In the banking system, the subsets
form a partition: every member of the superset belongs to

exactly one subset.

The multiplicity symbols are as follows: ! (exactly one), ?
(zero or one), * (zero or more) and + (one or more). Mul-
tiplicity symbols can appear on both ends of the arrow. If
a multiplicity symbol is omitted, * is assumed. The follow-
ing fragment introduces three signatures and three relations
modeling part of the banking system.

sig Bank {
accounts: set Account,
customers: set Customer

}
sig Customer {}
sig Account {
owner: set Customer

}

In the field declaration of Bank, the set relation qualifier
specifies that accounts maps each element in Bank to a set
of elements in Account. When we omit the keyword, we
specify a total function.

In Alloy, one signature can extend another, establishing that
the extended signature is a subset of the parent signature.
For instance, the values given to ChAcc is a subset of the
values given to Account.

sig ChAcc, SavAcc extends Account {}

Signature extension introduces a subtype in Alloy version 3,
establishing that each subsignature is disjoint. In this case,
ChAcc and SavAcc are disjoint. In Alloy, we can declare
several signatures at once if they do not declare any relation,
as showed in the previous fragment.

Facts are formula paragraphs. They are used to package
formulae that always hold, such as invariants about the el-
ements. The following example introduces a fact named
BankConstraints, establishing general properties about the
previously introduced signatures.

fact BankConstraints {
all acc: Account | one acc.owner
Account = ChAcc + SavAcc

}

The first formula states that each account is owned by ex-
actly one customer (the . operator can be seen as relational
dereference), while the last one states that each account is
a checking or savings account. The keyword all represents
the universal quantifier. The one keyword, when applied to
an expression, denotes that the expression has exactly one
element. The operator + corresponds to the union set oper-
ator. In Alloy, the fact formulae are implicitly declared as a
conjunction.

3. BASIC LAWS
In this section, we present a set of basic laws proposed for Al-
loy. These laws state properties about signatures, relations,

19

facts and formulae. With a comprehensive set of simple ba-
sic laws [9], we aim to provide powerful guidance on the
derivation of complex transformations, such as refactorings
and optimizations. The models on the left and the right side
of each law have the same meaning, since each law preserves
semantics, as described elsewhere [9].

For instance, the laws can be useful to transform the model
shown in Figure 2, which shows a transformation introduc-
ing a collection between Bank and Account. We establish
that these models have the same semantics considering a
set of signature and relation names that we call alphabet
(Σ). The alphabet includes the element names which are
considered to be relevant in a model. For instance, suppose
that Σ contains the Bank, Account and accounts names. If
these models have the same set of values to all names in the
alphabet, they are equivalent under this equivalence notion.
The other names (col, Vector and elems) are auxiliary, thus
not taken into consideration.

However, some models may not have all names considered in
the alphabet. For instance, in Figure 2, accounts does not
belong to the right-hand side model. In this case, relevant
names must be represented by others names. Hence, we de-
fine a view (v), consisting of a set of items such as n→exp,
where n is a name and exp is an expression not contain-
ing n, and they have the same type. In the example of
Figure 2, we can choose a v containing the following item:
accounts→col.elems. Now we can compare both models.
Notice that accounts is defined in terms of two names that
belong to the right-hand side model; hence we can compute
the accounts’s value. So, a view allows a strategy for repre-
senting relevant names using an equivalent combination of
other elements. There are some constraints when choosing
a view, such as the items cannot be recursive. This is a gen-
eral idea of the equivalence notion considered for our basic
laws and it is described in more detail elsewhere [11].

Figure 2: Equivalence Notion

In the proposed laws, we used ps to denote a set of signa-
ture and fact paragraphs. We do not consider other Alloy
paragraphs since some of them are syntactic and others are
used to perform analysis in the Alloy Analyzer.

3.1 Laws for Signatures
The first law states that we can introduce a generalization
between two signatures when the name of the new parent
signature is not previously used in the specification. We
can also remove a generalization between them if the parent
signature, the relations of its family and the subsignatures
are not being used elsewhere. This proviso guarantees that
there is no formula containing S, T and their relations, ex-
cept the two formulae stating the partition. Since S and
T have different types after the generalization removal, this

proviso assures that the generalization removal does not in-
troduce type errors.

Law 1. 〈introduce generalization〉

ps
sig S {

rs
}

sig T {

rs′

}

fact F {

forms
}

=Σ,v

ps
sig U {}

sig S extends U {

rs
}

sig T extends U {

rs′

}

fact F {

forms
U = S + T

}

provided
(↔) if U belongs to Σ then v contains the U→S + T item;
(→) ps does not declare any paragraph named U ;
(←) U and the relations declared by its family, S and T do
not appear in ps, rs, rs′ and forms.

We write (→), before the proviso, to indicate that this pro-
viso is required when applying this law from left to right.
Similarly, we use (←) to indicate what is required when ap-
plying the law in the opposite direction, and we use (↔)
to indicate that the proviso is necessary in both directions.
It is important to notice that each basic law, when applied
in any direction, defines one transformation that preserves
semantics.

Notice that both models of the law have the same names
and constraints, except U , its definition and the implicit
constraints stating that S and T are subset of U . Since the
view has an item for U that is equivalent to its definition
and it contains the union of the values given to S and T ,
the left side model yields the same value for U of right side
model; hence the law preserves semantics.

The operator & denotes the intersection set operator. The
keyword no when applied to an expression denotes that the
expression has no elements. We write forms and rs to de-
note a set of formulae and a set of relation declarations,
respectively. We also propose trivial laws allowing us to
introduce empty signatures [9].

3.2 Laws for Relations
Besides laws for dealing with signatures, we also define laws
for manipulating relations. The next law states that we can
introduce a new relation along with its definition, which is
a formula of the form r = exp, establishing a value for the
relation. We can also remove a relation that is not being
used.

Law 2. 〈introduce relation and its definition〉

20

ps
sig S {

rs
}

fact F {

forms
}

=Σ,v

ps
sig S {

rs,
r : set T

}

fact F {

forms
r=exp

}

provided
(↔) if r belongs to Σ, r does not appear in exp and v con-
tains the r→exp item;
(→) The family of S in ps does not declare any relation
named r; T is a signature name declared that does not ex-
tend other signatures;
(←) The r relation does not appear in ps and forms.

The exp expression can be either r or an expression having
the same type of r and not containing r. It is important to
stress that the previous law can be used to simply introduce
a relation, without any definition. We have just to take
exp as being r itself, introducing a tautology. Moreover,
constraints involving Σ and v must be carefully introduced.
When introducing or removing a relation in Σ, we must
guarantee that the r→exp item belongs to v and r does not
appear in exp in order to avoid a recursive definition in v.
The family of a signature is the set of all signatures that
extend or are extended by it direct or indirectly. Alloy does
not allow two relations with the same name in the same
family.

A relation qualified as a set of T , declared in the S signa-
ture, indicates that every element in S relates to any num-
ber of T elements. Since it does not impose any constraint
on the relation, we ensure that the previous law preserves
the constraints, not introducing inconsistency. In contrast,
due to its constraint, we cannot always introduce a relation
declared with the one (stating a total function) qualifier
since this constraint can contradict previous specification
constraints. For instance, the introduction of the r relation
with one in the previous law can introduce an inconsistency
if there are constraints stating that T is empty and S has
at least one element. After applying this transformation, r
must relate every element of S to one element of T . However,
S is not empty and T is empty, introducing an inconsistency.

Notice that both models of the law have the same names
and constraints, except r and its definition. Since the view
has an item for r that is equivalent to its definition, the left
side model yields the same value for r of right side model;
hence the law preserves semantics.

Next, we establish a law for pulling up relations. We can
pull up a relation from a signature to its parent by adding
a formula stating that this relation only maps elements of
the subsignature. Similarly, we can push down a relation if
the specification has a formula stating that the relation only
relates elements of the subsignature.

Law 3. 〈pull up relation〉

ps
sig T {

rs
}

sig S extends T {

rs′,
r : set U

}

fact F {

forms
}

=Σ,v

ps
sig T {

rs,
r : set U

}

sig S extends T {

rs′

}

fact F {

forms
no (T − S).r

}

The operator - corresponds to the difference set operator.
Notice that the values given to r, which is pulled up or
down, are the only values that are subject to change. On
the left side of the law, r relates elements from S to U .
On the right side of the law, r relates elements from T to
U . However, there is an explicit constraint indicating that
r relates elements from S to U . Therefore, both modes
have the same meaning. We have proposed other laws for
relations, such as splitting a relation [9].

3.3 Laws for Facts and Formulae
Besides proposing some trivial laws for facts and formulae,
we proposed a law establishing that we can add or remove a
formula from a fact, as long as it can be deduced from other
formulae in the specification.

Law 4. 〈introduce formula〉

ps
fact F {

forms
}

=Σ,v

ps
fact F {

forms
f

}

provided

(↔) The formula f can be deduced from the formulae in ps
and forms.

Since f is derived from other formulae, we guarantee that
both specifications have the same meaning. The constraints
imposed by this formula are already imposed by the oth-
ers. From predicate calculus, we infer ’P and Q’ from the
’P => Q’ and ’P’ formulae, where P and Q are arbitrary
predicates. Therefore, this law is trivially valid. The laws
presented here focus on Alloy structures, although relational
[24] and predicate [22] calculi can also be applied to Alloy
formulae.

Besides these laws, we proposed laws for syntactic sugar
constructs [9]. We prove these laws using a denotational
semantics for Alloy [9]. We aim at proposing simple small-
grained transformations because it is easier to prove that
they are semantics-preserving. Although they are simple,
we can derive a number of complex large-grained transfor-
mations by composing them, which consequently preserve

21

semantics. Examples of the use of the laws can be found in
Section 4.

4. APPLICATIONS
The basic laws provide an axiomatic semantics for Alloy,
clarifying the meaning of its constructs. In this section,
we describe how we can use them to transform Alloy mod-
els with subtypes in order to improve the analysis perfor-
mance by the Alloy Analyzer. As previously illustrated [5],
analysis performance of Alloy models with subtypes can be
increased by atomization. When performing analysis, the
Alloy Analyzer internally transforms (atomizes) a model by
pushing relations down to the lowest subtype level in order
to improve its performance. Atomization applies a num-
ber of model transformations to remove a relation in a par-
ent signature and introduce one relation to each subsigna-
ture. However, some transformations are not proved to be
semantics-preserving [5], such as introducing and removing
relations. Other transformations, such as deducing formu-
lae, are semantics-preserving considering they are derived
from relational calculus laws. Next, we show how the pro-
posed laws, which are sound with respect to an Alloy deno-
tational semantics, can formalize the atomization scheme.

Consider an addition to the signature Account, described in
Section 2, which is partitioned by ChAcc and SavAcc. Each
account relates to a customer by the owner relation. In or-
der to improve the performance analysis, the atomization
scheme removes owner from Account while introducing re-
lations in ChAcc and SavAcc, called chOwner and savOwner,
respectively.

Suppose that we consider an alphabet Σ containing all names
declared in the initial specification, and a view v having the
owner→chOwner+savOwner item. First of all, we can in-
troduce the new relations into Account and their definitions
by applying Law 2 from left to right. Since both relations
do not belong to Σ, no item is needed to v. Next, we show
the resulting specification. We consider that ps contains the
Bank and Customer signatures.

ps
sig Account {
owner: set Customer,
chOwner: set Customer,
savOwner: set Customer

}
sig ChAcc extends Account {}
sig SavAcc extends Account {}

fact BankConstraints {
all acc: Account | one acc.owner
Account = ChAcc + SavAcc
chOwner = owner & (ChAcc->Customer)
savOwner = owner & (SavAcc->Customer)

}

The notation -> represents the product operator that com-
bines every element in the left operand with every element
in the right operand. When applied to sets, this operator
represents the standard Cartesian product.

Our aim is to pull down chOwner and savOwner to ChAccount

and SavAccount, respectively. In order to do that, we first

derive the no (Account - ChAcc).chOwner formula, by ap-
plying some relational calculus properties, from the chOwner
definition. Similarly, we can derive a formula for savOwner,
and introduce both formulae, by applying Law 4 from left
to right, which results in the following specification.

ps
sig Account {
owner: set Customer,
chOwner: set Customer,
savOwner: set Customer

}
sig ChAcc extends Account {}
sig SavAcc extends Account {}

fact BankConstraints {
all acc: Account | one acc.owner
Account = ChAcc + SavAcc
chOwner = owner & (ChAcc->Customer)
savOwner = owner & (SavAcc->Customer)
no (Account - ChAcc).chOwner
no (Account - SavAcc).savOwner

}

Next we apply Law 3 from right to left and pull down both
relations, as shown next.

ps
sig Account {
owner: set Customer

}
sig ChAcc extends Account {
chOwner: set Customer

}
sig SavAcc extends Account {
savOwner: set Customer

}

fact BankConstraints {
all acc: Account | one acc.owner
Account = ChAcc + SavAcc
chOwner = owner & (ChAcc->Customer)
savOwner = owner & (SavAcc->Customer)

}

Our aim is to derive the owner definition in order to replace
it by its definition and eventually remove it from the spec-
ification. Applying some predicate and relational calculus
properties, which are within brackets to justify every step
in the derivation, we deduce that:

(chOwner + savOwner =
owner & (ChAcc->Customer) +
owner & (SavAcc->Customer))
[(P&Q + P&R) = (P&(Q+R))] =

(chOwner + savOwner =
owner & ((ChAcc->Customer) + (SavAcc->Customer)))
[(P->R) + (Q->R) = (P+Q)->R)] =

(chOwner + savOwner =
owner & ((ChAcc+SavAcc)->Customer))
[Account = ChAcc + SavAcc] =

(chOwner + savOwner = owner & (Account->Customer)) =
(owner = chOwner + savOwner)

Since this formula is deduced from formulae in the speci-
fication, using Law 4 from left to right, we can introduce

22

this formula in the specification. After that, we can replace
owner by its definition. It is important to notice that from
every formula containing owner, except its definition, we can
derive a new formula replacing owner by its definition, which
is inserted to the specification applying Law 4 from left to
right. Consequently, these new formulae can also derive the
formulae with owner. Next, we can remove all formulae that
contain owner, except its definition, from the specification
by applying Law 4 from right to left.

Finally, since owner does not appear in the model, except
in its definition, we can remove this relation and its defini-
tion using Law 2 from right to left. Since owner belongs to
Σ, we have to check whether v has the owner→chOwner +
savOwner item. Moreover, the third and fourth formula of
BankConstraints can be deduced from the model. There-
fore, we can remove them from the specification applying
Law 4 from right to left. The final specification is described
next.

ps
sig Account {}
sig ChAcc extends Account {
chOwner: set Customer

}
sig SavAcc extends Account {
savOwner: set Customer

}

fact BankConstraints {
all acc: Account | one acc.(chOwner + savOwner)
Account = ChAcc + SavAcc

}

Notice that our laws deal with equivalent models; hence the
atomization process can be reversed, similarly. This pro-
cess can be generalized and we can state the atomization
semantics-preserving transformation similarly to the laws.
Figure 3 summarizes the order of the application of the laws.
Each box has the direction and number of the law to be ap-
plied. The filled arrow denotes the next law to be applied.
Some boxes have filled arrows on top of it indicating that
this law can be applied repeatedly.

Figure 3: Atomization

In the banking system, every account is a checking or sav-
ings account. The atomization process also considers parent
signatures that are not partitioned by the subsignatures. In
this case, we have to create a new subsignature, extending
the parent signature. We do not have a law that allows us
to introduce a subsignature in a parent signature already
declared. We regard this law as future work.

The basic laws proposed here can also be useful to refactor
models [10, 9]. For instance, we refactored a simple but non-
trivial Java types specification. Applying the laws, a model
describing Java types in terms of subtyping relations can be
transformed into another in terms of supertypes, having the
same semantics.

We can also use our laws to derive complex large-grained
transformations (refactorings) by composing them [9]. Since
these refactorings are derived using semantics-preserving laws,
they also preserve semantics. We have derived large-grained
transformations such as the extract interface refactoring, in-
troducing a collection, and move and reverse a relation [9].
These refactorings can be useful, for example, to introduce
design patterns [8] into a model. However, we will not show
these here due to the lack of space. Furthermore, by using
the laws, we can verify whether two models have the same
meaning.

5. RELATED WORK
Zaremski and Wing [25] determines whether two software
components are related by a specification matching process.
This can be useful, among other things, to reuse components
and substitute one component by another without affecting
the observable behaviour. To verify whether the specifica-
tion of one component matches the other, the authors use a
theorem prover. We believe that our set of laws can be useful
in this case. Suppose that each Java component is annotated
with Alloy, similarly as described elsewhere [16]. Since we al-
ready proved that our laws are semantics-preserving [9], ap-
plying the laws, we just have to check syntactically whether
one specification component is equivalent to another, instead
of proving it. However, since we do not prove that our set
of laws is complete, we may not use them always.

Related work [23, 6, 12, 18] has been carried out on transfor-
mation of UML class diagrams. They do not state in which
conditions a transformation can be applied. Therefore, some
transformations do not preserve semantics in some situa-
tions. For instance, creating a generalization between classes
not always preserve semantics (Figure 4). Given the con-
straints in a specification, it can become inconsistent by in-
troducing a generalization. For instance, we cannot declare
the S class to extend the T class when a explicit constraint
in the specification states that S has more elements than
T. The introduction of a generalization in this case makes
the specification inconsistent, since the generalization con-
strains T to include S. Therefore, we can deduce that T has
the same number or more elements than S, which contra-
dicts the explicit constraint in the specification. We cannot
apply Law 1 to introduce a generalization in Figure 4, since
T is already declared.

These transformations do not preserve semantics because
some of them use a semi-formal UML semantics. Others
partly define a semantics for UML but do not verify sound-
ness of the transformations, or do not consider OCL con-
straints. We conclude that it is important to prove the
soundness of the transformations, in order to guarantee that
a transformation preserves semantics. It is easy to make a
small change in a model and make it inconsistent.

A similar work proposes basic laws for Refinement Object-

23

Figure 4: Introduce Generalization

Oriented Language (ROOL) [3]. ROOL is less powerful for
specifying structural properties among types compared to
Alloy. Whereas ROOL supports only attribute declarations,
as in Java [13], Alloy supports the declaration of bidirec-
tional relations with arbitrary arities and multiplicities, as
in UML. Another difference is that we cannot define global
constraints in ROOL. This related work is similar to ours
in the sense that they propose basic laws that are used not
only for giving the axiomatic semantics of the language, but
also for deriving refactorings.

Laws for top level design elements of UML-RT (Real Time)
[4] have also been proposed [21]. Our laws do not deal with
refinements, as theirs. Moreover, their work does not intend
to propose basic laws, as ours. They propose laws not only
for structural constructs, as our laws, but also laws for be-
havioural constructs, such as laws for capsules. They assume
that relationships are directed and predicates involve only
relationships as attributes, as in ROOL. Additionally, the
authors consider implementation-oriented models. More-
over, their proposed laws rely on the absence of global con-
straints on the model, such as those involving cardinality
(number of instances) of classes in the entire system. Our
laws also work for models containing global constraints.

6. CONCLUSIONS
In this paper, we propose basic laws for Alloy and show
how they can be used for deriving complex transformations,
such as refactorings and optimizations. In contrast to model
transformations usually defined in an ad hoc way, these laws
describe semantics-preserving transformations. Addition-
ally, we propose an equivalence notion for Alloy models.

The laws presented here have been proven sound with re-
spect to a formal semantics for Alloy [9]. Consequently,
they should act as a tool for carrying out model transfor-
mations. One immediate application of the basic laws is to
define an interface from which one can derive more complex
transformations, as illustrated in Section 4, and to refactor
specifications [10]. Although our laws are specific to Alloy,
they can be leveraged to object modeling in general. For in-
stance, we can leverage them to UML class diagrams giving
a precise semantics for it in Alloy [20].

All basic laws are very simple to apply since their precon-
ditions are simple syntactic conditions. Nevertheless, these
laws can be used as powerful guidance for deriving complex
transformations. The law for introducing a formula that
is deduced from the model also has syntactic conditions, if
we consider relational and predicate calculi. We extended
the Alloy Analyzer tool to include the implementation of a

number of the basic laws, in such a way that the user does
not need to verify the preconditions and apply the laws [9].
The user is only required to inform the parameter values for
the transformations. Furthermore, our laws can be used for
educational purposes in object modeling, since they clarify
the meaning of a number of important constructs. Addition-
ally, they could be useful to verify, with syntactic conditions,
whether the specification of one component is equivalent to
another. In case they are equivalent, we can substitute a
component by another.

Although we have a comprehensive set, relative to what have
been proposed so far, of basic laws for Alloy, we still need
to prove a reduction theorem stating that our set of laws
is complete, in the sense of allowing reduction of arbitrary
Alloy specifications to a normal form. We need more laws
such as for introducing an empty subsignature. This nor-
mal form is expressed in a small subset of the language
operators, following approaches adopted for ROOL [3] and
imperative languages [14], among others. We also intend
to study and formalize the relationship between modeling
and programming laws. In particular, we need to inves-
tigate whether model refactorings have corresponding pro-
gram refactorings. This might be useful for implementing
tools that apply model and code refactorings in a synchro-
nized way.

7. ACKNOWLEDGMENTS
This work benefited from the discussions during the Soft-
ware Productivity Group’s meetings. In addition, we would
like to thank all the anonymous referees, whose appropri-
ate comments helped improving the paper. This work was
partially funded by CAPES and CNPq, grant 521994/96-9.

8. REFERENCES
[1] K. Beck. Extreme Programming Explained.

Addison-Wesley, 2000.

[2] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified
Modeling Language User Guide. Addison-Wesley, 1999.

[3] P. Borba, A. Sampaio, and M. Cornélio. A refinement
algebra for object-oriented programming. In 17th
European Conference on Object-Oriented
Programming, ECOOP’03, pages 457–482, Darmstadt,
Germany, 2003.

[4] B. Douglass. Real Time UML - Developing Eficient
Objects for Embedded Systems. Addison-Wesley, 1998.

[5] J. Edwards, D. Jackson, E. Torlak, and V. Yeung.
Faster constraint solving with subtypes. In
Proceedings of the 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis
(ISSTA), pages 232–242. ACM Press, 2004.

[6] A. Evans. Reasoning with UML class diagrams. In
Second IEEE Workshop on Industrial Strength Formal
Specification Techniques, WIFT’98, Boca Raton/FL,
USA, pages 102–113. IEEE CS Press, 1998.

[7] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

24

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[9] R. Gheyi. Basic laws of object modeling. Master’s
thesis, Federal University of Pernambuco, 2004.

[10] R. Gheyi and P. Borba. Refactoring alloy
specifications. In A. Cavalcanti and P. Machado,
editors, Electronic Notes in Theoretical Computer
Science, Proceedings of the Brazilian Workshop on
Formal Methods, volume 95, pages 227–243. Elsevier,
2004.

[11] R. Gheyi, T. Massoni, and P. Borba. An equivalence
notion of object models. Technical Report, 2004.

[12] M. Gogolla and M. Richters. Equivalence rules for
UML class diagrams. In The Unified Modeling
Language, UML’98 - Beyond the Notation. First
International Workshop, Mulhouse, France, pages
87–96, 1998.

[13] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley, 1996.

[14] C. Hoare, J. Spivey, I. Hayes, J. He, C. Morgan,
A. Roscoe, J. Sanders, I. Sorenson, and B. Sufrin.
Laws of programming. Communications of the
Association for Computing Machinery, 30(8):672–686,
1987.

[15] D. Jackson. Alloy 3.0 reference manual. At
http://alloy.mit.edu/beta/reference-manual.pdf, 2004.

[16] S. Khurshid, D. Marinov, and D. Jackson. An
Analyzable Annotation Language. In Proceedings of
the 17th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 231–245. ACM
Press, 2002.

[17] A. Kleppe and J. Warmer. The Object Constraint
Language: Precise Modeling with UML.
Addison-Wesley, 1999.

[18] K. Lano and J. Bicarregui. Semantics and
transformations for UML models. In The Unified
Modeling Language, UML’98 - Beyond the Notation.
First International Workshop, Mulhouse, France, June
1998, pages 97–106, 1998.

[19] B. Liskov and J. Guttag. Program Development in
Java. Addison-Wesley, 2001.

[20] T. Massoni, R. Gheyi, and P. Borba. A UML class
diagram analyzer. In Third International Workshop on
Critical Systems Development with UML (CSDUML),
affiliated with UML Conference, Lisbon, Portugal,
2004.

[21] A. Sampaio, A. Mota, and R. Ramos. Class and
capsule refinement in UML for real time. In
A. Cavalcanti and P. Machado, editors, Electronic
Notes in Theoretical Computer Science, Proceedings of
the Brazilian Workshop on Formal Methods,
volume 95, pages 23–51. Elsevier, 2004.

[22] J. Spivey. The Z Notation: A Reference Manual. C. A.
R. Hoare Series Editor. Prentice Hall, 1989.

[23] G. Sunyé, D. Pollet, Y. Traon, and J.-M. Jézéquel.
Refactoring UML models. In The Unified Modeling
Language, UML’01 - Modeling Languages, Concepts,
and Tools. Fourth International Conference, Toronto,
Canada, volume 2185 of LNCS, pages 134–148.
Springer-Verlag, 2001.

[24] A. Tarski. On the calculus of relations. Journal of
Symbolic Logic, 6(9):73–89, 1941.

[25] A. Zaremski and J. Wing. Specification matching of
software components. ACM Transactions on Software
Engineering and Methodology, 6(4):333–369, 1997.

25

Selective Open Recursion:
Modular Reasoning about Components and Inheritance

Jonathan Aldrich
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

jonathan.aldrich@cs.cmu.edu

Kevin Donnelly
Computer Science Department

Boston University
111 Cummington Street
Boston, MA 02215, USA

kevind@bu.edu

ABSTRACT
Current component-based systems with inheritance do not
fully protect the implementation details of a class from its
subclasses, making it difficult to evolve that implementation
without breaking subclass code. Previous solutions to the
so-called fragile base class problem specify those implemen-
tation dependencies, but do not hide implementation details
in a way that allows effective software evolution.

In this paper, we show that one instance of the fragile
base class problem arises because current object-oriented lan-
guages dispatch methods using open recursion semantics even
when these semantics are not needed or wanted. Our solu-
tion, called Selective Open Recursion, makes explicit the meth-
ods to which open recursion should apply. As a result,
classes can be more loosely coupled from their subclasses,
and therefore can be evolved more easily without breaking
subclass code.

We have implemented Selective Open Recursion as an ex-
tension to Java, along with an analysis that automatically in-
fers the necessary program annotations. We have collected
data for the Java standard library suggesting that the addi-
tional programmer effort required by our proposal is low,
and that Selective Open Recursion aids in automated reason-
ing such as compiler optimizations.

1. Inheritance and Information Hiding
In his seminal paper, Parnas laid out the classic theory of

information hiding: developers should break a system into
modules or components in order to hide information that
is likely to change [10]. Thus if change is anticipated with
reasonable accuracy, the system can be evolved with local
rather than global system modifications, easing many soft-
ware maintenance tasks. Furthermore, the correctness of
each component can be verified in isolation from other com-
ponents, allowing developers to work independently on dif-
ferent sub-problems.

Unfortunately, developers do not always respect the infor-
mation hiding boundaries of components—it is often tempt-
ing to reach across the boundary for temporary convenience,
while causing more serious long-term evolution problems.
Thus, encapsulation mechanisms such as Java’s packages
and public/private data members were developed to give
programmers compiler support for enforcing information
hiding boundaries.

While the encapsulation mechanisms provided by Java
and other languages can help to enforce information hiding

public class CountingSet extends Set {
private int count;

public void add(Object o) {
super.add(o);
count++;

}
public void addAll(Collection c) {
super.addAll(c);
count += c.size();

}
public int size() {
return count;

}
}

Figure 1: The correctness of the CountingSet class de-
pends on the independence of add and addAll in the im-
plementation of Set. If the implementation is changed
so that addAll uses add, then count will be incremented
twice for each element added.

boundaries between an object and its clients, enforcing in-
formation hiding between a class and its subclasses is more
challenging. The private modifier can be used to hide
some method and fields from subclasses. However, inher-
itance creates a tight coupling between a class and its sub-
classes, making it difficult to hide information about the im-
plementation of public and protected methods in the su-
perclass. In component-based systems with inheritance, it is
easy for a subclass to become unintentionally dependent on
the implementation details of its superclass, and therefore to
break when the superclass changes in seemingly innocuous
ways.

1.1 The Fragile Base Class Problem
This issue is known as the Fragile Base Class Problem, one of

the most significant challenges faced by designers of object-
oriented component libraries. Figure 1 shows an example of
the fragile base class problem, taken from the literature [12,
9, 2].

In the example, the Set class has been extended with an
optimization that keeps track of the current size of the set in
an additional variable. Whenever a new element or collec-
tion of elements is added to the set, the variable is updated
appropriately.

26

Unfortunately, the implementation of CountingSet
makes assumptions about the implementation details of
Set—in particular, it assumes that Set does not implement
addAll in terms of add. This coupling means that the im-
plementation of Set cannot be changed without breaking
its subclasses. For example, if Set was changed so that the
addAll method calls add for each member of the collection
in the argument, the count variable will be updated not only
during the call to addAll, but also for each individual add
operation—and thus it will end up being incremented twice
for each element in the collection.

The root of the problem described above (which is just one
instance of the larger fragile base class problem) is that the
subclass depends on the calling patterns between methods in
its superclass. Object-oriented languages provide open recur-
sion, in which self-calls are dynamically dispatched, allow-
ing subclasses to intercept self-calls from the superclass and
thus depend on when it makes these calls. Open recursion
is useful for many object-oriented programming idioms—for
example, the template method design pattern [7] uses open
recursion to invoke customized code provided by a subclass.
However, sometimes making a self-call to the current object
is just an implementation convenience, not a semantic re-
quirement. The whole point of encapsulation is to ensure
that subclasses do not depend on such implementation de-
tails, so that a class and its subclasses can be evolved in-
dependently. Thus inheritance breaks encapsulation when
implementation-specific self-calls are made.

Examples like these have led some to call inheritance anti-
modular. Most practitioners, recognizing the value of inher-
itance for achieving software reuse in component-based sys-
tems, would not go so far, but this example illustrates that
reasoning about correctness is challenging in the presence of
inheritance.

A number of previous papers have addressed the fragile
base class problem in various ways [8, 12, 13, 2, 11]. These
solutions, however, either give up the power of open recur-
sion entirely, or expose details of a class’s implementation
that ought to be private (such as the fact that the addAll
method calls or does not call add in the example above).

1.2 Contributions
The contribution of this paper is Selective Open Recur-

sion, a new approach that provides the benefits of inheritance
and open recursion where they are needed, but allows pro-
grammers to effectively hide many details of the way a class
is implemented. In our system, described in the next sec-
tion, method calls on the current object this are dispatched
statically by default, meaning that subclasses cannot inter-
cept internal calls and thus cannot become dependent on
those implementation details. External calls to the methods
of an object—i.e., any method call not explicitly invoked on
this—are dynamically dispatched as usual.

If an engineer needs open recursion, she can declare a
method “open,” in which case self-calls to that method are
dispatched dynamically. By declaring a method “open,” the
author of a class is promising that any changes to the class
will preserve the ways in which that method is called.

In section 3, we describe our implementation of Selective
Open Recursion as an extension to Java. We have imple-
mented a static, whole-program analysis that annotates an
existing Java program with the minimal set of “open” decla-
rations that are necessary so that the program has the same

semantics in our system. Results of applying our analysis to
the JDK 1.4 standard library show that open annotations are
rarely needed and that Selective Open Recursion increases
the potential for program optimizations such as inlining. Sec-
tion 4 discusses related work and section 5 concludes.

2. Selective Open Recursion
We argue that the issue underlying the instance of the frag-

ile base class problem described above is that current lan-
guages do not allow programmers to adequately express the
intent of various methods in a class. There is an impor-
tant distinction between methods used for communication
between a class and its clients, vs. methods used for commu-
nication between a class and its subclasses.

Some methods are specifically intended as callbacks or ex-
tension points for subclasses. These methods are invoked re-
cursively by a class so that its subclasses can provide cus-
tomized behavior. Examples of callback methods include
methods denoting events in a user interface, as well as ab-
stract “hook” methods in the template method design pat-
tern [7]. Because callback methods are intended to be in-
voked whenever some semantic event occurs, any changes
to the base class must maintain the invariant that the method
is always invoked in a consistent way.

In contrast, many accessor and mutator functions are pri-
marily intended for use by clients. If the implementation
of a class also uses these functions, it is typically as a con-
venience, not because the class expects subclasses to over-
ride the function with customized behavior. The fragile base
class problem described above occurs exactly when a “client-
oriented” method is called recursively by a superclass, but is

also overridden by a subclass.1 Because the recursive call to
the method was never intended to be part of the subclass-
ing interface, the maintainer of the base class should be able
to evolve the class to use (or not use) such methods without
affecting subclasses.

The key insight underlying Selective Open Recursion is
that subclasses do not need to intercept recursive calls to
methods that were not intended as callbacks or extension
points—they can always provide their behavior by overrid-
ing the external interface of a class. At most, intercepting
recursive calls to “client-oriented” methods is only a minor
convenience, and one that creates an undesirable coupling
between subclass and superclasses.

We thus propose to add a new modifier, open, which al-
lows developers to more fully declare their underlying de-
sign intent. An open method has open recursion semantics;
it is treated as a callback for subclasses that will always be
recursively invoked by the superclass whenever some con-
ceptual event occurs. Ordinary methods—those without the
open keyword—are not part of the subclassing interface.
While external calls to ordinary methods are dynamically
dispatched as usual, recursive calls where the receiver is ex-
plicitly stated to be the current object this are dispatched
statically.2 Because open recursion does not apply to meth-
ods that are not marked open, subclasses cannot depend on

1There are other instances of the fragile base class problem—
for example, name collisions between methods in a class and
its subclasses—that we do not consider here.
2If the receiver is not syntactically this but is an alias, we
treat the call as external. This ensures that the dispatch mech-
anism used is easily predicted by browsing the source code.

27

public class Set {
List elements;

public void add(Object o) {
if (!elements.contains(o))
elements.add(o);

}
public void addAll(Collection c) {

Iterator i = c.iterator();
while (i.hasNext())
this.add(i.next());

}
}

Figure 2: In the first solution to the problem described in
Figure 1, the developer decides not to mark either add or
addAll as open. Thus, when addAll invokes add, the call
is dispatched statically, so that Set’s implementation of
add executes even if a subclass overrides the add method
(Client calls to add are dispatched dynamically as usual).
Thus, subclasses cannot tell if addAll was implemented
in terms of add or not, allowing the maintainer of Set to
change this decision.

when they are invoked by the superclass, and the fragile base
class problem cannot occur.

In our proposal, there are two choices a designer can make
to solve the problem described in Figure 1. In the first solu-
tion, shown in Figure 2, the designer of the Set class has
decided that neither add and addAll are intended to act
as subclass callbacks, and so neither method was annotated
open. In this case, subclasses cannot tell whether addAll is
implemented in terms of add or not, and so the fragile base
class problem cannot arise. Even if addAll calls add on the
current object this, this call will be dispatched statically and
so subclasses cannot intercept it. Note that calls to add from
clients are dispatched dynamically as usual, so that an imple-
mentation of CountingSet can accurately track the element
count simply by overriding both add and addAll.

In the second solution, shown in Figure 3, the designer
of the Set class has decided that add represents a seman-
tic event (adding an element to the set) that subclasses may
be interested in reacting to. The designer therefore annotates
add as open, documenting the promise that even if the im-
plementation of Set changes, the add method will always
be called once for each element added to the set. The imple-
mentor of CountingSet can keep track of the element count
by overriding just the add function. Any changes to the Set
class will not break the CountingSet code, because the im-
plementor of Set has promised that any changes to Set will
preserve the semantics of calls to add.

2.1 Using Selective Open Recursion
With any new language construct, it is important not only

to describe the construct’s meaning but also how to use it ef-
fectively. We offer tentative guidelines for the use of open,
which can be refined as experience is gained with the con-
struct.

We expect that public methods will generally not be
open. The rationale for this guideline is that public meth-
ods are intended for use by clients, not by subclasses. In
general, any internal use of these public methods is probably

public class Set {
List elements;

/* called once for every added element */
public void open add(Object o) {
if (!elements.contains(o))

elements.add(o);
}
public void addAll(Collection c) {
Iterator i = c.iterator();
while (i.hasNext())

this.add(i.next());
}

}

Figure 3: In the second solution to the problem described
in Figure 1, the developer decides that the add method de-
notes a semantic event of interest to subclasses, and there-
fore marks add as open. By doing this, the developer is
promising that any correct implementation of Set will call
add once for each element added to the set. Therefore, a
subclass interested in “add element” events can override
the add method without overriding addAll.

coincidental, and subclasses should not rely on these calls.
There are exceptions—for example, the add method could
be both public and open, depending on the designer’s
intent—but these idioms can also be expressed by having the
public method invoke a protected open method. For
example, instead of making the add method open, the de-
veloper could implement both add and addAll in terms of
a protected, open internalAdd method that serves as
the subclass extension point. Using this protected method
solution is potentially cleaner because it separates the client
interface from the subclassing interface.

On the other hand, we expect that protected methods
will either be final or open. Protected methods are usually
called on the current object this, so overriding them is use-
ful only in the presence of open recursion. Protected meth-
ods that are not intended to represent callbacks or extension
points for subclasses should be marked as final.

Private methods in languages like Java are unaffected by
our proposal; since they cannot be overridden, open recur-
sion is not relevant.

2.2 An Alternative Proposal
The discussion above suggests an alternative proposal: in-

stead of adding a new keyword to the programming lan-
guage, simply use open recursion dispatch semantics for
all (non-final) protected methods and treat all public
methods as if they were non-open. This alternative has the
advantage of simplicity; it takes advantage of common pat-
terns of usage, does not add a new keyword to the language,
and encourages programmers to cleanly separate the public
client interface from the protected subclass interface.

However, there are two disadvantages to the alternative.
If, in addition to performing a service for a client, a public
method also represents an event that subclasses may want
to extend, the programmer will be forced to create an addi-
tional protected method for the subclass interface, creating
a minor amount of code bloat. Furthermore, the proposal
that makes open explicit is a more natural evolutionary path;

28

existing Java code need only be annotated with open (per-
haps with the analysis described in Section 4), whereas in the
alternative proposal public methods that are conceptually
open would have to be re-written as a pair of public and
protected methods.

2.3 Applications to Current Languages
Our proposal extends languages like Java and C# in or-

der to capture more information about how a class can be
extended by subclasses. However, the idea of “open” meth-
ods can also be applied within existing languages, providing
engineering guidelines for avoiding problematic uses of in-
heritance.

The discussion above suggests that developers should
avoid calling public methods on the current object this.
If a public method contains code that can be reused else-
where in the class, the code should be encapsulated in a
protected or private method, and the public method
should call that internal method. This guideline was pre-
viously suggested by Ruby and Leavens [11], and appears
to be common practice within the Java standard library
in any case. For example, the java.util.Vector class
in the JDK 1.4.2 internally calls a protected method,
ensureCapacityHelper, to verify that the underlying
array is large enough—even though the public method
ensureCapacity could be used instead.

Protected methods should be final if they don’t repre-
sent an explicit extension point for subclasses. The author
of a library should carefully document under which circum-
stances non-final protected methods are called, so that sub-
classes can rely on the semantics.

Methodological solutions like this one have the advan-
tage that they do not change the semantics of the language.
However, for a methodology to be effective, it must be fol-
lowed. The advantage of Selective Open Recursion is that
the keyword open encourages developers to make an ex-
plicit choice about the nature of the methods they define,
then enforces that choice naturally through the dispatch se-
mantics o the language. Thus, both the syntax and semantics
of our proposal work together to reinforce good use of inher-
itance, while a methodological solution relies primarily on
programmer discipline, possibly augmented with lint-like
style checkers.

2.4 A Rejected Alternative Design
Based on the insight that the fragile base class problem

arises when open recursion is used unintentionally, there is a
natural alternative design to be considered. In the discussion
above, we chose to annotate methods as being open or not;
an alternative is to annotate call sites as using dynamic or
static dispatch. We rejected this alternative for two reasons.
First, it is a poor match for the design intent, which asso-
ciates a method—not a call site—with a callback or extension
point. Second, because the design intent is typically associ-
ated with methods, it would be very surprising if different
recursive calls to the same method were treated differently.
By annotating the method rather than the call site, our pro-
posal helps developers be consistent.

2.5 Family Polymorphism
The fragile base class problem can be generalized to sets of

classes that are closely related. For example, if a Graph mod-
ule defines classes for nodes and edges, it is likely that the

node and edge class are closely related and will often be in-
herited together. Just as self-calls in an object-oriented setting
can be mistakenly “captured” by subclasses, calls between
node and edge superclasses might be mistakenly captured
by node and edge subclasses.

This paper is primarily focused on the version of the prob-
lem that is restricted to a single subclass and superclass,
in part because the right solution is more clear-cut in this
setting. However, some languages provide first-class sup-
port for extending related classes together through mech-
anisms like Family Polymorphism [6]. In this setting, our
proposal could potentially be generalized to distinguish be-
tween inter-object calls that should be dispatched dynami-
cally and those that should be dispatched statically. Further
work is needed to understand how to apply our proposal ef-
fectively in this setting.

2.6 Pure Methods
A central aspect of our approach is that a class must docu-

ment the circumstances under which all of its open methods
are called internally. As suggested by Ruby and Leavens [11],
it is possible to relax this requirement for pure methods which
have no (visible) side-effects and do not change their result
with inheritance. Since these methods have no effects and
always return the same result, a class can change the way in
which they are called without affecting subclasses. An auxil-
iary analysis or type system could be used to verify that pure
methods have no effects, including state changes (other than
caches), I/O operations, or non-termination.

2.7 Specification and Verification Benefits
We believe that Selective Open Recursion has potential

benefits to formal specification and verification techniques.
Intuitively, reasoning about non-openmethods is easier than
reasoning about open methods, since calls to open methods
on this must be formally treated as callbacks to methods
of a subclass. Reasoning about code with callbacks to an
unknown function defined in a subclass is inherently more
challenging than analyzing a locally-defined set of functions,
because the analysis results will be dependent or parame-
terized by the behavior of that function. By making open
recursion selective, our technique can reduce the number of
callbacks that formal verification techniques must confront.
We are currently working to make these intuitions more pre-
cise by proving a representation independence theorem in a
formal model of selective open recursion.

3. Implementation and Analysis
We have implemented Selective Open Recursion as an ex-

tension to the Barat Java compiler [3]. Our implementation
strategy leaves open methods and private methods un-
changed. For each non-open public/protected method
in the source program, we generate another protected
final method containing the implementation, and rewrite
the original method to call the new method. We leave all calls
to open methods unchanged, as well as all calls to methods
with a receiver other than this. For every call to a non-
open method that has this as the receiver, including implicit
uses of this but not other variables aliased to this, we call
the corresponding implementation method, thus simulating
static dispatch.

Our implementation of Selective Open Recursion is avail-
able at http://www.archjava.org/ as part of the open

29

source ArchJava compiler.

3.1 Inference of Open Recursion
In order to ease a potential transition from standard Java

or C# to a system with Selective Open Recursion, we have
implemented an analysis that can automatically infer which
methods must be annotated with open in order to preserve
the original program’s semantics. Of course, our system is
identical to Java-like languages if every method is open, so
the goal of the analysis is to introduce as few open anno-
tations as possible. Extra open annotations are problematic
because they create the possibility of using open recursion
when it was not intended, thus triggering fragile base class
problems like the example above. In general, no analysis
can do this perfectly, because the decision to make a method
open is a design decision that may not be expressed explic-
itly in the source code. However, an analysis can provide
a reasonable (and safe) default that can be refined manually
later.

In order to gain precision, our analysis design assumes
that whole-program information is available. A local ver-
sion of the analysis could be defined, but it would have to
assume that every method called on this is open, because
otherwise some unknown subclass could rely on the open
recursion semantics of Java-like languages. This assumption
would be extremely conservative, so much so that it would
be likely to obscure any potential benefits of Selective Open
Recursion.

Our analysis design examines each public and
protected method m of every class C. The program
potentially relies on open recursion for calls to m whenever
there is some method m

′ in a class C
′
≤ C that calls m on

this, and some subclass C
′′ of C

′ overrides m, and that
subclass either doesn’t override m

′ or makes a super call
to m

′. The analysis conservatively checks this property,
and determines that the method should be annotated open
whenever the property holds.

3.2 Experiments
We have applied our analysis to a large portion of the

Java library, namely all of the packages starting with java
except for java.nio (which was more difficult to compile
due to the code generation that is used in that package), and
java.sql (which triggered a bug in our implementation).
We used the JDK 1.4.2 as our codebase.

A threat to validity of this experiment is that a true deter-
mination of which methods might be open would have to
make a closed world assumption, implicitly considering all
possible clients of the library. The library developer might
have created “hook” methods for use by future clients that
are self-called and ought to be open, but which are not over-
ridden within the library. Our analysis will not catch these
methods as being open. However, we believe that because
there is substantial use of inheritance and overriding within
the library, our analysis should find most of the relevant open
methods.

Open Annotations. There are 9897 method declarations in
the portion of the standard library that we analyzed. Of
these, we determined that only 246 would require open an-
notations in our system to preserve the current semantics of
the standard library. This is a small fraction (less than 3%) or
the methods in the library, suggesting that open annotations

would be infrequently needed in practice.
In principle, it is possible that open annotations would not

be needed on a codebase because that codebase was not mak-
ing use of inheritance in any case. In fact, however, we found
1394 of the methods in the standard library are actually over-
ridden, indicating substantial though not ubiquitous use of
inheritance. The 246 open methods still make up less than
18% of the methods that were overridden.

The evidence that few open annotations are needed in
practice supports the utility of Selective Open Recursion.
Calling patterns within a class can be easily changed if few of
that class’s methods are open. In order to support correct us-
age of inheritance it is important that the ways in which open
methods are called are documented [8, 12, 11], and so having
fewer open methods lessens the documentation burden on
implementors.

Optimization Potential. Since having few “open” anno-
tations makes it easier for developers to reason about cor-
rectness of changes to a class, it is natural to expect that
it might aid in automated reasoning—such as for compiler
optimizations—as well. We tested this hypothesis on the
same part of the Java library by looking at the potential for
method inlining. We found that the library contains 22339
method calls, of which 6852 were self-calls. Only 716 of these
self-calls were to open methods, meaning that they need to
be dynamically dispatched. The remaining 6136 calls could
potentially be inlined in a system with Selective Open Re-
cursion. In standard Java, however, it would be unsafe in
general to inline these calls, as Java treats all methods as im-
plicitly open.

This data indicates that Selective Open Recursion allows
27% of all method calls in the libraries analyzed to be in-
lined. It is possible that some of these calls could already
have been inlined because the target method is private or
final, however. We are currently working to gather data
that will tell us the true increase in optimization potential.

A whole program analysis could catch many of the opti-
mization opportunities that Selective Open Recursion does,
simply by observing that a particular program does not use
all of the open recursion that Java supports. Whole program
optimization of Java programs is complicated, however, be-
cause many programs load code dynamically, and this code
could invalidate optimizations such as inlining. Because our
Selective Open Recursion proposal changes the semantics of
dispatch so that subclasses cannot intercept non-open self
calls, it enables optimizations like inlining without the need
for whole-program information.

4. Related Work
A significant body of related research focuses on docu-

menting the dependencies between methods in a specializa-
tion interface. Kiczales and Lamping proposed that a method
should document which methods it depends on, so that sub-
classes can make accurate assumptions about the superclass
implementation [8]. Steyaert et al. propose a similar ap-
proach in a more formal setting [12]. Ruby and Leavens
suggest documenting method call dependencies as part of a
broader focus on modular reasoning in the presence of inher-
itance [11]. They also document a number of design guide-
lines that are applicable to the setting of Selective Open Re-
cursion.

A common weakness of the “dependency documentation”

30

approaches described above is that they solve the fragile
base class problem not by hiding implementation details,
but rather by exposing them. Since the calling patterns of
a class are part of the subclassing interface—and since sub-
classes may depend on them—making significant changes to
the implementation of the class become impossible. Steyaert
et al. acknowledge this and suggest documenting only the
“important method calls,” but the fragile base class problem
can still occur unless unimportant method calls are hidden
from subclasses using a technique like ours. Our work re-
quires that calling patterns be maintained for calls to open
methods, but does not impose this requirement for non-open
methods, allowing a much wider range of implementation
changes.

Bloch, Szyperski, and others suggest using forwarding in
place of inheritance as a way of avoiding the fragile base class
problem [2, 13]. However, as Szyperski notes, not all uses of
inheritance can be replaced by forwarding because open re-
cursion is sometimes needed [13]. Selective Open Recursion
provides a middle ground between inheritance and forward-
ing, providing open recursion when it is needed but the more
modular forwarding semantics where it is not.

Mikhajlov and Sekerinski consider a number of different
ways in which an incorrect use of inheritance can break a re-
finement relationship between a class and its subclasses [9].
They prove a flexibility theorem showing that under cer-
tain conditions, when a superclass C is replaced with a new
implementation D, then C’s subclasses still implement re-
finements of the original implementation C. Their results,
however, do not appear to guarantee that the semantics of
C’s subclasses are unaffected by the new implementation D,
which is the contribution of our work.

Our use of static dispatch for calls on this is related to
the freeze operator provided by module systems such as Jig-
saw [4]. The freeze operation statically binds internal uses of
a module declaration, while allowing module extensions to
override external uses of that declaration. The freeze oper-
ator, however, has not been previously proposed as a solu-
tion to the fragile base class problem, nor (to our knowledge)
has it previously been integrated into an object-oriented lan-
guage implementation.

Some languages, including C++, provide a way to stati-
cally call a particular implementation of a method [5]. While
this technique can be used as an implementation strategy for
our proposal, we believe it is cleaner to associate “open-ness”
with the method that is called rather than the call site, as dis-
cussed earlier.

Our solution to the fragile base class problem was in-
spired by our earlier work on a related modularity problem
in aspect-oriented programming [1]. Just as a CountingSet
subclass of Set can observe whether addAll is imple-
mented in terms of add, a Counting aspect can be defined
that uses advice to make the same observation. Our solu-
tion there was to prohibit aspects from advising internal calls
within a class or module—just as we solve the fragile base
class problem by using static dispatch to prevent subclasses
from intercepting implementation-dependent calls in their
superclass. In the aspect-oriented setting, we allow modules
to export pointcuts that act as disciplined extension points,
similar to open methods.

Relative to previous work, ours is the first to address the
fragile base class problem by distinguishing methods for
which open recursion is needed from methods for which it

is not.

5. Conclusion
This paper argued that the fragile base class problem oc-

curs because current object-oriented languages do not dis-
tinguish internal method calls that are invoked for mere con-
venience from those that are invoked as explicit extension
points for subclasses. We proposed to make this distinction
explicit by labeling as open those methods to which open re-
cursion should apply. Our results mean that object-oriented
component library designers can freely change more aspects
of a library’s implementation without the danger of breaking
subclass code.

6. Acknowledgments
We thank Craig Chambers, Donna Malayeri, Todd Mill-

stein, Frank Pfenning, and the anonymous reviewers for
their feedback on earlier drafts of this material.

7. References
[1] J. Aldrich. Open Modules: A Proposal for Modular

Reasoning in Aspect-Oriented Programming. In AOSD
Workshop on Foundations of Aspect Languages, March
2004.

[2] J. Bloch. Effective Java. Addison-Wesley, Reading,
Massachusetts, 2001.

[3] B. Bokowski and A. Spiegel. Barat–A Front-End for
Java. Freie Universitt Berlin Technical Report B-98-09,
1998.

[4] G. Bracha. The Programming Language Jigsaw: Mixins,
Modularity and Multiple Inheritance. Ph.D. Thesis,
Dept. of Computer Science, University of Utah, 1992.

[5] M. A. Ellis and B. Stroustrup. The Annotated C++
Reference Manual. Addison-Wesley, Reading,
Massachusetts, May 1990.

[6] E. Ernst. Family Polymorphism. In European Conference
on Object-Oriented Programming, June 2001.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

[8] G. Kiczales and J. Lamping. Issues in the Design and
Documentation of Class Libraries. In Object-Oriented
Programming Systems, Languages, and Applications, 1992.

[9] L. Mikhajlov and E. Sekerinski. A Study of the Fragile
Base Class Problem. In European Conference on
Object-Oriented Programming, 1998.

[10] D. L. Parnas. On the Criteria to be Used in
Decomposing Systems into Modules. Communications of
the ACM, 15(12):1053–1058, December 1972.

[11] C. Ruby and G. T. Leavens. Safely Creating Correct
Subclasses without Seeing Superclass Code. In
Object-Oriented Programming Systems, Languages, and
Applications, October 2000.

[12] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse
Contracts: Managing the Evolution of Reusable Assets.
In Object-Oriented Programming Systems, Languages, and
Applications, October 1996.

[13] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. ACM Press and
Addison-Wesley, New York, NY, 1998.

31

CTL Model-checking for Systems with
Unspecified Components

�

[Extended Abstract]

Gaoyan Xie and Zhe Dang
School of Electrical Engineering and Computer Science
Washington State University, Pullman, WA 99164, USA

� gxie,zdang � @eecs.wsu.edu

ABSTRACT
In this paper, we study a CTL model-checking problem for sys-
tems with unspecified components, which is crucial to the quality
assurance of component-based systems. We introduce a new ap-
proach (called model-checking driven black-box testing) that com-
bines model-checking with traditional black-box software testing to
tackle the problem in an automatic way. The idea is, with respect to
some requirement (expressed in a CTL formula) about the system,
to use model-checking techniques to derive a condition (expressed
in terms of witness graphs) for an unspecified component such that
the system satisfies the requirement iff the condition is satisfied by
the component. The condition’s satisfiability can be established by
testing the component. Test sequences are generated on-the-fly by
traversing the witness graphs with a bounded depth. With a prop-
erly chosen bound, a complete and sound algorithm is immediate.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Formal methods, Model-checking; D.2.5 [Software Engineering]:
Testing/Debugging—Black-box testing; F.4.1 [Mathematic Logic
and Formal Languages]: Mathematical Logic—Temporal Logic

General Terms
Verification, Component-based systems

Keywords
Component-based systems, Model-checking, Black-box testing

1. INTRODUCTION
Although component-based software development [22, 6] enjoys

the great benefits of reusing valuable software assets, reducing de-
velopment costs, improving productivity, etc., it also poses serious
�
The research was supported in part by NSF Grant CCF-0430531.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

challenges to the quality assurance problem [3, 27] of component-
based systems. This is because prefabricated components could be
a new source of system failures. In this paper, we are interested in
one problem that system developers often face:

(*) how to ensure that a component whose design de-
tail and source code are unavailable will function cor-
rectly in a host system.

This is a rather challenging problem and yet to be handled in a satis-
fying way by available techniques. For instance, in practice, testing
is almost the most natural resort to solve the problem. When inte-
grating a component into a system, system developers may either
choose to thoroughly test the component separately or to hook the
component with the system and conduct integration testing. How-
ever, software components are generally built with multiple sets of
functionality [17], and indiscriminately testing all the functional-
ity of a software component separately is not only expensive but
also infeasible. Also, integration testing is often not applicable in
applications where software components are used for dynamic up-
grading or extending a running system [32] that is too costly or not
supposed to shut down for testing at all. Even without the above
limitations, purely testing techniques are still considered to be in-
sufficient to solve the problem for mission-critical or safety-critical
systems where formal methods like model-checking are highly de-
sirable. But, it is very common that design details and source code
of an externally obtained component are not available to the devel-
opers of its host system. This makes existing formal verification
techniques (like model-checking) not directly applicable to these
cases.

In this paper, we study how to extend CTL model-checking tech-
niques to solve the problem in (*). Specifically, we consider sys-
tems with only one such unspecified component. Denote such a
system as �����	��
������� , where � is the host system and �
is an unspecified component. Both � and � are finite-state tran-
sition systems (the actual specification of � is unknown), which
communicate with each other by synchronizing a finite set of given
input and output symbols. Then our problem can be further formu-
lated as to check whether
��������� ��� holds, where � is a CTL
formula specifying some requirement for ����� .

Our approach to solve the above model-checking problem is a
combination of both model-checking and traditional black-box test-
ing techniques (called model-checking driven black-box testing).
First, a model-checking procedure is used to derive from � and �
a condition � over the unspecified components � . The condition
� guarantees that the system ����� satisfies the requirement � iff
� is satisfied by � . The satisfiability of the condition � over the
unspecified component � is then checked through adequate black-

32

box testing on � with test-cases generated automatically from � .
Our study shows that the obtained condition � is in the form of a hi-
erarchy of communication graphs (called a witness graph), each of
which is a subgraph of � . Test-cases can be generated by travers-
ing witness graphs when the unspecified component � is a finite
or infinite state system. In particular, when � is a finite state sys-
tem (� is an upper bound of its state number), our study shows that
traversing the witness graphs up to a depth bounded by

������� �	� ��
�
is sufficient to answer the model-checking query, where

�
is the

number of CTL operators in the formula � and
�

is the state num-
ber in the host system � . Thus, in this case, with a properly chosen
search depth, a complete and sound solution is immediate.

The advantages of our approach are obvious: a stronger confi-
dence about the reliability of the system can be established through
both model-checking and adequate functional testing; system de-
velopers can customize the testing of a component with respect to
some specific system properties; intermediate model-checking re-
sults (the witness graphs) for a component can be reused to avoid
(repetitive) integration testing when the component is updated, if
only the new component’s interface remains the same; the whole
process can be carried out in an automatic way.

The rest of this paper is organized as follows. Section 2 defines
the system model and introduces some background on black-box
testing. Section 3 presents algorithms for deriving the condition
as well as testing the condition over the unspecified component.
Section 4 compares our research with some related work. Section
5 concludes the paper with discussions on issues to be solved in the
future.

Due to space limit, details of most algorithms are omitted in this
extended abstract. Readers can find the full version of this paper at
http://www.eecs.wsu.edu/ � gxie/.

2. PRELIMINARIES

2.1 The System Model
In this paper, we consider systems with only one unspecified

component, which is denoted by

����� �
� � ��� �
where � is the host system and � is the unspecified component.
Both � and � are finite-state transition systems communicating
synchronously with each other via a finite set of input and output
symbols.

Formally, the unspecified component � is viewed as a determin-
istic Mealy machine whose internal structure is unknown (but an
implementation of � is available for testing). We write � as a
triple
�� ������� � , where � is the set of � ’s input symbols, � is the
set of � ’s output symbols, and � is an upper bound for the number
of states in � (the � is given). Upon receiving an input symbol,
� may perform some internal actions, move to a new state, and
then send back an output symbol immediately. Assume that � has
an initial state ��������� and � is always in this initial state when the
system starts to run. A run of � is a sequence of alternating sym-
bols in � and � : ������� �	!��"!�#$#%# , such that, starting from the initial
state �&�%�'�%� , � outputs exactly the sequence � � � ! #$#$# when it is given
the sequence ��� �	!�#$#$# as input. In this sense, we say that the input
sequence is accepted by � .

The host system � is defined as a (-tuple

����) ��*,+ ��- ��*/.103242 �65 �
where

7 � is a finite set of states;

7) is a finite set of events;

7 * + ��-98 �;:<)=: � defines a set of environment transitions,
where

� � �6> � ��?@�9AB* + �'- means that � moves from state �
to state ��? upon receiving an event (symbol) >CA=) from the
outside environment;

7 * .103242 8 �D:E�F:;�G: � defines a set of communica-
tion transitions where

� � ��� �6� � ��?H�IAJ* .103242 means that �
moves from state � to state � ? when � outputs a symbol
�KA�� after � sends � an input symbol �;AC� ; and,

7 5L8 � defines � ’s initial states.

Without loss of generality, we further assume that, there is only one
transition between any two states in � (but in general, � could
still be nondeterministic).

An execution path of the system ��� � �
��� � � is a (potentially
infinite) sequence M of states and symbols, � �ONO� � !�N! #$#$# , where each
� � A � , each N � is either a symbol in) or a pair � � � � (called a
communication) with ���PAQ� and �R�PA�� . Additionally, M satisfies
the following requirements:

7 � � is an initial state of � , i.e., � � AS5 ;

7 for each N �PAQ) ,
� ��� � N � � ���@T ! � is an environment transition of

� ;

7 for each N � �U���V��� , � ��������� �6����� ����T ! � is a communication
transition of � .

The communication trace of M , denoted by M W , is the sequence
obtained from M by retaining only symbols in � and � (i.e., the
result of projecting M onto � and �). For any given state �<A � ,
we say that the system ����� can reach � iff ����� has an execution
path M on which � appears and M W (if not empty) is also a run of � .
In the case when � is fully specified, the system can be modeled
as an I/O automaton [26] (which is not input-enabled) or as two
interface-automata [10]. In the latter case, the state number � can
also be considered as the number of states in an interface automaton
of � (instead of the state number in � itself).

s0 s1 s2

ack/yes

msg?

msg?

msg?

send/yes

s4 ack/yes

send/no

s3

Figure 1: An example system

As an illustrating example, consider a system ��� � �
��� � �
where the host system � keeps receiving messages from the out-
side environment and then sends the message through the unspeci-
fied component � . The only event symbol in � is � �OX , while �
has two input symbols ��Y �[Z and > N � that make � send a message
and ask � for an acknowledge respectively. � also has two output
symbols �\Y � and

�[]
that indicate whether the internal actions re-

lated with a previous input symbol succeeded or not (i.e., whether
a message is sent and whether an ack is available). The transition
graph of � is depicted in Figure 1 where we use a suffix ^ to de-
note events from the outside environment (e.g., msg?), and use an
infix _ to denote communications of � with � (e.g., �&Y �[Z _ �\Y �).

33

2.2 Black-box Testing
Black-box testing is a technique to test a system without knowing

its internal structure. A system is regarded as a “black-box” in
the sense that its behaviors can only be determined by observing
its implementation’s the input/output sequences, and a test over a
black-box is simply to run its implementation with a given input
sequence.

Studies [33] have shown that if only an upper bound for the num-
ber of states in the system and the system’s input/output symbols
are known, then its (equivalent) internal structure can be recovered
through black-box testing. Clearly, a naive solution to the CTL
model-checking problem over the system ����� is to first recover the
full structure of the component � through black-box testing, and
then solve the classic model-checking problem over the fully speci-
fied system composed from � and the recovered � . Notice that, in
the naive solution, when black-box testing is performed over � , the
selected test sequences have nothing to do with the host system � .
Therefore, it is desirable to find more sophisticated solutions such
as the algorithms introduced in below, which only select “useful”
test sequences w.r.t. the � as well as its temporal requirement.

The unspecified component � in this paper can be treated as
a black-box. And as a common practice in black-box testing, �
is assumed to always have a special input symbol ��Y ��Y � which
always makes it return to the initial state �&�%�'�%� regardless of its
current state. Throughout this paper, we use ������Y��	���SY � � to de-
note a test over the unspecified component � . Specifically, we use
�����RY
�����CY � � � � ���'Y ��Y �� � to denote the output sequence obtained
by testing � with the input sequence �'Y ��Y �� (i.e., run � from its
initial state with input sequence

). Suppose after testing � with

the input sequence ��Y ��Y �� , we continue to run � by feeding it with
an input symbol � . Corresponding to this � , we may obtain an out-
put symbol � from � , and we use ������Y������SY � � � � �1��� to denote
this � . Notice that this ������Y������SY � � � � �1��� is actually a shorthand
for “the last output symbol in ������Y��	���CY � � � � ����Y ��Y �� � � ”.

3. CTL MODEL-CHECKING DRIVEN
BLACK-BOX TESTING

In this section, we introduce algorithms for CTL model-checking
driven black-box testing for the system ����� �
� � ��� .

3.1 Ideas
Recall that the CTL model-checking problem is, for a Kripke

structure � � � ����* ���	� , a state �&�QA�� , and a CTL formula � ,
to check whether � � � � � � � holds. The standard algorithm [9] to
solve this problem operates by exhaustively searching the structure
and, during the search, labeling each state � with the set of subfor-
mulas of � that are true at � . Initially, labels of � are just � � �&� .
Then, the algorithm goes through a series of stages—during the � -
th stage, subformulas with the

� ������� -nested CTL operators are
processed. When a subformula is processed, it is added to the la-
bels of each state where the subformula is true. When all the stages
are completed, the algorithm returns

� �	�RY when �&� is labeled with
� , or � >�� �&Y otherwise.

However, for a system like ����� that contains an unspecified
component, the standard algorithm does not work, since transitions
of the host system � may depend on communications with the un-
specified component � , which cannot be statically resolved. For
instance, for the system depicted in Figure 1, a simple check like

� � ��� � �'! � ��� ���
 (i.e., whether �
 is reachable from � !) can-
not be done by the standard algorithm. In this section, we adapt the
standard CTL model-checking algorithm [9] to handle systems like

����� ; i.e., to check whether

������� � ��� � � � (1)

holds, where � � is an initial state in � and � is a CTL formula.
Our new algorithm follows a similar structure to the standard

one. It also goes through a series of stages to search � ’s state
space and label each state during the search. The labeling of a
state, however, is far more complicated when processing a subfor-
mula during each stage. The central idea of our algorithm can be
summarized as follows. When the truth of a subformula � at a state
� cannot be statically decided (due to communications), we con-
struct some communication graph (called a witness graph, written
as ���!) by picking up all the communications that shall witness the
truth of � at state � and then label � with the witness graph. The
witness graph serves as a sufficient and necessary condition for �
to be true at � , and this condition shall be later evaluated by testing
the unspecified component � .

Actually, we do not have to construct one witness graph for ev-
ery subformula at every state. Instead, we construct one witness
graph only for a subformula � that contains a CTL operator, and
this witness graph encodes all the witnesses (communications) to
the truth of the formula at every state in � . Thus, totally we shall
construct

�
witness graphs where

�
is the number of CTL operators

in � , and we associate each witness graph with a unique ID number
that ranges from " to

�$# � . Let % be the mapping from the witness
graphs to their IDs; i.e., % � ���! �� denotes the ID number of � ’s wit-
ness graph, and %'& ! � � � denotes the witness graph with � as its ID
number, ")(*�$(��# � . Notice that the witness graph to different
CTL operators shall be evaluated differently, so we call ���! as an
EX graph, an EU graph, or an EG graph when � takes the form of
� � X , �,+ X !.-;X

/
, or �10;X , respectively.

Specifically, we label a state � with � (resp. nothing) if � is
true (resp. false) at � regardless of the communications between
� and � . Otherwise, we shall label � with ���2% � ���! �� when
� takes the form of � � X , �,+ X\!3- X

/
, or �40 X , which means

that � could be true at � and the truth would be witnessed by some
(communication) paths starting from � in % � ���! �� . When � takes the
form of a Boolean combination of subformulas using 5 and 6 , the
truth of � at state � shall also be a logic combination of the truths of
its component subformulas at the same state. To this end, we shall
label � with an ID expression 7 defined as follows:

7 598;: �<� �
" ��#�# # � ��# � ;
7 7=: � 598 �
5>7 �?7@6A7 .

Let B denote the set of all ID expressions. For each subformula � ,
in addition to the possible witness graph of � , we also construct a
labeling (partial) function �DC): �FEGB to record the ID expression
labeled to each state during the processing of the subformula � . The
labeling function is returned when the subformula is processed.

In summary, our new algorithm to solve the model-checking
problem
��� ��� � �&� � ��� can be sketched as follows:

Procedure HI�RY N � HKJK� � � � � � �&� � ���
��LM: � �I�] N Y � �
HKJK� � ��� ���
If � � is labeled by �DL Then

If ��L � � � � �<� Then
Return

� �	��Y ;
Else

Return J Y � �ON 0 � � ���'Y ��Y � � � � ���DL � � � ��� ;
Else

Return � >P� ��Y .

34

In the above algorithm, a procedure �I�] N Y � �
HKJK� (will be intro-
duced in Section 3.2) is called to process all subformulas of � , and
it returns a labeling function �DL for the outer-most subformula (i.e.,
� itself). The algorithm returns

� ����Y when �� is labeled with � by
��L or � >P� ��Y when � � is not labeled at all. In other cases, a proce-
dure J,Y � �ON 0 (will be introduced in Section 3.3) is called to test
whether the ID expression �DL � ���&� could be evaluated true at ��� .
3.2 Process a CTL Formula

Processing a CTL formula � is implemented through a recur-
sive procedure �I�] N Y � �
HKJK� . Recall that any CTL formula can
be expressed in terms of 6 , 5 , � � , �1- , and �40 . Thus, at each
intermediate step of the procedure, depending on whether the for-
mula � is atomic or takes one of the following forms: X ! 6LX
 , 5 X ,
� � X , �,+ X ! - X

/
, or �40 X , the procedure has six cases to con-

sider. When it finishes, a labeling function � C is returned for the
formula � .

3.2.1 Process atom
When � is an atomic formula, �I�] N Y � �
HKJK� simply returns a

function that labels each state where � is true with � .
3.2.2 Process negation

When � � 5�X , we first process X by calling �I�] N Y � �
HKJK� , then
construct a labeling function �DC for � by “negating” X ’s labeling
function � � as follows:

7 For every state � that is not in the domain of � � , let ��C label
� with � ;

7 For each state � that is in the domain of � � but not labeled
with � by � � , let �DC label � with ID expression 5>� � � �� .

3.2.3 Process union
When � � X ! 6QX
 , we first process X ! and X
 respectively by

calling �I�] N Y � �
HKJK� , then construct a labeling function � C for �
by “merging” X ! and X
 ’s labeling functions � ��� and � ��� as fol-
lows:

7 For each state � that is in both � ��� ’s domain and � ��� ’s do-
main, let ��C label � with � if either � ��� or � ��� labels � with
� and label � with ID expression � ��� � �&� 6�� ��� � �� otherwise;

7 For each state � that is in � ��� ’s domain (resp. � ��� ’s domain)
but not in � ��� ’s domain (resp. � ��� ’s domain), let � label �
with � ��� � �&� (resp. � ��� � �&�).

3.2.4 Process an EX subformula
When ��� � �FX , subformula X is processed first by recursively

calling �I�] N Y � �
HKJK� . Then, the procedure �I�] N Y � �
� � is called
with X ’s labeling function � � to create a witness graph for � and to
construct a labeling function � C .

In �I�] N Y � ����� , the witness graph for ��� � � X , called an � �
graph, is created as a triple: ���� �
 � �O� �O� � � , where

�
is a set of

nodes and � is a set of annotated edges. It is created as follows:

7 Add one node to
�

for each state that is in the domain of � � .

7 Add one node to
�

for each state that has a successor in the
domain of � � .

7 Add one edge between two nodes in
�

to � when � has a
transition between two states corresponding to the two nodes
respectively; if the transition involves a communication with
� then annotate the edge with the communication symbols.

The labeling function �DC is constructed as follows. For each
state � that has a successor � ? in the domain of � � , if � can reach
� ? through an environment transition and ��? is labeled with � by
� � then let � C also label � with � , otherwise let � C label � with
% � ���� O� .
3.2.5 Process an EU subformula

The case when � � �,+ X ! -BX

/

is more complicated. We first
process X\! and X
 respectively by calling �I�] N Y � �
HKJK� , then call
the procedure �I�] N Y � �
�1- with X ! and X
 ’s labeling functions � ���
and � ��� to create a witness graph for � and to construct a labeling
function �DC .

In �I�] N Y � ���1- , the witness graph for �	� �,+ X ! - X

/
, called

an EU graph, is created as a � -tuple: ���! : �
 � ��� ��� ��� �O� ��� � ,
where

�
is a set of nodes and � is a set of edges.

�
is constructed

by adding one node for each state that is in the domain of �DC , while
� is constructed in the same way as that of �I�] N Y � ��� � .

We construct the labeling function �$C recursively. First, let �DC
label each state � in the domain of � ��� with � ��� � �&� . Then, for
state � that has a successor � ? in the domain of � C , if � (resp. � ?)
is labeled with � by � ��� (resp. �DC) and � can reach ��? through an
environment transition, then let �DC also label � with � , otherwise
let �DC label � with % � ���! �� . Notice that, in the latter step, if a state �
can be labeled with both � and % � ���! �� , let �DC label � with � . Thus,
we can guarantee that the constructed �$C is indeed a function.

3.2.6 Process an EG subformula
To handle formula � � �40FX , we first process X by calling

�I�] N Y � �
HKJK� , then call the procedure �I�] N Y � ���40 with X ’s la-
beling function � � to create a witness graph for � and to construct
a labeling function �DC .

In �I�] N Y � ���10 , the witness graph for � , called an EG graph, is
created as a triple: ���! 1: �
 � �O� �O� � � , where

�
is a set of nodes

and � is a set of annotated edges. The graph is constructed in the
same way as that of �I�] N Y � ���1- .

The labeling function � C is constructed as follows. For each
state � that can reach a loop H through a path � such that every
state (including �) on � and H is in the domain of � � , if every state
(including �) on � and H is labeled with � by � � and no communi-
cations are involved on the path and the loop, then let �DC also label
� with � , otherwise let �DC label � with % � ���� O� .
3.3 Evaluate an ID Expression

As seen from the previous subsection, the �I�] N Y � �
HKJK� proce-
dure labels states with ID expressions for each subformula � , which
are essentially conditions under which the subformula � is true at
a state. Also, as seen in Section 3.1, the HI�RY N � HKJK� procedure
either gives a definite

� ����Y or � >P� ��Y answer to the CTL model-
checking problem, i.e.,
��� � � � � � � � � , or it reduces the problem
to checking whether the ID expression 7 � �DL � ����� can be eval-
uated true at state � � . The evaluation is carried out by a recursive
procedure J Y � ��N 0 , which is essentially a testing process.

According to the definition of an ID expression, J Y � ��N 0 only
needs to consider six cases. When the ID expression 7 is the value
� , J,Y � �ON 0 returns

� ����Y ; when 7 � 5 7 ! , J Y � ��N 0 returns
� >P� ��Y (resp.

� ����Y) if 7 ! is evaluated true (resp. false) at � � ; when
7 � 74! 6@7
 , J,Y � �ON 0 returns

� ����Y if either 74! or 7
 can be
evaluated true at � � , and returns � >P� ��Y if neither can be evaluated
true at �&� . The remaining three cases are when 7 represents an EX
graph, an EU graph, or an EG graph. We discuss the evaluation for
these three cases as follows.

3.3.1 Evaluate an EX graph

35

To check whether an EX graph 0 �
 � �O� �O� � � can be evalu-
ated true at a state �&� is simple. We just test whether the system �
can reach from � � to another state � ?PA������ � � � � along one edge
in 0 such that the ID expression � � � � ? � can be evaluated true at � ? .
3.3.2 Evaluate an EU graph

To check whether an EU graph 0 �
 � �O� �O� ��� �O� ��� � can be
evaluated true at a state � � , we need to traverse all paths � in 0
with length less than � �

,1 and test the unspecified component �
to see whether the system can reach some state ��? A������ � � ��� �
through one of those paths. In here, � is the given upper bound
for the number of states in the unspecified component � and

�
is

the number of nodes in 0 . In the meantime, we should also check
whether � ��� � � ? � can be evaluated true at � ? and whether � ��� � � � �
can be evaluated true at �&� for each ��� on � (excluding � ?) by calling
J Y � �ON 0 .

3.3.3 Evaluate an EG graph
To check whether an EG graph 0 �
 � �O� �O� � � can be eval-

uated true at a state � � , we need to find an infinite path in 0 ,
along which the system can run forever. The following procedure
J Y � � �40 first decomposes 0 into a set of SCCs. Then, for each
state � L in the SCCs, it calls another procedure � ��� J,Y � � �40 to test
whether the system can reach ��L from � � along a path not longer
than � �

,1 as well as whether the system can further reach � L from
�
L for � �=� times1. Here, � is the same as before while

�
is the

number of nodes in 0 .

Procedure J Y � � �40 � � � � ��� � 0��
 � � � ��� � ���
�.H�H : � � H � H is a nontrivial SCC of 0 � ;
J�: �
	��������� � � � � A@H � ;
For each � AAJ Do

������Y������CY � � � � ���'Y ��Y �� � ;
If �>��� J Y � � �40 � � � � � � � � � 0 �O�VY�� Y
� ��� � N] � � � ��� � ;

Return
� ����Y ;

Return � >P� ��Y .

The maximal length of the paths that the above evaluation pro-
cess shall traverse depends on how many witness graphs are in-
volved in an ID expression, the sizes of the witness graphs, and the
number of states of the unspecified component. One can show that
the maximal length is bounded by

�����<�'�=� ��
O� , where
�

is the
number of CTL operators in the formula � , � is the upper bound
for the number of states in the unspecified component � , and

�
is

the number of states in the host system � .

3.4 Example
To better understand how our algorithms work, consider such a

model-checking problem for the system depicted in Figure 1: start-
ing from the initial state � � , whenever the systems reaches state �
 ,
it would eventually reach ��� ; i.e., the problem is to check whether� � � ��� � � � � �
�I0 � �
 E���� � � � holds. Taking the negation of the
original problem, we describe how the problem

� ��� �Q� � �� � � � ,
where � � �,+ � �	�RY - � �
�� �40�5 � � �

/
is solved by our algorithms.

Step 1. Atomic subformula �
 (in �) is processed by Process-
CTL, which returns a labeling function � ! � � � �
 � �&� � .

Step 2. Atomic subformula � � is processed by ProcessCTL,
which returns a labeling function �
 �

� � ��� � �&� � .
Step 3. Subformula 5 � � is processed by

� Y X > � �]�� (see Section
3.2.2), which returns a labeling function ��� � � � ��� �?��� � � � ! �?�&� �� �
 �?��� �

� �� �?��� � .
1Since the unspecified component � is treated as a finite state tran-
sition system, these bounds can be easily obtained from a Cartesian
product of � and � .

Step 4. Subformula �10�5 ��! is processed by �I�] N Y � �
�40 (see
Section 3.2.6), which constructs an EG graph 0 ! �
 � �O� �O��� �
with an ID " (see Figure 2) and returns a labeling function �" �� � ��� � "�� � � �'! � "'� � � �
 � "'� � .

s0 s1 s2send/yes

Figure 2: The witness graph for �10�5 � !

Step 5. Subformula �
 � �40�5 ��� is processed by
� Y�X > � �]�

and - � �]�� (see Section 3.2.3), which return a labeling function
��# � � � �
 �O"'� � .

Step 6. Finally, the formula �,+ � ����Y1- � �
$� �40�5 � � �
/

is pro-
cessed by procedure �I�] N Y � ���1- (see Section 3.2.5), which con-
structs an EU graph 0
 �
 � �O� �O� �&%(' + �O� # � 2 with an ID) (see
Figure 3) and returns a labeling function �DL	� � � � � �() � � � � ! �()'� �� �
 �()'� �

� ��� �() � � � � �()'� � .

s0 s1 s2

ack/yes

send/yes

s4 ack/yes

send/no

s3

Figure 3: The witness graph for �,+ � ����Y - � �
�� �40�5 � � �
/

When �I�] N Y � �
HKJK� finishes, �&� is labeled by ��L with an ID
expression) instead of � (i.e.,

� �	�RY). This indicates that the original
model-checking problem can not be statically decided and its truth
depends on a condition that the ID expression) be evaluated true at
� � . Hence, procedure J Y � �ON 0 must be called to test the condition
as follows.

Step 7. The ID expression) is evaluated by �*� >P� � > � Y
�M- since
the witness graph with ID) , 0
 constructed in Step 6, is an EU
graph.

Step 8. �+� >P� �R> � Y
�1- traverses every path � of 0
 that is be-
tween � � and some state in the domain of �"# (recall that �"# is the
fourth component of 0
 in Step 6 and �
 is the only state in its
domain) to see:

7 Whether the annotations (communication symbols) on � con-
stitute a run of the unspecified component � . For instance,
if ����� � � ! �
 � ! � � � ! �
 , then we need to test the “black-box”
� with an input sequence “ ��Y �[Z > N � ��Y �[Z ” to see whether
the corresponding output sequence is “ �\Y � �\Y � �\Y � ”.

7 Whether the ID expression � �&%(' + � �&� (recall that � �&%(' + is the
third component of 0
 in Step 6) can be evaluated true at
each state � along � . Obviously, that is true from the defini-
tion of � �&%(' + .

7 Whether the ID expression �"# � �
 � � " can be evaluated true
at �
 by calling �+� >P� �R> � Y
�40 (since the witness graph with
ID " , 0 ! constructed in Step 4, is an EG graph).

2 � �&%(' + labels every state with � (i.e.,
� ����Y).

36

7 �+� >P� �R> � Y
�40 tries to find in 0 ! a loop H as well as a path � !
from �
 to H such that the annotations (communication sym-
bols) on the concatenated path ��� ! H constitute a run of the
unspecified component � . As we can see from Figure 2, the
only loop in 0 ! is � ! �
 � !

� � �
. So, if � � � � � ! �
 � ! � � � ! �
 ,

then we need to test the “black-box” � with an input se-
quence “ ��Y �[Z > N � ��Y �[Z ��Y � Z ��Y �[Z/���O�

” to see whether the
output sequence is “ � Y � �\Y � �\Y � �\Y � �\Y � ��� � ”.

Step 9. If none of such paths satisfies the conditions in Step 8,
then � >P� ��Y is returned to indicate that the original model-checking
problem is true. Otherwise,

� �	��Y is returned. In this case, the maxi-
mal length of test sequences generated is bounded by (&� #) � �<�
��� according to the evaluation algorithms for EU graphs and EG
graphs.

It is easy to see that, in this example, J,Y � �ON 0 essentially would
be testing whether some communication trace (of bounded length)
of � ��� with two consecutive symbol pairs

� ��Y �[Z �\Y �� is a run of
the unspecified component � .

Note. Notice that the condition �DL , a sufficient and necessary con-
dition on the unspecified component � to ensure the truth of the
model-checking problem

� ��� ��� � �&� � � � , does not depend on the
state number � of � . Therefore, even when � is an infinite-state
system, the condition can also be useful in generating test cases for
� and a testing procedure similar to J Y � �ON 0 could be formulated
to answer the model-checking query conservatively.

4. RELATED WORK
The quality assurance problem for component-based software

has attracted lots of attention in the software engineering commu-
nity. However, most work are based on the traditional testing tech-
niques and they consider the problem from component developers’
point of view; i.e., how to ensure the quality of components before
they are released.

Voas [34, 35] proposed a component certification strategy with
the establishment of independent certification laboratories perform-
ing extensive testing of components and then publishing the results.
Technically, this approach would not provide much improvement,
since independent certification laboratories can not ensure the suf-
ficiency of their testing either. Some researchers [28] suggested an
approach to augment a component with additional information to
increase the customer’s understanding and analyzing capability of
the component behavior. A related approach [36] is to automati-
cally extract a finite-state machine model from the interface of a
software component, which is delivered along with the component.
This approach can provide some convenience for customers to test
the component, but again, how much a customer should test is still
a big problem.

Bertolino et. al. [4] recognized the importance of testing a soft-
ware component in its deployment environment. They developed
a framework that supports functional testing of a software compo-
nent with respect to customer’s specification, which also provides a
simple way to enclose with a component the developer’s test suites
which can be re-executed by the customer. Yet their approach re-
quires the customer to have a complete specification about the com-
ponent to be incorporated into a system, which is not always possi-
ble.

In the formal verification area, there has been a long history of
research on verification of systems with modular structure. A key
idea [24, 23, 20] in modular verification is the assume-guarantee
paradigm: A module should guarantee to have the desired behavior
once the environment with which the module is interacting has the
assumed behavior. There have been a variety of implementations

for this idea (see, e.g., [19, 1, 29, 11, 8, 37]). The assume-guarantee
ideas can be applied to our problem setup if we consider the un-
specified component as the host system’s environment (though this
is counter-intuitive). But the key issue with the assume-guarantee
style reasoning is how to obtain assumptions about the environ-
ment. Giannakopoulou et. al. [16, 15] introduced a novel approach
to generate assumptions that characterize exactly the environment
in which a component satisfies its property. Their idea is the closest
to ours, still there are non-trivial differences: (1) theirs is a purely
formal verification technique (model-checking) while we combine
both model-checking and black-box testing to handle systems with
unspecified components; and (2) theirs uses a labeled transition
system to specify the reachability property of a system while we
use CTL formulas, which are more expressive and harder to manip-
ulate. Although not within the assume-guarantee paradigm, Fisler
et. al. [13, 25] introduced a similar idea of deducing a model-
checking condition for extension features from the base feature for
model-checking feature-oriented software designs. Unfortunately,
their algorithms are not sound (have false negatives). Furthermore,
their approach is not applicable to component-based systems where
unspecified components exist. This paper is also different from our
previous work [38] where an automata-theoretic approach is used
to solve a similar LTL model-checking problem.

In the past decade, there has also been lots of research on com-
bining model-checking and testing techniques for system verifi-
cation, which can be grouped into a broader class of techniques
called specification-based testing. But many of the work only uti-
lizes model-checkers’ ability of generating counter-examples from
a system’s specification to produce test cases against an implemen-
tation [7, 21, 12, 14, 2, 5], and they do not generalize the problem
setup in this paper. Peled et. al. [31, 18, 30] studied the issue of
checking a black-box against a temporal property (called black-box
checking). But their focus is on how to efficiently establish an ab-
stract model of the black-box through black-box testing , and their
approach requires a clearly-defined property (LTL formula) about
the black-box, which is not always possible in component-based
systems.

5. CONCLUSIONS
In this paper, we studied the CTL model-checking problem

� ������� � ��� � � �
where � is an unspecified component. Our approach is a com-
bination of both model-checking and traditional black-box testing
techniques. For such a problem, our algorithm HI�RY N � HKJ3� in Sec-
tion 3.1 either gives a definite

� ����Y_ � >P� ��Y answer or gives a suf-
ficient and necessary condition in the form of ID expressions and
witness graphs. The condition is evaluated through black-box test-
ing over the unspecified component � . Test sequences are gen-
erated by traversing the witness graphs with bounded depth as we
evaluate the condition. The evaluation process terminates with a� ����Y_ � >P� ��Y answer. One can show that our algorithm is both com-
plete and sound with a properly chosen search depth (as the ones
given in this paper). Basically only theoretic results on the ap-
proach are presented in this paper, and in the future we plan to
continue investigating the following issues that are important to the
implementation of our approach.

7 Symbolic Algorithms. The algorithms presented in this pa-
per are essentially explicit state-space searches, which may
not scale well to large systems. So it would be interesting
our approach can be implemented with symbolic algorithms.

37

7 Scalability. Another issue concerning the scalability of our
approach is the choice of the search depth for the generations
test sequences. In practice we could sacrifice the complete-
ness of the algorithm by choosing a smaller search depth.

7 More Complex Models. The system model considered in this
paper is rather restricted. At the present, we are working to
extend our approach to more complex system models that
allow multiple unspecified components, asynchronous com-
munications between unspecified components and the host
system as well as among unspecified components, and un-
specified components with an infinite state space.

6. REFERENCES
[1] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K.

Rajamani, and S. Tasiran. MOCHA: Modularity in model
checking. In CAV’98, volume 1427 of LNCS, pages 521–525.
Springer, 1998.

[2] P. Ammann, P. E. Black, and W. Majurski. Using model
checking to generate tests from specifications. In ICFEM’98,
pages 46–. IEEE Computer Society, 1998.

[3] B. Balzer. Living with cots. In ICSE’02, pages 5–5. ACM
Press, 2002.

[4] A. Bertolino and A. Polini. A framework for component
deployment testing. In ICSE’03, pages 221–231. IEEE
Computer Society, 2003.

[5] P. E. Black, V. Okun, and Y. Yesha. Mutation operators for
specifications. In ASE’00, pages 81–. IEEE Computer
Society, 2000.

[6] A. Brown and K. Wallnau. The current state of CBSE. IEEE
Software, 15(5):37–46, Sep/Oct 1998.

[7] J. Callahan, F. Schneider, and S. Easterbrook. Automated
software testing using model checking. In SPIN’96, 1996.

[8] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular
verification of software components in c. In ICSE’03, pages
385–395. IEEE Computer Society Press, 2003.

[9] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 1999.

[10] L. de Alfaro and T. A. Henzinger. Interface automata. In
ASE’01. ACM Press, 2001.

[11] J. Dingel. Computer-assisted assume/guarantee reasoning
with verisoft. In ICSE’03, pages 138–148. IEEE Computer
Society Press, 2003.

[12] A. Engels, L. Feijs, and S. Mauw. Test generation for
intelligent networks using model checking. In TACAS’97,
volume 1217 of LNCS, pages 384–398. Springer, 1997.

[13] K. Fisler and S. Krishnamurthi. Modular verification of
collaboration-based software designs. In FSE’01, pages
152–163. ACM Press, 2001.

[14] A. Gargantini and C. Heitmeyer. Using model checking to
generate tests from requirements specifications. In
ESEC/FSE’99, volume 1687 of LNCS, pages 146–163.
Springer, 1999.

[15] D. Giannakopoulou, C. S. Pasareanu, and J. M. Cobleigh.
Assume-guarantee verification of source code with
design-level assumptions. In ICSE’04, pages 211–220. IEEE
Press, 2004.

[16] D. Giannakopoulou, C. S. Psreanu, and H. Barringer.
Assumption generation for software component verification.
In ASE’02, pages 3–13. IEEE Computer Society, 2002.

[17] I. Gorton and A. Liu. Software component quality
assessment in practice: successes and practical impediments.

In ICSE’02, pages 555–558. ACM Press, 2002.
[18] A. Groce, D. Peled, and M. Yannakakis. Amc: An adaptive

model checker. In CAV’02, volume 2404 of LNCS, pages
521–525. Springer, 2002.

[19] O. Grumberg and D. E. Long. Model checking and modular
verification. ACM Transactions on Programming Languages
and Systems, 16:843–872, 1994.

[20] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. You
assume, we guarantee: Methodology and case studies. In
CAV’98, volume 1427 of Lecture Notes in Computer Science,
pages 440–451. Springer, 1998.

[21] G. J. Holzmann. The model checker SPIN. IEEE
Transactions on Software Engineering, 23(5):279–295, May
1997. Special Issue: Formal Methods in Software Practice.

[22] W. Kozaczynski and G. Booch. Component-based software
engineering. IEEE Software, 15(5):34–36, Sep/Oct 1998.

[23] O. Kupferman and M. Vardi. Module checking revisited. In
CAV’97, volume 1254 of Lecture Notes in Computer Science,
pages 36–47. Springer, 1997.

[24] L. Lamport. Specifying concurrent program modules. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 5(2):190–222, 1983.

[25] H. Li, S. Krishnamurthi, and K. Fisler. Verifying
cross-cutting features as open systems. ACM SIGSOFT
Software Engineering Notes, 27(6):89–98, 2002.

[26] N. Lynch and M. Tuttle. Hierarchical correctness proofs for
distributed algorithms. In 6th ACM Symposium on Principles
of Distributed Computing, pages 137–151, 1987.

[27] B. Meyer. The grand challenge of trusted components. In
ICSE’03, pages 660–667. IEEE Computer Society Press,
2003.

[28] A. Orso, M. J. Harrold, and D. Rosenblum. Component
metadata for software engineering tasks. volume 1999 of
LNCS, pages 129–144, 2001.

[29] C. S. Pasareanu, M. B. Dwyer, and M. Huth.
Assume-guarantee model checking of software: A
comparative case study. In SPIN, pages 168–183, 1999.

[30] D. Peled. Model checking and testing combined. In
ICALP’03, volume 2719 of LNCS, pages 47–63. Springer,
2003.

[31] D. Peled, M. Y. Vardi, and M. Yannakakis. Black box
checking. In FORTE/PSTV’99, pages 225–240. Kluwer,
1999.

[32] C. Szyperski. Component technology: what, where, and
how? In ICSE’03, pages 684–693. IEEE Computer Society,
2003.

[33] B. A. Trakhtenbrot and Y. M. Barzdin. Finite automata;
behavior and synthesis. North-Holland Pub. Co., 1973.

[34] J. Voas. Certifying off-the-shelf software components. IEEE
Computer, 31(6):53–59, June 1998.

[35] J. Voas. Developing a usage-based software certification
process. IEEE Computer, 33(8):32–37, August 2000.

[36] J. Whaley, M. C. Martin, and M. S. Lam. Automatic
extraction of object-oriented component interfaces. In
ISSTA’02, pages 218–228. ACM Press, 2002.

[37] F. Xie and J. C. Browne. Verified systems by composition
from verified components. In FSE’03, pages 277–286. ACM
Press, 2003.

[38] G. Xie and Z. Dang. An automata-theoretic approach for
model-checking systems with unspecified components. In
FATES’04, LNCS. Springer, to appear.

38

Automatic Extraction of Sliced Object State Machines for
Component Interfaces

Tao Xie David Notkin

Department of Computer Science & Engineering
University of Washington
Seattle, WA 98195, USA

{taoxie,notkin}@cs.washington.edu

ABSTRACT
Component-based software development has increasingly gained
popularity in industry. Although correct component-interface us-
age is critical for successful understanding, testing, andreuse of
components, interface usage is rarely specified formally inprac-
tice. To tackle this problem, we automatically extract sliced object
state machines (OSM) for component interfaces from the execu-
tion of generated tests. Given a component such as a Java class,
we generate a set of tests to exercise the component and collect the
concrete object states exercised by the tests. Because the number of
exercised concrete object states and transitions among these states
could be too large to be useful for inspection, we slice concrete ob-
ject states by each member field of the component and use sliced
states to construct a set of sliced OSM’s. These sliced OSM’spro-
vide useful state-transition information for helping understand be-
havior of component interfaces and also have potential for being
used in component verification and testing.

1. INTRODUCTION
Component-based software development has become an emerg-

ing discipline that manages the growing complexity of software
systems [18]. In component-based software development, software
components are the building blocks of a software system. When
component users try to reuse an existing component in their appli-
cations, they need to understand behavior of the component’s inter-
face, such as usage rules that they are required to obey or expected
results of some component usage scenarios. When component de-
velopers or users test their components before being released or
reused, they need to know whether their components behave cor-
rectly against some usage rules or expectations. However, in prac-
tice, component-interface-usage rules or behavioral specifications
are usually not equipped for many components. Even if usage rules
or behavioral specifications are provided, they are often informally
written in interface documentation such as Java API documenta-
tion [17], being prone to errors or difficult to be understood.

In this work, among a variety of specifications, we propose touse

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAVCBS ’04 , Newport Beach, California USA
.

the form ofobject state machines (OSM) to characterize behavior
of component interfaces and dynamically extract OSMs from auto-
matically generated tests for component interfaces. We have pro-
posed OSM in our previous work [27]. A state in an OSM repre-
sents the state that a component object is in at runtime. A transition
in an OSM represents method calls invoked through the component
interface transiting the component object from one state toanother.
States in an OSM can be concrete or abstract. A concrete state
of a component object is characterized by the values of all transi-
tively reachable fields of the component object. A concrete OSM
is an OSM with concrete states. Given a component, we gener-
ate a set of tests for the component and then collect all exercised
concrete states of component objects and transitions (method calls
through component interfaces) among states. These collected states
and transitions are used to construct a concrete OSM; however, the
concrete OSM is often too complicated to be useful for understand-
ing. To address this problem, our previous work has proposedthe
observer abstraction approach [27]; the approach uses the return
values of observers (interface methods with non-void returns) in-
voked on a component object as an abstract state in an OSM. This
paper proposes a new supplementary approach of slicing a concrete
state by each member field of the component1. Different from our
previous observer abstraction approach [27], our new approach is
not affected by the availability or complexity of observersin com-
ponent interfaces. Our state slicing technique is inspiredby Wha-
ley et al’s model slicing by member fields in dynamically extracting
component interfaces [22]; however, our new approach is more ac-
curate in characterizing component behavior and does not require
a good set of existing system tests for exercising componentinter-
faces. In this work, we focus on components in the form of Java
classes and component interfaces in the form of public methods in
classes; however, we expect the approach could be easily extended
to components in other forms.

The rest of this paper is organized as follows. Section 2 de-
scribes a nontrivial illustrative example. Section 3 introduces the
formal definition of an OSM. Section 4 illustrates the automatic
approach of extracting sliced OSM’s. Section 5 discusses main is-
sues of the approach and proposes future work. Section 6 presents
related work and Section 7 concludes.

1We define state slicing or OSM slicing following the definition of
model slicing by Whaley et al. [22]. The use ofslicing in these def-
initions differs from the one in a more common definition: program
slicing [21], which is closely related to some notion of dependence.

39

public class LinkedList extends AbstractSequentialList
implements List, Cloneable, java.io.Serializable {

private transient Entry header
= new Entry(null, null, null);

private transient int size = 0;
private static final long serialVersionUID

= 876323262645176354L;

public LinkedList() {...}
public void add(int index, MyInput element) {...}
public boolean add(MyInput o) {...}
public boolean addAll(int index, Collection c) {...}
public void addFirst(MyInput o) {...}
public void addLast(MyInput o) {...}
public void clear() {...}
public Object remove(int index) {...}
public boolean remove(MyInput o) {...}
public Object removeFirst() {...}
public Object removeLast() {...}
public Object set(int index, MyInput element) {...}
public Object get(int index) {...}
public ListIterator listIterator(intindex) {...}
public Object getFirst() {...}
...

}

Figure 1: A LinkedList implementation

2. ILLUSTRATIVE EXAMPLE
As an illustrative example, we use a nontrivial data structure: a

LinkedList class, which is the implementation of linked lists in the
Java Collections Framework, being a part of the standard Java li-
braries [17]. Figure 1 shows declarations of LinkedList’s fields and
some public methods that we shall refer to in the rest of this pa-
per (these public methods either modify object states or throw un-
caught exceptions).2 This implementation uses doubly-linked, cir-
cular lists that have asize field and aheader field, which acts as a
sentinel node. In addition, it also has a staticserialVersionUID
field, which is used during serialization. It inherits amodCount
field from a super classAbstractList; this field records the num-
ber of times the list has been structurally modified. LinkedList has
25 public methods, 321 noncomment, non-blank lines of code,and
708 lines of code including comments and blank lines.

3. OBJECT STATE MACHINE
We have defined an object state machine for a component in our

previous work [27]:

DEFINITION 1. An object state machine(OSM) M of a compo-
nent c is a sextuple M = (I , O, S, δ, λ, INIT) where I , O, and S
are nonempty sets of method calls in c’s interface, returns of these
method calls, and states of c’s objects, respectively. INIT ∈ S is
the initial state that the machine is in before calling any constructor
method of c. δ : S × I → P (S) is the state transition function and
λ : S × I → P (O) is the output function where P (S) and P (O)
are the power sets of S and O, respectively. When the machine is
in a current state s and receives a method call i from I , it moves to
one of the next states specified by δ(s, i) and produces one of the
method returns given by λ(s, i).

When a method call in a component interface is executed, an un-
caught exception might be thrown. To represent the state where an
object is in after an exception-throwing method call, we introduce a
special type of states in an OSM:exception states. After a method

2We change thoseObject argument types toMyInput so that we
can guide ParaSoft Jtest 5.1 [15] (being used in our test generation
described in Section 4.1) to generate better arguments;MyInput is
a class that contains an integer fieldv.

Figure 2: An overview of LinkedList concrete OSM (containing
only state-modifying transitions) exercised by generatedtests

call on an object throws an uncaught exception, the object isin an
exception state represented by the type name of the exception. The
exception-throwing method call transits the object from the object
state before the method call to the exception state.

An OSM can be deterministic or indeterministic. To help char-
acterize indeterministic transitions, we have defined two statistics
in a dynamically extracted OSM: transition counts and emission
counts [27]. Assume a transitiont transits states to s′, the tran-
sition count associated witht is the number of concrete states en-
closed ins that are transited tos′ by t. Assumem is the method
call associated witht, theemission count associated withs andm
is the number of concrete states enclosed ins and being at entries
of m (but not necessarily being transited tos′). If the transition
count of a transition is equal to the associated emission count, the
transition is deterministic and indeterministic otherwise.

The object states in an OSM can be concrete or abstract. A con-
crete OSM is an OSM where all states are concrete object states.
We have proposed several techniques to represent object states in
our previous work [24]; we use the WholeState technique to rep-
resent concrete object states in this work. Given an object,the
WholeState technique collects the values of all fields reachable
from the object and uses these field values to represent the concrete
state of the object. When we encounter a reference-type fieldwith a
non-null value during field-value collection, we use a linearization
algorithm [24] to collect the field value as the field name of the ear-
liest collected aliased field; if we cannot find any earlier collected
aliased field for the field, we collect its value as “notnull”. Two
concrete object states are nonequivalent if their representations are
different. A set of nonequivalent concrete object states contain con-
crete object states any two of which are nonequivalent.

For example, there are 11 nonequivalent concrete object states of
LinkedList exercised by tests generated in our test generation step
(Section 4.1). There are 161 transitions among these states(includ-
ing both state-modifying and state-preserving transitions). There
are two exception states:IndexOutOfBoundsException and
NoSuchElementException. Figure 2 shows a concrete OSM (con-
taining only state-modifying transitions) exercised by generated tests.3

We have observed that the concrete OSM is too complex to be use-
ful for inspection.

To reduce the complexity of an OSM, we shall extract an ab-
stract OSM containing abstract states instead of concrete states.
An abstract state of an object is defined by anabstraction func-
tion [14]; the abstraction function maps each concrete state to an
abstract state. In this work, for each member field of a component,
we define an abstraction function that maps each concrete state to
an abstract state characterized by the values of those fieldsreach-
able from the member field. The next section describes the details
of the state slicing approach.

3We display OSM’s by using the Grappa package, which is part of
graphviz [9].

40

4. SLICED-OSM EXTRACTION
Given a Java class, we automatically generate a set of tests for

extensively exercising object states within a (small) scope (Sec-
tion 4.1). During the execution of the generated tests, we slice each
exercised concrete object state by member fields and construct ab-
stract OSM’s (Section 4.2). For a member field with a reference
type, we additionally conduct structural abstraction on the sliced
state to further abstract primitive field values reachable from the
member field (Section 4.3).

4.1 Test Generation
Given a Java class, we first use Parasoft Jtest 5.1 [15] (a com-

mercial Java testing tool) to generate method arguments foreach
public method of the class. Jtest generates a small set of method
arguments and invoke public methods with these arguments after
invoking class constructors. For example, Jtest 5.1 generates two
tests for exercisingadd(MyInput element):

Test 1:
MyInput t0 = new MyInput(0);
LinkedList THIS = new LinkedList();
boolean RETVAL = THIS.add(t0);

Test 2:
MyInput t0 = new MyInput(7);
LinkedList THIS = new LinkedList();
boolean RETVAL = THIS.add(t0);

Jtest also allows the user to configure whether to generate null val-
ues as method arguments. For the sake of simplicity in illustrative
results, we configure Jtest 5.1 not to generate null argumentvalues
for LinkedList.

A list of arguments for a method consists of all arguments re-
quired for invoking the method. Two lists of arguments for a method
are equivalent if the concrete state of each argument in the first list
is equivalent to the concrete state of the corresponding argument
in the second list. If an argument is of a primitive type, its con-
crete state is represented by its primitive values. If an argument is
of Java built-inString, Integer, or another primitive-type wrap-
per, the concrete state of the argument is represented by itschar-
acter strings or corresponding primitive value. If arguments are of
other reference types, we use the WholeState technique (described
in Section 3) for comparing their state equivalence.

We use the Rostra tool (developed in our previous work [23,
24]) to monitor the execution of the test class generated by Jtest
and generate new tests based on collected method arguments.The
pseudo-code of our test-generation algorithm is presentedin Fig-
ure 3 (adapted from our previous work [23]). The test generation
algorithm receives a set of third-party generated tests (e.g. Jtest-
generated tests) and a maximum iteration number that specifies
how many iterations we shall use to grow concrete object states.
We first run these third-party generated tests and collect run time
information from their execution; the collected runtime informa-
tion includes the set of all nonequivalent non-constructor-method
argument lists and nonequivalent object states exercised during the
execution.

Then in the first iteration, the frontier set (containing theobject
states to be fully exercised) includes those nonequivalentstates at
exits of constructors exercised by the third-party tests. We iterate
each object state in the frontier set and each argument list in the set
of nonequivalent non-constructor-method argument lists exercised
by the third-party tests. For each combination of an object state and
an argument list, we construct a test by invoking the corresponding
method with the argument list on the object state. We executeall
constructed tests and collect runtime information. In the subse-
quent iteration, the frontier set includes those nonequivalent states
exercised by the new tests but not exercised by any test in previ-

Set testgen(Set thirdPartyTests, int maxIterNum) {
Set newTests = new Set();
RuntimeInfo runtimeInfo = runAndCollect(thirdPartyTests);
Set nonEqArgLists = runtimeInfo.getNonEqArgsLists();
Set frontiers = runtimeInfo.getAfterInitNonEqObjStates();
for(int i=1;i<=maxIterNum && frontiers.size()>0;i++) {

Set newTestsForCurIter = new Set();
foreach (objState in frontiers) {

foreach (args in nonEqArgLists) {
Test newTest = makeTest(objState, args);
newTestsForCurIter.add(newTest);
newTests.add(newTest);

}
}
runtimeInfo = runAndCollect(newTestsForCurIter);
frontiers = runtimeInfo.getNewNonEqObjStates().

}
return newTests;

}

Figure 3: Pseudo-code of the test-generation algorithm.

ous iterations. We continue the iterations until we have reached the
maximum iteration number or the frontier set contains no object
states.

For the LinkedList example, we configure the maximum itera-
tion number as two. For illustration purpose, let us assume here
that third-party tests contain only two tests (Tests 1 and 2)that we
have shown in the beginning of this section. Then in the first itera-
tion, we generate Tests 1 and 2; in the second iteration, we generate
Tests 3 and 4 shown as below:

Test 3:
MyInput t0 = new MyInput(0);
LinkedList THIS = new LinkedList();
boolean RETVAL = THIS.add(t0);
MyInput t1 = new MyInput(7);
boolean RETVAL1 = THIS.add(t1);

Test 4:
MyInput t0 = new MyInput(7);
LinkedList THIS = new LinkedList();
boolean RETVAL = THIS.add(t0);
MyInput t1 = new MyInput(0);
boolean RETVAL1 = THIS.add(t1);

4.2 State Slicing
Given a concrete state and a member field of the class, we pro-

duce an abstract state represented by the value of the memberfield
and the values of all those fields reachable from the member field
if the member field is of a reference type. For example, in the end
of Tests 1 and 2, theTHIS object’s concrete states are represented
by the following object-field values:

Concrete object state at the end of Test 1:
size=1;
modCount=1;
serialVersionUID=876323262645176354;
header.element=null;
header.next.element.v=0;
header.next.next=header;
header.next.previous=header;
header.previous=header.next;

Concrete object state at the end of Test 2:
size=1;
modCount=1;
serialVersionUID=876323262645176354;
header.element=null;
header.next.element.v=7;
header.next.next=header;
header.next.previous=header;
header.previous=header.next;

When we slice these concrete object states by thesize field, both
abstract-state representations are “size=1;” and these two nonequiv-
alent concrete states are mapped to the same abstract state.After
we generate abstract states at the entry and exit of a method call,
we generate a transition (characterized by the method call)from

41

Figure 4: A LinkedList OSM sliced by the size field

the abstract state at the method entry to the abstract state at the
method exit. Then we can construct an abstract OSM from test
executions. Figure 4 shows a LinkedList OSM sliced by thesize
field (displaying also exception states and transitions to them). Fig-
ure 5 shows a LinkedList OSM sliced by themodcount field (with-
out displaying exception states or transitions to them).4 We allow
the user to configure whether to display exception states andtran-
sitions to them in a sliced OSM. By default, we do not display
state-preserving transitions in a sliced OSM in order to present a
succinct view. In Figure 4, the transition starting from thetop
“INIT” state is marked with<init>(), which represents a con-
structor call. In general, each transition edge in an OSM is marked
with a simplified representation of the method name and signature
that correspond to the method calls of the transition. When there
are multiple nonequivalent argument lists of the same method tran-
siting one state to another, we group them into one single transi-
tion edge. This grouping mechanism can be viewed as a form of
abstraction on transitions. When the user move the mouse cursor
over the edge, the details of method calls are displayed. Forex-
ample, the leftmost edge in Figure 4 shows the simplified method
name and signature foradd(int index, MyInput element):
add(i0, m1), where each parameter is represented as the com-
bination of the first letter of its type name and its parameterorder
(starting from 0). The details of method calls in this left-most tran-
sition are:

add(i0:7;m1.v:7;)?/-[4/4]
add(i0:1;m1.v:0;)?/-[4/4]
[8/8]

wherem1.v represents thev field of the second argument, argu-
ment values or argument’s field values are shown following their ar-
gument names or argument’s field names separated by “:”, and dif-
ferent arguments or fields are separated by “;”. For succinctness,
we do not display the “notnull” value for a non-null reference-type
field (“not null” assignments are described in Section 3). A line
of description for method calls is in the form ofm?/mr![tc/ec]
wherem is the method call name and argument values,mr is the
return value if any (if a return is void or the method call throws an
exception, we display the return value as “–” and we do not dis-
play “!”), tc is the transition count, andec is the emission count
4We do not show the LinkedList OSM sliced by the
serialVersionUID field in this paper because the class
does not modifyserialVersionUID and the extracted OSM is
trivial.

(the descriptions of transition counts and emission countsare de-
scribed in Section 3). In the bottom line of the detailed description,
we summarize the total number of transition counts and emission
counts for all the method calls in the transition. When the method
calls in the transition exercise all existing argument lists for the
method, we additionally display “ALLARG”, such as in the details
for a remove(m0) in Figure 5. To present a more succinct view,
we group calls of different methods with the same starting state
and ending state into a single transition edge if these method calls
satisfy the following two properties: (1) the calls of each method
exercise all existing argument lists for the method (displayed with
“ALL ARG”); (2) the calls of each method are deterministic (their
transition counts are equal to their emission counts). For indeter-
ministic transitions, we highlight their simplified methodnames
and signatures in bold font. For example, one edge ofremove(m0)
is highlighted in central Figure 4. This indeterminism indicates that
invokingremove(m0) on a linked list containing one element does
not necessarily make the linked list empty. For example, onesuch
case is to remove an element with the value of 0 from a linked list
containing an element with the value of 7.

Extracted sliced OSM’s provide succinct views for summariz-
ing interesting state-transition behavior exhibited by a component.
For example, by inspecting and exploring Figure 4, we can con-
veniently understand the conditions of throwing uncaught excep-
tions, which often indicate the sequencing constraints of using a
component. For example, anIndexOutOfBoundsException is
thrown when invokingget(i0) immediately after invoking a con-
structor. Previous research in inferring sequencing constraints [1,
22, 28] could be effective in inferring this simple constraint but
might not be able to infer more complex constraints extracted by
our approach. One such a complex constraint is that if we invoke
a constructor,add(m0), removeLast(), and finallyget(i0), an
IndexOutOfBoundsException is thrown. The reasons are that
previous research in inferring sequencing constraints does not con-
sider the internal states of a component but only the sequence order
among method calls invoked through a component interface.

By looking into the details of those transitions leading to the
IndexOutOfBoundsException state, we can understand that if a
method argument is an integer index to a linked list, it shallgen-
erally fall into the scope between zero and the size of the list. But

42

Figure 5: A LinkedList OSM sliced by the modCount field

one difference has caught our attention:add(i0, m1) in the left-
most of Figure 4 is not grouped with other method calls with in-
dex arguments on the second-to-leftmost edge of Figure 4, such as
remove(i0) andset(i0, m1); this indicates that all argument
lists for methods on the second-to-leftmost edge lead the “size=0;”
state to the “IndexOutOfBoundsException” state, but not all ar-
gument lists foradd(i0, m1) lead to the exception state. By in-
specting their details, we found that, to avoid the exception, thei0
argument foradd(i0, m1) should satisfy(0 <= i0 && i0 <=
size()) but thei0 argument for the methods on the second-to-
leftmost edge should satisfy(0 <= i0 && i0 < size()). We
also found thatlistIterator(i0) needs to satisfy the same con-
straint asadd(i0, m1). We have confirmed these small distinc-
tions among exception-throwing conditions by browsing Java API
documentation [17].

4.3 Structural Abstraction
When we slice two concrete object states in the end of Tests 1

and 2 by theheader field, these two nonequivalent concrete ob-
ject states are still mapped to two different abstract states. After we
slice all exercised concrete object states by theheader field, we
reduce 11 concrete object states to 7 abstract states, whosecorre-
sponding OSM is still complex. Inspired by Korat’s object graph
isomorphism [3], we conductstructural abstraction by keeping
only structural information among object fields but ignoring those
primitive field values in a sliced state. The underlying rationale for
this technique is that object states sharing the same objectgraph
structure often exhibit certain common behavior. For example, af-
ter we apply structural abstraction onheader-sliced states in the
end of Tests 1 and 2, we produce the same abstract state as below:

header.element=null;
header.next.element.v=-;
header.next.next=header;
header.next.previous=header;
header.previous=header.next;

In the representation of abstract states, we replace all field values of
primitive types with “–”. In fact, we have found that the generated
abstract states have a one-to-one correspondence with the states
sliced by thesize field. For example, theheader-sliced state af-
ter structural abstraction in the end of Tests 1 and 2 corresponds
to the “size=1;” state. Figure 6 shows a LinkedList OSM sliced
by theheader field after structural abstraction (without display-

Figure 6: A LinkedList OSM sliced by the header field after
structural abstraction

ing exception states or transitions to them). This OSM is especially
useful for another implementation of a linked list that doesnot have
asize field but computes the size on the fly from theheader field
when the size’s value is needed. For other data structures such as a
binary tree, onesize-sliced abstract state might map to more than
one sentinel-node-sliced abstract states after structural abstraction.

5. DISCUSSION AND FUTURE WORK
There are two main factors that affect our approach’s usability

in practice: member fields and generated tests. In our approach,
member fields take the role of abstraction functions [14], which are
used to specify state abstractions. In addition, like otherdynamic
inference techniques [1,7,11,22,27,28], the quality or complexity
of an extracted sliced OSM depends on the executed tests besides
the characteristics of the used member field. Section 5.1 and5.2
further discuss the factors of member fields and generated tests,
respectively. Section 5.3 discusses other potential applications of
our approach than the task of understanding component behavior.

5.1 Member Fields
Our approach uses a single member field as an abstraction func-

tion: different concrete states with the same value for the mem-
ber field are abstracted to the same abstract state. Althoughwe
construct a sliced OSM for each member field, we might abstract
away some aspects of concrete states that are central in understand-
ing the behavior of a method in a sliced OSM. For example, in
some classes, some member fields might be closely coupled and
we might prefer to slice states by multiple member fields instead
of a single member field. To provide tool supports for these cases,
we can categorize member fields into groups based on field-access
patterns by member methods using concept analysis [5]. Thenwe
can slice states by these field groups and use sliced states tocon-
struct sliced OSM’s. On the other hand, the state abstraction based
on state slicing might not be high level enough; therefore, the re-
sulting OSM’s might be still too complicated for inspection.

In some cases, it might be difficult to infer a good abstraction

43

function from the code itself by using various heuristics. Then in
order to get satisfactory OSM’s, we might need human inputs for
defining indistinguishability properties [10] or other forms of ab-
straction functions to further abstract states. We expect that this
way of getting human inputs in our approach shall be better for
many types of programs than requiring upfront human inputs in tra-
ditional formal methods. First, we expect that programmerswould
be more willing to provide their inputs of abstraction functions af-
ter they have already seen OSM’s extracted without their upfront
inputs (some OSM’s could have already been useful for them to
understand parts of the component behavior). Second, we expect
that it would be easier for programmers to formulate abstraction
functions based on the crude OSM’s extracted by our approach.

5.2 Generated Tests
There are two controllable configurations on the tests generated

by our approach: method arguments and the maximum iteration
number. When we use another third-party tool to generate more
method arguments for a method but keep the same maximum it-
eration number as two, the sliced OSM’s for LinkedList in Fig-
ure 4, 5, and 6 would be kept mostly the same (details associated
with transitions might grow though) but theheader-sliced OSM
before structural abstraction would grow rapidly. When we keep
the same method arguments but increase the maximum iteration
number, the sliced OSM’s in Figure 4, 5, and 6 would grow linearly.
For example, in Figure 4, there will be new transitions starting from
the bottom-right “size=2;” state similar to the ones starting from
the “size=1;” state. In general, when there are more method ar-
guments or higher maximum iteration numbers, the space of both
concrete states and sliced states could grow. To address thescal-
ability of the approach, programmers can configure fewer method
arguments or lower maximum iteration numbers, or specify user-
defined abstraction functions to further abstract states (discussed in
Section 5.1).

If the generated tests used for OSM extraction are not of good
quality, the quality of extracted sliced OSM’s can be compromised.
Static analysis techniques can be used to identify some insuffi-
ciency of generated tests for extracting sliced OSM’s. For exam-
ple, because Jtest 5.1 generates only an empty collection argument
for addAll(int index, Collection c), theaddAll method
is dynamically identified as a state-preserving method for all ex-
tracted sliced OSM’s. Existing static techniques for method-purity
analysis [2,16] can identifyaddAll not to be state preserving; then
we can augment Jtest-generated tests with non-empty-collection ar-
guments foraddAll.

5.3 Other Applications
Although in this paper we primarily investigate the extraction

of sliced OSM’s to help understand component behavior, there are
other promising applications of extracted OSM’s. For example, we
can extract sliced OSM’s from existing generated tests to ease the
task of test inspection. We can use extracted OSM’s to guide test
generation using existing finite-state-machine-based testing tech-
niques [13], use new generated tests to further improve extracted
OSM’s, and then use new improved OSM’s to generate more new
tests and so forth. During iterations, any new generated tests vi-
olating existing inferred properties (e.g. OSM’s) can be selected
for inspection [26]. These iterations form a feedback loop between
test generation and specification inference proposed in ourprevious
work [25].

We can apply sliced OSM’s in testing and verification by extrap-
olating unseen states and transitions based on observed states and
transitions. Then the prescribed component behavior is notlim-

ited to observed one. For example, in Figure 4, we can predictthe
structure of transitions around the unseen “size=3;” state or other
unseen states.

After we have extrapolated initial sliced OSM’s, we can perform
conformance checking between OSM’s and the implementation,
which is similar to conformance checking between abstract state
machines and an implementation [8]. We can also explore waysof
translating properties captured by OSM’s to the forms understood
by existing software model checking tools [4, 20] and use existing
tools to verify programs against their extracted OSM’s. Note that
finding counterexamples does not necessarily expose bugs inpro-
grams but might expose insufficiency of originally generated tests
for OSM extraction. These counterexamples can help generate new
tests to augment existing generated tests.

Because we extract sliced OSM’s from an implementation, if the
implementation is faulty and the initial sliced OSM’s exhibit wrong
behavior, we might not expose faults by performing conformance
checking between OSM’s and the implementation. Therefore,be-
fore we extrapolate initial sliced OSM’s, we might prefer human
inspection on the initial sliced OSM’s to make sure that the initial
sliced OSM’s exhibit expected behavior.

6. RELATED WORK
Our previous work develops the observer abstraction approach

for extracting OSM’s (called observer abstractions) from unit-test
executions [27]. The observer abstraction approach uses the return
values of observers invoked on a concrete object state as abstract
state representation, whereas our new approach in this paper uses
the values of a member field in a concrete object state as abstract
state representation. Unlike the observer abstraction approach, our
new approach does not require the availability of (good) observers.
The complexity of an observer abstraction depends on the charac-
teristics of its corresponding observers, whereas the complexity of
a sliced OSM depends on the characteristics of its corresponding
member field. Observer abstractions help investigate behavior re-
lated to the return values of observers and this type of behavior is
not explored in our new approach. In the LinkedList example,in
contrast to four sliced OSM’s generated by our new approach,the
observer abstraction approach generates 18 observer abstractions.
One observer isint size(); therefore, the extractedsize() ob-
server abstraction is exactly the same as oursize-sliced OSM.

From system-test executions, Whaley et al. dynamically extract
Java component-interface models, each of which accesses the same
field [22]. They statically determine whether a method is a state-
modifying one. In their extracted models, they assume that the
same state-modifying method transits an object to the same abstract
state. This assumption makes the extracted models less accurate
than our approach. Ammons et al. mine protocol specifications in
the form of a finite state machine from system-test executions [1].
Although their approach uses data dependence to extract relevant
API method calls, it does not use component internal states but use
the sequence order among API method calls for learning models.
Both Whaley et al. and Ammons et al.’s approaches usually require
a good set of system tests for exercising component interfaces,
whereas our approach receives a given component and generates
a set of tests to exercise component’s object states in a small scope.
Because their approaches do not consider object state information
but just sequence order among API method calls, applying Whaley
et al.’s approach on our generated unit tests would yield a complete
graph of methods that modify the same object field and applying
Ammons et al.’s approach on our generated unit tests would yield a
complete graph of all methods in the component interface.

Yang and Evans infer temporal properties in the form of the

44

strictest pattern any two methods can have in execution traces [28].
Similar to Whaley et al. and Ammons et al.’s approaches, their ap-
proach considers only sequence order among method calls without
considering internal states of a component, whereas our approach
use sliced states to construct OSM’s, which encoded more accurate
sequencing constraints. In addition, their approach considers se-
quencing relationship between two methods, whereas our approach
considers state-transition relationship among multiple methods.

Ernst et al. develop Daikon to dynamically infer likely invariants
from test executions [7]. These invariants describe the observed
relationships among the values of object fields, arguments,and re-
turns of a single method in a component interface, whereas our
sliced OSM’s describe state-transition relationships among multi-
ple methods in a component interface and use the values of fields
reachable from a member field to represent object states. Henkel
and Diwan discover algebraic specifications from the execution of
automatically generated unit tests [11]. Their discoveredalgebraic
specifications usually present a local view of relationships between
two methods, whereas our sliced OSM’s present a global view of
relationships among multiple methods.

Corbett et al. develop Bandera to extract finite-state models
from Java source code for model checking [4]. Given a prop-
erty, Bandera’s slicing component removes control points,vari-
ables, and data structures that are irrelevant for checkingthe prop-
erty. For each member field of a component, our approach dynam-
ically slices object states that are reachable from the member field
and constructs a sliced OSM. Given a definition of an abstraction,
Bandera’s abstraction-based specializer transforms the source code
into a specialized version by replacing concrete operations and tests
on relevant concrete data with abstracted versions on abstract val-
ues. Our approach conducts structural abstraction on a sliced state
by mapping all primitive values in the state to the same abstract
value.

Grieskamp et al. allow the user to define indistinguishability
properties to group infinite states in abstract state machines into
equivalence classes, called hyperstates [10]. Their tool incremen-
tally produces finite state machines by executing abstract state ma-
chines. Our approach use the values of a member field to group
concrete object states into abstract states in a sliced OSM.

Kung et al. statically extract object state models from class source
code and use them to guide test generation [12]. An object state
model is in the form of a finite state machine: the states are de-
fined by value intervals over object fields, which are derivedfrom
path conditions of method source; the transitions are derived by
symbolically executing methods. Our approach dynamicallyex-
tracts sliced OSM’s from test executions and supports a muchwider
range of classes than Kung et al’s approach. For example, Kung et
al.’s approach could not extract any state models for theheader

field becauseheader’s values cannot be characterized by value in-
tervals, which are usually applicable for primitive numeric fields.
Their approach could not extract any model for themodeCount
field because there is no usable path condition for this integer field
in the source code. Because of the code complexity, their approach
would have difficulties in symbolically deriving transitions for the
states extracted from the only path condition usable for their ap-
proach:(size==0).

Turner and Robson use finite state machines to specify the be-
havior of a class [19]. The states in a state machine are defined by
the values of a subset or complete set of object fields. The transi-
tions are method names. Although both their specified finite state
machines and our sliced OSM’s are in a similar form, we auto-
matically extract state machines from test executions, whereas they
manually specify state machines for a class. Edwards develops an

approach of generating tests based on flowgraphs extracted from
a component’s specifications [6]. A flowgraph is a directed graph
where each node represents one method provided by the compo-
nent and a directed edge from a noden to noden’ represents the
possibility that control may flow fromn to n’. Our approach auto-
matically extracts OSM’s from test executions without requiring a
priori specifications and our OSM’s capture actual-state transition.

7. CONCLUSION
Lack of specifications for a component has posed the barrier to

the reuse of the component in component-based software develop-
ment. In this paper, we have proposed a new approach for automat-
ically extracting sliced OSM’s for component interfaces. Given a
component such as a Java class, we generate a set of tests for the
component. Then we slice exercised concrete object states by each
member field of the component and construct OSM’s based on the
sliced states. These sliced OSM’s provide useful state-transition
information for inspection. These OSM’s also have potential for
component verification and testing.

Acknowledgments
We thank the anonymous reviewers for their valuable feedback on
an earlier version of this paper. This work was supported in part
by the National Science Foundation under grant ITR 0086003.We
acknowledge support through the High Dependability Computing
Program from NASA Ames cooperative agreement NCC-2-1298.

8. REFERENCES
[1] G. Ammons, R. Bodik, and J. R. Larus. Mining

specifications. InProc. 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages , pages
4–16, 2002.

[2] M. Barnett, D. A. Naumann, W. Schulte, and Q. Sun. 99.44%
pure: Useful abstractions in specifications. InProc. 6th
Workshop on Formal Techniques for Java-like Programs ,
June 2004.

[3] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated
testing based on Java predicates. InProc. International
Symposium on Software Testing and Analysis, pages
123–133, 2002.

[4] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Pasareanu, Robby, and H. Zheng. Bandera: extracting
finite-state models from java source code. InProc. the 22nd
International Conference on Software Engineering, pages
439–448, 2000.

[5] U. Dekel and Y. Gil. Revealing class structure with concept
lattices. InProc. 10th IEEE Working Conference on Reverse
Engineering, pages 353–365, 2003.

[6] S. H. Edwards. Black-box testing using flowgraphs: an
experimental assessment of effectiveness and automation
potential.Software Testing, Verification and Reliability,
10(4):249–262, 2000.

[7] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to
support program evolution.IEEE Trans. Softw. Eng.,
27(2):99–123, 2001.

[8] Foundations of Software Engineering, Microsoft Research.
Abstract state machine language.
http://research.microsoft.com/fse/AsmL.

[9] E. R. Gansner and S. C. North. An open graph visualization
system and its applications to software engineering.

45

Software: Practice and Experience, 30(11):1203–1233, Sept.
2000.

[10] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes.
Generating finite state machines from abstract state
machines. InProc. International Symposium on Software
Testing and Analysis, pages 112–122, 2002.

[11] J. Henkel and A. Diwan. Discovering algebraic specifications
from Java classes. InProc. 17th European Conference on
Object-Oriented Programming, pages 431–456, 2003.

[12] D. Kung, N. Suchak, J. Gao, and P. Hsia. On object state
testing. InProc. 18th International Computer Software and
Applications Conference, pages 222–227, 1994.

[13] D. Lee and M. Yannakakis. Principles and methods of testing
finite state machines - A survey. InProc. The IEEE,
volume 84, pages 1090–1123, Aug. 1996.

[14] B. Liskov and J. Guttag.Program Development in Java:
Abstraction, Specification, and Object-Oriented Design.
Addison-Wesley, 2000.

[15] Parasoft. Jtest manuals version 5.1. Online manual, July
2004.http://www.parasoft.com/.

[16] A. Rountev. Precise identification of side-effect-free methods
in Java. InProc. 20th IEEE International Conference on
Software Maintenance, pages 82–91, Sept. 2004.

[17] Sun Microsystems. Java 2 Platform, Standard Edition, v
1.4.2, API Specification. Online documentation, Nov. 2003.
http://java.sun.com/j2se/1.4.2/docs/api/.

[18] C. Szyperski.Component Software: Beyond Object-Oriented
Programming. ACM Press and Addison-Wesley, New York,
NY, 1998.

[19] C. D. Turner and D. J. Robson. The state-based testing of
object-oriented programs. InProc. International Conference
on Software Maintenance, pages 302–310, 1993.

[20] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. InProc. 15th IEEE International
Conference on Automated Software Engineering (ASE),
pages 3–12, 2000.

[21] M. Weiser. Program slicing. InProc. 5th International
Conference on Software Engineering, pages 439–449, 1981.

[22] J. Whaley, M. C. Martin, and M. S. Lam. Automatic
extraction of object-oriented component interfaces. InProc.
the International Symposium on Software Testing and
Analysis, pages 218–228, 2002.

[23] T. Xie, D. Marinov, and D. Notkin. Improving generationof
object-oriented test suites by avoiding redundant tests.
Technical Report UW-CSE-04-01-05, University of
Washington Department of Computer Science and
Engineering, Seattle, WA, Jan. 2004.

[24] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for
detecting redundant object-oriented unit tests. InProc. 19th
IEEE International Conference on Automated Software
Engineering, pages 196–205, Sept. 2004.

[25] T. Xie and D. Notkin. Mutually enhancing test generation
and specification inference. InProc. 3rd International
Workshop on Formal Approaches to Testing of Software ,
volume 2931 ofLNCS, pages 60–69, 2003.

[26] T. Xie and D. Notkin. Tool-assisted unit test selectionbased
on operational violations. InProc. 18th IEEE International
Conference on Automated Software Engineering, pages
40–48, 2003.

[27] T. Xie and D. Notkin. Automatic extraction of
object-oriented observer abstractions from unit-test

executions. InProc. 6th International Conference on Formal
Engineering Methods, Nov. 2004.

[28] J. Yang and D. Evans. Dynamically inferring temporal
properties. InProc. the ACM-SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering,
pages 23–28, 2004.

46

Formalizing Lightweight Verification
of Software Component Composition

Stephen McCamant Michael D. Ernst
MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar Street
Cambridge, MA 02139 USA

smcc@csail.mit.edu, mernst@csail.mit.edu

ABSTRACT
Software errors often occur at the interfaces between separately
developed components. Incompatibilities are an especially acute
problem when upgrading software components, as new versions
may be accidentally incompatible with old ones. As an inexpensive
mechanism to detect many such problems, previous work proposed
a technique that adapts methods from formal verification to use
component abstractions that can be automatically generated from
implementations. The technique reports, before performing the re-
placement or integrating the new component into a system, whether
the upgrade might be problematic for that particular system. The
technique is based on a rich model of components that support in-
ternal state, callbacks, and simultaneous upgrades of multiple com-
ponents, and component abstractions may contain arbitrary logical
properties including unbounded-state ones.

This paper motivates this (somewhat non-standard) approach to
component verification. The paper also refines the formal model
of components, provides a formal model of software system safety,
gives an algorithm for constructing a consistency condition, proves
that the algorithm’s result guarantees system safety in the case of
a single-component upgrade, and gives a proof outline of the algo-
rithm’s correctness in the case of an arbitrary upgrade.

1. INTRODUCTION
Previous work [12, 13] introduced a technique that seeks to iden-

tify unanticipated interactions among software components, before
the components are actually integrated with one another. The tech-
nique compares the observed behavior of an old component to the
observed behavior of a new component; it permits the upgrade only
if the behaviors are compatible, for the way that the component is
used in an application. The technique issues a warning when the
behaviors of the new and old components are incompatible, but
lack of such a warning is not a guarantee of correctness, nor is its
presence a guarantee that the program’s operation would be incor-
rect. The technique constructsoperational abstractions, mathemat-
ical statements syntactically similar to specifications that describe
a component’s behavior and its expectations about the behavior of
other components. For a given system of components, the tech-
nique constructs a consistency condition that relates the expecta-
tions of one module to how they might be satisfied by the behav-
iors of others. This combination of the abstractions according to
the consistency condition is then passed to an automatic theorem
prover (our prototype uses Simplify [4]), and the upgrade is ap-
proved only if the consistency condition is verified to hold. We
have used our implementation to find behavioral inconsistencies
in large software systems — for instance, differences between ver-
sions in the behavior of the Linux C library, as used by desktop

applications.
In the case of an upgrade to a single, purely functional mod-

ule, the consistency condition that our technique checks is simi-
lar to the classic condition of behavioral subtyping relating proce-
dure pre- and postconditions [1, 3]. For upgrades to more com-
plex systems with arbitrary numbers of components, bidirectional
interactions among them, and components with internal state, the
consistency condition is more complicated. This work refines the
multi-component system model from [13] and gives an improved
algorithm for constructing a consistency condition.

In order to decide whether our changes to the algorithm are really
improvements, we need a standard by which to judge our technique.
The major new work described here is a formalization of the con-
sistency checking problem. We can use this formalization to verify
that consistency checks have desirable logical properties. Specif-
ically, we wish to verify that the consistency condition is sound
relative to the abstractions that describe the behavior of individual
components. If an upgrade is approved by virtue of satisfying a
consistency condition, and the behavioral abstractions that are re-
lated via that condition are safe approximations of the components’
actual behavior, then the actual upgrade in question issafe— that
is, the upgraded system satisfies specific properties that the orig-
inal one did. The algorithm improvements we describe eliminate
unsound aspects of our previous algorithm, and using them we de-
scribe a strategy for a relative soundness proof (though we have not
yet completed the proof in all details).

The remainder of this paper is organized as follows. Section 2
compares our technique with other approaches to component-based
verification. Section 3 describes a model of the structure of a multi-
component systems. Section 4 formalizes a simplified version of
the upgrade safety problem. Section 5 proves that the consistency
condition we use in the simplest case of upgrading a single com-
ponent is indeed sound. Section 6 proposes a general algorithm for
constructing consistency conditions and gives a proof outline of the
algorithm’s correctness. Section 7 concludes.

2. COMPARISON WITH OTHER WORK
Many other researchers share our goal of making component-

based development safer and more efficient, as well as the general
approach of verifying that components will interact correctly based
on an abstraction of their behavior. However, our approach takes as
its starting point a somewhat atypical combination of four theses.
We argue that the abstractions describing components:

• should be stated in an expressive language at the same ab-
straction level as concrete interfaces

• should describe concrete implementations and the way they
are exercised by real test suites

47

• should be compiled and compared automatically
• need not be sound over arbitrary executions

The following subsections discuss these points in turn.

2.1 An expressive language of abstractions
The operational abstractions that our technique uses to represent

a component’s behavior are expressed as statements in a first or-
der logic whose atomic statements can refer to the same concrete
values that program statements can, and include the same primitive
operators as the language itself. The statements can express the
same sorts of properties that a programmer might consider impor-
tant, for instance as might be checked in a conditional or assertion
statement. Matching the tool’s understanding to the developer’s has
two benefits. First, it helps the tool find properties that might be im-
portant for correctness. Second, when user interaction is required,
such as after a potential incompatibility has been flagged, it makes
it easier for the developer to understand the problem.

Much of the most important early work on specifications and
their combination, such as behavioral subtyping [11] and the Vi-
enna Development Method [10] used expressive specification lan-
guages similar to our operational abstractions. More recent work
has seen a trend toward less expressive representations, especially
finite state ones such as regular languages [16] or labeled transition
systems [15]. Besides being more amenable to automatic checking,
such representations also focus verification effort on a more limited
set of properties, such as those related to global temporal order-
ing. Such approaches necessarily neglect aspects of correctness in
a program’s local behavior, and cannot even express non-finite-state
properties involving integers or unbounded data structures.

2.2 Using real implementations
The operational abstractions used in our technique are different

from formal specifications in that they describe software as it has
actually been implemented, rather than as it is intended to perform.
While formal specifications can be useful as part of the design of a
system, or to assign responsibility for deviations from an interface,
they are unavailable for most real systems. In particular, some of
the most productive uses of formal specifications take advantage of
the ability to describe a component at a high level of abstraction,
so as to capture only the aspects of its behavior most important to
a global architecture. While it is possible to describe the complete
correctness conditions of a component at the level of concrete in-
puts and outputs in a formal specification, doing so is prohibitively
expensive for any but the most critical systems.

By contrast, our technique’s use of operational abstractions is
intended to leverage the investments that developers already make
in implementation and testing, and to discover potential problems
that would affect actual system executions. We presume that the
developers of individual system modules have checked locally to
a module, informally and/or via unit testing, that those modules
behave as intended. The job of our technique is to propagate the
characterization of behavior embodied in such local checks and
cross-check it for consistency with the expectations held by other
separately developed modules in a large system. Unlike dynamic
contract-checking [14, 7], our technique is intended to be used be-
fore system integration, rather than during execution, and discovers
inconsistencies without assigning blame to one component or an-
other.

2.3 Automatic generation and comparison
Our tool automatically derives operational abstractions from a

component’s implementation, as it is exercised by representative

uses such as a test suite. This approach takes advantage of devel-
oper effort already expended in development and in choosing which
aspects of behavior to test. Such derivation is of course not appli-
cable to a specification-first methodology, but dynamically inferred
properties are increasingly used for verification; in addition to the
axiomatic-semantics style properties we use [6], other researchers
have applied similar techniques to infer algebraic specifications [8]
and temporal properties [2, 19].

Many component-based verification techniques use behavioral
abstractions that can be compared automatically, at least for finite
scopes, by conceptually simple techniques such as model checking
or approaches based on finite automata. In theory, the unbounded-
state properties that make up our operational abstractions are more
difficult to operate on, with many operations in fact undecidable.
However, we have not found our use of an automated theorem
prover to be a major bottleneck in our technique, for two reasons.
First, because propositional logic is a standard abstraction, we can
treat the theorem prover as a black box, and ignore its internal
complexities. Second, the properties we wish to check tend to be
straightforward deductions from a general statement to a more spe-
cific one, involving only simple arithmetic and relations between
variables. In previous work, a more common approach has been to
combine human direction and a proof assistant tool [20]; this can
increase assurance relative to a completely manual proof, but does
not necessarily reduce the effort required. Schumann and Fischer
use an automated theorem prover with some specialized prepro-
cessing [18] to compare specifications for a procedure reuse appli-
cation, but the space of examples they consider is quite small.

2.4 Soundness and precision
Operational abstractions describe a component’s behavior in spe-

cific contexts, namely those in which the component was tested.
Our approach does not require the operational abstractions to be
sound as statements describing a component’s execution in any
context. Even if our technique had access to a sound description
of a component’s general behavior, we would still want it to sep-
arately record the contexts in which a component was used, to be
able to verify that a system uses only tested behavior. The real
limitation of our approach is that we cannot necessarily make this
distinction between properties that are true in general and those that
hold only in a restricted context.

At the same time we give up soundness, however, we gain a
dual benefit of precision [5]. By virtue of their construction, ev-
ery property (from a particular grammar) that fails to appear in an
operational abstraction can be traced back to at least one concrete
execution in which it was false, and any property that held over
each observed execution will appear in the abstraction. In exchange
for restricting our attention to specific system executions, we enjoy
accurate information about them, avoiding the over-approximation
that can come with approaches that are sound.

3. A MULTI-COMPONENT MODEL
This section describes a model of software systems that handles

complicated situations that arise in object-oriented systems, such
as components with state, components that make callbacks, or a si-
multaneous upgrade to two components that communicate via the
rest of a system. This model differs from that of [13] in separat-
ing control flow from data flow in some situations. This separa-
tion allows a more precise determination of what parts of a system
influence others (Section 6.1) and a sound treatment of data flow
through non-local state (Section 6.2.4).

We consider systems to be divided intomodulesgrouping to-
gether code that interacts closely and is developed as a unit. Such

48

modules need not match the grouping imposed by language-level
features such as classes or Java packages, but we assume that any
upgrade affects one or more complete modules. Our approach to
consistency checking is modular, but not simply compositional; it
also summarizes each module’s observations of the rest of a work-
ing system, and uses them as a basis for comparison with a pro-
posed upgrade.

3.1 Relations inside and among modules
Given a decomposition of a system into modules, we model its

behavior with three types of relations.Call and return relations
represent how modules are connected by procedure calls and re-
turns. Internal flow relationsrepresent the behavior of individual
modules, in context: that is, the way in which each output of the
module potentially depends on the module’s inputs.External sum-
mary relationsrepresent a module’s observations of the behavior of
the rest of the system: how each input to the module might depend
on the behavior of the rest of the system and any previous outputs
of the module.

3.1.1 Call and return relations
Roughly speaking, each module is modeled as a black box, with

certain inputs and outputs. When module A calls proceduref in
module B, the arguments tof are outputs of A and inputs to B,
while the return value and any side effects on the arguments are
outputs from B and inputs to A. In the module containing a proce-
duref , we use the symbolf to refer to the input consisting of the
values of the procedure’s parameters on entrance, andf ′ to refer
to the output consisting of the return value and possibly-modified
reference parameters. We usefc andfr for the call to and return
from a procedure in the calling module. Collectively, we call these
moments of executionprogram points. All non-trivial computa-
tion occurs within modules: calls and returns simply represent the
transfer of information unchanged from one module to another.

3.1.2 Internal flow relations
Internal flow relations connect each output of a module to all the

inputs to that module that might affect the output value. In a module
M , M(v|u1, . . . , uk) is the flow relation from inputsu1 through
uk to an outputv. In some cases, it is also helpful to decompose
a flow relation into a number offlow edges, one connecting each
input to the output. Anindependent outputM(v) is one whose
value is not affected by any input to the module.

Conceptually, the flow relation is a set of tuples of values at the
relevant inputs and at the output, having the property that on some
execution of the output point, the output values might be those in
the tuple, if the most recent values at all the inputs have their given
values. Because each variable might have a large or infinite do-
main, it would be impractical or impossible to represent this re-
lation by a table. Instead, our approach summarizes it by a set of
logical formulas that are (observed to be) always true over the input
and output variables. The values that satisfy these formulas are a
superset of those that occurred in a particular run. This representa-
tion is not merely an implementation convenience. Generalization
allows our technique to declare an upgrade compatible when its
testing has been close enough to its use, without demanding that it
be tested for every possible input.

Flow relations capture the behavior of a module primarily in
terms of relations over data in variables. However, a limited char-
acterization of a system’s control flow is required to correctly com-
bine facts from different relations. To this end, we further model
flow edges as being of two types: those that represent control flow
as well as data flow information, orcontrol-flow edgesfor short,

anddata-flow edgesthat represent the flow of data not mediated by
control (say, communication via a shared variable). To represent
conditional control flow, control-flow edges include an additional
fact called aguarding condition. A flow edge from an inputu to
an outputv does not imply that every execution ofu is followed
by some execution ofv: for instance,u might be the entry point
of a procedure that calls another procedure atv under some cir-
cumstances but not others. A guarding conditionφg is a property
that held on executions ofu that were followed by executions of
v, but did not hold on executions ofu that were followed by an-
other execution ofu without an interveningv. If the control flow is
unconditional,φg is simply “true.”

In order to facilitate analysis of a model, we impose the restric-
tion that the subgraph consisting of control-flow, call and return
edges has no cycles. This restriction forbids mutual recursion be-
tween procedures when the procedures appear in different modules,
but not the use of recursive procedures in the implementation of a
module. Note that procedure calls in both directions between a pair
of modules are not restricted as long as there can be no cycle of
procedure invocations in different modules; for instance, callbacks
are allowed. See Section 6.2.3 for further discussion of why we
impose this restriction.

3.1.3 External summary relations
External summary relations are in many ways dual to internal

flow relations. Summary relations connect each input of a module
to all of the module outputs that might feed back to that input via the
rest of the system. In a moduleM , we refer to the summary relation
from outputsu1 throughuk to an inputv asM(v|u1, . . . , uk). As
a degenerate case, anindependent inputM(v) is one not affected
by any outputs. The line over theM is meant to suggest that while
this relation is calculated with respect to the interface ofM , it is
really a fact about the complement ofM — that is, all the other
modules in the system.

4. FORMALIZING THE MODEL
The key properties of our technique depend on the relationship

between the abstract model and the concrete behavior of real com-
ponents, but reasoning about the full complexities of languages
such as Java, Perl or C would be difficult. Instead, this section
presents a very simple module-structured language, and describes
the meaning of the system model for that language, as well as giv-
ing a precise notion of soundness for systems in that language. In
the context of this formalization it is then possible to unambigu-
ously discuss whether a consistency checking technique is sound.

To concentrate on the most important aspects of the consistency
checking problem, the formalization also differs in two key ways
from our actual technique. First, our real technique has a broad
goal of preserving the correct behavior of a system after an up-
grade, as well as ensuring that an upgraded system relies only on
tested behavior. To unify these notions and make them precise,
the formalized language includes assertion statements, and we say
that an upgraded system is safe if no assertions fail. Second, our
real technique characterizes behavior by generalizing from facts
that were observed to be true over finitely many executions. In
the formalization, we imagine that these generalizations are always
sound, so that descriptions of a component’s behavior will be true
for any inputs, and descriptions of the conditions under which be-
havior is safe in fact guarantee safety for any inputs. Because our
actual implementation lacks this soundness property, soundness re-
sults about the formalization correspond only to relative soundness
properties of the real system: guarantees about safety are only as
reliable as the operational abstractions on which they are based.

49

4.1 Language
The statements of our simplified programming language have the

following grammar. (C stands for code, andD stands for dynamic
program point, which is discussed in Section 4.2.)

C ::= C;C | v := E | if P then C else C
| v := M.f(v1, ..., vk) | D

D ::= M.f.DPP(enterM.f)
| M.f.DPP(exitM.f)
| M.f.DPP(call toM.f #n)
| M.f.DPP(return fromM.f #n)

PredicatesP and side-effect-free termsE include variable refer-
ences and an arbitrary set of function and predicate symbols, such
as the integer operations+, ×, and<. M andf range over the
names of modules and procedures respectively.

Procedure definitions have the formM.f(v1, . . . , vk) : C. Their
semantics are defined by a substitution that transforms a program
into one without procedure calls. A callvr = M.f(α1, . . . , αk)
originally appearing in a procedureM2.f2 rewrites to

M2.f2.DPP(call toM.f #i);
v′1 := α1;
. . .
v′k := αk

M.f.DPP(enterM.f);
C[v′1/v1] · · · [v′k/vk][r′/return];
M.f.DPP(exitM.f);
vr := r′;
M2.f2.DPP(return fromM.f #i)

where i and the primed variables are fresh.v1 throughvk are
called the parameter variables, andα1 throughαk are the argu-
ment variables. The return value of a procedure is signified by a
distinguished variablereturn. Recursion is prohibited, as are calls
between procedures in the same module (which can be simulated
with ahead-of-time inlining). Note that this restriction on recursion
is stronger than the one imposed in the real implementation, which
forbids only recursion between modules. Our formalized language
has no iteration constructs, and is far from Turing-complete, but we
believe that the complications of loop verification and nontermina-
tion are orthogonal to the questions we wish to address with the
formalization, so we have chosen to omit them.

The parameters to a procedure, andreturn, are local to it, and
cannot be mentioned outside the procedure. Additional locals can
be obtained by declaring parameters and ignoring their values. All
other variables are associated with a particular module, and can
only be mentioned there. Each module has a special variablefail
which is initially zero, but set to 1 if any assertion fails. It can be
mentioned only via a special syntactic sugarassert(P) which is
otherwise equivalent toif P then fail := fail else fail := 1. (For
brevity in examples, we will sometimes abbreviatereturn asr and
combine expressions and procedure calls in single statements.)

Modules may refer to other modules by name. A system is a col-
lection of modules with a distinguishedmain procedure in one of
the modules, such that all named references to other modules in a
module can be satisfied by other modules in the system. An execu-
tion of the system is an execution of the main procedure, including
the expansions of all called procedures (transitively), in which the
initial values of all the variables are arbitrary, except that all the
specialfail variables are initially zero.

The semantics of the language are the usual ones, given by the
following small-step relation7→, which maps code and a store to
either new code and a new store, or just a new store to signify ter-
mination.

〈v := E, s〉 7→ s[v := s(E)] [assign]

〈D, s〉 7→ s [ppt]

〈C1, s〉 7→ 〈C′1, s′〉
〈C1;C2, s〉 7→ 〈C′1;C2, s

′〉 [seqProgress]

〈C1, s〉 7→ s′

〈C1;C2, s〉 7→ 〈C2, s
′〉 [seqElim]

s(P)
〈if P then C1 else C2, s〉 7→ 〈C1, s〉 [ifTrue]

¬s(P)
〈if P then C1 else C2, s〉 7→ 〈C2, s〉 [ifFalse]

A system execution is safe for a moduleM if at the end of exe-
cution, thefail variable of moduleM is still zero. A module is safe
in a system if every execution is safe for the module, and a system
is safe if every module in it is safe.

4.2 Program points and relations
The execution of a dynamic program pointD marks a moment

of execution; it has no other runtime effect, and may not appear in
the original program. The name of a dynamic program point gives
an event (in parentheses) and the procedure where the event occurs
(before the ‘DPP’). The values at a dynamic program point are the
current values of all in-scope variables when the point expression
evaluates.

Static program pointsS abstract over dynamic program points;
for any procedureg in moduleM1:

Static Dynamic
M : f M.f.DPP(enterM.f)
M : f ′ M.f.DPP(exitM.f)
M1:M2.fc M1.g.DPP(call toM2.f)
M1:M2.fr M1.g.DPP(return fromM2.f)

Static program pointsM : f andM1:M2.fr are called input pro-
gram points, andM : f ′ andM1:M2.fc are output program points.

A flow relationM(So|S i
1, . . . , S

i
k) consists of an output pro-

gram pointSo and zero or more input program pointsS i
j , all be-

longing to a moduleM , along with a formulaψ over all the vari-
ables of the given program points. In addition, one or more edges
from inputsS i

j to the output may be control-flow relations, with
associated guarding conditionsφj . ψ and eachφj are together re-
quired to be sound in the following sense:

For any system containingM and other modules, a dynamic in-
stance of the flow relation is a dynamic program point correspond-
ing to the output point, along with a dynamic program point cor-
responding to each static input point, such that no later dynamic
point for the same input occurs before the dynamic output point.
The flow relation holds over a dynamic instance ifψ holds over
the values of its variables at the dynamic points. A flow relation
is required to hold over any dynamic instance in any system con-
taining the module, for any system inputs. In addition, for each
control-flow edge, it must be the case that every instance of the in-
put program pointS i

j at which the guarding conditionφj holds is
followed later in the execution order, without any intervening in-
stances of the output program point, by an instance of the output
program point such thatS i

j and the output point are part of an in-
stance of the relation.

A summary relationM(S i |So
1, . . . , S

o
k) consists of an input pro-

gram pointS i and zero or more output program pointsSo
j , all be-

longing to a moduleM , along with a formulaψ over the variables
at all of the given program points. When the name of a summary

50

relation appears in a logical formula, it stands for the formulaψ. ψ
is required to soundly assure safety in the following sense:

For any system containingM and other modules, a dynamic in-
stance of the summary relation is a dynamic program point corre-
sponding to the input point, along with a dynamic program point
corresponding to each static output point, such that no later dy-
namic point for the same output occurs before the dynamic input
point. The summary relation holds over a dynamic instance ifψ
holds over the values of its variables at the dynamic points. The
summary relations of a module are required to have the property
that if in any system, they all hold on each of their dynamic in-
stances for any system input, then that execution must be safe for
that module.

The variables in the formulas of flow and summary relations are
named so that every name is qualified by the static program point it
corresponds to; thus relations can refer separately to the value of a
program variable at different program points.

A call relation consists of a procedure call program point, a pro-
cedure entrance point for the called procedure, and a formula that
states that each formal parameter variable is equal to the corre-
sponding actual argument variable. When the name of a call re-
lation appears in a formula, it stands for this conjunction of equali-
ties. Similarly a return relation consists of a procedure exit program
point, a procedure return point for the procedure that the exit is the
exit from, and a formula stating that the value of the return in the
procedure returned to is equal to the value returned by the exiting
procedure. When the name of a return relation appears in a formula,
it stands for this equality.

5. SAFETY FOR A SINGLE COMPONENT
UPGRADE

To illustrate the use of the formalism developed in the previ-
ous section, consider the simple case of an upgrade to a module
that provides a single procedure without visible side effects. We
will give our technique’s consistency condition for such a system,
and prove that it is sound. This result is analogous to Example 5
of [3], which proves that a similar condition between specifications
is “reuse-preserving,” based on a relational semantics of specifi-
cations. Our proof is more involved, because it addresses more ex-
plicit details such as the passing of procedure arguments. Explicitly
formalizing these notions becomes important for more complicated
systems (for instance, if a procedure might have multiple callers).

Consider a system consisting of two modulesU andL. Library
L contains a single proceduref , andU contains a single procedure
m, which makes one or more calls tof . Furthermore, assume that
f makes no use of any module-wide variables (except of course
for uses offail in assertions). We call this the single-component
upgrade case.

We can model the system with two flow relations,U(fc) and
L(f ′|f), and two dual summary relations,L(f) andU(fr|fc).
Since every call to the procedure returns, the flow edge fromf
to f ′ is a control-flow edge with guarding condition “true.” As
a concrete example, one might imagine that the proceduref in-
crements its argument, and thatU happens to callf only with
even integers; thenU(fc) might be “fc is even”,L(f ′|f) might be
“f ′.r = f.x+1”, L(f) might be“f.x is an integer”, andU(fr|fc)
might be “fr.r = fc.x + 1 ∧ fr.r is odd”, whileC andR would
be simplyf.x = fc.x andfr.r = f ′.r.

PROPOSITION 1. If

(U(fc) ∧ C) ⇒ L(f)

and

(U(fc) ∧ C ∧ L(f ′|f) ∧R) ⇒ U(fr|fc),

whereC andR are the call and return relations for the call to and
return fromf , then the system ofU andL is safe.

PROOF. First, we will check that the system is safe forL. Since
L has only one summary relation,L(f), it suffices to check that
L(f), which is a formula over the parameters tof , holds at each
dynamic entrance tof (recall thatf uses no module-wide vari-
ables, so the parameters tof are the only relevant variables for the
execution off). Now, each dynamic occurrence ofL: f is imme-
diately preceded, except for intervening assignments of arguments
to parameters, by a dynamic occurrence ofU :L.fc, by the defini-
tion of procedure expansion. BecauseU(fc) is a flow relation for
U , on any execution,U(fc) will hold at each dynamic execution
of U :L.fc. Furthermore, the assignments off ’s arguments to its
parameters assure thatC will hold at the occurrence ofL: f , and
since the parameters are disjoint from the arguments, the formula
of U(fc) will continue to hold at that point. Thus, the formula
U(fc)∧C will hold at each instance ofL: f . Thus by assumption,
L(f) will hold at each instance ofL: f , completing the proof that
L is safe.

Next, we’ll check that the system is safe forU . SinceU has only
one summary relation,U(fr|fc), it suffices to check thatU(fr|fc),
which is a formula over the value returned byf given the argu-
ments tof , perhaps along with other variables inm, holds for
the actual arguments, the return value, and those other variables,
for each dynamic execution of the return. Consider any partic-
ular dynamic instance ofU(fr|fc), consisting of a callU :L.fc

and a returnU :L.fr. By the structure of the procedure expan-
sion, the instance ofU :L.fc must be followed by an assignment
of arguments to parameters, and an instance ofL: f . Similarly,
the instance ofU :L.fr must be immediately preceded by a return
assignment, and before that an instance ofL: f ′. Since, by the
definition of a summary relation, the instance ofU :L.fc was the
most recent prior to the instance ofU :L.fr, and because onlyU
callsf , it must also be that the instance ofL: f is the most recent
prior to the instance ofL: f ′; thus, the instances ofL: f andL: f ′

are related by the flow relationL(f ′|f). In other words, we know
thatL(f ′|f) holds over the parameters to and the return value from
this dynamic invocation off . Furthermore,U :L.fc andL: f are
separated only by the assignment of arguments to parameters, so
C holds as a relation between the arguments and the parameters,
and similarlyR holds as a relation between the copies of the return
value atL: f ′ and atU :L.fr. Finally,U(fc) is a flow relation for
U , so it must hold at the same pointU :L.fc. In summary, we see
thatU(fc) ∧ C ∧ L(f ′|f) ∧ R holds over the parameters, argu-
ments, and return value off , so by the assumed safety condition,
U(fr|fc) also holds over that dynamic execution. Since we picked
an arbitrary execution,U(fr|fc) holds for each dynamic invocation
on any input, completing the proof thatU is safe.

6. A MORE GENERAL CONDITION
The previous section described the consistency condition used

by our technique when considering the simplest sort of compo-
nent upgrade, and showed that it gave sound determinations of up-
grade safety when used with sound abstractions of individual com-
ponents. This section describes the algorithm for computing such
conditions in arbitrary multi-component systems, and discusses the
features that allow it to have the same soundness property. If de-
sired, the algorithm can be performed separately for each summary
relation in the model of a system, but we will describe it as check-
ing all the relations together, in a series of three phases. First, for

51

each summary relation it selects a subset of the model that is rel-
evant to the expectations summarized in that relation; this process
is analogous to the technique of slicing in program analysis. Sec-
ond, it transforms the flow relations in the model so that they can
be soundly combined to describe the behavior of modules working
together. Finally, it combines the transformed flow relations in the
subset of the model to construct a logical condition connecting the
abstractions describing the behavior of various components to the
expectations of the summary relation, so that if the condition holds,
the summary expectations will be satisfied. The second and third
phases are analogous to the construction of a verification condition
in program verification, except that they operate using much larger
atomic units of program behavior. The following subsections de-
scribe these three phases in turn.

In previous work [13] we described a simpler algorithm with
the same purpose as the one described here, which combined the
aforementioned three phases into one. However, the previous al-
gorithm contained an ambiguity in its description, relating to the
order in which the system graph was traversed, and the consistency
conditions it produced could potentially lead to both false positive
results (rejected safe upgrades) and false negatives (approved un-
safe upgrades). In the present algorithm we focus on eliminating
false negatives, to achieve soundness.

6.1 Selecting relevant relations
The set of data-flow relations that are relevant to a given sum-

mary relation can be determined using context-free language reach-
ability [17] on the graph representing the model. Suppose that the
edges of the model graph, excluding summary edges, are labelled
as follows. Control-flow edges are labeled with4. Procedure calls
and returns are labelled with(i and)i respectively, where the in-
dicesi are chosen to be unique except that the call from and return
to any particular site have the same index. Data-flow edges are re-
placed with sequences of three edges labeled with4, connecting
the original ends via two fresh vertices:

(
j)

i

v
1

v
2

The fresh vertices are each adorned with a number of self-edges:
one for each closing parenthesis)i on the first vertex, and one for
each opening parenthesis(j on the second vertex. Now, letv be
the input of a summary relation in such a graph. We say that a
path from a nodeu to v is relevant if it is labelled by a word in the
following context-free language:

S → R L
L → Z | (i L | B L
R → Z | R)i | R B
B → Z | (i B)i | B B
Z → ε | 4

where productions with parentheses are repeated for alli. In other
words, relevant paths include no mismatched parentheses; a4may
appear anywhere. The set of all nodesu that start relevant paths can
be determined by a dynamic-programming approach that enumer-
ates all the triples consisting of two nodes and a nonterminal such
that the path between the nodes can be labeled by the nonterminal.
We say that an edge is relevant if it occurs on any relevant path. A
relation is relevant if it contains any relevant edge (though in fact,
either all or none of the edges in a relation will be relevant), or for
an independent output if its node is on a relevant path.

The intent of this selection algorithm is to conservatively choose
a subset of the system model whose behavior might affect the va-
lidity of a summary relation. The basic approach is similar to tra-
ditional interprocedural slicing: any path is considered feasible un-
less it violates the correct matching of procedure calls and returns.
The treatment of data-flow edges, however, is non-traditional. Data-
flow edges represent non-local dependencies between parts of a
program, which need not obey the proper nesting of calls and re-
turns: internal state might be set at one point in execution and read
much later in an unrelated context. Thus, reachability across data-
flow edges is granted an exemption from the usual matching of
calls with returns, achieved via the data-flow edge rewriting shown
above. Our treatment of state may be contrasted with the usual
treatment of global variables in CFL-reachability-based program
slicing [9], in which globals are threaded through procedures as ex-
tra parameters. While the traditional approach is potentially more
precise, it relies on more detailed information about procedure im-
plementations than is available in our framework.

Note that abstractly, this first phase of our algorithm is superflu-
ous: one could obtain the correct results for each summary rela-
tion by using a consistency condition covering the entire system.
However, including the first phase as described above has a num-
ber of practical benefits. First, as a matter of efficiency, existing
automatic theorem provers are often unable to avoid consideration
of supplied premises that are irrelevant to the statement being ver-
ified, especially when those premises include quantification. We
would expect it to be more efficient to exclude irrelevant facts be-
fore passing them on to the theorem proving stage. Second, this
slicing of the system model helps users of a tool track down and fix
potential incompatibility warnings when they are generated. After
a potential incompatibility is flagged, it is up to a user to decide
which components must be modified or re-tested to allow the sys-
tem to operate correctly. Knowing which components might be
responsible for a failure reduces the scope of this search.

6.2 Transformations for sound composition
We aim to construct a consistency condition by conjoining for-

mulas representing each relation in the relevant subgraph of the
system model. We already assume that relations are sound with
respect to the single module where they are found, but they must
be changed to be sound over the larger domain of a combined sys-
tem. Conjoining the formulas for each relation unmodified would
lead to a consistency condition that might be satisfied even by an
unsafe system. Recall that a flow relation from (input) program
pointsu1, u2, . . . , uk to an (output) program pointv is a formula
that holds at each dynamic instance ofv, in terms of the values
at the most recent preceding instances of each pointui. In order to
soundly combine relation formulas by conjunction, we must ensure
that the variables in those formulas always consistently refer to the
same set of values. In the following subsections, we explain where
variable reference inconsistencies arise, and how we transform the
relations to achieve sound combination.

6.2.1 Splitting relations into edges
Flow relations connect any number of inputs to a single output

using formulas over the relevant variables at each program point.
When combining information about multiple modules, though, it
is more convenient to divide the relations into edges matching the
graph structure of the model. Consider a relation fromu1, . . . , uk

to v. Introduce a fresh set of variables corresponding to all the vari-
ables at each of the pointsui, and rewrite any formula involving at
least one of theui variables and av variable to use the fresh copies
of the variables from eachui. Next, add formulas setting each orig-

52

inal variable fromui equal to its corresponding copy. Now, just
these equations can be associated with each edge from a pointui to
v. The new set of equations represents the same relation between
the variables at the pointsui and the variables atv that the original
one did.

6.2.2 Guarding conditional control flow
Consider a control-flow edge from a pointu to a pointv. The

‘meaning’ of the edge is described with two formulas (as explained
in Section 3.1.2). First, a relationψ over the variables of bothu
andv describes data flow, holding for each occurrence ofv over
the variable values of that occurrence ofv and the values at the
most recent previous occurrence ofu. Second, a guarding con-
dition φg is a relation only over the variables ofu, and holds on
only on occurrences ofu that are followed by an occurrence ofv
(without an interveningu). To construct an edge that can be used
to soundly ‘predict’ the values atv given those atu, we combine
these formulas into a new conditionφg ⇒ ψ. This new formula
holds over every occurrence ofu and the next followingv: for any
u, if u is not followed byv (without an interveningu), thenφg will
be false, making the implication true. On the other hand, if someu
is followed by an occurrence ofv, then thatu is the most recent oc-
currence beforev, soψ holds over the values, and the implication
is again true.

6.2.3 Duplicating based on calling context
Consider a procedure that is called from more than one module

(say two); lete be its exit program point, andr1 andr2 the return
program points for the two callers. The return relation between
e andr1 says that the return value seen by the caller is equal to
the value returned, and similarly for the return relation betweene
andr2. However, conjoining these relations would be unsound, be-
cause they are effectively referring to two different sets of values
at e: one the values that will be returned tor1, for the first caller,
and the other only those to be returned tor2. Given a property
of the values returned tor1 that distinguished them from the val-
ues returned tor2, one might imagine using a technique similar
to guarding to resolve this inconsistency, but that is not a feasible
approach. Such a property may not even exist (if there are some
values that could be returned to either caller), and even it did it ex-
ist it couldn’t be determined in our modular approach, because it
would require knowledge of all the calling modules.

Instead, the mismatch can be corrected by duplicating the pro-
gram pointe to create two points,e1 connected tor1 ande2 con-
nected tor2, so that the variables ate1 refer only to values on
calls that return tor1, and similarly fore2. After this transfor-
mation, the return relations that equatee1 with r1, ande2 with r2,
will be sound for any invocations of the restrictede1 or e2. Of
course, if the program pointe is split, we must also describe how
the other edges ending ate are transformed. In the case of control-
flow edges, we can repeatedly apply the same splitting technique
to predecessor points until reaching the calls corresponding to the
procedure returns; the net effect is to duplicate the representation of
the procedure between the various call sites. For data-flow edges,
see Section 6.2.4.

In practice, the duplication need not be performed step by step
as it was just introduced. We can construct the right number of du-
plicates for every program point by simply traversing the system
graph, maintaining a stack corresponding to the call stack of a sys-
tem execution, and constructing one copy of a node for each unique
stack contents (calling context) with which it might be reached. It is
somewhat unfortunate that for soundness, our technique currently
requires this extensive duplication of procedures called from mul-

A.m(x): x := x · x+ 1; r := B.b(x); assert(r > 4 · x)
B.b(y): r := C.c(2 · y) +D.d(2 · y + 1)
C.c(v): r := E.i(v)
D.d(v): r := E.i(v)
E.i(x): r := x+ 1

(A(bc) ∧ Call(B.b|A.bc) ∧B(cc|b) ∧ Call(C.c|B.cc)

∧ C(ic|c) ∧ Call((E.i)c|C.ic) ∧ (E(i′|i))c

∧ Ret(C.ir|(E.i′)c) ∧ C(c′|ir) ∧ Ret(B.cr|C.c′)
∧B(dc|b) ∧ Call(D.d|B.dc) ∧D(ic|d)

∧ Call((E.i)d|D.ic) ∧ (E(i′|i))d ∧ Ret(D.ir|(E.i′)d)

∧D(d′|ir) ∧ Ret(B.dr|D.d′) ∧B(b′|cr, dr)

∧ Ret(A.br|B.b′)) ⇒ A(br|bc)

(A.bc.y > 0∧B.b.y = A.bc.y ∧B.cc.v = 2 ·B.b.y ∧C.c.v = B.cc.v

∧ C.ic.x = C.c.v ∧ (E.i.x)c = C.ic.x ∧ (E.i′.r)c = (E.i.x)c + 1

∧ C.ir.r = (E.i′.r)c ∧ C.c′.r = C.ir.r ∧B.cr.r = C.c′.r
∧B.dc.v = 2 ·B.b.y + 1 ∧D.d.v = B.dc.v ∧D.ic.x = D.d.v

∧(E.i.x)d = D.ic.x∧(E.i′.r)d = (E.i.x)d +1∧D.ir.r = (E.i′.r)d

∧D.d′.r = D.ir.r ∧B.dr.r = D.d′.r ∧B.b′.r = B.cr.r + B.dr.r

∧A.br.r = B.B′.r) ⇒ A.br.r > 4 ·A.bc.y

Figure 1: A small example of a consistency condition derived
by the algorithm of Section 6. The three sections show code for
a system, the form of the consistency condition as computed by
the algorithm of Section 6, and the actual condition as passed to
a theorem prover. The increment routinei of moduleE is called
in different contexts by modulesC (with an even argument) and
D (with an odd argument). Duplication of the logical variables
for procedure i is indicated by the notations(·)c and (·)d.

tiple contexts. Because our model of the tested behavior of each
module is collected without knowledge of the particular contexts
where the module will be used, the context sensitivity provided by
duplication should not be expected to significantly increase the pre-
cision of the technique’s results. Rather, duplication seems neces-
sary as a matter of soundness, for cases when two uses of a module
are considered together, to avoid effectively assuming that a pro-
cedure’s return value always took a single value, as would happen
if it were represented by a single logical variable. Figure 1 shows
an example where duplication appears necessary. Without dupli-
cation, one could conclude that the values returned byc andd are
equal, and thus that the return value ofbmust be even, when in fact
it must be odd. We are still looking for less extensive modifications
that might achieve soundness while remaining essentially context-
insensitive. The overhead incurred by duplication, though expo-
nential in the worst case, should be modest in practice, because the
number of modules comprising a system will be relatively small.

6.2.4 Mixing data-flow edges
Data-flow edges must also be changed when the nodes they con-

nect are duplicated, but they cannot be duplicated along with the
nodes they connect in the way that control-flow edges are, because
a data-flow edge does not correspond to any particular execution
context. In fact, a data-flow edge might connect two nodes that are
duplicated a different number of times. Our model is too abstract to
determine which flows between copies of the source program point
and copies of the target program point might occur (for instance,
because it does not provide a total ordering of calls), so we instead
conservatively assume that any flow might be possible. If an origi-
nal source program pointu is duplicatedn times and a target point
v is duplicatedm times, we createnm copies of the data-flow edge

53

originally connecting them, one connecting each duplicate ofu to
each duplicate ofv. However, at each duplicate of v, the formulas
for the edges are disjoined (rather than conjoined as formulas are
otherwise). The effect is to express that each destination receives
values flowing from at least one source.

6.3 Assembling a consistency condition
Once the relational model has been transformed as described in

the previous subsection, assembling the consistency condition is
straightforward. For a given summary relation, take the set of flow
relations relevant to the summary input, as computed by CFL reach-
ability. Let S be the set of all those relation formulas, as rewrit-
ten or duplicated according to the transformations above. Then the
consistency condition states that the conjunction of all the formulas
in S implies the summary relation formula.

In outline, the proof of the soundness of this technique is as fol-
lows, for a single summary relation. Suppose that the consistency
condition holds; it is an implication of the form(

V
i φi) ⇒ σ,

where eachφi is a transformed flow relation formula andσ is
a summary relation formula. Eachφi holds individually, due to
the assumption that the original flow relations are sound and the
fact that their transformations were soundness-preserving. Further-
more, the formulasφi use common variables consistently, so they
can be legitimately conjoined, and their conjunction is true. Thus,
by our assumption of the implication,σ must hold. By this argu-
ment, each summary relationσ in a system can be seen to hold,
which guarantees, by the definition of a summary relation, that the
system will be safe.

7. CONCLUSION
This research takes steps toward proving the soundness of a tech-

nique for verifying properties about a software system made up of
components. One use of the technique is to verify that after some
components of a software system have been upgraded, the system
as a whole continues to behave as desired.

This paper makes five key contributions. First, we provided an
abstract model of the behavior of software components. The model
differs from previous models by distinguishing between control
flow and data flow. Second, we gave a formalized version of the
problem of checking consistency for a modular system in a simple,
imperative language. Safe component composition is modeled by
the success of arbitrary assertion statements. Third, we defined an
algorithm that constructs a consistency condition. The consistency
condition is a logical formula such that if the components satisfy its
parts (which express expectations about component behavior), then
the system as a whole behaves safely. This algorithm differs from
previous work by applying to the new, more detailed model and by
fixing an error in previous formulations. Fourth, we proved the cor-
rectness of the algorithm in the special case of a single-component
upgrade: the condition that the algorithm generates suffices to en-
sure that an upgrade is safe. Fifth, we gave a proof outline of the
correctness of the algorithm in the general case. Completing this
proof is future work.

We made two types of changes to previous work. Some changes
were motivated by the desire to prove correctness; for example, the
proof required formalization of the safety condition. Other changes
correct errors in previous work that were not apparent until revealed
by our formalization and proof attempts. The result is a more de-
tailed and correct technique for verifying the composition of soft-
ware components.

Though our technique does not require its users to understand
the complexities behind its operation, this research demonstrates
that techniques from formal specification and verification can make

possible a practical and lightweight tool to help software develop-
ment.

Acknowledgment: This work was funded in part by NSF grant
CCR-0133580, DARPA contract FA8750-04-2-0254, the Oxygen
project, and an NDSEG fellowship.

8. REFERENCES
[1] P. America. Inheritance and subtyping in a parallel

object-oriented language. InECOOP, pages 234–242, June
1987.

[2] G. Ammons, R. Bod́ık, and J. R. Larus. Mining
specifications. InPOPL, pages 4–16, Jan. 2002.

[3] Y. Chen and B. H. C. Cheng. A semantic foundation for
specification matching. InFoundations of Component-Based
Systems, chapter 5, pages 91–109. Cambridge University
Press, New York, NY, 2000.

[4] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem
prover for program checking. Technical Report
HPL-2003-148, HP Labs, Palo Alto, CA, July 23, 2003.

[5] M. D. Ernst. Static and dynamic analysis: Synergy and
duality. InWODA 2003: ICSE Workshop on Dynamic
Analysis, pages 24–27, Portland, OR, May 9, 2003.

[6] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to support
program evolution.IEEE TSE, 27(2):1–25, Feb. 2001.

[7] R. B. Findler, M. Latendresse, and M. Felleisen. Behavioral
contracts and behavioral subtyping. InESEC/FSE, pages
229–236, Sept. 2001.

[8] J. Henkel and A. Diwan. Discovering algebraic specifications
from Java classes. InECOOP, pages 431–456, July 2003.

[9] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs.ACM TOPLAS, 12(1):26–60, Jan.
1990.

[10] C. B. Jones.Systematic Software Development using VDM.
Prentice Hall, second edition, 1990.

[11] B. H. Liskov and J. M. Wing. A behavioral notion of
subtyping.ACM TOPLAS, 16(6):1811–1841, Nov. 1994.

[12] S. McCamant and M. D. Ernst. Predicting problems caused
by component upgrades. InESEC/FSE, pages 287–296,
Sept. 2003.

[13] S. McCamant and M. D. Ernst. Early identification of
incompatibilities in multi-component upgrades. InECOOP,
pages 440–464, June 2004.

[14] B. Meyer.Object-Oriented Software Construction.
Prentice-Hall, 1988.

[15] S. Moisan, A. Ressouche, and J.-P. Rigault. Behavioral
substitutability in component frameworks: A formal
approach. InSAVCBS, pages 22–28, Sept. 2003.

[16] O. Nierstrasz. Regular types for active objects. InOOPSLA,
pages 1–15, Sept./Oct. 1993.

[17] T. W. Reps. Program analysis via graph reachability.
Information and Software Technology, 40(11–12):701–726,
Nov./Dec. 1998.

[18] J. Schumann and B. Fischer. NORA/HAMMR: Making
deduction-based software component retrieval practical. In
ASE, pages 246–254, Nov. 1997.

[19] J. Yang and D. Evans. Dynamically inferring temporal
properties. InPASTE, pages 23–28, June 2004.

[20] A. M. Zaremski and J. M. Wing. Specification matching of
software components.ACM TOSEM, 6(4):333–369, Oct.
1997.

54

Verification of Evolving Software ∗

Sagar Chaki Natasha Sharygina Nishant Sinha
chaki|natalie|nishants@cs.cmu.edu

ABSTRACT
We define the substitutability problem in the context of
evolving software systems as the verification of the following
two criteria: (i) previously established system correctness
properties must remain valid for the new version of a system,
and (ii) the updated portion of the system must continue to
provide all (and possibly more) services offered by its earlier
counterpart. We present a completely automated procedure
based on learning techniques for regular sets to solve the
substitutability problem for component based software. We
have implemented and validated our approach in the context
of the ComFoRT reasoning framework and report encour-
aging preliminary results on an industrial benchmark.

1. INTRODUCTION
Model checking [7] is a formal verification approach for

detecting behavioral anomalies (including safety, reliability
and security problems) in hardware and software systems.
While model checking produces extremely valuable results,
often uncovering defects that otherwise go undetected, there
are several barriers to its successful integration into sofware
development processes. In particular, model checking is
hamstrung by scalability issues and is difficult for software
engineers to use directly.

Most current research on model checking focuses on im-
proving its scalability, and innovative techniques such as au-
tomated predicate abstraction and assume-guarantee rea-
soning have greatly improved the applicability of model
checking to industrial-scale systems. However, there has
been less progress on its transition from an academic to a
practically viable discipline.

For instance, any software system inevitably evolves as
designs take shape, requirements change, and bugs are dis-
covered and fixed. While model checking is useful at each
of these stages, it is usually applied to the entire system at

∗This work was done as part of the Predictable Assembly
from Certifiable Components initiative at the Software En-
gineering Institute.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

every point irrespective of the amount of modification the
system has actually undergone. The amount of time and
effort required to verify an entire system can be prohibitive
and repeating the exercise after each (even minor) system
update discourages its use by practitioners.

In this article we present a framework that, while not
affecting the initial model checking effort, is aimed at re-
ducing dramatically the effort to keep analysis results up-
to-date with evolving systems. More specifically, we make
the following two contributions. First, we define the sub-
stitutability problem as the verification of the following two
criteria: (i) previously established system correctness prop-
erties must remain valid for the new version of an evolving
software, and (ii) the updated portion of the system must
continue to provide all (and possibly more) services offered
by its earlier counterpart. Second, we present a completely
automated procedure to solve the substitutability problem in
the context of component based software.

We will define our notion of components and their behav-
iors more precisely later. Intuitively, a behavior of a com-
ponent involves a sequence of observable message-passing
interactions with other components. We denote the set of
behaviors of a component C by B(C). Also given two com-
ponents C and C ′ we will write C 4 C ′ to mean that
B(C) ⊆ B(C ′). Suppose we are given an assembly of com-
ponents: A = {C1, . . . ,Cn}, a safety property ϕ, and a new
component, C S

i , to be used in place of Ci. We assume that ϕ
was proven to hold on the original assembly A. We wish to
check for the substitutability of C S

i for Ci in A with respect
to the property ϕ. More specifically, our aim is to develop
a procedure that achieves the following goals:

1. Containment. Verify that Ci 4 C S

i , i.e., every
behavior of Ci is also a behavior of C S

i . To this
end, we will construct a component CF

i such that
B(CF

i) = B(Ci) ∪ B(C S

i). In particular, if Ci 4 C S

i ,
then CF

i will be the same as C S

i . If the check fails,
we provide the developers with feedback regarding the
differences between Ci and C S

i . Assuming that the
missing behaviors would be added to C S

i subsequently,
we proceed with CF

i as a safe abstraction of the new
component in the next phase.

2. Compatibility. Verify that the new assembly A′ =
{C1, . . . ,C

F

i , . . . ,Cn} satisfies the safety property ϕ.
Note that in general B(CF

i) ⊃ B(Ci) owing to addi-
tional behaviors from C S

i . Hence A′ might violate ϕ
even though ϕ was satisfied by A. Therefore, in our
framework, compatibility must be explicitly verified.

55

Component Assembly

Check counterexample

Component Subsitutability:

Counterexample is provided

1) Containment Check:Ci 4 CS
i

CS
i

CF
i

Yes, CF
i can be used

instead of Ci

No, CF
i can not be used instead of Ci

C1 Ci Cn

2) Compatibility Check:

{C1, ...,CF
i , ...,Cn} � ϕ

Figure 1: Overview of Component Substitutability.

We believe that our methodology is uniquely distinguished
by the two phases it involves. Containment ensures that
the substituted component satisfies the following criterion
(CONT): it provides all services rendered by the original com-
ponent Ci. If the new component C S

i does not satisfy CONT,
we generate a component which does, viz., CF

i .
The new component C S

i will usually be the result of de-
sign changes, bug fixes and other updates by a varied group
of software professionals. Thus, it is unrealistic to expect
C S

i to always bear a specific relationship with the original
component Ci. For instance, C S

i will seldom refine Ci in the
sense that all behaviors of the C S

i are already there in Ci.
We believe that in order to be viable, any approach to the
substitutability problem must allow additional behaviors in
C S

i , and yet ensure that all old features of Ci continue to be
supported. This is precisely the purpose of the containment
phase which culminates in the construction of CF

i . To the
best of our knowledge, ours is the first framework to address
this issue explicitly.

Compatibility guarantees that CF

i can be safely inte-
grated with the other components in the assembly. Re-
call that this must be checked explicitly since in general
B(CF

i) ⊃ B(Ci). The compatibility check results in either
a substitutable component CF

i or produces a counterexam-
ple showing why the substitution of C S

i is not feasible. The
component CF

i is such that: (i) it renders every service of
Ci and yet (ii) the new assembly A′ = {C1, . . . ,C

F

i , . . . ,Cn}
satisfies the safety property ϕ. The complete substitutabil-
ity check procedure is outlined in Figure 1.

In addition to the computation of CF
i , a major focus of

the containment phase is to compute a set of behaviors in
B(Ci) \ B(C S

i). Since these behaviors express features of Ci

that are absent in C S

i , they can be used to generate feed-
back for the developers. Such feedback can be of critical
help by localizing the changes required to add the missing
features back to C S

i . We discuss this issue further in Sec-
tion 5.4. We use automata-theoretic learning techniques for
both the containment and compatibility phases of our ap-
proach. Specifically, we use techniques based on a learning
algorithm for regular sets proposed by Angluin [2]. As we
shall see later, our use of learning will aid in efficient feed-
back generation.

Finally, we employ state/event-based modeling tech-
niques [4] in order to be able to model and reason about
both the data and communication aspects of software. We
use labeled Kripke structures (LKSs) to model, as well as
to specify, software systems. This is important for our ap-
proach to be practically applicable to real-life component-
based systems.

We implemented and validated our approach in the con-
text of the Component Formal Reasoning Technology (Com-
FoRT) [10] reasoning framework being developed as part
of the Predictable Assembly from Certifiable Components
(pacc) [14] initiative at the Software Engineering Institute
(SEI), Carnegie Mellon University (CMU). Specfically we
implemented our substitutability framework as part of the
model checking engine of ComFoRT, which is based on the
C model checker magic [5, 11] developed at CMU. In the
rest of this article we will use the ComFoRT model checker
and magic synonymously.

The ComFoRT model checker employs automated predi-
cate abstracion to extract finite models from concurrent C
programs. Since abstract models often contain unrealistic
behaviors, any counterexample obtained from an abstract
model must be validated against the concrete system. If the
counterexample is found to be spurious, the model must be
refined and verification repeated. This iterative procedure
is known as counterexample guided abstraction refinement
(CEGAR) and implemented by magic in a completely auto-
mated form. Furthermore, in the context of concurrent sys-
tems, magic conducts both counterexample validation and
abstraction refinement steps in a component-wise manner.
Both predicate abstraction and automated CEGAR were
critical for applying our technique to industrial component-
based systems.

In summary, we believe that the presented component
substitutability procedure has several advantages:

• Unlike conventional approaches, our methodology does
not subscribe to the idea of trace-theoretic refinement
while checking for substitutability. We believe that it
is unduly restrictive to require a new component to
directly refine its old counterpart in order be replace-
able, and instead allow new components to have more
behaviours. The extra behaviors are critical since they
provide vendors with flexibility to implement new fea-
tures into the product upgrades1.

• Our technique identifies features of the old component
Ci which are missing in the new component C S

i . It
also generates feedback to localize the modifications
required in C S

i to add the missing features back.

• Our method uses techniques based on learning algo-
rithms for regular sets for accomplishing both phases
of the substitutability check. This unified approach
enables automatic verification of evolving software.

• Our technique supports component-wise abstraction,
counterexample validation and abstraction refinement
steps of the verification procedure and is thus expected
to scale to large software designs.

This article is organized as follows. In Section 2 we dis-
cuss related work. Preliminary definitions and notations are

1Verification of these new features remains a responsibility
of designers of the upgraded systems.

56

presented in Section 3 followed by a description of the L∗

learning algorithm in Section 4. Details of our core compo-
nent substitutability framework are presented in Section 5.
Finally we present experimental results in Section 6 and
conclude in Section 7.

2. RELATED WORK
This work relates to multiple projects targeting verifica-

tion of component-based systems. In general, in contrast to
our work, other projects often impose the restriction that
every behavior of the new component must also be a behav-
ior of the old component. In such a case the new component
is said to refine the old component.

Alfaro et. al. [9, 6] define a notion of interface automa-
ton for modeling component interfaces and show compat-
ibility between components via refinement and consistency
between interfaces. However, automated techniques for con-
structing interface automata from a component implemen-
tations are not presented. Labeled Kripke structures (LKSs)
coupled with the interface alphabet as they are used in this
work for constructing component abstractions are similar to
interface automata. In contrast, this work is based on sound
predicate abstraction techniques that automatically extract
LKSs from component implementations. Also our work is
not limited to showing refinement between the old compo-
nent and the new one and therefore it suits more to realistic
systems.

Ernst et. al. [13] suggest a technique for checking compat-
ibility of multi-component upgrades. However, they restrict
themselves to input/output specifications of components by
abstracting away temporal information about the sequence
of actions. They acknowledge that even though the abstrac-
tion is not sound, their approach is useful in detecting impor-
tant problems. In contrast to that, since our work employs
existential abstraction, our framework is sound. Another
drawback of this related work is that due to the nature of
the input/output abstraction that eliminates sequencing of
actions, component specifications are not complete. This
is not a problem in our work since predicate abstraction
is over-approximation and preserves all possible behaviors
of the original components. Another difference with our
project is that [13] component consistency criteria imply
that all behaviors of component upgrades are also behaviors
of their old counterparts.

The compatibility check in the current work is automated
following ideas of Cobleigh et. al. [8] of using learning for
regular sets techniques. While [8] focuses on automating
assume-guarantee reasoning, our work solves a more general
problem of the component substitutability. We use compo-
sitional reasoning to discharge new behaviors of the com-
ponent upgrades in new assemblies. Our approach differs
from theirs in a number of ways. Firstly, we take care of
state labeling information of LKSs by including both state
and transition labels in the language definition of LKSs.
Also in our case, the compatibility check is embedded in
the abstraction-refinement framework for C programs, which
makes verification tractable.

3. BACKGROUND AND NOTATION

Definition 1 (Finite Automata). A non-
deterministic finite automaton (NFA) is a 5-tuple
(S ,S0, Σ, ∆,F) with S a finite set of states, S0 ⊆ S a

set of initial states, Σ a finite alphabet, ∆ ⊆ S × Σ × S a
transition relation, and F ⊆ S a set of final (accepting)
states. The language of an NFA M is denoted by L(M) and
defined in the usual way. A deterministic finite automaton
(DFA) is a NFA such that S0 has exactly one element and
∆ is a function from S × Σ to S.

Definition 2 (Labeled Kripke Structure). A la-
beled Kripke structure (LKS for short) is a 6-tuple
(S , Init ,AP ,L, Σ, δ) with S a finite set of states, Init ⊆ S a
set of initial states, AP a finite set of (atomic) state propo-
sitions, L : S → 2AP a state-labeling function, Σ a finite
set of events or actions (alphabet), and δ ⊆ S × Σ × S a
transition relation.

For any NFA, DFA (or LKS) with transition relation ∆ (or

δ), we write q
α

−→ q′ to mean (q, α, q′) ∈ ∆ (or (q, α, q′) ∈ δ).
We wish to define the language of an LKS in terms of that
of an equivalent NFA. However since the states of an NFA
are not labeled, we will have to transform the state label-
ing of the LKS to events in accordance with some scheme.
Moreover, we would like to vary the alphabet of the result-
ing NFA by focusing on different sets of propositions. This
idea is captured by an induced NFA.

Definition 3 (Induced NFA). The NFA induced by
an LKS M = (S , Init ,AP ,LM , ΣM , δ) is denoted by
NFA(M) and defined as: (S ∪ {si}, {si}, ΣN , ∆, S ∪ {si})
where si 6∈ S is a new state, ΣN = (ΣM ∪ {τ}) × 2AP , and
∆ is defined as follows:

∀s ∈ Init � si
<τ,LM (s)>

−→ s ∈ ∆

∀s
α

−→ s
′ ∈ δ � s

<α,LM (s′)>
−→ s

′ ∈ ∆

Definition 4 (LKS Language). The language of an
LKS M is denoted by L(M) and defined as the language of
the induced NFA(M). Note that L(M) is prefix-closed:

∀w � w ∈ L(M) =⇒ ∀w
′ ∈ prefix(w) � w

′ ∈ L(M)

Definition 5 (Abstraction). Given two LKSs M1

and M2 we say that M2 is an abstraction of M1, denoted by
M1 4 M2, iff L(M1) ⊆ L(M2). Note that this concretizes
our intuitive notion of abstraction being a form of behavioral
containment since the set of behaviors of an LKS is captured
by its language.

Definition 6 (Parallel Composition).
Let M1 = (S1, Init1,AP1,L1, Σ1, δ1) and M2 =
(S2, Init2,AP2,L2, Σ2, δ2) be two LKSs. The parallel
composition of M1 and M2, denoted by M1 ‖ M2, is the
LKS (S1 × S2, Init1 × Init2,AP1 ∪ AP2,L, Σ1 ∪ Σ2, δ),
where L(s1, s2) = L1(s1) ∪ L2(s2), and δ is such that

(s1, s2)
α

−→ (s′1, s
′
2) iff one of the following holds:

1. α ∈ (Σ1 \ Σ2) ∪ {τ} and s1
α

−→ s′1 and s′2 = s2

2. α ∈ (Σ2 \ Σ1) ∪ {τ} and s2
α

−→ s′2 and s′1 = s1

3. α ∈ (Σ1 ∩ Σ2) \ {τ} and s1
α

−→ s′1 and s2
α

−→ s′2

In other words, LKSs must synchronize on shared actions
(except τ) and proceed independently on local actions (and
τ). This notion of parallel composition is derived from CSP
[16].

57

Definition 7 (Components and Models). In our
framework a component is essentially a C program com-
municating with other components via blocking message
passing. Since C programs are in general infinite state
systems we will extract finite LKS models from components
via predicate abstraction [5], and perform further analysis
on these models. The data and message-passing aspects
of a component C will be transformed conservatively into
predicates and actions of its model M . Consequently, M is
guaranteed to be a sound abstraction of C .

Definition 8 (Assembly and Environment). A
component assembly A is a collection of components
{C1, . . . ,Ck}. For 1 ≤ i ≤ k, let Mi be a model of Ci.
Then the collection of models {M1, . . . , Mk} is called a
model assembly corresponding to A and denoted by MA.
The environment of a component Ci with respect to A is
a set Env(Ci) ⊆ A such that each component in Env(Ci)
communicates with Ci via message-passing. Similarly, the
environment of a model Mi with respect to MA is the model
assembly corresponding to Env(Ci).

4. LEARNING REGULAR SETS
Central to our substitutability check procedure is the L∗

inference algorithm for regular languages developed by An-
gluin [2] and later improved by Rivest et. al. [15]. In the
rest of this article we will only concern ourselves with the
original algorithm of Angluin. Let U be an unknown regu-
lar language over some alphabet Σ. In order to learn U , L∗

needs to interact with a minimally adequate teacher MAT
for U , which can answer two kinds of queries.

1. Membership. Given a word ρ ∈ Σ∗, MAT returns true
if ρ ∈ U and false otherwise.

2. Candidate. Given a DFA D, MAT returns true if
L(D) = U and false otherwise. If MAT returns
false, it also returns a counterexample word w in the
symmetric difference of L(D) and U .

Given an unknown regular language U and a MAT for
U , the L∗ algorithm iteratively constructs a minimal DFA
D such that L(D) = U . It maintains an observational table
T where it records information about elements and non-
elements of U . The rows of T are labeled by the elements
of S ∪ S · Σ where S is a prefix-closed set over Σ∗. The
columns of T are labeled by the elements of a suffix-closed
set E over Σ∗. Let us denote the set S∪S ·Σ by Row. Then
the following condition always holds for T :

∀s ∈ Row � ∀e ∈ E � T [s, e] = true ⇐⇒ s · e ∈ U

Additionally, for any s ∈ Row, let us define a function rs as
follows:

∀e ∈ E � rs(e) = T [s, e]

Then T is said to be closed and consistent if the following
two conditions hold respectively:

∀t ∈ S · Σ � ∃s ∈ S � rs = rt

∀s1, s2 ∈ S � rs1
= rs2

=⇒ ∀a ∈ Σ � rs1·a = rs2·a

L∗ starts with a table T such that S = E = ∅ and in each
iteration proceeds as follows. It first updates T using mem-
bership queries (starting with words of length at most one)

till T is closed and consistent. Next L∗ builds a candidate
DFA D(T) from T and makes a candidate query with D(T).
If the MAT returns true to the candidate query, L∗ returns
D(T) and stops. Otherwise, L∗ updates T with all prefixes
of the counterexample returned by MAT and proceeds with
the next iteration. The complexity of L∗ is expressed by the
following theorem.

Theorem 1. [2] If n is the number of states of the min-
imum DFA accepting U and m is the upper bound on the
length of any counterexample provided by the MAT, then
the total running time of L∗ is bounded by a polynomial
in m and n. Moreover, the observation table T is of size
O(m2n2 + mn3).

Optimizations. Note that in our case, the unknown lan-
guage U is always prefix-closed since, by definition, the lan-
guage of LKSs are prefix-closed. This allows us to augment
L∗ with some optimizations similar to those proposed by
Berg et. al. [3]. A prefix-closed language L is characterized
by the property that for a trace ρ ∈ L, all prefixes of ρ are
in L. Conversely, for a trace ρ 6∈ L, no extension of ρ is in
L.

Therefore, whenever L∗ makes a membership query with
ρ, we first look up all of ρ’s prefixes in a query cache. The
cache returns false if any of the prefixes are present and
marked false. Otherwise if ρ itself is present and marked
true, the cache returns true. If none of the above cases
hold, the query is passed on to the MAT. These optimiza-
tions yielded up to 20% speedup during our experiments (cf.
Section 6).

5. COMPONENT SUBSTITUTABILITY
Recall that the substitutability problem involves two ma-

jor phases: containment and compatibility. Suppose we are
given an assembly of components: A = {C1, . . . ,Cn} and an
LKS ϕ such that A 4 ϕ. Also, we are given a new compo-
nent C S

i to be used in place of Ci. Our goal is to check for
the substitutability of C S

i for Ci in A while preserving all
previous services as well as the validity of ϕ. Figure 2 shows
the schematic diagram of our substitutability framework.

The complete substitutablility procedure occurs in a
CEGAR-style loop. In each iteration of the loop, substi-
tutablility checks are performed on abstract models instead
of concrete components. Suppose Mi and M S

i are the mod-
els of Ci and C S

i respectively. Therefore we will check for
the substitutability of M S

i for Mi with respect to the prop-
erty ϕ. Note that the final result is either a substitutable
model M F

i or a counterexample CE . However, CE may
be spurious with respect to either Ci or C S

i and therefore
must be checked for validity against both. If CE is spuri-
ous we will refine Mi and/or M S

i and repeat the CEGAR
loop. Otherwise, we will report CE as an evidence of non-
substitutablility of C S

i and terminate.
In case we are able to prove substitutablility, we will also

generate a set of traces in L(Mi) \ L(M S
i). These traces

will then be used to provide constructive feedback to the
developers (cf. Section 5.4).

5.1 Containment
The containment check accepts models Mi and M S

i as
inputs. In general, it might also be provided with an
LKS B which captures a set of prohibited behaviors such

58

False
CE

CE spurious?
Yes

CE
True

CE analysis

False

CE

Predicate Abstraction

B

L*

False
CE

Phase 1:

Containment

Phase 1:

Compatibility

Phase 2:

CE provided

True

Bug LKS New Component LKS

is Substitutable

True

L*

Old Component LKS

Ci CS
i

L(MS
i)∪ (L(Mi)\L(B)) ≡ L(MF

i)

MF
i

MF
i

A \Ci

MF
i

MF
i is not Substitutable

GenerateCF
i

CE Assumption, A

MS
iMi

MF
i ||A � ϕ

Provide Feedback
to Developers

RefineCi, CS
i

MA \Mi

MA \Mi � A

Figure 2: Substitutability framework.

as previously detected bugs. Our goal in this phase is
to apply a learning algorithm to build a new DFA M F

i ,
which includes all the behaviors of M S

i and Mi except
those of B. In other words we wish to learn the language
U = L(M S

i) ∪ (L(Mi) \ L(B)). Additionally we wish to
compute a set of traces F ⊆ L(Mi) \ L(M S

i) which can be
subsequently used for feedback generation.

Recall that NFA(M) denotes the NFA induced by an
LKS M . Thus the alphabet over which the learning occurs
is ΣNF A(Mi) ∪ΣNF A(MS

i
). In addition, the membership and

candidate queries are discharged as follows using a model
checker.

Membership. In order to check for membership of a
word ρ, the model checker checks whether it is accepted by
either Mi or M S

i and not accepted by B. Note that these
three checks are performed separately without composing
Mi, M S

i and B.
Candidate. The candidate query for an intermediate

candidate DFA D involves the following language equiva-
lence check: U = L(D). We avoid explicit computation
of U (which would defeat the entire purpose of learning)
while discharging the candidate query as follows. First we
subdivide the candidate query into two subset checks: (i)
U ⊆ L(D) and (ii) L(D) ⊆ U . Next we perform the first
check by verifying individually: (a) L(M S

i) ⊆ L(D) and (b)
L(Mi) \ L(B) ⊆ L(D). Finally we peform the second check
in the following iterative manner.

1. Check if L(D) ⊆ L(M S
i). If the answer is yes, then

L(D) ⊆ U and we return true. Otherwise we get a

trace CE ∈ L(D) \ L(M S
i).

2. Check if CE ∈ L(Mi) \ L(B). If not, then CE ∈
L(D) \U and we return false along with CE as coun-
terexample. Otherwise CE ∈ L(Mi) \ L(M S

i).

3. Add CE to F . Repeat from step 1 but look for coun-
terexamples other than those already in F . We achieve
this by suitably modifying our model checker that per-
forms step 1 above.

As mentioned previously, a key feature of our framework
is to allow the new component to have more behaviors than
the previous one. These extra behaviors might cause the
new component assembly to violate the global property ϕ.
Therefore the compatibility of the new component with the
rest of the assembly must be verified separately. This forms
the basis of the next phase in substitutability.

5.2 Compatibility
Recall that the global safety property is expressed as an

LKS ϕ and that we write M1 4 M2 to mean L(M1) ⊆
L(M2). On successful completion of the containment phase
we obtain a DFA M F

i such that L(M F
i) = L(M S

i)∪(L(Mi)\
L(B)). We now need to verify that the component M F

i is
compatible, i.e, safe under the given environment Env(Mi).
In other words we need to check that M F

i ‖ Env(Mi) 4 ϕ.
This is done by a combination of assume-guarantee style
reasoning and learning similar to Cobleigh et. al. [8]. Hence
we will not describe this phase in much detail but simply
summarize the salient features as follows:

59

1. Learn an assumption DFA A for M F
i such that M F

i ‖
A 4 ϕ using L∗ with a model checker as a MAT.

2. Check if Env(Mi) 4 A. If so, return true. Otherwise
a counterexample CE is obtained.

3. Check if M F
i ‖ CE 4 ϕ. If so, use CE to weaken the A

and repeat from step 1. Otherwise, return false along
with CE as the counterexample to the compatibility
phase.

Note that since L(M F
i) contains traces from both L(Mi)

and L(M S
i), any counterexample CE returned by the above

procedure must be checked against both Ci and C S

i for spu-
riousness.

5.3 Why Learn?
Our use of techniques based on L∗ provides us the follow-

ing advantages:

• We can use our model checker to answer the mem-
bership and candidate queries and also to generate a
counterexample in the event of the failure of a candi-
date query.

• Our use of learning during the containment phase en-
ables us to compute a DFA for L(M S

i)∪(L(Mi)\L(B))
without having to compose Mi, M S

i or B. As a side-
effect we are also able to generate a set of traces
F ⊆ L(Mi) \ L(M S

i) which can be subsequently used
for feedback generation.

• L∗ is incremental, computes the smallest DFA, and
also enables us to proceed without precisely defining
the language to be learned, e.g., during compatibility.

• Efficiency of L∗ depends only on the length of indi-
vidual counterexamples and the minimum automaton
representation of the unknown language. This char-
acteristic allows us to leverage the competency of the
model checker in generating suitable counterexamples.

5.4 Feedback to Developers
In this section we present several approaches for providing

feedback to developers that will enable them to add missing
features back to C S

i . Recall that upon successful comple-
tion of the substitutability check, we obtain a set of traces
F ⊆ L(Mi) \ L(M S

i). Let π be any trace in F . Hence
π ∈ L(Mi). Recall that L(Mi) was defined to be the lan-
guage of the induced NFA NFA(Mi). Since the actions of
the NFA induced by any LKS M contain information about
the propositional labeling of M , it is possible to retrieve this
information from any trace of NFA(M) and convert it back
to a corresponding trace of M . Thus, in particular, we can
obtain a trace ρ of Mi corresponding to π. The trace ρ
constitutes our first level of feedback.

By itself, trace ρ provides limited assistance to a devel-
oper. While it shows a missing behavior, it does not relate
this behavior to the new component C S

i . Our next level of
feedback attempts to improve this situation by identifying
portions of the actual code for C S

i which are relevant to the
missing behavior expressed by Tr . One way to achieve this
would be via a mapping Map from statements (or control
points) of Ci to those of C S

i . We intend to investigate the
automated generation of Map as well as the fragments of
C S

i relevant to ρ as part of our future work.

Our most advanced form of feedback is aimed at elim-
inating completely the need for developers to modify C S

i .
Suppose we are given a trace ρ and the portions of C S

i rele-
vant to ρ as described earlier. Our goal is to automatically
generate a modified version CF

i of C S

i such that CF

i has all
the features of Ci which were missing in C S

i . Clearly, this
is an extremely difficult problem in the general case and we
must impose appropriate restriction in order to find effec-
tive solutions. For instance, we can restrict our changes to
only branch statements and library routine calls. Addition-
ally such code modifications can be made in the form of
templates which can be inspected, and improved for perfor-
mance if necessary, by the developers.

6. IMPLEMENTATION AND EXPERI-
MENTAL EVALUATION

We implemented our methodology for checking compo-
nent substitutability in the ComFoRT framework developed
at Carnegie Mellon Software Engineering Institute. The
ComFoRT model checking engine is based on Magic model
checking tool [5]. We used Magic capabilities to extract fi-
nite LKS models from C programs using predicate abstrac-
tion to construct abstract component models. The Magic
model checker also serves as a minimally adequate teacher
for the learning algorithms of the containment and compata-
bility checks. Each of these checks instantiates its own L∗

learner, which perform the task of learning their respective
DFAs. If the compatibility check returns a counterexample,
the counterexample validation and abstraction-refinement
modules of Magic are employed to check for spuriousness
and do refinement, if necessary.

We validated the component subsitutability framework
while verifying upgrades of a benchmark provided to us by
our industrial partner, ABB Inc. [1]. We verified part of
an interprocess communication protocol (IPC-1.6) used to
mediate communication in a multi-threaded robotics control
automation system that must satisfy safety-critical require-
ments.

The IPC protocol provides multiple forms of commu-
nication including synchronous point-to-point, broadcast,
publish/subscribe, and asynchronous communication, all of
which are implemented in terms of messages passing between
queues owned by different threads. The protocol handles the
creation and manipulation of message queues, synchronizing
access to shared data using various operating system prim-
itives (e.g., semaphores and critical sections), and cleaning
up internal state when a communication fails or times out.

We analyzed the portion of the IPC protocol that is used
for synchronous communication among multiple threads.
With this type of communication, a sender sends a mes-
sage to a receiver and blocks until an answer is received or
it times out. A receiver asks for its next message and blocks
until a message is available or it times out. Whenever the
receiver gets a synchronous message, it is then expected to
send a response to the message’s sender. The target of our
verification was the IPC component that implements this
communication scheduling, comprising of about 1500 lines
of C code. We abstracted away communication with other
IPC components by specifying external choice channels that
were set to pass all possible inter-component inputs non-
determinstically.

We used a set of properties describing functionality of

60

the verified portion of the IPC protocol. For example, we
checked that no faults discovered during testing of older ver-
sions of the code are present in the current code. An example
of such a property is an assertion that no messages are lost
from the queue without being delivered to the receiver.

We upgraded the WriteToQueue component of the IPC
assembly by both adding and removing some behaviors.
These modifications resulted in a violation of the contain-
ment check and hence a substitutable DFA was produced at
the end of this check. This DFA was found to be smaller as
compared to the old and new component LKSs. We believe
this was the case with our examples since multiple states
of the LKS obtained by predicate abstraction of a single
control location in the C program accepted the language.
Therefore, they were determined to be equivalent by the L∗

algorithm and were collapsed into a single one in the DFA.
The compatibility check saves an order of magnitude in

terms of memory (upto 50%) as compared to the verification
of the composition of components directly. This is primar-
ily because the assumptions generated during the assume-
guarantee reasoning were of a small size as compared to the
component LKSs, which in turn led to lesser sizes of prod-
uct automata. Also, we observed verification time improve-
ments of order of upto 10% by implementing the query cache
for the membership queries in the learner. Another 10% im-
provement in time was obtained by doing the prefix-closed
optimizations (cf. Section 4) during learning.

7. CONCLUSIONS AND FUTURE WORK
The current work proposes a solution to the component

substitutability problem using a regular language inference
along with a model checker. Although we provide an ap-
proach oriented towards the new component for verifying
global assembly properties during its evolution, there are
several ways to improve its efficiency. For example, we would
like to use the results from verifying the previous assem-
bly while checking the compatibility of the new component.
Further, since the earlier assembly was verified to be correct,
only the new behaviors of the evolved component should be
considered during compatibility.

This work also brings out several interesting avenues of re-
search. The L∗ algorithm is a general framework for learning
regular languages. However, our goal is to learn program be-
havior, which are earmarked by specific characteristics, e.g.,
the language is prefix-closed. We intend to investigate more
such domain-specific characteristics of programs which in-
crease the efficiency of the inference algorithm. We also aim
to develop an algorithm for learning LKSs directly instead
of appealing to its language definition in terms of NFA.

We have used an assume-guarantee framework for learning
only safety properties in this work. In order to extend its
scope to liveness properties, we plan to study the learning
of ω − regular [12] languages. Finally, we plan to focus on
providing improved feedback to developers which will enable
them to add missing features and/or fix bugs in the updated
components.

8. REFERENCES
[1] ABB Inc. http://www.abb.com.

[2] D. Angluin. Learning regular sets from queries and
counterexamples. In Information and Computation,
volume 75(2), pages 87–106, November 1987.

[3] T. Berg, B. Jonsson, M. Leucker, and M. Saksena.
Insights to Angluin’s learning. Technical Report
2003-039, Department of Information Technology,
Uppsala University, Aug. 2003.

[4] S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and
N. Sinha. State/event-based software model checking.
In Integrated Formal Methods, pages 128–147, 2004.

[5] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and
H. Veith. Modular verification of software components
in C. In Proceedings of ICSE 2003, pages 385–395,
2003.

[6] A. Chakrabarti, L. de Alfaro, T. A. Henzinger,
M. Jurdzinski, and F. Y. Mang. Interface
compatibility checking for software modules. In
Proceedings of the 14th International Conference on
Computer-Aided Verification, pages pp. 428–441.
Lecture Notes in Computer Science 2404,
Springer-Verlag, 2002.

[7] E. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, December 1999.

[8] J. M. Cobleigh, D. Giannakopoulou, and C. S.
Pasareanu. Learning assumptions for compositional
verification. In Tools and Algorithms for the
Construction and Analysis of Systems, volume 2619.
Springer-Verlag, April 2003.

[9] L. de Alfaro and T. A. Henzinger. Interface automata.
In Proceedings of the Ninth Annual Symposium on
Foundations of Software Engineering. ACM Press,
2001.

[10] J. Ivers and N. Sharygina. Overview of ComFoRT: A
model checking reasoning framework.
CMU/SEI-2004-TN-018, 2004.

[11] MAGIC. http://www.cs.cmu.edu/~chaki/magic.

[12] O. Maler and L. Staiger. On syntactic congruences for
omega-languages. In Symposium on Theoretical
Aspects of Computer Science, pages 586–594, 1993.

[13] S. McCamant and M. D. Ernst. Early identification of
incompatibilities in multi-component upgrades. In
ECOOP 2004 — Object-Oriented Programming, 18th
European Conference, Olso, Norway, June 16–18, 2004.

[14] PACC website. http://www.sei.cmu.edu/pacc.

[15] R. L. Rivest and R. E. Schapire. Inference of finite
automata using homing sequences. In Information and
Computation, volume 103(2), pages 299–347, April
1993.

[16] A. W. Roscoe. The Theory and Practice of
Concurrency. Prentice-Hall International, London,
1997.

61

Compositional Quality of Service Semantics

Richard Staehli
Simula Research Laboratory

P.O. Box 134
N-1325 Lysaker, Norway

richard@simula.no

Frank Eliassen
Simula Research Laboratory

P.O. Box 134
N-1325 Lysaker, Norway

frank@simula.no

ABSTRACT
Mapping QoS descriptions between implementation levels
has been a well known problem for many years. In compo-
nent-based software systems, the problem becomes how to
predict the quality of a service from the quality of its com-
ponent services. The weak semantics of many QoS speci-
fication techniques has complicated the solution. This pa-
per describes a model for defining the rigorous QoS seman-
tics needed for component architectures. We give a de-
tailed analysis of compositional QoS relations in a video
Object-Tracker and discuss how the model simplifies the
analysis.

1. INTRODUCTION
The need for QoS management support in component ar-

chitectures is well known [4]. While many aspects of QoS
management have been investigated in the context of dis-
tributed systems, component architectures present new chal-
lenges. One of those new challenges is how to reliably predict
QoS properties for a composition of components.

Component architectures such as the CORBA Compo-
nent Model (CCM) guarantee that applications assembled
from independently developed components will function cor-
rectly when deployed on any sufficiently provisioned imple-
mentation of the component architecture platform. We refer
to this as the safe deployment property. Although current
component standards have had good success in some do-
mains, such as e-business, an application that performs well
in one deployment may be unusable as load scales up or when
connections are re-distributed across low-bandwidth connec-
tions. We use the term QoS-sensitive application to refer to
an application that will commonly perform unacceptably if
platform resources are scarce or if the deployment is not
carefully configured and tuned for the anticipated load.

State-of-the-art middleware and component technologies
provide QoS management APIs that force application de-
velopers to code deployment-specific knowledge into the ap-
plication [1][6][8]. Rather than specifying an assembly of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAVCBS’04,October 31, 2004, Newport Beach, California, USA
Copyright 2004 ACM ...$5.00.

black-box components that will run on any standard plat-
form, developers instead write deployment-specific configu-
ration code that depends on knowledge of component and
platform service implementations. This approach compli-
cates development and fails to preserve the safe deployment
property.

1.1 The QuA Project
The QuA project is investigating how a component archi-

tecture can preserve the safe-deployment property for QoS-
sensitive applications [9]. We believe that platform-managed
QoS is the only general solution that preserves the safe de-
ployment property. This means that applications and appli-
cation components should be written without knowledge of
the runtime platform implementation and resource alloca-
tion decisions. Application specifications for accuracy and
timeliness of outputs must refer only to the logical properties
of the component interfaces.

Platform-managed QoS means that the platform must be
able to reason about how end-to-end QoS depends on the
quality of component services. The composition relationship
is often non-trivial as in the case of a remote video conference
where image quality may depend on both packet transport
loss and video encoding.

We refer to the set of characteristics used to specify QoS as
a quality model and the concepts used to define such char-
acteristics as a QoS meta-model. To enable a component
platform to reason about composition and conformance, we
need a QoS meta-model that allows us to uniformly model
every level of implementation as a service, from the appli-
cation level down to physical resources, and that, for any
service, allows us to define a quality model that does not
depend on implementation. These properties allow the cre-
ation of QoS specification standards and developer provided
mapping functions that can be used to derive composition
QoS properties from independently developed components.

In the next section, we describe how the QuA QoS meta-
model satisfies the above requirements. In Section 3 the
model is applied recursively to define QoS models for a com-
plex real-time video processing application and its compo-
nents. We show how the model permits a precise mapping
of component-composition QoS dependencies. Section 4 dis-
cusses related work and Section 5 presents our conclusions.

2. THE QUA QOS META-MODEL
The QuA QoS Meta-Model (QQMM) defines the seman-

tics of our QoS specifications. It defines a generic model of
a service and defines quality in a way that allows us to cre-

62

ate precise and practical QoS models for any specific service
type.

To begin, we need to be precise about what a service is. In
common use, the term service means work done for another.
In computing systems, we want the term to apply both to
the work performed by a complex distributed application
for its clients and to the work performed by the simplest of
hardware resources, such as a memory address that stores a
binary value for some computation.

Definition 1 A service is a subset of output messages and
causally related inputs to some composition of objects.

This is consistent with the common definition, since the
output messages represent the ”work done” and the inputs
represent the work request. An object’s type semantics de-
fine which inputs cause which outputs.

Since network packet delivery is a service that is well
known in the QoS literature, we will use it to illustrate
our definitions. We can model an IP network port as a
distributed port object that can accept send(packet) mes-
sages at multiple locations and emit deliver(packet) mes-
sages at an endpoint identified by the host and port num-
ber. This service is illustrated in Figure 1. We can de-
fine a service provided by this port object as consisting of
only the deliver(packet) output events and causally re-
lated send(packet) input events for which the input came
from source A. These packets are colored black in Figure 1.

send(packet)

PortProxy

Distributed Port Object

send(packet)

PortProxy

send(host,port,packet)

Network

Source A

signal

Port

deliver(packet)

Endpoint

Source B

Figure 1: Example packet transport service.

In the QQMM definition of a service, we assume the most
basic model of object-oriented analysis, where objects in
some platform-defined identity space communicate by send-
ing messages. The sending of a message is both an input
event for the receiver and an output event for the sender.
In the packet service, we can define the occurrence of the
send event as precisely the moment when the send func-
tion is invoked and the occurrence of the deliver event as
the precise moment when the received packet is made avail-
able in the output buffer. The QQMM makes no assump-
tions about object implementations and so we must allow
that objects may receive input messages concurrently from
multiple senders and send output messages concurrently to
multiple receivers. This suits a general model of distributed
computation.

As in the packet service example, other services may share
the same object and even the same interface to that object,
so long as they have a disjoint set of output events.

A service specification can be as simple as identifying an
output interface for an object; the causally related inputs
are implied by the semantics for the object type. For ex-
ample, the semantics of the distributed port object dictate
that every packet delivered has exactly one send event that
caused it. The semantics also dictates that the value of the

packet delivered should be the same as the packet that was
sent.

Now, to reason about the behavior of a service, we need
to talk about the history of input and output events.

Definition 2 A message event trace is a set of message val-
ues associated with the sending interface and the time
it was sent.

A message value represents all content of the message,
including its type or signature. The sending interface is the
location of the mechanism used to send the message. In the
packet service example, the sending interface used by Source

A is the first PortProxy object, while the sending interface
for packet service outputs is the Endpoint object. The time
associated with an event comes from a local clock at the
sending interface. We assume that clocks are synchronized,
but acknowledge that when times from remote clocks are
compared there will always be some uncertainty about how
well they were synchronized.

The QQMM defines a message send to be a local and
instantaneous event. All preparation for a message send is
done in the sender and all processing of a message after the
send event is done in the receiver. This property assures us
that end-to-end processing time is consistently and properly
accounted for. In the packet service example, all real delay
occurs within one of the service components, including the
Network object that encapsulates physical network access.

We use the term input trace to refer to the message event
trace with all input events for a service, and output trace to
refer to the message event trace with all output events for a
service. The behavior of a service implementation is deter-
mined not only by the semantics of its declared interfaces,
but also by the availability and scheduling of resources in
the underlying platform. To define quality of service, we
need to ask what is the ideal behavior of a service.

Definition 3 For a given input trace, the ideal output trace
is generated when the service executes completely and
correctly on an infinitely fast platform with unlimited
resources.

That is, computation takes no time and results are ob-
tained at the same time they are requested. Of course,
events in an ideal output trace still only occur as frequently
as the inputs that cause them!

Although we believe the QQMM can model QoS for non-
deterministic computations, we ignore them for now to sim-
plify the presentation. For deterministic computations, the
semantics of a service’s interfaces defines the ideal output
trace as a function of an input trace. This means that the
best possible quality for a service is always well defined.

In a real implementation of a service, the actual output
trace will differ from the ideal in both the timing and value
of message events. The causes for this deviation from ideal
include finite CPU speed, queueing delays, and bandwidth
reduction strategies. This is the stuff of QoS management.

We would like to view the possible output traces for a
service as points in a behavioral space and consider distance
from the ideal output trace as an error measurement, but to
use this concept in QoS specifications, we must first define
the dimensions of this behavioral space.

Consider again, the packet service example. Figure 2
shows the input trace as incoming messages on the left side

63

Distributed Port Object

 send(1)
0

 send(2)
10

 send(3)
20

 send(4)
30

deliver(1)

deliver(9)

deliver(9)

Figure 2: Ideal (shown in grey) versus actual (black)
behavior.

of the service’s timeline and the actual output trace as out-
going messages on the right. The ideal output trace is shown
in grey. Assuming that this trace shows the entire lifetime
of the service, we can see that each event in the ideal out-
put trace can occur at a later time in the actual trace and
may have its packet value corrupted or degraded in some
way. The second and third packets have apparently been
corrupted and it is not possible to be certain which is which
without some knowledge of the service implementation. The
fourth packet sent had not been delivered at the time of
reckoning and may be considered lost.

The important point to observe about the packet service
output is that every event can vary independently from the
others in its delay from the ideal and in the change to its
packet value. The QQMM generalizes from this example to
make the assumption that the only possible values in an ac-
tual output trace that can differ from the ideal are the time
of the output event and the values of message arguments.
Each of these variables in the output trace represents an
independent dimension of the behavioral space.

Let ~X be the vector of values that may differ in a trace
X, ordered by event order in the ideal trace and by the
order they occur in the message value. Then the difference
between an actual output trace A and the ideal trace I is

the difference vector ~δ = ~A− ~I.
For the packet service example, the values that may differ

in the actual output trace are the event times and the packet
values. If I is the ideal output trace for the example, the
order of values in ~I is packet value followed by time for the
first output, then for the second and so forth as shown in
Equation 1.

~I = (1, 0, 2, 10, 3, 20, 4, 30) (1)

If A is the actual output trace for the example, then the
first two values of ~A are 1 and 5.

~A = (1, 5, 9, 21, 9, 24, 0,∞) (2)

As noted above, it is not possible to be certain which of
the next two packets delivered corresponds to the second
event in the ideal trace. This is an inescapable problem in
QoS management: unreliable systems cannot be relied on
to communicate enough information to unambiguously de-
termine error. Instead, the difference vector can have many
possible values depending on different interpretations of the
correspondence between actual and ideal events [11]. Fortu-

nately, it is usually safe to consider only the interpretation
corresponding to the least error as it is unlikely that random
faults would yield better service. So, we choose the following

interpretation of ~A and the difference vector ~δ:

~δ = (0, 5, 7, 11, 6, 4,−4,∞) (3)

Although this definition of the difference between actual
and ideal allows us to define quality in a weak sense, i.e.,
actual traces in which every vector component is below a
corresponding threshold value, it fails to tell us which of
two output traces is better when each contain some com-
ponents that are worse than the other. Another problem is
that as the complexity of an ideal trace increases, through
additional messages and more complex message structure,
the number of ways in which actual traces may differ ex-
plodes. Fortunately, we frequently are concerned only with
an overall measure of distance from the ideal. For exam-
ple, we can ignore the individual values for event delay and
instead monitor aggregate statistics such as maximum and
median.

The QQMM concept of an error model provides a rigorous
way to define the type of quality characteristics that are
most useful for QoS management.

Definition 4 An error model ~ε =
`
ε1(~δ), ..., εn(~δ)

´
is a vec-

tor of n functions that each map from a difference vec-

tor ~δ to a real number such that ||~ε(~δ)|| = 0 when

||~δ|| = 0.

The notation ||~δ|| represents the magnitude of the vec-

tor ~δ. According to this definition, a function in an error
model (error function) must be zero if there are no differ-
ences between the actual and the ideal. We also expect that
the magnitude of an error model will generally increase as
the difference from ideal grows larger, but we have found it
difficult to formalize this requirement without being overly
restrictive.

One trivial error model is the set of projection functions

πi(~δ) = δi; these are zero when ||~δ|| = 0 and increase as

the respective component of ~δ increases. But the value of
our error model definition is that it allows us to construct a
much simpler error space with the type of QoS characteris-
tics commonly discussed in the QoS management literature.
A point in this simplified error space represents an equiva-
lence class of output traces that are the same distance from
the ideal with respect to the error model.

To continue the packet service example, if we define the
service as consisting of all deliver(packet) messages, then
both the input trace and its associated ideal output trace
may contain an unbounded number of events. To define
an error model for this service we need to decide how to
interpret packet delivery events that are expected but never
happen, or that cannot be distinguished from other packet
delivery events. For this error model, we consider a packet

to be lost if either the time difference in ~δ for its deliver
event exceeds some limit, such as 20 seconds, or its value
difference is non-zero. We associate a packet delivery event
with an ideal delivery event if the the actual event happened
after the ideal event and there is no other interpretation that
offers fewer packet losses.

To allow us to model quality at time t during the service,

we define i(p, t, ~δ) to be the sequence of consecutive values

64

in ~δ associated with ideal events in the interval (t−p, t]. Let

d(p, t, ~δ) be the values in i(p, t, ~δ) associated with packets
that were correctly delivered (not lost). A value of 10 sec-
onds was chosen arbitrarily for the period p in this example.

We can then construct an error model with the following
functions:

• delay(t) is the mean of time differences in d(10, t, ~δ).

• jitter(t) is the variance of time differences in d(10, t, ~δ).

• loss(t) is the ratio of the number of packets lost in

i(10, t, ~δ) to the number sent, or zero if none were sent.

These satisfy our definition of an error model, since each

is zero when the difference values in ~δ are zero and none
decrease when a difference value in ~δ increases.

Note that these definitions model only the error in the
recent history of time t. To constrain error over the lifetime
of a service we would need to use expressions like: for all
time t, delay(t) < 5. We could define many other similar
error models with different parameters or different functions.
For example, it may be useful to model the 95th percentile
of delay values. Still, the simple error model above is quite
useful for specifying and measuring the quality of a packet
delivery service and is similar to other common definitions
of packet service QoS characteristics.

A point in this error space; say delay(t) = 1 second,
jitter(t) = 0.5 second, and loss(t) = 0.2; corresponds to
all output traces in which the mean delay for recent events
before time t is one second, and so forth. This set of output
traces forms a surface in the behavioral space that surrounds
a neighborhood of the ideal output trace. Inside this neigh-
borhood, all output traces are closer to the ideal and can be
considered better at time t according to this error model.

We can use an error model to both quantify the loss of
quality and to constrain it. Let ε(~A − ~I) be the tuple of
error values for an error model ε, an actual trace A and the
ideal trace for a service I. Let limits be a tuple of positive
real numbers representing an upper bound for each of the
functions in ε. Then we say a service with output trace A
is acceptable if for each i, |εi(~A− ~I)| < limitsi .

Since many error models can be defined for a given service,
we would like some criteria to judge which error models are
better than others. The QQMM allows us to formally de-
fine desirable properties of a good error model. For brevity,
we suggest only informal definitions here. We say an error
model is sound if any set of non-zero error limits can be sat-
isfied by some set of actual output traces. An error model
is complete if, for any output trace that is different from the
ideal, we can find a set of non-zero error limits that would
exclude this trace. An error model is minimal if no function
can be removed without losing the ability to distinguish be-
tween some output traces. We say an error model M is more
expressive than an error model N if it can define exactly the
same sets of acceptable output traces as N , and then some
more.

The example error model for the packet service appears
to be sound, because any non-zero limits can be satisfied by
output traces with non-zero delay, jitter, and loss. The error
model also appears to be complete: for any time difference

value x > 0 in some i(10, t, ~δ) with n successfully delivered
packets, x/(n + 1) is a non-zero delay limit that must be
less than |delay(t)| even if all n − 1 other time differences

are zero, and if v > 0 is a value difference in such an interval
with m packets, 1/(m+1) is a non-zero loss limit that must
be less than |loss(t)| even if all other packets are delivered
in a timely manner without corruption.

The error model is also minimal, as each function models
an independent facet of error. The error model could be
made more expressive by adding functions, to distinguish
packet corruption from loss for example.

3. APPLICATION TO AN OBJECT TRACK-
ING SERVICE

In this section, we first define error models for a real appli-
cation and its component services, and then show how error
for the application service can be predicted from error in the
component services. We apply QQMM to an example of a
class of applications we refer to as real-time content-based
video analysis. These applications must process the video
data at least as fast as the video data is made available and
perform analysis with acceptable accuracy.

Real-time content analysis is an active research field where
efficient techniques have been found for problems such as
multi-object detection and tracking. In such applications,
pattern classification systems which automatically classify
media content in terms of high-level concepts have been
adopted. Such pattern classification systems must bridge
the gap between the low-level signal processing services (fil-
tering and feature extraction) and the high-level services
desired by the end-user.

The design of such a pattern classification system must
select analysis algorithms that balance requirements of ac-
curacy against requirements of timeliness.

3.1 The object tracking service
In this example, we refer to a simple object tracking ser-

vice as an Object-Tracker. The service is simple in the
sense that it can track a single object on a stationary back-
ground (i.e. the camera remains still). This example is
adapted from our earlier work on supporting quality con-
straints in real-time content-based video analysis [12].

Figure 3 shows the Object-Tracker as a component re-
ceiving input from a VideoSrc and sending output to an
EventSink. The Object-Tracker is implemented as a com-
position of Feature extractor and Classifier components
with multicast input to the feature extractors and pub-
lish/subscribe middleware for communications between the
feature extractors and the classifier. The extractors and the
classifier are further decomposed into functional and com-
munication components.

The VideoSrc sends each frame of an uncompressed video
stream to a filter component (not shown) that divides the
frame into regions, publishing the data for each to a mul-
ticast channel for that region. The multicast channel is an
efficient mechanism to communicate high-bandwidth data
to multiple clients over a local area network. However, in
this example, exactly one Feature Extractor receives the
data for each frame region.

Each Feature Extractor calculates features from the set
of frame data it has received. In this example, the Feature

Extractor components compute a two dimensional array
of motion vectors; one for each block of the frame region,
where a block is a subdivision of the frame into fixed size
rectangles of pixels. A motion vector indicates the direction

65

Object Tracker

Pub/Sub MW

Feature
Extractor 1 F1

RTP/UDP

Pub/Sub MW

Feature
Extractor n Fn

RTP/UDP

Classifier Cl

Pub/Sub MW

VideoSrc Src

RTP/UDP

...

M
-c

as
t C

ha
nn

el

Pu
b/

Su
b

C
ha

nn
el EventSink

Figure 3: Functional decomposition of the Object-Tracker.

and distance that most pixels within a block appear to have
moved from a previous frame.

The motion vectors and the associated frame number are
then published by the Feature Extractor as event notifi-
cations on a channel for the frame region. The Classifier

subscribes to these channels to receive motion vector data
from multiple Feature Extractor components. In this ex-
ample, the Classifier examines the history of motion vec-
tors over several frames to identify and determine the center
of a moving object.

We use Dynamic Bayesian Networks (DBNs) as a classi-
fier specification language. DBNs [5] represent a particularly
flexible class of pattern classifiers that allows statistical in-
ference and learning to be combined with domain knowledge.

In order to automatically associate high-level concepts
(e.g. object position) with the features produced through
feature extraction, a DBN can be trained on manually an-
notated media streams. The goal of the training is to find
a mapping between the feature space and high-level con-
cept space, within a hypothesis space of possible mappings.
After training the DBN can be evaluated by measuring the
number of misclassifications on a manually annotated media
stream not used in the training. This measured error rate
can be used as an estimate of how accurately the DBN will
classify novel media streams and can be associated with the
classifier as meta data.

One important reason for using DBNs is the fact that
DBNs allow features to be missing during classification at
the cost of some decrease in accuracy. This fact is exploited
in our work with the Object-Tracker to trade accuracy for
timeliness as discussed below.

3.2 QoS role in planning service configuration
Even this simple Object-Tracker implementation requires

many deployment configuration choices with associated QoS
tradeoffs. Components may be deployed to different proces-
sors to work in parallel, increasing throughput and reduc-
ing delay. Throughput may also be increased by deploying
pipeline components on different processors. But distribu-
tion may also increase communication overhead and add to
delay.

Since the motion vector Feature Extractor operates lo-
cally on image regions, the performance can scale with the
size of video processing task by distributing the work among
a greater number of Feature Extractor components, each
on its own processor. Similarly, the Classifier could be

parallelized if classification should become a processing bot-
tleneck [12]. In this paper, we consider only the case of
parallelizing the Feature Extractor.

The amount of processing required for acceptable accu-
racy in object tracking is another tradeoff point. The level
of accuracy provided by the Object-Tracker depends on
the misclassification behavior (error rate) of the classifier
algorithm, which in turn depends on the quality of the fea-
ture extraction input. Greater accuracy can be achieved
by processing video data at a higher frame rate or higher
resolution, but the increased processing requirements might
increased delay in reporting the object location. Hence the
configuration must be carefully selected based on both the
desired level of accuracy and the tolerance for delay.

To reason about which configurations might satisfy the
Object-Tracker QoS requirements, it must be possible to
estimate what QoS the components will offer and how these
QoS offers compose to satisfy the end-to-end requirements.
To do this in practice, we exploit knowledge of the measured
behavior of the components in the target physical processing
environment.

3.3 Error model definitions
We model the Object-Tracker as a service that has un-

compressed video frames as input and that produces a lo-
cation event for every video frame as its output. A video
frame number accompanies each frame, frame region, set of
motion vectors, and each location output event so that there
is no ambiguity about which frame these events are to be
associated with. Each video frame is divided into m × n
blocks. A location is represented as a block number in the
video frame and indicates the center position of the tracked
object.

For this service, the variables in the output trace are the
time of the output and the location coordinates. It matters
little whether the difference between actual and ideal loca-
tion coordinates is in one axis or another, so we will refer to
location as an aggregate value.

We would like to model three quality characteristics for

this service: latency, errorRate and period. Let i(p, t, ~δ)
be the values from the difference vector for the interval of
period p up to time t as defined in the last section.

We can define the error model as follows:

• latency(t) is the mean of time differences in i(10, t, ~δ).

• errorRate(t) is the ratio of non-zero location differ-

66

ences in i(10, t, ~δ) to the total number of location val-
ues.

• period(t) is the maximum q such that location dif-

ference is non-zero for all values in i(q, t′, ~δ), where
t− 10 ≤ t′ ≤ t.

The latency(t) is the mean of recent values for the elapsed
time from when a frame containing a motion event is sent to
the Object-Tracker until a causally related location event
is output. The ideal latency is zero, but any real application
will permit some latency greater than zero.

The errorRate(t) gives the fraction of the recent location
difference values that were non-zero. The ideal error rate
of zero may be achieved if all video blocks are processed
and the moving object is similar to those used in classifier
training.

The period(t) is the amount of time that may elapse before
a updated and correct object location is reported. As with
the errorRate, the ideal value of zero may be achieved with
sufficient processing resources and good video input, but
frame dropping will cause this error to increase.

Because the Classifier has the same output interface
as the Object-Tracker, we can and should use the same
error model. This shows a good feature of the QQMM:
Error model definitions refer only to the output interface of
a service and so an error model may be used for any service
with the same output interface.

We model a Feature Extractor as a service that receives
uncompressed video frames (or some region of a frame) as
input and that produces a motion vector array and asso-
ciated frame number as its output. The variables between
actual and ideal output traces for this service are the time
of output events and the motion vector array values.

For this example, we are not concerned with trading accu-
racy in the motion vectors against other quality dimensions
so we again treat this complex data type as a single aggre-
gate value in the following error model:

Let i(p, t, ~δ) be as defined in the last section.

• latency(t) is the mean time difference in i(10, t, ~δ).

• errorRate(t) is the ratio of non-zero motion vector

array differences in i(10, t, ~δ) to the total number of
motion vector array values.

These are the same definitions given for the functions of
the same name in the previous error model except that here
we reference the motion vector array as the output trace
variable. Because we do not anticipate error in the deter-
ministic algorithm for computing motion vectors, it might
seem that errorRate(t) could be left out of our model, but
this would leave our model incomplete and unable to ex-
press even the constraint that the motion vectors should be
correct.

Our work with this application has been in a local area
network environment where the remote communication has
not been a bottleneck, but we understand that modeling the
QoS of these communication links is necessary for future
work. At this time, we have not defined error models for
the the communication protocols or the component which
divides the video frames into regions.

3.4 Modeling compositional QoS relations
To configure the Object-Tracker to perform with accept-

able errorRate, latency and period requires an ability to
predict these values for alternative configurations. Systems
engineers accomplish this task with a combination of anal-
ysis and experimental observations of component behavior.
The QQMM allows us to define an error model for each
component service type that does not depend on its imple-
mentation, and thus can be used as a standard QoS spec-
ification model used by both component clients and inde-
pendent component developers. Given such standards, a
component developer can encode knowledge of the relation
between component and composition QoS independently for
each implementation. Thus, the QQMM enables a kind of
QoS composition algebra: the algebraic operators are error
prediction functions provided by the developer with each
component implementation and the operands are the sub-
component QoS predictions.

As mentioned earlier, meta data measuring the errorRate
for various configurations may be associated with the Cla-

ssifier. For all of the components, measurements of pro-
cessing time for a periodic task on a particular class of CPU
and with a particular class of workload may be associated
with the component type as meta data for use in estimating
latency.

Another input to the latency prediction function is a model
of the available computing resources in terms of both the
number and class of CPUs, and the latency and bandwidth
of communication between each pair of CPUs.

To simplify the estimation of latency for a service config-
uration, we assume that the communication between each
pair of CPUs is contention free and that the latency and
bandwidth are constant. These assumptions are valid for a
significant class of distributed processing environments (e.g.
dedicated homogeneous computers connected in a dedicated
switched LAN) and allow us to ignore the complexity of com-
munication contention, routing, etc., which are not the focus
of this paper.

Given an allocation of components to processors, the pro-
cessing period of each Object-Tracker component can be
estimated. From the component QoS predictions and con-
figuration values such as the classifier location output rate,
the end-to-end error for this example of the Object-Tracker
can be predicted.

The composition of latency for serial tasks, such as remote
communication of video frame data and Feature Extractor

processing of that frame, is the sum of the delays. The
QQMM semantics ensure that this composition is seamless:
that end-to-end accounting of time attributes every moment
to exactly one service in the sequence. If the latency mea-
surements follow these semantics than there is good reason
to hope that the composition estimate will be good.

The serial composition of Feature Extractor and Cla-

ssifier is not strictly serial processing however. The Cla-

ssifier does not wait for all features from a frame to ar-
rive before reporting a guess about the location, but instead
is configured with its own periodic schedule to update hy-
potheses, including hypotheses about past. In this imple-
mentation, the composition trades the risk of an increase in
the errorRate to avoid the high latency of waiting for every
serial dependency. The end-to-end latency is held constant
at runtime while the errorRate may vary.

The prediction of the errorRate can be made analyti-

67

cally from estimates of the availability of extracted features
and knowledge of the classifier. The ARCAMIDE algorithm
exploits the fact that DBNs allow features to be missing
during classification to trade accuracy for timeliness [12].
Alternatives are generated for removing feature extractors
from an initial configuration. The error prediction for the
Object-Tracker is used to sort the alternatives, least in-
crease in the errorRate first. This algorithm then tests each
configuration to determine if the latency and period predic-
tion will satisfy application requirements. In this sequence,
the first service configuration which meets the latency and
period requirements, must also meet the accuracy require-
ment, otherwise it is not possible to satisfy the requirements
with the specified processing resources.

The period can be predicted from the absolute value of
the difference between the classifier update period and the
V ideoSrc frame period.

This example suggests that the error prediction for a com-
position can be a complex function of component inter-
actions and component error. The QQMM semantics en-
able such error prediction functions to be written without
knowledge of component implementations and thus, to pre-
dict error regardless of which component implementation is
plugged in to the composition. However, we have only begun
to define error models for real services and error predictions
for compositions. Future work is needed to learn if there are
important patterns for error prediction in compositions.

4. RELATED WORK
There has been little work published specifically address-

ing QoS models for component architectures. Researchers at
BBN developed QuO (Quality of Service for Objects) [13] as
a framework for management of QoS properties in CORBA
applications. A more recent QuO paper introduced qoskets
as a means for reusing adaptive QoS behaviors, but they
have not yet adapted this work to a component architec-
ture [10]. They specify QoS contracts between client and
server objects, but do not address other service types such
as a pipeline component that receives input from one ob-
ject and sends output to another. Also, they do not focus
on QoS semantics, so it is not clear that a description of
QoS provided by one component would be understood cor-
rectly by an independent developer who would use such a
component.

SLAng is a language for specifying service level agree-
ments between very large grain components that may be
owned and operated by separate commercial entities [3].
The authors acknowledge that SLAng’s informal semantics
for QoS characteristics is a weakness [2]. Our model is
complementary and could provide a formal semantics and
a method to expand the SLAng catalog with QoS charac-
teristics for new service types.

Nahrstedt, et al., describe a QoS-aware middleware archi-
tecture designed to support QoS-sensitive applications [7].
They propose a QoS compiler to map from user-perceived
QoS down to system-level QoS, but we understand that this
compiler understands only a fixed set of QoS characteristics.
They conclude that more research is needed to allow uniform
specification of QoS for different application domains. We
agree and we believe that QQMM provides a prerequisite
common semantics independent of any particular middle-
ware or component architecture.

5. CONCLUSIONS
In this paper we have described the QuA QoS Meta-Model

(QQMM) for defining QoS semantics for an arbitrary ser-
vice. The key features of the QQMM are a definition of a
service that is based on component interface semantics and
a definition of quality dimensions based on a metric space
with ideal service behavior at the origin. Error models that
conform to the QQMM define QoS dimensions that can be
observed by a client without knowledge of the service imple-
mentation. This allows independent component developers
to agree on a common standard for specifying client QoS
requirements and component QoS offers. The QQMM al-
lows us to analyze any implementation as a composition of
component services and to define error models for these com-
ponent services that fully account for loss of quality in the
implementation. From this analysis, a component developer
may be able to provide a mapping relation between QoS of
component services and the QoS of a composition.

The QQMM provides clear guidelines for defining QoS
measures with a rigorous semantics, but we have learned
from initial experiments that it can be difficult to define
precise error models that correspond to our intuition about
quality dimensions. Despite this note of caution, we believe
a strong semantics are a prerequisite for QoS management in
component-base software engineering where representations
of QoS properties come with ”off-the-shelf” components.

5.1 Acknowledgment
Thanks to Jonathan Walpole for comments on an early

draft and to the referees for their suggestions to improve
the paper. This work was funded in part by a grant from
the Research Council of Norway.

6. REFERENCES
[1] G. Coulson, G. S. Blair, M. Clarke, and

N. Parlavantzas. The design of a configurable and
reconfigurable middleware platform. ACM Distributed
Computing Journal, 15(2):109–126, 2002.

[2] D. Davide Lamanna and James Skene and Wolfgang
Emmerich. Specification Language for Service Level
Agreements, 2003. http://www.newcastle.research.ec-
.org/tapas/deliverables/D2.pdf.

[3] Wolfgang Emmerich, D. Davide Lamanna, Giacomo
Piccinelli, and James Skene. Method for service
composition and analysis, 2003.
http://www.newcastle.research.ec.org/tapas/deliver-
ables/d3.pdf.

[4] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid
services for distributed system integration. Computer,
35(6), 2002.

[5] F. V. Jensen. Bayesian networks and decision graphs,
2001. Series for Statistics and Engineering and
Information Science, Springer Verlag.

[6] J. P. Loyall, R. E. Schantz, J. A. Zinky, and D. E.
Bakken. Specifying and measuring quality of service in
distributed object systems. In Proceedings of the First
International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC ’98), pages
20–22, Kyoto, Japan, 1998.

[7] Klara Nahrstedt, Dongyan Xu, Duangdao
Wichadakul, and Baochun Li. QoS-aware middleware
for ubiquitous computing. IEEE Communications

68

Magazine, 39(11):140–148, November 2001.

[8] I. Pyarali, D. Schmidt, and R. Cytron. Achieving
end-to-end predictability of the TAO real-time
CORBA ORB. In Proceedings of the 8th IEEE
Real-Time Technology and Applications Symposium,
San Jose, CA, 2002.

[9] Richard Staehli, Frank Eliassen. Component-Based
Service Planning For Platform-Managed QoS.
Submitted to Middleware 2004, 2004.

[10] R. Schantz, J. Loyall, M. Atighetchi, and P. Pal.
Packaging quality of service control behaviors for
reuse. In Proceedings of ISORC 2002, The 5th IEEE
International Symposium on Object-Oriented
Real-time distributed Computing, Washington, DC,
2002.

[11] Richard Staehli and Jonathan Walpole. Quality of
service specifications for multimedia presentations.
Multimedia Systems, 3(5/6), 1995.

[12] Viktor S. Vold Eide and Frank Eliassen and
Ole-Christoffer Granmo and Olav Lysne. Supporting
Timeliness and Accuracy in Distributed Real-Time
Content-based Video Analysis. In ACM Multimedia,
2003.

[13] J. A. Zinky, D. E. Bakken, and R. E. Schantz.
Architectural support for quality of service for
CORBA objects. Theory and Practice of Object
Systems, 3, 1997.

69

An Analysis Framework for Security in Web Applications

Gary Wassermann Zhendong Su
Department of Computer Science

University of California, Davis

{wassermg, su}@cs.ucdavis.edu

ABSTRACT
Software systems interact with outside environments (e.g.,
by taking inputs from a user) and usually have particular
assumptions about these environments. Unchecked or im-
properly checked assumptions can affect security and reli-
ability of the systems. A major class of such problems is
the improper validation of user inputs. In this paper, we
present the design of a static analysis framework to address
these input related problems in the context of web applica-
tions. In particular, we study how to prevent the class of
SQL command injection attacks. In our framework, we use
an abstract model of a source program that takes user in-
puts and dynamically constructs SQL queries. In particular,
we conservatively approximate the set of SQL queries that
a program may generate as a finite state automaton. Our
framework then applies some novel checking algorithms on
this automaton to indicate or verify the absence of security
violations in the original application program. Work is in
progress to build a prototype of our analysis.

1. INTRODUCTION
Web applications are designed to allow any user with a

web browser and an internet connection to interact with
them in a platform independent way. They are typically
constructed in a two- or three-tiered architecture consisting
of at least an application running on a web server, and a
back-end database. Both components may have trust as-
sumptions about their respective environments. The appli-
cation may be designed with the assumption that users will
only enter valid input as the programmer intended, in terms
of both input values and ways of entering input. The back-
end database may be set up with the assumption that the
application will only send it authorized queries for the active
user, in terms of both the types of actions the queries per-
form and the ranges of tuples the queries act on. All of these
assumptions, if not checked properly, risk being violated, by
malicious users.

Catching violations early (e.g., at the application as op-

posed to at the database) is desirable in preventing mali-
cious users from executing dangerous queries. However, the
meta-programming aspect of these applications makes static
checking difficult. A meta-program is a program in some
source language that manipulates object-programs, perhaps
by constructing object-programs or combining object-pro-
gram fragments into larger object programs. In this sense,
a Java/JDBC program or a CGI script that constructs SQL
queries to retrieve information from a database is a meta-
program. The source language is Java or Perl, and the target
language is SQL.

1.1 SQL Command Injection
For web applications, one common class of security prob-

lems is the so-called SQL command injection attacks [8,23].
We use a simple example to illustrate the problem. Many
applications include code that looks like the following:
string query = "SELECT * FROM employee WHERE name

= ’" + name + "’";

The user supplies the value of the name variable, and if the
user inputs “John” (an expected value), then the query vari-
able contains the string: "SELECT * FROM employee WHERE

name = ’John’". A malicious user, however, can input “John’
or 1=1--,” which results in the following query being con-
structed: "SELECT * FROM employee WHERE name = ’John’

OR 1=1--’". The “--” is the single-line comment operator
supported by many relational database servers, including
MS SQL Server, IBM DB2, Oracle, PostreSQL, and MySQL.
In this way, the attacker can supply arbitrary code to be ex-
ecuted by the server and exploit the vulnerability.

Although the source language, e.g., Java, may have a
strong type system, it provides no guarantee about the dy-
namically generated SQL queries. Certainly direct string
manipulation is a low-level programming model, but it is
still widely used, and command injections do pose a serious
threat both to legacy systems and to new code. A recent
web-search easily revealed several sites susceptible to such
attacks.

At the heart of command injections is an input validation
problem, i.e., to accept only certain expected inputs. Proper
input validation turns out to be very difficult. Several tech-
niques exist to address it, and we give an overview here.
At a low level, input can either be filtered, so that “bad”
inputs are rejected, or altered with the design of making
all inputs “good.” One suggested technique is to enumer-
ate the strings that the programmer believes are necessary
for an injection attack but not for normal use. If any of
those strings appear as substrings in the input, either the
input can be rejected, or they can be cut out, leaving usually

70

nonsense or harmless code. Another common practice is to
limit the length of input strings. More generally, inputs can
be filtered by matching them against a regular expression
and rejecting them if they do not match. An alternative
is to alter input by adding slashes in front of quotes in or-
der to prevent the quotes that surround literals from being
closed within the input. Common ways to do this are with
PHP’s addslashes function and PHP’s magic quotes set-
ting. Recent research efforts provide ways of systematically
specifying and enforcing constraints on user inputs. Power-
Forms provides a domain-specific language to generate both
client-side and server-side checks of constraints expressed as
regular expressions [4]. Scott and Sharp propose using a
proxy to enforce slightly more expressive constraints (e.g.,
they can restrict numeric values of input) on individual user
inputs [19]. A number of commercial products, such as Sanc-
tum’s AppShield [17] and Kavado’s InterDo [11], offer simi-
lar strategies. One recent project proposes a type system to
ensure that all data is “trusted”; that type system considers
input to be trusted once it has passed through a filter [10].
Perl’s “tainted mode” has a similar goal, but it operates at
runtime [24].

All of these techniques are an improvement over unregu-
lated input, but they have weaknesses. None of them can
say anything about the syntactic structure of the generated
queries, and all may still admit bad input. It is easy to
miss important strings when enumerating “bad” strings, or
to fail to consider the interactions between seemingly “safe”
strings. Dangerous commands can be written quite con-
cisely, so short strings are not necessarily “safe.” Regu-
lar expression filters may also be under-restrictive. PHP’s
addslashes has led to some confusion because when used in
combination with magic quotes, the slashes get duplicated.
Also, if a numeric input is expected and arbitrary characters
can be entered, no quotes are needed to execute an injection
attack. In the absence of a principled analysis to check these
methods, they cannot provide security guarantees. Because
vulnerabilities are known to be possible even when these
measures are taken, black-box testing tools have been built.
One from the research community is called WAVES (Web
Application Vulnerability and Error Scanner) [9], and sev-
eral commercial products also exist, such as AppScan [16],
WebInspect [20], and ScanDo [11]. While testing can be use-
ful in practice for finding vulnerabilities, it cannot be used
to make guarantees either.

Other techniques deal with input validation by enforcing
that all input will take the syntactic position of literals. Bind
variables and parameters in stored procedures can be used
as placeholders for literals within queries, so that whatever
they hold will be treated as literals and not as arbitrary code.
This is the most recommended practice because of increased
security and performance. A recently proposed instruction
set randomization for SQL in web applications has a similar
effect [3]. It relies on a proxy to translate instructions dy-
namically, so SQL keywords entered as input will not reach
the SQL server as keywords. These will not be acceptable
solutions in the rare case when users are to be allowed to
enter column names or anything more than literals. Also,
these techniques guarantee that only the SQL code from the
source program will be executed, but they cannot guarantee
that those SQL queries will be “safe.” There is currently no
formal static verification technique to perform early detec-
tion of dangerous SQL commands in source code. Further-

more, although using stored procedures is less error-prone
than string manipulation, many web applications have been
written and continue to be written using string manipula-
tion to construct dynamic SQL queries.

In this paper, we propose a static analysis framework to
detect SQL command injection attacks. In our framework,
we cast the SQL command injection problem as a version of
the analysis of meta-programs [21] and propose a technique
based on a combination of well-known automata-theoretic
techniques [7], an extension of context-free language (CFL)
reachability [15], and novel algorithms for checking automata
for security violations [22].

1.2 Overview of Analysis Framework
In our framework, we assume that the user inputs are re-

stricted with some regular expressions for input validation.
The absence of such a filter means that all inputs are possi-
ble. The use of regular expressions makes possible the auto-
matic generation of code for checking user inputs. We then
statically verify that the regular expressions provide proper
input checking such that no command injection is possible.

Our proposed analysis operates directly on the source code
of the application. We consider Java programs in particular,
but the programs can be written in any other language. Our
analysis builds on top of two recent works on analysis of
dynamically generated database queries, one for syntactic
correctness [5] and one for type correctness [6].

Our analysis is split into two main steps. First, it starts
with a conservative, dataflow-based analysis, similar to a
pointer analysis [1], to approximate the set of possible que-
ries that the program generates for a particular query vari-
able at a particular program location. We take into ac-
count that the application programmer may check user in-
put against a regular expression filter. The result for each
query variable, e.g., query in the earlier example, is a fi-
nite state automaton which represents a conservative set of
possible string values that the variable can take at runtime.

In the second step, our analysis performs semantic checks
on the generated automaton to detect security violations. In
this step, two main checks are performed. First, we check
access control against a given security policy specified by the
underlying database. This also includes the detection of po-
tential dangerous commands such as deleting a whole table.
Second, we analyze the parts of the automaton correspond-
ing to the WHERE clauses of the generated queries to check
whether there is a tautology. The existence of a tautology in-
dicates a potential vulnerability and the corresponding regu-
lar expressions need to be examined and perhaps redesigned.
Knowing exactly which column the column names may refer
to enables us to view the columns as variables in the object
program. Whereas type checking of generated queries rea-
sons about the types of these “variables,” we reason about
their values to check for tautologies in WHERE clauses. If no
violations are detected, the soundness of our analysis guar-
antees that the original source-program does not produce
any “threatening” SQL commands.

1.3 Paper Outline
The rest of the paper is structured as follows. We first

present our analysis framework in detail (Section 2). In
particular, we discuss the previous works on string analy-
sis [5] (Section 2.1) and query structure discovery [6] (Sec-
tion 2.2), followed by a discussion of the checks we perform

71

(Section 2.3). We then present an algorithm for tautology
checking (Section 3) and discuss some current limitations of
our approach and areas for future work (Section 4). Finally,
we survey related work (Section 5) and conclude (Section 6).

2. ANALYSIS FRAMEWORK
In this section, we give a more detailed description of our

analysis framework. We mentioned earlier that manual in-
put filtering and validation of user inputs are error prone.
In our framework, we suggest the use of regular expressions
to filter user inputs. Our framework can then check the
correctness of these regular expression specifications. Our
analysis technique, however, is general and can also validate
other input checking mechanisms, including the use of ad
hoc input validation routines.

2.1 Abstract Model of Generated Queries
As the first step of our analysis, we build an abstract

model of all the possible dynamically generated SQL queries
by a source program. In particular, we consider programs
written in Java.

This step of our analysis builds upon a string analysis of
Java programs by Christensen et al. [5]. The string analysis
approximates the set of possible strings that the program
may generate for a particular string variable at a particu-
lar program location, which is called a hotspot. The string
analysis represents the set of possible strings by generating
a finite state automaton (FSA); that is, the set of strings
the automaton accepts is a superset of the set of strings
the program actually produces at that hotspot. For our
purpose, the hotspots are the string variables that produce
SQL query strings. For example, the string variable query

at the statement:
return statement.executeQuery(query);

is a hotspot for that program.
We can model regular expression filters, in the string anal-

ysis, as casts on the corresponding Java program variables;
that is, all string values of a particular Java expression may
be declared to be within a given regular expression. These
casts can be thought of in much the same way as type casts
in any typed programming language. We refer interested
readers to Christensen et al.’s paper [5] for technical details
on the string analysis.

Finally, the rest of our analysis requires that each FSA
accepts only syntactically correct queries. We enforce this
by first constructing an FSA which accepts an under ap-
proximation of the SQL language. By intersecting it with
the FSA for the generated queries, we ensure syntactic cor-
rectness. (Section 4 discusses some limitations imposed by
this approach.)

2.2 Syntactic Structure of Generated Queries
In order to analyze the FSA representation of database

queries, we need to understand the queries’ syntactic struc-
ture. We utilize aspects of earlier work on static type check-
ing of generated queries [6] to discover the parsing structure
of queries. Discovering the structure allows us to locate
WHERE clauses to check for tautologies, for example. For in-
dividual programs, the structure is obtained by parsing the
program according to the language’s grammar. Our situa-
tion is different: instead of individual programs, we have an
FSA which may accept a potentially infinite set of programs
(database queries, in this context).

We use an extension of the context-free language (CFL)
reachability algorithm [14, 15] to simulate parsing on the
FSA. The CFL-reachability problem takes as inputs a con-
text-free grammar G with terminals T and nonterminals N ,
and a directed graph A with edges labeled with symbols from
T ∪N . Let S be the start symbol of G, and Σ = T ∪N . A
path in the graph is called an S-path if its word is derived
from the start symbol S. The CFL-reachability problem is
to find all pairs of vertices s and t such that there is an
S-path between s and t.

The SQL-language grammar and the generated FSA are
inputs to the CFL-reachability algorithm. We need to ex-
tend the standard CFL reachability algorithm to record which
edges in the graph led to the addition of each new edge to
find the structure of every query accepted by the FSA. For
example, it tells us not only that there is a SELECT state-
ment starting at vertex s and ending at vertex t, but it also
tells us every path between s and t that accepts a SELECT

statement and whether each segment of each path is a WHERE

clause, a column-list, or something else.
Having the complete structure of every query in the set

enables the analysis to match each column name with the
set of columns it may refer to. Note that because of the
branching structure of the FSA, column names may refer to
any of a set of columns, as in the following example:

SELECT id FROM
table1

table2

To facilitate the next phase of analysis, we modify the FSA
by adding transitions labeled with fully-qualified column
identifiers (e.g., id.table1) parallel to transitions labeled
with column names. Further details regarding structure dis-
covery can be found in Gould et al.’s paper [6].

2.3 Security Checking of Generated Queries
In the final step, we check for various security violations in

the generated queries. We mention two of the main checks
that one can perform.

2.3.1 Checking Access Control Policies
Access control policies grant entities permissions on re-

sources. Our analysis checks the generated queries against
some given access control policy for the database.

DBMSs usually use role-based access control (RBAC) [2],
in which the entities are roles (e.g., administrator, manager,
employee, customer, etc.) and users act as one of these
roles when accessing the database. The active role for each
hotspot is an input to our analysis. The permissions in-
clude, for example, SELECT, INSERT, UPDATE, DELETE, DROP,
etc. The resources are tables and columns. As a result of
“parsing” the FSA with CFL-reachability, we know for each
column transition, all contexts (e.g., SELECT, INSERT, etc.)
in which it may appear in the generated queries. We use
this to discover access control violations. For example, if
the role customer does not have the INSERT permission on
id.table2, even if id.table2 is mentioned in a SELECT sub-
query of an INSERT statement, we will discover and flag the
violation.

2.3.2 Detecting Tautologies
The second main check we perform on the generated SQL

queries is to verify the absence of tautologies from all WHERE

72

clauses. Generally, if an honest user wants to return all
tuples for a query, the query will not have a WHERE clause.
In the context of web applications, a tautology in a WHERE

clause is an almost-certain sign of an attack, in which the
attacker attempts to circumvent limitations on what web
users are allowed to do.

Detecting generated tautologies is a non-trivial task. Ear-
lier work on type checking dynamically generated queries [6]
reasons about the types of constants, columns, and expres-
sions. Tautology checking, on the other hand, has to reason
about values, which is a much deeper semantic analysis than
type checking.

To discover tautologies, we first extract the portions of
the FSA that accept the conditional expressions in WHERE

clauses, which we call Boolean FSAs. Detecting tautologies
in acyclic portions of the FSA is straightforward because
acyclic portions accept only a finite set of expressions. Cy-
cles in the FSA make tautology detection challenging. We
classify cycles as either arithmetic or logical, depending on
the sort of expressions they accept. We conceptually view
arithmetic portions of the FSA as network flow problems,
and solve them using a decision procedure for first-order
arithmetic. Logical loops cannot be handled this way. In-
stead, we “unroll” them the minimal number of times needed
to ensure that if any tautology is accepted, at least one will
be found. The next section explains tautology detection in
more detail. If a tautology is discovered, we issue a warning.

3. CHECKING FOR TAUTOLOGIES
For web applications, a tautology in the WHERE clause of

a database query indicates a highly likely command injec-
tion problem. Perhaps the attacker wants to view all the
information in a database, where only a subset is intended
for any given user. In another setting, user names and pass-
words may be stored in a database so that the application
authenticates users by querying the database to check for
the supplied name and password. A tautology in such a
query would nullify the authentication mechanism.

Checking for tautologies is challenging because tautolo-
gies may be non-trivial, such as “(a > b) OR NOT ((b -

1 > c) AND (2 - b - c > -a - b)).” In fact, the general
problem is undecidable because of the undecidability of solv-
ing Diophantine equations [13].

We restrict ourselves in this paper to discovering tautolo-
gies in linear arithmetic (“+” and “−” but no “×”) over
real numbers. Multiplication by a constant is within linear
arithmetic, and we include it in our algorithm when it ap-
pears in an acyclic region of the FSA. However, for an FSA
that has, for example, a loop over “× 2,” if we attempt to
include all multiplication by constants, we would character-
ize the multiplication as “× 2n” for some n. Exponentiation
with variables is difficult to reason about, so when multipli-
cation appears in a cyclic region of the FSA or has variables
as its multiplicands, we flag a warning. Columns of type
Integer are approximated by real numbers. Relations over
strings (e.g., “’a’=’a’”) can be translated into questions
over numbers, for example by mapping strings to numbers.

If the set of queries represented by the automaton is infi-
nite, it is because the automaton has cycles. Cycles in the
automaton come from both cyclic behavior in the source
program, either from looping control structures or recur-
sion, and repetition in regular expression filters (e.g., “*”).
Although cycles are finite structures, a single pass through

a cycle may not reveal everything we need to know. Mul-
tiple passes through even a simple loop may be needed to
discover a tautology. Consider the following example:

b

a

−

≥ − b OR b ≥ a

After two passes through the loop, the automaton accepts
the string “a - b - b ≥ - b OR b ≥ a,” which is seman-
tically equivalent to “a ≥ b OR b ≥ a”, a tautology.

3.1 Our Approach
In formulating an analysis to discover tautologies in the

presence of cycles in a Boolean FSA, we first note a use-
ful consequence of the syntactic-correctness property: the
transitions of the Boolean FSA can be partitioned into four
transition types. A transition of type:

(I) accepts part of an arithmetic expression ({+, -, (), 1,
x, . . . }) before a comparison operator;

(II) accepts a comparison operator ({>, ≥, =, ≤, <, 6=});

(III) accepts part of an arithmetic expressions after a com-
parison operator;

(IV) accepts a logical operator ({AND, OR, NOT}) or a paren-
thesis at the logical level.

This partitioning must be possible because, for example, if
a transition that accepts a constant could be classified as
both type I and type III, then the FSA would accept some
string in place of a comparison expression which either had
two comparison operators (e.g., “. . . x > 5 < 5. . . ”) or none
(e.g., “. . . AND 5 OR. . . ”). Consider also the notion of par-
enthetic nesting for each transition in a path as the number
of logical (arithmetic) open parentheses minus the number
of logical (arithmetic) closed parentheses encountered since
the beginning of the path. Although a transition may be
encountered on many different paths, it will always have the
same parenthetic nesting. If this were not so, the FSA would
accept some string with imbalanced parentheses.

Our analysis relies on this partitioning. Rather than try-
ing to handle arbitrary cycles in the FSA uniformly, we clas-
sify each cycle as either arithmetic, if it only includes type
I or type III transitions, or logical, if it includes type IV
transitions. In order to handle each class of cycles without
concerning ourselves with the other, we define an arithmetic
FSA such that it can be viewed in isolation when we ad-
dress arithmetic cycles and it can be abstracted out when
we address logical cycles:

• The start state s immediately follows a type IV tran-
sition and immediately precedes a type I transition;

• The final state t immediately follows a type III transi-
tion and immediately precedes a type IV transition;

• All states and transitions are included that are reach-
able on some s-t path that has no type IV transitions.

The FSA fragment in Figure 1 has two arithmetic FSAs.
The one defined by (s1, t) includes all states and solid tran-
sitions in the figure. The one defined by (s2, t) excludes
the state s1 and the x-transition. Finding the arithmetic

73

OR
s1 x

+

<
1

z

t
AND

AND
s2

y

Figure 1: Example for arithmetic FSAs.

in=1
W

b

X a Y

+c

Z

≥ b +c

out=1

∃W,X, Y, Z : } flow variables
1 = X + W ∧
X + W + Y = Y + Z

∧ Z = 1

9

=

;
flow balance equations

∀a, b, c : } object-program variables

W × (a) + X × (b) + Y × (c) ≥ Z × (b + c) } flow-
comparison expression

Figure 2: Flow equations for arithmetic loops.

FSAs in a Boolean FSA is straightforward in our frame-
work. The structure discovery from Section 2.2 adds a tran-
sition between each pair of states that accepts a comparison
expression—these states become s and t in an arithmetic
FSA. The structure discovery adds to the new transition ref-
erences to the transitions that allowed it to be added—these
transitions are followed to find the states and transitions be-
tween s and t.

For reasoning about comparison expressions, which arith-
metic FSAs accept, we view arithmetic FSAs as network
flow problems with single source and sink nodes and solve
these problems using a construction in linear arithmetic (see
Section 3.2). Boolean expressions are comparison expres-
sions connected with logical operators (e.g., “AND,” “OR,”
“NOT”). We discover tautologies by unrolling logical loops
a bounded number of times sufficient to ensure that if a tau-
tology is accepted, we will find one. We simulate unrolling
by repeating instances of the network flow problems. We
determine the precise number of times to unroll based on
the structure of the strong connections among arithmetic
FSAs and the number of object-program variables in each
arithmetic FSA (see Section 3.3).

3.2 Arithmetic Loops
We address arithmetic loops by casting questions about

arithmetic automata as questions about network flows. We
present the technique by the example in Figure 2. We con-
sider the path taken as the FSA accepts a string to be a flow.
Except at the entrance and exit states, each state’s in-flow
must equal its out-flow. In other words, if on an accepting
path, a state is entered three times, then on the same path
it must also be exited three times.

In order to capture this intuition, we label the incoming
and outgoing transitions at each state where branching or
joining occurs. In the example, we label four transitions as
W , X, Y , and Z. The labels become the variable names for

arithmetic FSA

OR

Figure 3: A simple logical loop.

the flow variables. The value of a flow variable equals the
number of times the corresponding transition was taken in
some accepting path. For the start state, the final state, and
each state with branching or joining, we write flow balance
equations. The label of each transition entering that state
appears on one side of the equation and the label of each
transition leaving appears on the other. For the start and
final states of the arithmetic automaton, we specify a value
of “1” entering and leaving respectively.

Paths through the FSA accept expressions of constants
and object-program variables (i.e., column names, in the
present context). A tautology is an expression true for all
values of the variables, so we universally quantify the object-
program variables named in the FSA.

Finally, we write flow-comparison expressions to link the
flow through the FSA to the semantics of the accepted ex-
pression. In flow-comparison expressions, flow variables are
multiplied by the expressions on their corresponding paths
because each trip through a path adds the expression that la-
bels the path to the accepted string. In Figure 2, {W, Y, Z ←
1; X ← 0} makes the expression true, and corresponds to
the string “b + c ≥ b + c.” Additional expressions can
prevent most false positives (e.g., by preventing path vari-
ables from taking negative values), but we do not discuss
them here due to space constraints.

Tarski’s theorem [22] establishing the decidability of first-
order arithmetic guarantees that expressions of this form are
decidable when the variables range over real numbers. We
state here a soundness result:

Theorem 3.1. If we do not discover a tautology then the
FSA does not accept a tautology.

Furthermore, when two or more arithmetic FSAs are linked
in a linear structure by logical connectors (e.g., “AND” or
“OR”), we can merge in a natural way the equations we gen-
erate to model the arithmetic automata, and the soundness
result holds for the sequence of automata:

Theorem 3.2. If we do not discover a tautology, then the
linear chain of arithmetic FSAs does not accept a tautology.

Incompleteness Allowing the variables to range over real
numbers does leave a margin of incompleteness. If the flow
variables take on non-integral values, they will not corre-
spond to any path through the FSA. We discuss this further
in Section 4.

3.3 Logical Loops
Consider the simple abstract FSA in Figure 3. The arith-

metic FSA might not accept any tautology, but two or more
passes through the arithmetic FSA joined by “OR” may be
a tautology.

Unfortunately, we cannot use equations to address logical
loops as we did for arithmetic loops. If we did, the equations
for arithmetic loops would not be expressible in first-order

74

a.
NOT (

A
AND

B
OR

OR

C
)

b.
NOT (

A

AND

B
OR

OR

C
)

OR
B

OR

c.
ε ((

¬A

OR

¬B
AND

AND

¬C
)

) AND
¬B

) AND

Figure 4: Removing “NOT” from a Boolean FSA.

arithmetic. Instead, we “unroll” the loop enough times that
if the loop accepts some tautology, the unrolling must also
accept some tautology. This section presents our technique
for discovering tautologies in the presence of logical loops by
explaining how we address transitions labeled with each of
the four logical keywords: NOT, OR, AND, and (), in that
order.

3.3.1 NOT-transitions
The first phase of the analysis takes as input a Boolean

FSA F and transforms it into a Boolean FSA F ′, such that
the sets of expressions that F and F ′ accept are logically
equivalent, and F ′ has no transitions labeled “NOT.” Fig-
ure 4 illustrates this transformation. Labeled states rep-
resent FSAs that accept comparison expressions (as in Fig-
ure 3). Because “AND” has a higher precedence than “OR,”
applying DeMorgan’s law to a negated expression requires
that parentheses be added to preserve the precedence in the
original expression. However, because we are dealing with
FSAs, not single expressions, adding parentheses along one
path may lead to imbalanced parentheses on another path.
To address this, the transformation first duplicates states
that have differently labeled incoming or outgoing transi-
tions. For example, the state B in the original Boolean FSA
in Figure 4a has incoming transitions labeled “AND” and
“OR,” so it gets duplicated as in Figure 4b. The trans-
formation then adds parentheses at transitions that termi-
nate sequences of AND-transitions, flips the AND’s and the
OR’s, and flags the states with “¬.” When a state is flagged
with “¬,” the comparison operators in the arithmetic FSA
get swapped with their opposites (e.g., < � ≥). Figure 4c
shows the last step on the example.

3.3.2 OR-transitions
By Theorem 3.2, we can determine whether a linear bool-

ean FSA accepts any tautologies. In this section, given an
arbitrary Boolean FSA which has only OR-transitions, we
generate a finite set of linear Boolean FSAs such that at
least one accepts a tautology iff the original Boolean FSA
accepts a tautology.

If all strongly connected components (SCCs) in an FSA
are viewed as single states, the FSA is acyclic and all paths

1
OR

2

OR
⇒

3

OR

4
OR

1
OR

3
OR

OR

4
OR

OR

2

OR

Figure 5: Transforming a complex looping structure

into multiple self-loops.

A

OR

⇒ A1
OR

A2
OR OR

An+2

Figure 6: Logical-loop unrolling.

through it can be enumerated. The paths can be used to
produce a finite set of linear FSAs, and iff the original FSA
accepts a tautology, one of the linear FSAs accepts a tautol-
ogy. The following lemma allows us to transform complex
looping structures of SCCs into linear sequences of states
with self-loops, as in Figure 5.

Lemma 3.3. Let F be a Boolean FSA with only OR-tran-
sitions which is linear except for SCCs. If F is transformed
into F ′ by allowing only unique incoming and outgoing tran-
sitions for each state (so that F ′ is linear) and adding a self-
loop to each state which was originally in an SCC, F accepts
a tautology iff F ′ accepts a tautology.

Lemma 3.3 follows directly from the commutative prop-
erty of “OR.” If we can determine the maximum number of
times each state with a self-loop must be visited to discover
a tautology, we can “unroll” the self-loops that number of
times to produce linear Boolean FSAs. The following theo-
rem yields this number:

Theorem 3.4. Let T be an expression of the form t1 ∨
. . . ∨ tm, where each ti is a comparison of two linear arith-
metic expressions. Let S map expressions to sets by map-
ping an expression E to the set of comparisons in E, so that
S(T) = {t1, . . . , tm}. T is a tautology, iff there exists some
tautology T ′, such that S(T ′) ⊆ S(T) and |S(T ′)| ≤ n + 2,
where n is the number of variables named in T .

Due to space constraints we omit the proof of Theorem 3.4.
The theorem is established through a connection between
the maximum number of comparisons needed for a tautology
and the maximum number of linearly independent vectors in
n dimensions. Figure 6 illustrates how we use Theorem 3.4:
if A represents an arithmetic FSA, and a total of n distinct
program variables label the transitions of the FSA, the loop
can be unrolled n + 2 times to guarantee that if the loop
accepts all or part of a tautology, the unrolling does too.

3.3.3 AND-transitions
This section extends the algorithm from Section 3.3.2 to

deal with AND-transitions. Because “AND” has a higher
precedence than “OR,” we cannot simply put self-loops on
all states in an SCC. The following definitions will be useful
in our algorithm:

Definition 3.5 (AND-chain). An AND-chain is a se-
quence of states in an SCC connected sequentially by AND-
transitions where OR-transitions in the SCC immediately

75

1

AND

2
AND

OR

3

OR

AND

4

AND

OR
5

AND

minimal AND-chain set
z }| {

1
AND

4 3

⇓

5
AND

2

(
1

OR

)
�����

(
4

OR

) OR
3

OR

OR (
5

OR

)
�����

(
2

OR

)

⇓
�

1

���

← 2(n + 2)→

�	�

1

 ����� �

4

���

← 2(n + 2)→

�	�

4

 �	�

3

�	�

← 4(n + 2)→

�	�

3

Figure 7: Forming a linear FSA from a strongly con-

nected component to discover tautologies.

precede and follow the first and last states in the sequence
respectively.

Definition 3.6 (Minimal AND-chain set). The min-
imal AND-chain set of an SCC in a Boolean FSA is a subset
S of the set of all AND-chains of an SCC, such that there are
no pairs of AND-chains where the states in one AND-chain
form a subset of the states in the other.

Lemma 3.7. Let F be a Boolean FSA with OR- and AND-
transitions, and let F be linear except for SCC’s which are
entered and exited through OR-transitions. Let F be trans-
formed into F ′ by replacing the SCC’s with their minimal
AND-chain sets, connecting them linearly with OR-transi-
tions, and adding an OR-transition from the last to the first
state of each AND-chain. F accepts a tautology, iff F ′ ac-
cepts a tautology.

Lemma 3.7 follows first from the commutative property
of “OR” because the order in which AND-chains occur does
not influence whether or not a tautology is accepted. The
minimal AND-chain set can be used because the conjunction
of two non-tautologies can never form a tautology. An algo-
rithm to construct this set finds all states in an SCC with
incoming OR-transitions and from those states all acyclic
paths which terminate at the first encountered state with an
outgoing OR-transition. Figure 7 shows the minimal AND-
chain set for an example SCC. In pathological cases this al-
gorithm will discover an exponential number of AND-chains,
but we expect this number to be small in practice.

Lemma 3.7 specifies a transformation from FSA F to F ′

such that F accepts a tautology iff F ′ accepts a tautology.
The distributive property of “AND” can be used to trans-
form F ′ into a linear FSA of states with self-loops and tran-
sitions with parentheses which accepts a tautology iff F ′

accepts a tautology. We create such an FSA directly from
the AND-chains, as shown in Figure 7.

a. 1

AND

2

AND

3

OR

4

(

5
AND

(

6

AND
OR

7
AND

AND

8
OR

9

)

b. 1

AND

2

AND
AND

3

OR

{4,6}

OR

AND

5
AND

{5,6}

AND
OR

c.
(

1

OR

) AND (
J4,6K

OR

) OR

d. J4,6K

OR

≡ 7
AND

AND

8
OR

9

OR

e.
(

1

OR

) AND ((
7

OR

) AND (
8

OR

) OR (
7

OR

) AND (
9

OR

)) OR

Figure 8: Forming a linear FSA from a strongly con-

nected component with parentheses.

We can put an upper bound on the number of times each
self-loop must be unrolled using Theorem 3.4. To find this
number, we consider an example. Suppose an SCC has two
AND-chains: (1) and (2)–(3). From these AND-chains we
can construct a linear FSA F with self-loops as in Figure 7.
We can also construct two sets of states where each set has
exactly one state from each AND-chain: {(1), (2)} and {(1),
(3)}. From these sets we can construct FSAs F1 and F2

where both F1 and F2 have only OR-transitions and the
states have self-loops. The FSA F accepts a tautology iff
F1 and F2 each accepts a tautology. The “only if” direc-
tion is straightforward. To prove the “if” direction, con-
sider that if F1 accepts the tautology “e1 OR e2,” and F2

accepts the tautology “e′1 OR e3,” then F accepts “e1 OR

e′1 OR (e2) AND (e3).” This expression in conjunctive nor-
mal form is “(e1 OR e′1 OR e2) AND (e1 OR e′1 OR e3),” a
tautology. By Theorem 3.4 the self-loops in F1 and F2 need
be unrolled at most n + 2 times, where n is the number of
variables that label the transitions in F1 and F2. A self-loop
over state i in F must be unrolled m(n + 2) times, where m

is the product of the numbers of states in the AND-chains
which do not include state i. Figure 7 shows the final FSA
with the unrollings of self-loops.

3.3.4 ()-transitions
This section extends the algorithm from Section 3.3.3 to

deal with transitions labeled “(” and “).” Because paren-

76

theses have a higher precedence than “AND,” we discover
AND-chains only among states and transitions of the FSA
that have a common parenthetic nesting depth. Recall from
Section 3.1 that parentheses must be balanced on all paths,
and each state has a unique parenthetic nesting depth. Fig-
ure 8 illustrates this algorithm on the FSA in Figure 8a.
Before the algorithm discovers AND-chains at depth i, it
collapses pairs of states that enter/exit depth i + 1 into sin-
gle states, and temporarily removes all states and transi-
tions at depths > i. For example, in Figure 8a, states (4)
and (5) enter depth 1 and state (6) exits, so {4,6} is one
pair and {5,6} is another pair. Figure 8b shows the FSA
with collapsed states ({4,6}) and ({5,6}). The meaning of a
collapsed states ({qs,qt}) is the sub-automaton that can be
entered from state qs and exited from state qt, and is written
(Jqs,qtK). The algorithm finds all AND-chains in the FSA,
creates a linear FSA with self-loops (as in Figure 7), and
replaces collapsed states with their meanings. Figure 8c
shows only the beginning of this FSA in order to use the
AND-chain (1)–(J4,6K) as an example. Figure 8d shows the
sub-automaton that (J4,6K) with a self-loop represents. In
order to “unroll” the self-loop on (J4,6K), the algorithm re-
curses on the represented sub-automaton. In this case, the
sub-automaton has AND-chains (7)–(8) and (7)–(9). The
algorithm produces a linear FSA with self-loops for this sub-
automaton, and puts it in place of (J4,6K). Figure 8e shows
the result. When the FSA has no more collapsed states, the
self-loops can be unrolled as in Figure 7.

The algorithm for analyzing Boolean FSAs is both sound
and complete:

Theorem 3.8 (Soundness and Completeness). Giv-
en a decision procedure for flow-comparison expressions, our
algorithm discovers a tautology in an FSA F iff F accepts a
tautology and accepts only syntactically correct expressions
of comparisons of linear arithmetic expressions.

Theorem 3.8 follows from Lemma 3.7 and the distributive
property of “AND.” A tautology discovered in a linear FSA
can be mapped back to a path in the original FSA for the
purpose of a useful error message.

3.4 Complexity
The removal of NOT-transitions (Section 3.3.1) runs in

time linear in the size of F , i.e., O(|F |), and expands F by
a constant factor. The number of paths through F is expo-
nential in the number of “acyclic” (cannot be reached from

themselves) states in F , i.e., O(2|Facyc|). Each path is a
query to decision procedure. The number of AND-chains is
exponential in the number of “strongly connected” (can be

reached from themselves) states in F , i.e., O(2|Fsc|). The
length of each path is bounded by either the number of
acyclic states or the product of the number of AND-chains
and the size of the alphabet, i.e., O(max(|Facyc|, 2

2|Fsc||Σ|)).
Therefore the number of queries is exponential and the size
of each query is also exponential. For this analysis, we con-
sider each query as being sent to an oracle.

Although in the worst case this algorithm runs in expo-
nential time, we expect this to scale well because FSAs based
on real-world programs typically do not have large and com-
plex structures.

4. LIMITATIONS AND FUTURE WORK

In this section, we discuss some limitations of our current
analysis and leave them for future work.

The first limitation lies in the way that we ensure syn-
tactic correctness of the generated queries. The use of an
FSA under-approximation of the SQL grammar may be too
restrictive to remove some possible malicious queries from
the represented set (Section 2.1). Based on the results from
earlier work [5,6], we do not expect this in practice. We can
also check for automata containment to make sure that the
generated queries are syntactically correct.

The second limitation is our use of a decision procedure for
first-order arithmetic over real numbers to solve our network
flow problems (Section 3.2). It may be possible that the path
variables could admit a tautology by taking on non-integral
values which do not correspond to a path in the FSA. This
makes our analysis incomplete. However, we do not view
this as a serious limitation, because the analysis remains
sound by modeling integer variables with real values. It is
possible to address this by finding a decision procedure for
the particular kind of constraints we have by exploiting their
simple structure.

We do not yet have good ways to handle some operators,
such as “LIKE” and “×.” Generated constants pose simi-
lar problems for automata-based analyses. Questions about
each of these is decidable in the absence of certain classes of
loops, so loop unrolling algorithms, similar to the algorithm
in Section 3.3, may provide good approximations.

Finally, to experimentally validate the effectiveness of our
analysis framework, we are working on a prototype of the
analysis and planning to apply it to some real-world exam-
ples.

5. RELATED WORK
In this section, we survey closely related work. Two previ-

ous projects are closely related to this work. The first is the
string analysis of Christensen, Møller, and Schwartzbach [5].
Their string analysis ensures that the generated queries are
syntactically correct. However, it does not provide any se-
mantic correctness guarantee of the generated queries. The
second, which builds on this string analysis, is on type check-
ing of generated queries by Gould, Su, and Devanbu [6].
Their analysis takes the first step in the semantic checking
of object-programs by ensuring that all generated queries
are type-correct. Our analysis builds on these and goes a
step further by checking deeper semantic properties.

Several tutorials are available on how to create web ap-
plications safely to avoid SQL command injection [8]. The
only other research that we know of intended specifically for
preventing command injection attacks uses instruction set
randomization [3]. That technique relies on an intermediary
system to translate instructions dynamically; our analysis is
completely static, so it adds nothing to the run-time system.
Several other techniques are mentioned in Section 1.

Several other automata-based techniques have been pro-
posed with security in view, but they use automata in a fun-
damentally different way. For example, Schneider proposed
formalizing security properties using security automata, which
define the legal sequences of program actions [18]. In con-
trast, our analysis uses automata to represent values of vari-
ables at specified program points (hotspots).

To be put in a broader context, our research can be viewed
as an instance of providing static safety guarantee for meta-
programming [21]. Macros are a very old and established

77

meta-programming technique; this was perhaps the first set-
ting where the issue of correctness of generated code arose.
Powerful macro languages comprise a complete program-
ming facility, which enable macro programmers to create
complex meta-programs that control macro-expansion and
generate code in the target language. Here, basic syntac-
tic correctness, let alone semantic properties, of the gener-
ated code cannot be taken for granted, and only limited
static checking of such meta-programs is available. The
levels of static checking available include none, syntactic,
hygienic, and type checking. The widely used cpp macro
pre-processor allows programmers to manipulate and gener-
ate arbitrary textual strings, and it provides no checking.
The programmable syntax macros of Weise & Crew [25]
work at the level of correct abstract-syntax tree (AST) frag-
ments, and guarantee that generated code is syntactically
correct with respect (specifically) to the C language. Weise
& Crew macros are validated via standard type-checking:
static type-checking guarantees that AST fragments (e.g.,
Expressions, Statements, etc.) are used appropriately in
macro meta-programs. Because macros insert program frag-
ments into new locations, they risk “capturing” variable
names unexpectedly. Preventing variable capture is called
hygiene. Hygienic macro expansion algorithms, beginning
with Kohlbecker et al. [12] provide hygiene guarantees. Re-
cent work, such as that of Taha & Sheard [21], focuses on
designing type checking of object-programs into functional
meta-programming languages. We do not introduce new
languages or new language designs. In this particular work,
our goal is to ensure that strings passed into a database from
an arbitrary Java program are “non-threatening” SQL que-
ries from the perspective of a given database security policy.
We expect the general technique outlined in this paper can
be extended to apply in other settings as well.

6. CONCLUSIONS
We have presented the design of the first static analysis

framework for verifying a class of security properties for web
applications. In particular, we have presented techniques for
the detection of SQL command injection vulnerabilities in
these applications. Our analysis is sound. We are currently
working on an implementation of the analysis. Based on
encouraging results from earlier work on syntactic and se-
mantic checking of dynamically generated database queries
and properties of the constructions presented in this paper,
we expect our analysis to work well in practice and have a
low false positive rate. Finally, we expect our analysis tech-
nique may be applicable in some other meta-programming
paradigms.

7. REFERENCES
[1] L. O. Andersen. Program Analysis and Specialization

for the C Programming Language. PhD thesis,
University of Copenhagen, May 1994.

[2] M. Bishop. Computer Security: Art and Science.
Addison Wesley Professional, 2002.

[3] S. W. Boyd and A. D. Keromytis. SQLrand:
Preventing SQL injection attacks. In ACNS, 2004.

[4] C. Brabrand, A. Møller, M. Ricky, and M. I.
Schwartzbach. Powerforms: Declarative client-side
form field validation. World Wide Web, 2000.

[5] A. S. Christensen, A. Møller, and M. I. Schwartzbach.
Precise analysis of string expressions. In Proc. SAS’03,
pages 1–18, 2003. URL: http://www.brics.dk/JSA/.

[6] C. Gould, Z. Su, and P. Devanbu. Static checking of
dynamically generated queries in database
applications. In Proc. ICSE’04, May 2004.

[7] J. E. Hopcroft and J. D. Ullman. Introduction to
Automata Theory, Language, and Computation.
Addison-Wesley, Reading, MA, 1979.

[8] M. Howard and D. LeBlanc. Writing Secure Code.
Microsoft Press, 2002.

[9] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai.
Web application security assessment by fault injection
and behavior monitoring. In World Wide Web, 2003.

[10] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee,
and S.-Y. Kuo. Securing web application code by
static analysis and runtime protection. In World Wide
Web, pages 40–52, 2004.

[11] Kavado, Inc. InterDo Vers. 3.0, 2003.

[12] E. Kohlbecker, D. P. Friedman, M. Felleisen, and
B. Duba. Hygienic macro expansion. In Conference on
LISP and Functional Programming, 1986.

[13] Y. Matiyasevich. Solution of the tenth problem of
hilbert. Mat. Lapok, 21:83–87, 1970.

[14] D. Melski and T. Reps. Interconvertbility of set
constraints and context-free language reachability. In
Proc. PEPM’97, pages 74–89, 1997.

[15] T. Reps, S. Horwitz, and M. Sagiv. Precise
interprocedural dataflow analysis via graph
reachability. In Proc. POPL’95, pages 49–61, 1995.

[16] Sanctum Inc. Web Application Security
Testing-Appscan 3.5. URL:
http://www.sanctuminc.com.

[17] Sanctum Inc. AppShield 4.0 Whitepaper., 2002.
URL: http://www.sanctuminc.com.

[18] F. B. Schneider. Enforceable security policies. ACM
Trans. Inf. Syst. Secur., 3(1):30–50, 2000.

[19] D. Scott and R. Sharp. Abstracting application-level
web security. In World Wide Web, 2002.

[20] SPI Dynamics. Web Application Security Assessment.
SPI Dynamics Whitepaper, 2003.

[21] W. Taha and T. Sheard. Multi-stage programming
with explicit annotations. In Proc. PEPM’97, 1997.

[22] A. Tarski. A Decision Method for Elementary Algebra
and Geometry. University of California Press, 1951.

[23] J. Viega and G. McGraw. Building Secure Software:
How to Avoid Security Problems the Right Way.
Addison Wesley Professional, 2001.

[24] L. Wall, T. Christiansen, and R. L. Schwartz.
Programming Perl (3rd Edition). O’Reilly, 2000.

[25] D. Weise and R. Crew. Programmable syntax macros.
In Proc. PLDI’93, pages 156–165, 1993.

78

Synthesis of "correct" adaptors for protocol enhancement
in component-based systems ∗

Marco Autili, Paola Inverardi,
Massimo Tivoli

University of L’Aquila
Dip. Informatica

via Vetoio 1, 67100 L’Aquila

{marco.autili, inverard,
tivoli}@di.univaq.it

David Garlan
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213-3891

garlan@cs.cmu.edu

ABSTRACT
Adaptation of software components is an important issue in
Component Based Software Engineering (CBSE). Building a
system from reusable or Commercial-Off-The-Shelf (COTS)
components introduces a set of problems, mainly related to
compatibility and communication aspects. On one hand,
components may have incompatible interaction behavior.
This might require to restrict the system’s behavior to a
subset of safe behaviors. On the other hand, it might be
necessary to enhance the current communication protocol.
This might require to augment the system’s behavior to in-
troduce more sophisticated interactions among components.
We address these problems by enhancing our architectural
approach which allows for detection and recovery of incom-
patible interactions by synthesizing a suitable coordinator.
Taking into account the specification of the system to be as-
sembled and the specification of the protocol enhancements,
our tool (called SYNTHESIS) automatically derives, in a
compositional way, the glue code for the set of components.
The synthesized glue code implements a software coordina-
tor which avoids incompatible interactions and provides a
protocol-enhanced version of the composed system. By us-
ing an assume-guarantee technique, we are able to check, in
a compositional way, if the protocol enhancement is consis-
tent with respect to the restrictions applied to assure the
specified safe behaviors.

1. INTRODUCTION
Adaptation of software components is an important issue

in Component Based Software Engineering (CBSE). Nowa-
days, a growing number of systems are built as composition
of reusable or Commercial-Off-The-Shelf (COTS) compo-
nents. Building a system from reusable or from COTS [14]

∗This work is an extended and revisited version of [7].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

components introduces a set of problems, mainly related
to communication and compatibility aspects. Often, com-
ponents may have incompatible interaction behavior. This
might require to restrict the system’s behavior to a subset
of safe behaviors. For example, restrict to the subset of
deadlock-free behaviors or, in general, to a specified subset
of desired behaviors. Moreover, it might be necessary to
enhance the current communication protocol. This requires
augmenting the system’s behavior to introduce more sophis-
ticated interactions among components. These enhance-
ments (i.e.: protocol transformations) might be needed to
achieve dependability, to add extra-functionality and/or to
properly deal with system’s architecture updates (i.e.: com-
ponents aggregating, inserting, replacing and removing).

We address these problems enhancing our architectural
approach which allows for detection and recovery of incom-
patible interactions by synthesizing a suitable coordinator [6,
9, 11]. This coordinator represents a initial glue code. So
far, as reported in [6, 9, 11], the approach only focussed on
the restriction of the system’s behavior to a subset of safe
(i.e.: desired) behaviors. In this paper, we propose an ex-
tension that makes the coordinator synthesis approach also
able to automatically transform the coordinator’s protocol
by enhancing the initial glue code. We implemented the
whole approach in our SYNTHESIS tool [9, 15]
(http://www.di.univaq.it/tivoli/SYNTHESIS/synthesis.html).
In [15], which is a companion paper, we also apply SYN-
THESIS to a real-scale context. Since in this paper we are
focusing only on the formalization of the approach, in Sec-
tion 5, we will simply refer to an explanatory example and
we will omit implementation details which are completely
described in [15].

Starting from the specification of the system to be as-
sembled and from the specification of the desired behaviors,
SYNTHESIS automatically derives the initial glue code for
the set of components. This initial glue code is implemented
as a coordinator mediating the interaction among compo-
nents by enforcing each desired behavior as reported in [6,
9, 11]. Subsequently, taking into account the specification
of the needed protocol enhancements and performing the
extension we formalize in this paper, SYNTHESIS auto-
matically derives, in a compositional way, the enhanced glue
code for the set of components. This last step represents the
contribution of this paper with respect to [6, 9, 11]. The en-
hanced glue code implements a software coordinator which

79

avoids not only incompatible interactions but also provides
a protocol-enhanced version of the composed system. More
precisely, this enhanced coordinator is the composition of a
set of new coordinators and components assembled with the
initial coordinator in order to enhance its protocol. Each
new component represents a wrapper component. A wrap-
per intercepts the interactions corresponding to the initial
coordinator’s protocol in order to apply the specified en-
hancements without modifying 1 the initial coordinator and
the components in the system. The new coordinators are
needed to assemble the wrappers with the initial coordina-
tor and the rest of the components forming the composed
system. It is worthwhile noticing that, in this way, we are
readily compose-able; we can treat the enhanced coordina-
tor as a new composite initial coordinator and enforce new
desired behaviors as well as apply new enhancements. This
allows us to perform a protocol transformation as composi-
tion of other protocol transformations by improving on the
reusability of the synthesized glue code.

When we apply the specified protocol enhancements to
produce the enhanced coordinator, we might re-introduce
incompatible interactions avoided by the initial coordinator.
That is, the enhancements do not hold the desired behav-
iors specified to produce the initial coordinator. In this pa-
per, we also show how to check if the protocol enhancement
holds the desired behaviors enforced through the initial co-
ordinator. This is done, in a compositional way, by using an
assume-guarantee technique [5].

The paper is organized as follows: Section 2 discusses re-
lated work. Section 3 introduces background notions helpful
to understand our approach. Section 4 illustrates the tech-
nique concerning the enhanced coordinator synthesis. Sec-
tion 5 formalizes the coordinator synthesis approach for pro-
tocol enhancement in component-based systems, and uses a
simple explanatory example to illustrate the ideas. Section 6
formalizes the technique used to check the consistency of the
applied enhancements with respect to the enforced desired
behaviors. Section 7 discusses future work and concludes.

2. RELATED WORK
The approach presented in this paper is related to a num-

ber of other approaches that have been considered in the
literature. The most closely related work is the scheduler
synthesis for discrete event physical systems using super-
visory control [3]. In those approaches system’s allowable
executions are specified as a set of traces. The role of the su-
pervisory controller is to interact with the running system in
order to cause it to conform to the system specification. This
is achieved by restricting behavior so that it is contained
within the desired behavior. To do this, the system under
control is constrained to perform events only in strict syn-
chronization with a synthesized supervisor. The synthesis of
a supervisor that restrict behaviors resembles one aspect of
our approach defined in Section 4, since we also eliminate
certain incompatible behaviors through synchronized coor-
dination. However, our approach goes well beyond simple
behavioral restriction, also allowing augmented interactions
through protocol enhancements.

Recently a reasoning framework that supports modular
checking of behavioral properties has been proposed for the

1This is needed to achieve compose-ability in both specifying
the enhancements and implementing them.

compositional analysis of component-based design [4, 10].
In [4], they use an automata-based approach to capture both
input assumptions about the order in which the methods of
a component are called, and output guarantees about the
order in which the component calls external methods. The
formalism supports automatic compatibility checks between
interface models, where two components are considered to
have compatible interfaces if there exists a legal environment
that lets them correctly interact. Each legal environment is
an adaptor for the two components. However, they provide
only a consistency check among component interfaces, but
differently from our work do not treat automatic synthe-
sis of adaptors of component interfaces. In [10], they use a
game theoretic approach for checking whether incompatible
component interfaces can be made compatible by inserting
a converter between them which satisfies specified require-
ments. This approach is able to automatically synthesize
the converter. The idea they develop is the same idea we
developed in our precedent works [6, 9, 11]. That is the
restriction of the system’s behavior to a subset of safe be-
haviors. Unlike the work presented in this paper, they are
only able to restrict the system’s behavior to a subset of
desired behaviors and they are not able to augment the sys-
tem’s behavior to introduce more sophisticated interactions
among components.

Our research is also related to work in the area of proto-
col adaptor synthesis [18]. The main idea of this approach is
to modify the interaction mechanisms that are used to glue
components together so that compatibility is achieved. This
is done by integrating the interaction protocol into compo-
nents. However, they are limited to only consider syntactic
incompatibilities between the interfaces of components and
they do not allow the kind of protocol transformations that
our synthesis approach supports.

In other previous work, of one of the authors, we showed
how to use formalized protocol transformations to augment
connector behavior [13]. The key result was the formal-
ization of a useful set of connector protocol enhancements.
Each enhancement is obtained by composing wrappers. This
approach characterizes wrappers as modular protocol trans-
formations. The basic idea is to use wrappers to enhance
the current connector communication protocol by introduc-
ing more sophisticated interactions among components. In-
formally, a wrapper is new code that is interposed between
component interfaces and communication mechanisms. The
goal is to alter the behavior of a component with respect to
the other components in the system, without actually mod-
ifying the component or the infrastructure itself. While this
approach deals with the problem of enhancing component
interactions, unlike this work it does not provide automatic
support for composing wrappers, or for automatically elim-
inating incompatible interaction behaviors.

In other previous work, by two of the authors, we showed
how to apply protocol enhancements by dealing with com-
ponents that might have syntactic incompatibility of inter-
faces [16]. However the approach described in [16] is limited
only to consider deadlock-free coordinator.

3. BACKGROUND
In this section we discuss the background needed to un-

derstand the approach that we formalize in Section 4.

3.1 The reference architectural style

80

The starting point for our work is the use of a formal archi-
tectural model of the system representing the components
to be integrated and the connectors over which the compo-
nents will communicate [12]. To simplify matters we will
consider the special case of a generic layered architecture in
which components can request services of components be-
low them, and notify components above them. Specifically,
we assume each component has a top and bottom interface.
The top (bottom) interface of a component is a set of top
(bottom) ports. Connectors between components are syn-
chronous communication channels defining top and bottom
ports.

Components communicate by passing two types of mes-
sages: notifications and requests. A notification is sent
downward, while a request is sent upward. We will also
distinguish between two kinds of components (i) functional
components and (ii) coordinators. Functional components
implement the system’s functionality, and are the primary
computational constituents of a system (typically imple-
mented as COTS components). Coordinators, on the other
hand, simply route messages and each input they receive is
strictly followed by a corresponding output. We make this
distinction in order to clearly separate components that are
responsible for the functional behavior of a system and com-
ponents that are introduced to aid the integration/communi-
cation behavior.

Within this architectural style, we will refer to a system as
a Coordinator-Free Architecture (CFA) if it is defined with-
out any coordinators. Conversely, a system in which coor-
dinators appear is termed a Coordinator-Based Architecture
(CBA) and is defined as a set of functional components di-
rectly connected to one or more coordinators, through con-
nectors, in a synchronous way.

C
2

C
3

C
1

0 K

2

3

1

C
3

C
1

C
2

Figure 1: A sample of a CFA and the corresponding
CBA

Figure 1 illustrates a CFA (left-hand side) and its corre-
sponding CBA (right-hand side). C1, C2 and C3 are func-
tional components; K is a coordinator. The communication
channels identified by 0, 1, 2 and 3 are connectors.

3.2 Configuration formalization
To formalize the behavior of a system we use High level

Message Sequence Charts (HMSCs) and basic Message Se-
quence Charts (bMSCs) [1] specification of the composed
system. From it, we can derive the corresponding CCS
(Calculus of Communicating Systems) processes [8] (and
hence Labeled Transitions Systems (LTSs)) by applying a
suitable adaptation of the translation algorithm presented
in [17]. HMSC and bMSC specifications are useful as input
language, since they are commonly used in software devel-
opment practice. Thus, CCS can be regarded as an inter-
nal specification language. Later we will see an example of
derivation of LTSs from a bMSCs and HMSCs specification
(Section 5.1).

To define the behavior of a composition of components, we
simply place in parallel the LTS descriptions of those com-

ponents, hiding the actions to force synchronization. This
gives a CFA for a set of components.

We can also produce a corresponding CBA for these com-
ponents with equivalent behavior by automatically deriving
and interposing a ”no-op” coordinator between communi-
cating components. That coordinator does nothing (at this
point), it simply passes events between communicating com-
ponents (as we will see later the coordinator will play a key
role in restricting and augmenting the system’s interaction
behavior). The ”no-op” coordinator is automatically de-
rived by performing the algorithm described in [6, 9, 11].

Formally, using CCS we define the CFA and the CBA for
a set of components C1, .., Cn as follows:

Definition 1. Coordinator Free Architecture (CFA)
CFA ≡ (C1 | C2 | ... | Cn)\Sn

i=1 ActCi where for all
i = 1, .., n, ActCi is the action set of the CCS process Ci.

Definition 2. Coordinator Based Architecture (CBA)
CBA ≡ (C1[f

0
1] | C2[f

0
2] | ... | Cn[f0

n] | K)\Sn
i=1 ActCi [f

0
i]

where for all i = 1, .., n, ActCi is the action set of the
CCS process Ci, and f0

i are relabelling functions such that
f0

i (α) = α[i/0] for all α ∈ ActCi ; K is the CSS process cor-
responding to the automatically synthesized coordinator.

By referring to [8], | is the parallel composition operator
and \ is the restriction operator. There is a finite set of
visible actions Act = {ai, aj , bh, bk, ...} over which α ranges.
We denote by α the action complement: if α = aj , then
α = aj , while if α = aj , then α = aj . By α[i/j] we denote
a substitution of i for j in α. If α = aj , then α[i/j] = ai.
Each ActCi ⊆ Act. By referring to Figure 1, 0 identifies the
only connector (i.e: communication channel) present in the
CFA version of the composed system. Each relabelling func-
tion f0

i is needed to ensure that the components C1, ..Cn no
longer synchronize directly. In fact by applying these re-
labelling functions (i.e.: f0

i for all i) each component Ci

synchronizes only with the coordinator K through the con-
nector i (see right-hand side of Figure 1).

3.3 Automatic synthesis of failure-free
coordinators

In this section, we simply recall that from the MSCs spec-
ification of the CFA and from a specification of desired be-
haviors, the old version of SYNTHESIS automatically de-
rives the corresponding deadlock-free CBA which satisfies
each desired behavior. This is done by synthesizing a suit-
able coordinator that we call failure-free coordinator. In-
formally, first we synthesize a ”no-op” coordinator. Second,
we restrict its behavior by avoiding possible deadlocks and
enforcing the desired behaviors. Each desired behavior is
specified as a Linear-time Temporal Logic (LTL) formula
(and hence as the corresponding Büchi Automaton) [5]. Re-
fer to [6, 9, 11] for a formal description of the old approach
and for a brief overview on the old version of our SYNTHE-
SIS tool.

4. METHOD DESCRIPTION
In this section, we informally describe the extension of

the old coordinator synthesis approach [6, 9, 11] that we
formalize in Section 5 and we implemented in the new ver-
sion of the SYNTHESIS tool. The extension starts with

81

C1 C2

C5 C6

1
2

5 6

C3

3

C4

4

C7

7

K

K’’

K’

w

w
top

wbottom

2,3

K2,3

C1 C2

C5 C6

1 2

5 6

C3

3

C4

4

C7

7

K’’

W

K’

K

K|K’|K’’|W

C1 C2

C5 C6

1 2

5 6

C3

3

C4

4

C7

7

K
STEP 1

STEP 2

S

S’

automatically synthesized assembly code

Figure 2: 2 step method

a deadlock-free CBA which satisfies specified desired be-
haviors and produces the corresponding protocol-enhanced
CBA.

The problem we want to face can be informally phrased as
follows: let P be a set of desired behaviors, given a deadlock-
free and P -satisfying CBA system S for a set of black-box
components interacting through a coordinator K, and a set
of coordinator protocol enhancements E, if it is possible, au-
tomatically derive the corresponding enhanced, deadlock-free
and P -satisfying CBA system S′.

We are assuming a specification of: i) S in terms of a
description of components and a coordinator as LTSs, ii) P
in terms of a set of Büchi Automata, and of iii) E in form
of bMSCs and HMSCs specification. In the following, we
discuss our method proceeding in two steps as illustrated in
Figure 2.

In the first step, by starting from the specification of P
and S, if it is possible, we apply each protocol enhancement
in E. This is done by inserting a wrapper component W
between K (see Figure 2) and the portion of S concerned
with the specified protocol enhancements (i.e.: the set of
C2 and C3 components of Figure 2). It is worthwhile notic-
ing that we do not need to consider the entire model of K
but we just consider the ”sub-coordinator” which represents
the portion of K that communicates with C2 and C3 (i.e.:
the ”sub-coordinator” K2,3 of Figure 2). K2,3 represents the
”unchangeable”2 environment that K ”offers” to W . The
wrapper W is a component whose interaction behavior is
specified in each enhancement of E. Depending on the logic
it implements, we can either built it by scratch or acquire it
as a pre-existent COTS component (e.g. a data translation
component). W intercepts the messages exchanged between
K2,3, C2 and C3 and applies the enhancements in E on
the interactions performed on the communication channels
2 and 3 (i.e.: connectors 2 and 3 of Figure 2). We first de-
couple K (i.e.: K2,3), C2 and C3 to ensure that they no
longer synchronize directly. Then we automatically derive a
behavioral model of W (i.e.: a LTS) from the bMSCs and
HMSCs specification of E. We do this by exploiting our im-
plementation of the translation algorithm described in [17].
Finally, if the insertion of W in S allows the resulting com-
posed system (i.e.: S′ after the execution of the second step)

2Since we want to be readily compose-able, our goal is to
apply the enhancements without modifying the coordinator
and the components.

Figure 3: LTSs specification of S and Büchi Au-
tomata specification of P

to still satisfy each desired behavior in P , W is interposed
between K2,3, C2 and C3. To insert W , we automatically
synthesize two new coordinators K′ and K′′. In general, K′

always refers to the coordinator between W and the compo-
nents affected by the enhancement. K′′ always refers to the
coordinator between K and W . By referring to Section 3.1,
to do this, we automatically derive two behavioral models of
W : i) W TOP which is the behavior of W only related to
its top interface and ii) W BOTTOM which is the behavior
of W only related to its bottom interface.

In the second step, we derive the implementation of the
synthesized glue code used to insert W in S. This glue code
is the actual code implementing K′′ and K′. By referring to
Figure 2, the parallel composition Knew of K, K′, K′′ and
W represents the enhanced coordinator.

By iterating the whole approach, Knew may be treated
as K with respect to the enforcing of new desired behaviors
and the application of new enhancements. This allows us
to achieve compose-ability of different coordinator protocol
enhancements (i.e.: modular protocol’s transformations). In
other words, our approach is compositional in the automatic
synthesis of the enhanced glue code.

5. METHOD FORMALIZATION
In this section, by using an explanatory example, we for-

malize the two steps of our method. For the sake of brevity
we limit ourselves to formalize the core of the extended ap-
proach. Refer to [2] for the formalization of the whole ap-
proach.

In Figure 3, we consider screen-shots of the SYNTHESIS
tool related to both the specification of S and of P . Client1,
Client2 and Server are the components in S.
Property-satisfying Coordinator is the coordinator in S which
satisfies the desired behavior denoted with AlternatingPro-
tocol. In this example, AlternatingProtocol is the only ele-
ment in the specification P . The CBA configuration of S is
shown in the right-hand side of Figure 1 where C1, C2, C3

and K are Client1, Client2, Server and Property-satisfying
Coordinator of Figure 3 respectively.

Each LTS describes the behavior of a component or of a
coordinator instance in terms of the messages (seen as I/O

82

actions) exchanged with its environment3. Each node is a
state of the instance. The node with the incoming arrow
(e.g.: the state S4 of Client1 in Figure 3) is the start-
ing state. An arc from a node n1 to a node n2 denotes
a transition from n1 to n2. The transition labels prefixed
by ”!” denote output actions (i.e.: sent requests and notifi-
cations), while the transition labels prefixed by ”?” denote
input actions (i.e.: received requests and notifications). In
each transition label, the symbol ” ” followed by a number
denotes the identifier of the connector on which the action
has been performed. The filled nodes on the coordinator’s
LTS denote states in which one execution of the behavior
specified by the Büchi Automaton AlternatingProtocol has
been accomplished.

Each Büchi Automaton (see AlternatingProtocol in Fig-
ure 3) describes a desired behavior for S. Each node is a
state of S. The node with the incoming arrow is the initial
state. The filled nodes are the states accepting the desired
behavior. The syntax and semantics of the transition labels
is the same of the LTSs of components and coordinator ex-
cept two kinds of action: i) a universal action (e.g.: ?true
in Figure 3) which represents any possible action4, and ii) a
negative action (e.g.: !−req 2 in Figure 3) which represents
any possible action different from the negative action itself5.

Client1 performs a request (i.e.: action !req 1) and waits
for a erroneous or successful notification: actions ?err 1 and
?ok 1 respectively. Client2 simply performs the request and
it never handles erroneous notifications. Server receives a
request and then it may answer either with a successful or
an erroneous notification 6.

AlternatingProtocol specifies the behavior of S that guar-
antees the evolution of all components. It specifies that
Client1 and Client2 must perform requests by using an al-
ternating coordination protocol. More precisely, if Client1
performs an action req (the transition !req 1 from the state
S47 to the state S50 in Figure 3) then it cannot perform
req again (the loop transition ! − req 1 on the state S50 in
Figure 3) if Client2 has not performed req (the transition
!req 2 from the state S50 to the accepting state S125 in
Figure 3) and viceversa.

In Figure 4.(a), we consider the specification of E as given
in input to the SYNTHESIS tool. In this example, the
RETRY enhancement is the only element in E.

Client1 is an interactive client and once an erroneous no-
tification occurs, it shows a dialog window displaying in-
formation about the error. The user might not appreciate
this error message and he might lose the degree of trust in
the system. By recalling that the dependability of a sys-
tem reflects the users degree of trust in the system, this ex-
ample shows a commonly practiced dependability-enhancing
technique. The wrapper WR attempts to hide the error to
the user by re-sending the request a finite number of times.
This is the RETRY enhancement specified in Figure 4.(a).

3The environment of a component/coordinator is the paral-
lel composition of all others components in the system.
4The prefixed symbols ”!” or ”?”, in the label of a universal
action, are ignored by SYNTHESIS.
5The prefixed symbols ”!” or ”?”, in the label of a negative
action, are still interpreted by SYNTHESIS.
6The error could be either due to an upper-bound on the
number of request that Server can accept simultaneously
or due to a general transient-fault on the communication
channel.

(a)

Server

1

Client1 Client2Client3

WR

KI

KII

K
1
[f1

417
]

(b)

3

392

401

432

417

2

K

K
new

Figure 4: bMSCs and hMSC specification of E:
RETRY enhancement

The wrapper WR re-sends at most two times. Moreover,
the RETRY enhancement specifies an update of S obtained
by inserting Client3 which is a new client. In specifying
enhancements, we use ”augmented”-bMSCs. By referring
to [1], each usual bMSC represents a possible execution sce-
nario of the system. Each execution scenario is described
in terms of a set of interacting components, sequences of
method call and possible corresponding return values. To
each vertical lines is associated an instance of a component.
Each horizontal arrow represents a method call or a return
value. Each usual HMSC describes possible continuations
from a scenario to another one. It is a graph with two spe-
cial nodes: the starting and the ending node. Each other
node is related to a specified scenario. An arrow represents
a transition from a scenario to another one. In other words,
each HMSC composes the possible execution scenarios of the
system. The only difference between ”augmented”-bMSCs
and usual bMSCs is that to each vertical line can be associ-
ated a set of component instances (e.g.: {Client1, Client3}
in Figure 4.(a)) rather than only one instance. This is help-
ful when we need to group components having the same
interaction behavior.

5.1 First step: wrapper insertion procedure
By referring to Section 4, each enhancement MSCs spec-

ification (see Figure 4.(a)) is in general described in terms
of the sub-coordinator K1 (i.e.: K 1 in Figure 4.(a)), the
wrapper (WR), the components in S (Client1) and the new
components (Client3). The LTS of the sub-coordinator is
automatically derived from the LTS of the coordinator in S
(K) by performing the following algorithm:

Definition 3. Lj,..,j+h construction algorithm
Let L be the LTS for a component (or a coordinator) C,

83

we derive the LTS Lj,..,j+h, h ≥ 0, of the behavior of C on
channels j,..,j+h as follows:

1. set Lj,..,j+h equal to L;

2. for each loop (ν, ν) of Lj,..,j+h labeled with an action
α = ak where k 6= j, .., j + h do:

remove (ν, ν) from the set of arcs of Lj,..,j+h;

3. for each arc (ν, µ) of Lj,..,j+h labeled with an action
α = ak where k 6= j, .., j + h do:

• remove (ν, µ) from the set of arcs of Lj,..,j+h;

• if µ is the starting state then
set ν as the starting state;

• for each other arc (ν, µ) of Lj,..,j+h do:
replace (ν, µ) with (ν, ν);

• for each arc (µ, ν) of Lj,..,j+h do:
replace (µ, ν) with (ν, ν);

• for each arc (µ, υ) of Lj,..,j+h with υ 6= µ, ν do:
replace (µ, υ) with (ν, υ);

• for each arc (υ, µ) of Lj,..,j+h with υ 6= µ, ν do:
replace (υ, µ) with (υ, ν);

• for each loop (µ, µ) of Lj,..,j+h do:
replace (µ, µ) with (ν, ν);

• remove µ from the set of nodes of Lj,..,j+h;

4. until Lj,..,j+h is a non-deterministic LTS (i.e.: it con-
tains arcs labeled with the same action and outgoing
the same node) do:

• for each pair of loops (ν, ν) and (ν, ν) of Lj,..,j+h

labeled with the same action do:
remove (ν, ν) from the set of arcs of Lj,..,j+h;

• for each pair of arcs (ν, µ) and (ν, µ) of Lj,..,j+h

labeled with the same action do:
remove (ν, µ) from the set of arcs of Lj,..,j+h;

• for each pair of arcs ((ν, µ) and (ν, υ)) or ((ν, ν)
and (ν, υ)) of Lj,..,j+h labeled with the same ac-
tion do:

– remove (ν, υ) from the set of arcs of Lj,..,j+h;

– if υ is the starting state then
set ν as the starting state;

– for each ingoing arc in in υ, outgoing arc out
from υ and loop l on υ do:

move the extremity on υ of in, out and l
on ν;

– remove υ from the set of nodes of Lj,..,j+h.

Informally, the algorithm of Definition 3 ”collapses” (steps
1,2 and 3) linear and/or cyclic paths made only of actions
on channels k 6= j, .., j +h. Moreover, it also avoids (step 4)
possible ”redundant” non-deterministic behaviors7.

By referring to Figure 5, the LTS of K1 is the LTS Re-
stricted Coord.

In general, once we derived Kj,..,j+h, we decouple K from
the components Cj , .., Cj+h (i.e.: Client1) connected through
the connectors j, .., j + h which are related to the specified
enhancement (i.e.: the connector 1). To do this, we use the
decoupling function defined as follows:

7These behaviors might be a side effect due to the collapsing.

Figure 5: LTSs of wrapper, sub-coordinator and K′′

Definition 4. Decoupling function
Let ActK be the set of action labels of the coordinator K, let
be ID = {j, . . . , j +h} a subset of all connectors identifiers8

of K and let be δ 6= j, .., j +h a new connector identifier, we
define the ”decoupling” function f j,..,j+h

δ as follows:

• ∀ ai ∈ ActK , if i ∈ ID then: f j,..,j+h
δ (ai) = aδ;

The unique connector identifier δ is automatically generated
by SYNTHESIS. In this way we ensure that K and Client1
no longer synchronize directly. In [15], we detail the cor-
respondence between the decoupling function and compo-
nents/coordinator deployment.
Now, by continuing the method described in Section 4, we
derive the LTSs for the wrapper (see WR in Figure 5) and
the new components (the LTS of Client3 is equal to the
LTS of Client1 in Figure 3 except for the connector identi-
fier). We recall that SYNTHESIS does that by taking into
account the enhancements specification and by performing
its implementation of the translation algorithm described
in [17]. It is worthwhile noticing that SYNTHESIS auto-
matically generates the connector identifiers for the actions
performed by WR and Client3. By referring to Section 3.1,
WR is connected to its environment through two connec-
tors: i) one on its top interface (i.e.: the connector 432 in
Figure 4.(b)) and ii) one on its bottom interface (i.e.: the
connector 401 in Figure 4.(b)). Finally, as we will see in de-
tail in Section 6, if the insertion of WR allows the resulting
composed system to still satisfy AlternatingProtocol, WR is
interposed between K1[f

1
417], Client1 and Client3. We re-

call that K1[f
1
417] is K1 (see Restricted Coord in Figure 5)

renamed after the decoupling. To insert WR, SYNTHESIS
automatically synthesizes two new coordinators K′ and K′′.
Coordinator in Figure 5 is the LTS for K′′. For the purposes
of this paper, in Figure 5, we omit the LTS for K′. K′′ is
derived by taking into account both the LTSs of K1[f

1
417]

and WR TOP (see Figure 5) and by performing the old
synthesis approach [6, 9, 11]. While K′ is derived analo-
gously to the LTSs of Client1, Client3 and WR BOTTOM
(see Figure 5). The LTSs of WR TOP and WR BOTTOM

8By referring to Section 5, the connectors identifiers are
postfixed to the labels in ActK .

84

are WR432 and WR401 respectively. By referring to Defi-
nition 3, WR432 and WR401 model the behavior of WR on
channels 432 and 401 respectively. The resulting enhanced,
deadlock-free and Alternating Protocol -satisfying system is
S′ ≡ ((Client1 | Client2 | Client3 | Server | Knew) \
(ActClient1∪ActClient2∪ActServer∪ActClient3)) where Knew

≡ ((K[f1
417] | WR | K′ | K′′) \ (ActWR∪ ActK1[f1

417])) (see

Figure 4.(b)). In [2], we proved the correctness and com-
pleteness of the approach.

5.2 Second step: synthesis of the glue code
implementation

The parallel composition Knew represents the model of
the enhanced coordinator. By referring to Section 4, we re-
call that K is the initial glue code for S and WR is a COTS
component whose interaction behavior is specified by the
enhancements specification E. That is, the actual code for
WR and K is already available. Thus, in order to derive
the code implementing Knew, SYNTHESIS automatically
derives the actual code implementing K′ and K′′. Using
the same technique described in [6, 9, 11, 15], this is done
by exploiting the information stored in the nodes and arcs
of the LTSs for K′ and K′′. More precisely, the code im-
plementing K′ and K′′ reflects the structure of their LTSs
which describe state machines. For the sake of brevity, here,
we omit a detailed description of the code synthesis. Refer
to [6, 9, 11, 15] for it. In [9, 15], we validated and applied
SYNTHESIS for assembling Microsoft COM/DCOM com-
ponents. The reference development platform of the current
version of SYNTHESIS is Microsoft Visual Studio 7.0 with
Active Template Library.

6. CHECKING ENHANCEMENT
CONSISTENCY

In this section we formalize a compositional technique to
check if the applied enhancements are consistent with re-
spect to the previously enforced desired behaviors. In other
words, given the Büchi Automata specification of a desired
behavior Pi, given the deadlock-free and Pi-satisfying coor-
dinator K and given the MSCs specification of an enhance-
ment Ei, we check (in a compositional way) if the enhanced
coordinator Knew still satisfies Pi (Knew |= Pi).

In general, we have to check ((K[f j,..,j+h
δ] | WR | K′ |

K′′) \ (ActWR∪ Act
Kj,..,j+h[f

j,..,j+h
δ

]
)) |= Pi. By exploit-

ing the constraints of our architectural style, it is enough
to check ((K[f j,..,j+m

δ] | K′′
δ) \ Act

Kj,..,j+m[f
j,..,j+m
δ

]
) |= Pi

where {j, .., j +m} is the set of channel identifiers which are
both channels in {j, .., j + h} and in the set of channel iden-
tifiers for the action labels in Pi. In order to avoid the state
explosion phenomenon we should decompose the verifica-
tion without composing in parallel the processes K[f j,..,j+m

δ]
and K′′

δ . We do that by exploiting the assume-guarantee
paradigm for compositional reasoning [5].

By recasting the typical proof strategy of the assume-
guarantee paradigm in our context, we know that if
〈A〉K[f j,..,j+m

δ]〈Pi〉 and 〈true〉K′′
δ 〈A〉 hold then we can con-

clude that
〈true〉 ((K[f j,..,j+m

δ] | K′′
δ) \ Act

Kj,..,j+m[f
j,..,j+m
δ

]
) 〈Pi〉 is

true. This proof strategy can also be expressed as the fol-
lowing inference rule:

〈true〉K′′
δ 〈A〉

〈A〉K[fj,..,j+m
δ]〈Pi〉

〈true〉((K[fj,..,j+m
δ]|K′′

δ)\Act
Kj,..,j+m[f

j,..,j+m
δ

]
)〈Pi〉

where A is a LTL formula (and hence it is modeled as a
Büchi Automaton). We recall that, in S, K already satisfies
Pi. Once we applied Ei to obtain the enhanced system S′, A
represents the assumptions (in S′) on the environment of K
that must be held on the channel δ in order to make K able
to still satisfy Pi. Without loss of generality, let {j, .., j+m}
be ChannelsPi ∩ {j, .., j+h} where ChannelsPi is the set of
channel identifiers for the action labels in Pi; then A is the
Büchi Automaton corresponding to Kj,..,j+m[f j,..,j+m

δ][fenv]
where fenv(?α) = !α and fenv(!α) = ?α. For the example
illustrated in Section 5, K′′

δ and A are the Büchi Automata
corresponding to K′′

417 (i.e.: K2 showed in Figure 6) and
to K1[f

1
417][fenv] (Assumption showed in Figure 6) respec-

tively.

Figure 6: Büchi Automata of K′′
417, K1[f

1
417][fenv] and

K1[f1
417][fenv]

In general, a formula 〈true〉M〈P 〉 means M |= P . While
a formula 〈A〉M〈P 〉 means if A holds then M |= P . In
our context, P is modeled as the corresponding Büchi Au-
tomaton BP . M is modeled as the corresponding LTS. By
referring to [5], to a LTS M always corresponds a Büchi Au-
tomaton BM . With L(B) we denote the language accepted
by B. Exploiting the usual automata-based model checking
approach [5], to check if M |= P we first automatically build

the product language LM∩P ≡ L(BM) ∩ L(BP) and then
we check if LM∩P is empty.

Theorem 1. Enhancement consistency check
Let Pi be the Büchi Automata specification of a desired
behavior for a system S formed by C1, .., Cn components;
let K be the deadlock-free and Pi-satisfying coordinator for
the components in S; let Ei be the MSCs specification of
a K-protocol enhancement; let K′′ be the adaptor between
K and the wrapper implementing the enhancement Ei; let
δ the identifier of the channel connecting K′′ with K; let
{j, .., j + m} the set of channel identifiers which are both
channels in the set of channel identifiers for the action labels
in Pi and in the set of channels identifiers affected by the
enhancement Ei; and let fenv be a relabeling function in
such a way that fenv(?α) = !α and fenv(!α) = ?α for all
α ∈ ActK , if L

K′′
δ
∩Kj,..,j+m[f

j,..,j+m
δ

][fenv]
= ∅ then

((K[f j,..,j+m
δ] | K′′

δ) \ Act
Kj,..,j+m[f

j,..,j+m
δ

]
) |= Pi and hence

Ei is consistent with respect to Pi.

85

Proof. Let A be the Büchi Automaton corresponding to
Kj,..,j+m[f j,..,j+m

δ][fenv], if L
K′′

δ
∩Kj,..,j+m[f

j,..,j+m
δ

][fenv]
= ∅

then K′′
δ |= A. That is, 〈true〉K′′

δ 〈A〉 holds. Moreover, by
construction of A, 〈A〉K[f j,..,j+m

δ]〈Pi〉 holds too. By ap-
plying the inference rule of the assume-guarantee paradigm,
〈true〉((K[f j,..,j+m

δ] | K′′
δ)\Act

Kj,..,j+m[f
j,..,j+m
δ

]
)〈Pi〉 is true

and hence ((K[f j,..,j+m
δ] | K′′

δ) \ Act
Kj,..,j+m[f

j,..,j+m
δ

]
) |=

Pi.

By referring to Theorem 1, to check if Ei is consistent with
respect to Pi, it is enough to check if 〈true〉K′′

δ 〈A〉 holds.
In other words, it is enough to check if K′′ provides K with
the environment it expects (to still satisfy Pi) on the chan-
nel connecting K′′ to K (i.e.: the connector identified by
δ). In the example illustrated in Section 5, RETRY is con-
sistent with respect to AlternatingProtocol. In fact, by re-
ferring to Figure 6, NOT (A) is the Büchi Automaton for

K1[f1
417][fenv] (i.e.: for A of Theorem 1) and K2 is the

Büchi Automaton for K′′
417 (i.e.: for K′′

δ of Theorem 1). By
automatically building the product language between the
languages accepted by K2 and NOT (A), SYNTHESIS con-
cludes that LK′′417∩K1[f1

417][fenv] = ∅ and hence that

((K[f1
417] |K′′

417) \ ActK1[f1
417]) |= AlternatingProtocol. That

is RETRY is consistent with respect to AlternatingProtocol.

7. CONCLUSION AND FUTURE WORK
In this paper, we combined the approaches of protocol

transformation formalization [13] and of automatic coordi-
nator synthesis [6, 9, 11] to produce a new technique for
automatically synthesizing failure-free coordinators for pro-
tocol enhanced in component-based systems. The two ap-
proaches take advantage of each other: while the approach of
protocol transformations formalization adds compose-ability
to the automatic coordinator synthesis approach, the latter
adds automation to the former. This paper is a revisited
and extended version of [7]. With respect to [7], the novel
aspects of this work are that we have definitively fixed and
extended the formalization of the approach, we have imple-
mented it in our ”SYNTHESIS” tool and we have formalized
and implemented the enhancement consistency check.

The key results are: (i) the extended approach is compo-
sitional in the automatic synthesis of the enhanced coordi-
nator; that is, each wrapper represents a modular protocol
transformation so that we can apply coordinator protocol
enhancements in an incremental way by re-using the code
synthesized for already applied enhancements; (ii) we are
able to add extra functionality to a coordinator beyond sim-
ply restricting its behavior;(iii) this, in turn, allows us to en-
hance a coordinator with respect to a useful set of protocol
transformations such as the set of transformations referred
in [13]. The automation and applicability of both the old
(presented in [6, 9, 11]) and the extended (presented in this
paper and in [15]) approach for synthesizing coordinators is
supported by our tool called ”SYNTHESIS” [9, 15].

As future work, we plan to: (i) develop more user-friendly
specification of both the desired behaviors and the protocol
enhancements (e.g., UML2 Interaction Overview Diagrams
and Sequence Diagrams); (ii) validate the applicability of
the whole approach to large-scale examples different than
the case-study treated in [15] which represents the first at-
tempt to apply the extended version of ”SYNTHESIS” (for-
malized in this paper) in real-scale contexts.

8. REFERENCES
[1] Itu-t reccomendation z.120. message sequence charts.

(msc’96). Geneva 1996.

[2] M. Autili. Sintesi automatica di connettori per
protocolli di comunicazione evoluti. Tesi di laurea in
Informatica, Universitá dell’Aquila - April,2004 -
http://www.di.univaq.it/tivoli/AutiliThesis.pdf.

[3] S. Balemi, G. J. Hoffmann, P. Gyugyi, H. Wong-Toi,
and G. F. Franklin. Supervisory control of a rapid
thermal multiprocessor. IEEE Transactions on
Automatic Control, 38(7):1040–1059, July 1993.

[4] L. de Alfaro and T. Heinzinger. Interface automata. In
ACM Proc. of the joint 8th ESEC and 9th FSE, 2001.

[5] O. G. Edmund M. Clarke, Jr. and D. A. Peled. Model
Checking. The MIT Press, 2001.

[6] P. Inverardi and M. Tivoli. Software Architecture for
Correct Components Assembly - Chapter in: Formal
Methods for the Design of Computer, Communication
and Software Systems: Software Architecture.
Springer, LNCS 2804, Sept. 2003.

[7] M.Autili, P.Inverardi, and M.Tivoli. Automatic
adaptor synthesis for protocol transformation. In
WCAT04.

[8] R. Milner. Communication and Concurrency. Prentice
Hall, New York, 1989.

[9] M.Tivoli, P.Inverardi, V.Presutti, A.Forghieri, and
M.Sebastianis. Correct components assembly for a
product data management cooperative system. In
proceedings of the Int. Symposium CBSE7. May,2004.
Springer, LNCS 3054.

[10] R. Passerone, L. de Alfaro, T. Heinzinger, and A. L.
Sangiovanni-Vincentelli. Convertibility verification
and converter synthesis: Two faces of the same coin.
In Proc. of ICCAD, 2002.

[11] P.Inverardi and M.Tivoli. Failure-free connector
synthesis for correct components assembly. In
Proceedings of SAVCBS’03.

[12] M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall,
1996.

[13] B. Spitznagel and D. Garlan. A compositional
formalization of connector wrappers. In proceeding of
the 25th ICSE’03 - Portland, OG (USA), May 2003.

[14] C. Szyperski. Component Software. Beyond Object
Oriented Programming. Addison Wesley, 1998.

[15] M. Tivoli, M. Autili, and P. Inverardi. Synthesis: a
tool for synthesizing correct and protocol-enhanced
adaptors. submitted for publication - Aug,2004 -
http://www.di.univaq.it/tivoli/LastSynthesis.pdf.

[16] M. Tivoli and D. Garlan. Coordinator synthesis for
reliability enhancement in component-based systems.
Carnegie Mellon University, C.S.Dep. - Tech.Rep. -
http://www.di.univaq.it/tivoli/CMUtechrep.pdf.

[17] S. Uchitel, J. Kramer, and J. Magee. Detecting
implied scenarios in message sequence chart
specifications. In ACM Proceedings of the joint 8th
ESEC and 9th FSE, Vienna, Sep 2001.

[18] D. M. Yellin and R. E. Strom. Protocol specifications
and component adaptors. ACM Transactions on
Programming Languages and Systems, 19(2):292–333,
march 1997.

86

Monitoring Design Pattern Contracts

Jason O. Hallstrom
Computer Science
Clemson University

Clemson, SC 29634, USA

jasonoh@cs.clemson.edu

Neelam Soundarajan, Benjamin Tyler
Computer Science and Engineering

Ohio State University
Columbus, OH 43210, USA

{neelam, tyler}@cse.ohio-state.edu

ABSTRACT
Design patterns allow system designers to reuse well estab-
lished solutions to commonly occurring problems. These
solutions are usually described informally. While such de-
scriptions are certainly useful, to ensure that designers pre-
cisely and unambiguously understand the requirements that
must be met when applying a given pattern, we also need
formal characterizations of these requirements. Further, sys-
tem designers need tools for determining whether a system
implemented using a given pattern satisfies the appropriate
requirements. In [18], we described an approach to specify-
ing design patterns using formal contracts. In this paper, we
develop a monitoring approach for determining whether the
pattern contracts used in developing a system are respected
at runtime.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.4 [Software Engineering]: Verification—Runtime
Monitoring ; D.1.m [Programming Techniques]: Pat-
terns—AOP

General Terms
Design, Reliability, Verification

Keywords
Design patterns, Aspect-oriented programming, Runtime
monitoring of contracts

1. INTRODUCTION
Design patterns [2, 8, 10, 17] have, over the last decade,

fundamentally changed the way we think about the design
of large software systems. Using design patterns not only
helps designers exploit the community’s collective wisdom
and experience as captured in the patterns, it also enables
others studying the system in question to gain a deeper un-
derstanding of how the system is structured, and why it
behaves in particular ways. And as the system evolves over
time, the patterns used in its construction provide guidance
on managing the evolution so that the system remains faith-
ful to its original design, ensuring that the original parts and
the modified parts interact as expected. Although they are
not components in the standard sense of the word, patterns
may, as has been noted, be the real key to reuse since they
allow the reuse of design, rather than mere code. But to
fully realize these benefits, we must ensure that the designers

have a thorough understanding of the precise requirements
their system must meet in applying a given pattern, as well
as automated or semi-automated ways of checking whether
the requirements have been satisfied. To that end, the work
we present in [18] describes an approach to specifying de-
sign patterns precisely using formal contracts. Our goal in
this paper is to extend that work, and to develop a run-
time monitoring approach that allows system designers to
determine whether the patterns used in constructing a sys-
tem have been applied correctly. We use an aspect-oriented
programming [12, 11] approach to achieve this goal.

Consider the Observer pattern [8], illustrated in Fig. 1,
which will be our case-study. There are two roles [15] in
this pattern, Subject and Observer. The purpose of the pat-
tern is to allow a set of objects that have enrolled to play
the Observer role to be notified whenever the state of the
object playing the Subject role changes, so that each of the
observers1 can update its state to be consistent with the
new state of the subject. Also clear from Fig. 1 is the fact

Observer

+Update()

o.Update()

for all o in observers

ConcreteSubject
−subjectState

*

ConcreteObserver

−observerState

+Update()

*

observers

1

subject

1

+Attach(in Observer)

+Detach(in Observer)

Subject

+Notify()

Figure 1: Observer Pattern

that the Notify() method of Subject will invoke the Update()
method on each observer. What is not clear is when Notify()
will be called and by whom. The informal description [8]
states, “. . . subject notifies its observers whenever a change
occurs that could make its observers’ state inconsistent with

1We use names starting with uppercase letters, such as Sub-
ject, for roles; and lowercase names, such as subject, for the
individual objects that play these roles. We also use names
starting with uppercase letters for patterns. Occasionally,
the name of a pattern is also used for one of its roles, as
in the case of the Observer role of the Observer pattern. In
such cases, the context will make clear whether we are talk-
ing about the role or the pattern.

87

its own.” But it is not clear how the subject will know when
its state has become inconsistent with that of one or more
observers. Indeed, what does it mean to say that the sub-
ject state has become inconsistent with that of an observer?
In other words, what exactly are the requirements that the
designer must ensure are met in order to apply this pattern
as intended? The pattern contracts described in [18] pro-
vide precise answers to these questions. We will consider
the requirements specified by these contracts in Section 2.

Next consider the question of runtime monitoring. In
standard specification-based testing/monitoring [1, 3, 13],
we typically consider the behavior of the methods of a sin-
gle class. For this, we instrument the class in question to
see that the pre- and post-conditions of the class methods
are satisfied at appropriate points. But in the case of pat-
terns, we are dealing not with individual classes, but with
multiple classes. Indeed, the focus is usually on the inter-
actions and interrelations among the classes, rather than on
the behaviors of the classes in isolation.

A natural solution is to use aspects [12, 11], since aspects
allow us to deal with crosscutting concerns. We will define
an abstract aspect for Observer that implements the moni-
toring functionality common across all applications of the
pattern. Corresponding to any particular application in an
actual system, we will define a concrete subaspect that tailors
the monitoring functionality as appropriate to the applica-
tion in question. An abstract aspect captures the require-
ments embodied in a given pattern’s contract, and a concrete
subaspect captures the specializations embodied in a subcon-
tract of the pattern’s contract. In a sense, we can consider
the aspects used in the current paper as aspect-versions of
the contracts presented in [18]. (Although, [18] did not con-
sider the notion of a subcontract.) Indeed, hereafter, we
refer to the abstract aspect as a contract, and the concrete
subaspect as a subcontract. We will see how a contract-
subcontract pair can be used to monitor a system to see if
it applies a given pattern faithfully.

There is an inherent risk in formalizing patterns in that
their hallmark flexibility may be lost [16]. For the case of
Observer, if we adopt one definition for the notion of consis-
tency between the Subject and Observer states, the pattern
may not be usable in systems that have a different notion
of this concept; or we may have to come up with multi-
ple contracts, one for each possible notion of consistency.
Clearly, this would be undesirable. As we will see, our con-
tract for Observer, while precisely capturing the pattern re-
quirements, will also retain all of the flexibility contained in
the pattern.

Hannemann and Kiczales [9] show how patterns can be
implemented as aspects. They argue that the code for a
given pattern should be collected within an aspect, rather
than being distributed among different classes. By contrast,
the aspect we develop in Section 2 monitors a system to
check whether it satisfies the requirements that any designer
implementing the Observer pattern must meet. This raises
the question, does the Hannemann-Kiczales implementation
of the pattern meet our contract? It must, if our contract
is truly general. As we will show, we can indeed define a
subcontract for this implementation of Observer, in exactly
the same way as we do for a more ‘standard’ implementation
of the pattern in Section 3. This is remarkable because when
developing the contract for Observer, we only had in mind
standard class-based implementations of the pattern, and

we tried to ensure that our contract would be appropriate
for all such implementations. Here we had a very different
kind of implementation, and our contract turned out to be
appropriate for this implementation as well. Further, and
somewhat to our surprise, when we ran our contract and
subcontract against this aspect-based implementation of the
pattern, a contract violation was reported! It turns out, as
we will see, that there is a minor error in the implementation
in [9].

In Section 2, we develop the contract for Observer, present
a simple system built using the pattern, define the subaspect
corresponding to the pattern as used in this system, show
how the aspect and subaspect allow us to monitor the system
at runtime, and discuss the monitoring results. In Section 3,
we outline how a subaspect corresponding to the implemen-
tation of [9] can be defined, and discuss the monitoring re-
sults. In the next section, we discuss related work. In Sec-
tion 5, we summarize our approach, and provide pointers to
future work.

2. PATTERN CONTRACTS
Since we use AspectJ [11] to develop the pattern contracts

and subcontracts, we begin with a brief summary of some
of the essential parts of AspectJ. Three key concepts of the
language are join points, pointcuts, and advice. A join point
identifies a particular point in the execution of a program;
for example, a call to a particular method of a particular
class, or a call to a particular constructor of a particular
class. A pointcut is a way of grouping together a set of join
points that we want to treat in a particular fashion; for ex-
ample, calls to all methods of a given class. The pointcut
construct enables us to collect context: for example, the ob-
ject on which the method in question was applied, or the
additional arguments that were passed to the method. Fi-
nally, the advice associated with a given pointcut specifies
the code that needs to be executed at runtime when con-
trol reaches any of the join points that match the pointcut.
There are three distinct types of advice. Consider a method
call. The associated before advice, if any, will be executed
before the method is executed. The after advice, if any, will
be executed after the method is executed. We do not use
the third kind of advice, the around advice.

2.1 Observer Contract
The aspect that defines the Observer contract appears in

Figures 2, 3, and 4. The following notes explain the lines
with the corresponding numbers in the figures.

1. The interfaces Subject and Observer correspond to the
two roles of the pattern. Note that unlike in Fig. 1,
there are no methods such as Notify() in these inter-
faces. The pointcuts of AspectJ, as we will see, provide
a more general way of introducing these.

2. ObserverPatternContract, an abstract aspect, captures
the requirements to be checked for all applications of
Observer.

3. The information needed to monitor the system will
be maintained in three variables: xSubjectsObservers
maps2 each object that enrolls as a subject to the ob-
jects that are enrolled to be observers of that subject,

2This should be a WeakHashMap to allow garbage collection
to proceed normally.

88

protected interface Subject { } // see note (1)

protected interface Observer { }
public abstract aspect ObserverPatternContract { note (2)

//Aux. variables: (3)
private Map xSubjectsObservers = new HashMap();
private Set xUpdateCalls = new HashSet();
private Map xrecordedStates = new HashMap();

//Auxiliary functions: (4)
abstract protected String xSubjectState(Subject s);
abstract protected String xObserverState(Observer o);
abstract protected boolean

xModified(String s1, String s2);
abstract protected boolean

xConsistent(String s, String o);

//Pointcuts: (5)
abstract protected pointcut subjectEnrollment(Subject s);
abstract protected pointcut

attachObs(Subject s, Observer o);
abstract protected pointcut

detachObs(Subject s, Observer o);
abstract protected pointcut Notify(Subject s);
abstract protected pointcut Update(Subject s,Observer o);
abstract protected pointcut subjectMethods(Subject s);

Figure 2: Observer Contract (part 1 of 3)

and is initially empty. xUpdateCalls is used to keep
track of the observers that are updated when the cor-
responding subject state changes. xrecordedStates is
used to save, for each subject, the state that its ob-
servers have been most recently notified of.

4. We use auxiliary functions to represent pattern con-
cepts that vary among applications. As we noted ear-
lier, the pattern requires that observers become consis-
tent with the subject state when they are updated, but
the notion of consistency will vary from one system to
another. Similarly, the pattern requires the observers
to be notified when the subject state is modified, but
what modification of the subject state means will vary
from system to system. xModified() and xConsistent()
allow us to specify these requirements precisely, while
allowing for variation among different systems.

Given two subject states, xModified() tells us if the
second state should be considered ‘modified’ from the
first. Since this function is abstract, the pattern con-
tract will not define it; instead, the subcontract will
provide a definition tailored to the system in question.
Similarly, xConsistent(), given a subject state and an
observer state, tells us whether the latter is consistent
with the former. This, too, is abstract, since the no-
tion of consistency varies from system to system.

For simplicity, rather than working with the actual
states of the subjects and observers, we assume that
we have functions xSubjectState() and xObserverState()
that will encode the states into Strings. Naturally, such
encodings will depend on the system: hence these are
abstract, to be suitably defined in the subcontract.

5. Next we have the pointcuts that identify the points
at which the system should be interrupted at runtime,

either to save information needed by the contract, or
to check if the contract requirements are being met.

subjectEnrollment is the pointcut that represents the
points at which an object enrolls to play the Subject
role. The only argument here is the object enrolling.
attachObs and detachObs correspond to an object at-
taching or detaching, respectively. The arguments for
these two pointcuts are the subject and observer in-
volved.

Next we have Notify, which corresponds to the points
at which a given subject’s observers are notified follow-
ing a change in the state of the subject (as defined by
the xModified() function). The Update pointcut corre-
sponds to an individual observer being updated to be-
come consistent (as defined by xConsistent()) with the
modified (or rather, xModified()) subject state. The
final pointcut, subjectMethods, corresponds to all the
methods of the class playing the Subject role.

//Advice for Subject enrollment: (6)
after(Subject s): subjectEnrollment(s) {
Set obSet = new HashSet();
xSubjectsObservers.put(s,obSet);
xrecordedStates.put(s,xSubjectState(s)); }

//Advice for attaching Observer: (7)
before(Subject s, Observer o): attachObs(s,o) {
xUpdateCalls.clear(); }

after(Subject s, Observer o): attachObs(s,o) {
if (!xUpdateCalls.contains(o)) { System.out.println(
”Update not called on attaching Observer”); }
Set obSet = (Set)xSubjectsObservers.get(s);
obSet.add(o); xSubjectsObservers.put(s,obSet); }

//Advice for detaching Observer: (8)
before(Subject s, Observer o): detachObs(s,o) {
Set obSet = (Set)xSubjectsObservers.get(s);
obSet.remove(o); xSubjectsObservers.put(s,obSet); }

//No “after” advice for detachObs.

Figure 3: Observer Contract (part 2 of 3)

Let us now consider the advice corresponding to the var-
ious pointcuts3.

6. The advice for subjectEnrollment adds the enrolling ob-
ject to xSubjectsObservers with an empty set of ob-
servers, and saves its current state as its recorded state.
As there are no observers for this subject, we can vac-
uously say that they have all been informed of its cur-
rent state.

7. When a new observer attaches to a subject, we must
ensure that it is updated. As we noted in [18], this
point has been overlooked in many informal descrip-
tions of the pattern. If this is not done, the observer’s
state may be inconsistent with the subject state until
the point when the subject is next modified.

To check this, the before advice clears xUpdateCalls.
As we will see below, the advice for the Update point-
cut adds the observer being updated to xUpdateCalls.

3Java’s collection classes rely on Object.equals() to locate
items. We assume the default implementation of equals(),
which tests for equality based on the identity of the objects.

89

Hence, in the after advice of attachObs, we require xUp-
dateCalls to contain this observer. If it does not, that
indicates that the observer was not updated when it
enrolled, and we output a message to that effect4.

8. Detachment of an observer simply requires eliminating
it from the set of objects enrolled to observe the sub-
ject. It is possible that in the actual system, nothing is
done at this point, i.e., the designer might have decided
to continue updating the object whenever the subject’s
state is modified. This will not violate our contract;
and it is consistent with the intent of the pattern since
the pattern requires that all enrolled observers be up-
dated, not that others should not be5.

//Advice for Notify: (9)
before (Subject s) : Notify(s) {
xUpdateCalls.clear();
xrecordedStates.put(s,xSubjectState(s)); }

after (Subject s) : Notify(s) {
Set obSet = (Set)xSubjectsObservers.get(s);
if (!xUpdateCalls.containsAll(obSet)) {
System.out.println(”Some Observers not notified

of change in Subject!”); } }
//Advice for Update: (10)
before (Subject s, Observer o) : Update(s,o)
{ xUpdateCalls.add(o); }

after (Subject s, Observer o) : Update(s,o) {
if (!xConsistent(xrecordedStates.get(s),

xObserverState(o))) { System.out.println(
”Observer not properly updated!”); } }

//Advice for Subject’s methods: (11)
after(Subject s): subjectMethods(s) {
if (xModified(xrecordedStates.get(s),xSubjectState(s))){
System.out.println(”Observers not notified

of change in Subject!”); } }
}

Figure 4: Observer Contract (part 3 of 3)

9. The before advice for Notify updates xrecordedStates
for the subject since its observers are about to be noti-
fied of its state change. And xUpdateCalls is cleared so
in the after advice we can check that all of its observers
have been notified. If not, we print a suitable message.

10. The before advice of Update adds the observer to the
set of observers being updated. In the after advice,
we check that the state of the observer is consistent
with the subject state. This checks that the system
code that is supposed to update the observer is work-
ing correctly, at least as judged by the definition of
xConsistent(). If the condition is not satisfied, it may

4We should note that in our actual contract, we have ad-
ditional checks. For example, in the before advice for this
pointcut, we check that this object has not already enrolled
as an observer for this subject. We also check that s has
enrolled as a Subject. We omit some of these details.
5If we wish to disallow detached observers from being up-
dated, the contract can be suitably modified: in the after
advice of Notify, check that obSet.containsAll(xUpdateCalls)
evaluates to true; i.e., for any subject, the set of updated
observers must equal the set of attached observers.

be an error in the subcontract, rather in the moni-
tored system. We clearly need to identify such errors
and correct them, and such checks help with that task.

11. The final advice corresponds to the methods of the
class playing the role of Subject. For any such method,
there are three possibilities.

First, the method execution did not change the sub-
ject state (according to xModified()). Hence, the final
state should match the recorded state of the subject,
assuming that this condition was satisfied at the start
of the method. (If this were not the case, an earlier
error would already have been caught.)

Second, the method execution changed the subject
state and called the appropriate operations to no-
tify/update the observers. This would have triggered
the advice associated with the Notify pointcut, and
the advice associated with Update for each observer.
Those two advices would have checked that all ob-
servers were updated, and would also have saved, in
xrecordedStates, the state of the subject at that time.
So the final subject state would match that in xrecord-
edStates.

Third, the method changed the subject state, but did
not notify the observers. Or perhaps the method
changed the subject state, notified the observers, and
then again changed the subject state, and this time did
not notify the observers. In both cases, the if-condition
of the after advice would be true, and we would get the
appropriate error message.

It is worth stressing that by specifying the auxiliary func-
tions and pointcuts as abstract, we have ensured that all of
these can be defined, in the subcontract, as appropriate to
the particular system. But at the same time, the checks in
the various pieces of advice ensure that the essential intent
of the pattern is not violated. Thus, the contract precisely
specifies the pattern’s requirements without in any way com-
promising flexibility.

2.2 A Simple System Using Observer
Fig. 5 presents TCL, a simple system that uses Observer. In-
stances of the Time class play the Subject role. Instances
of Clock and LazyPerson play the Observer role; these two
classes implement the TimeObserver interface. The Time
class maintains a hash set of objects that enroll (via its at-
tach() method) to observe the time. When the time changes,
which only happens in the tickTock() method, the object
calls its notifyObs() operation, which invokes the update()
operation on each of its observers. In the main() method, we
create aTime (a Time object), aClock (a Clock object), and
bob (a LazyPerson object), attach the latter two to aTime,
invoke tickTock() a few times on aTime, and then check the
state of bob. TCL is a fairly standard, if simple, example of
a system built using the Observer pattern.

2.3 Observer Subcontract for TCL
The subaspect, appropriate to TCL, that defines the sub-

contract of our pattern contract appears in Fig. 66.

12. We use the declare parents mechanism of AspectJ to
state that Time implements the Subject interface of

6For readability, we use “∧”, rather than the standard
“&&”, to denote the ‘and’ operation.

90

interface TimeObserver { public void update(Time t); }
class Clock implements TimeObserver {

protected int hour = 12, minute = 0;
public void update(Time t) {
hour = t.getHour(); minute = t.getMinute(); }

public String ClockTime() {
return(”The time is: ” + hour + ”:” + minute); }

}
class LazyPerson implements TimeObserver {

protected boolean isSleepy = true;
public void update(Time t) { isSleepy = t.isAm(); }
public boolean readyToRiseNShine(){ return (!isSleepy); }

}
class Time {

protected HashSet observers = new HashSet();
protected int hour = 0, minute = 0, second = 0;
public void attach(TimeObserver o) {

observers.add(o); o.update(this); }
public void detach(TimeObserver o) { observers.remove(o);}
protected void notifyObs() {
for (Iterator e = observers.iterator() ; e.hasNext() ;) {

((TimeObserver)e.next()).update(this); } }
public int getHour() { // Return hour in 12-hour mode. }
public int getMinute() { . . . }
public int getSecond() { . . . }
public boolean isAm() { . . . }
public void tickTock() {
// Update hour, etc. appropriately. Code omitted.
// In our actual system, this function sets the Time to
// a random (legal) value.
notifyObs(); }

public static void main(String[] args) {
Time aTime = new Time(); Clock aClock = new Clock();
LazyPerson bob = new LazyPerson();
aTime.attach(bob); aTime.attach(aclock);
aTime.tickTock(); aTime.tickTock(); aTime.tickTock();
System.out.println(aClock.ClockTime());
if (bob.readyToRiseNShine()) {
System.out.println(”Bob is ready to face another day!”);}

else { System.out.println(”Too early for Bob!”); } }
}

Figure 5: Time-Clock-LazyPerson (TCL) System

the pattern contract (Fig. 2), and that TimeObserver
is an extension of the Subject interface.

13. Next we provide definitions for the abstract pointcuts
of the base contract. Thus, attachObs is defined as a
call to the attach() method of Time, since that is the
method that Time’s observers are required to use to
enroll as observers. detachObs, Notify, and Update are
equally direct. In each case, we use the target and args
constructs of AspectJ to bind the parameters of the
pointcut with the appropriate entities from the actual
(join) point in the system.

In TCL, there is no explicit enrollment of a Time object
as a subject; instead, it becomes a subject upon con-
struction. We define the subjectEnrollment pointcut
accordingly. subjectMethods captures all the methods
of the Time class. Note that if in a future modification
of the system, new methods are added to Time, those

public aspect TCLContract extends ObserverPatternContract{
declare parents: Time implements Subject; (12)
declare parents: TimeObserver extends Observer;

//Pointcuts: (13)
protected pointcut attachObs(Subject s, Observer o):
call(void Time.attach(TimeObserver))

∧ target(s) ∧ args(o);
protected pointcut detachObs(Subject s, Observer o):
call(void Time.detach(TimeObserver))

∧ target(s) ∧ args(o);
protected pointcut subjectEnrollment(Subject s):
call(Time.new()) ∧ target(s);

protected pointcut subjectMethods(Subject s):
call(* Time.*()) ∧ target(s);

protected pointcut Notify(Subject s):
call(void Time.notifyObs()) ∧ target(s);

protected pointcut Update(Subject s, Observer o):
call(void TimeObserver.update(Time))

∧ target(o) ∧ args(s);

//Aux. functions: (14)
protected String xSubjectState(Subject s) {
//s must be of type Time; return the time as a String. }

protected String xObserverState(Observer o) {
//o must be of type Clock or LazyPerson; use getClass()
//to check, and return state encoded as a String. }

protected boolean xModified(String s1, String s2) {
//Return true if the times encoded in s1 and s2 are
// equal, else false. }

protected boolean xConsistent(String s, String o) {
//Check if o encodes a Clock state or a LazyPerson state.
//For a LazyPerson, return true if isSleepy agrees with hour
//in the Time state encoded in s being between 0 and 11.
// Similarly if o encodes a Clock. }

}

Figure 6: TCL Subcontract

methods will also be captured by this pointcut, and
will be required to abide by the requirements of the
pattern contract, as captured by clause (11) in Fig. 4.

14. Next we define the auxiliary functions. xSubjectState()
encodes the time represented by the the given Time
object. xObserverState() is similar, but has to handle
two types of observer objects, Clock and LazyPerson.
xModified() determines whether the times encoded in
its two arguments are equal. xConsistent(), depending
on whether the state encoded in the second argument
is of type Clock or LazyPerson, compares the value of
either isSleepy, or hour and minute in that argument to
the time in the first argument.

These definitions are dictated by the TCL system. If we
considered another system that had different classes playing
the Subject and/or Observer roles, or did the notification,
update, etc. in other ways, we would have to define another
subcontract tailored to that system. But for another system
that uses the same classes as TCL, and does the notification,
etc., in the same manner as TCL, we can use the same sub-
contract.

91

2.4 Results of Runtime Monitoring
We can now compile the abstract aspect that captures the

Observer contract (Figs. 2, 3, 4), the subaspect that captures
the subcontract for this system (Fig. 6), and the actual sys-
tem code (Fig. 5) using the AspectJ compiler. The compiler
will do the necessary code weaving [12, 11]. When the result-
ing byte code is executed, if there are no problems, that is,
if all the requirements of the pattern contract/subcontract
are met, the system will run as usual (if a bit slower than
usual). However, in order to check that the monitoring was
indeed progressing appropriately, we inserted additional out-
put statements in the various pieces of advice, as well as in
the tickTock() method, to help us track the progress of the
system. A portion of the output from a sample run appears
in Fig. 7 (the line numbers were inserted by hand).

1: Tick-tock!
2: before Notify(Time:11:42:06)
3: before Update(Time:11:42:06, Clock:5:48am)
4: after subjectMethods(Time:11:42:06)
5: after subjectMethods(Time:11:42:06)
6: after subjectMethods(Time:11:42:06)
7: after Update(Time:11:42:06, Clock:11:42am)
8: before Update(Time:11:42:06, LazyPerson:true)
9: after Update(Time:11:42:06, LazyPerson:true)
10: after Notify(Time:11:42:06)
11: after subjectMethods(Time:11:42:06)

12: Tick-tock!
13: before Notify(Time:17:09:06)
14: . . .
19: before Update(Time:17:09:06, LazyPerson:true)
20: after Update(Time:17:09:06, LazyPerson:true)
21: *** Observer not properly updated!
22: * Subject: Time:17:09:06; Observer: LazyPerson:true

Figure 7: Sample Monitored Run of TCL System

Line 1 indicates that tickTock() was called, which resulted
in Time.notifyObs() being called, which resulted in the Notify
pointcut being entered, with the aTime value at this point
being as stated (line 2). Next (line 3), Update on aClock
was called. (Note that the clock reading is incorrect in this
line because we have not yet done the update.) Updating
aClock requires three calls to the Time methods for getting
the hour, minute, and am/pm information. In each case, the
after advice of the subjectMethods pointcut was executed.
The advice did not report any problems, since at the start
of Notify, xrecordedStates had already been updated for this
Time object. The outputs from the after advice for these
three calls appear in lines 4, 5, and 6. Finally, the update()
operation finished, and the output from the after advice (line
7) shows that the clock was properly updated.

Next, notifyObs invoked update() on the bob object. Dur-
ing this run, we inserted an error in the system by replacing
the code of LazyPerson.update() with an empty body; this
update() operation did not invoke any operation of Time.
Hence, immediately following the output from the before
advice of Update (line 8), we have the output from the af-
ter advice (line 9). But there was no error reported, because
the value of bob.isSleepy happened to have the correct value.
In the next call to tickTock(), the error was reported (lines
21, 22). Thus, without any changes in the code of TCL, we
were able to monitor the system to see if it met the appro-

priate pattern requirements. For a more complex system
built using several patterns, we would define the appropri-
ate contract and subcontract for each, and would compile
all of them against the system source code.

3. MONITORING ALTERNATE PATTERN
IMPLEMENTATIONS

As required by the pattern, notifyObs() in Time, and up-
date() in Clock and LazyPerson, are all concerned with up-
dating the observers when the state of the Time object
changes. Hannemann and Kiczales [9] argue that such code
is better written as an aspect, thereby localizing this code in
a single module. They present an aspect that implements
Observer. The aspect contains the code for notifying the
observers of a given subject when the subject state changes.
This naturally involves calling an update() operation on each
observer; this operation is flagged as abstract since it will de-
pend on the class of the observer. Further, they define an
abstract pointcut, subjectChange, intended to capture all the
methods of the Subject class that might result in the subject
state being modified. This portion of their aspect looks as
in Fig. 8.

abstract protected pointcut subjectChange(Subject s);

abstract protected void updateObserver(
Subject s, Observer o);

after (Subject s): subjectChange(s) { notifyHandler(s); }
public void notifyHandler(Subject s) {
Iterator i = ((Set)perSubjectObservers.get(s)).iterator();
if (i==null) { System.out.println(”Trouble 1”); }
else { while (i.hasNext()) {

updateObserver(s, (Observer)i.next()); } }

Figure 8: Partial AOP Implementation of Observer

We have made a slight change in their code; we have writ-
ten the after advice for subjectChange as a call to notifyHan-
dler(). In the original version, notifyHandler() is not intro-
duced; instead, the advice simply contains the code that
appears in the body of our notifyHandler(). The reason for
this change is that in defining the subcontract correspond-
ing to this implementation of Observer, we need to define
the execution of this after advice as our Notify pointcut, but
AspectJ does not provide a construct that will allow us to
do so7. Therefore, we introduce the notifyHandler() method
corresponding to this advice, and use this method to define
the Notify pointcut.

The aspect in [9] also defines the code shown in Fig. 9,
for adding and removing an observer. The code for adding
an observer adds the object to the set corresponding to the
subject; the code for removing an observer removes it from
this set. Here, too, we have made a change. If the map does
not contain an entry for the subject, that means the ob-
ject is not currently enrolled. We must then add it (paired
with a set consisting of just this observer) to the map. This
is the point where the object is enrolling as a Subject. So
this point should, in our subcontract, be captured by the
subjectEnrollment pointcut. To achieve this, we have intro-
duced an empty method, subEnroll(), inserted a call to it in

7Recent versions of AspectJ seem to include such constructs.

92

public void addObserver(Subject s, Observer o) {
Set obSet = (Set)perSubjectObservers.get(s);
if (obSet == null) {obSet = new HashSet(); subEnroll(s);}
obSet.add(o); perSubjectObservers.put(s,obSet); }

public void removeObserver(Subject s, Observer o) {
Set obSet = (Set)perSubjectObservers.get(s);
obSet.remove(o); perSubjectObservers.put(s,obSet); }

public void subEnroll(Subject s) { ; }

Figure 9: AOP Implementation of Observer (cont’d)

addObserver(), and will define the subjectEnrollment pointcut
(in the subaspect) as a call to subEnroll().

Let us now turn to the subcontract, presented in Fig. 10,
corresponding to this implementation of Observer. Due to
space limitations, we present only some key portions of the
subaspect.

protected pointcut attachObs(Subject s, Observer o):
call(void HKObserver.addObserver(Subject, Observer))

∧ args(s,o);

protected pointcut subjectEnrollment(Subject s):
call(void HKObserver.subEnroll(Subject)) ∧ args(s);

protected pointcut Notify(Subject s):
call(void HKObserver.notifyHandler(Subject))

∧ args(s);

Figure 10: Subcontract for AOP Implementation

As we noted above, introducing the subEnroll() method
allows us to define an appropriate pointcut for subject en-
rollment. Similarly, introducing notifyHandler() allows us to
define the Notify pointcut. The attachObs pointcut is defined
directly in terms of the addObserver() method.

We next ran this implementation (along with the concrete
Subject and Observer classes defined in [9]) using our pattern
contract and subcontract. Surprisingly, the system printed
a message indicating that an observer was not properly up-
dated. Further analysis showed that the addObserver() code
(Fig. 9) does not meet the requirement of the pattern con-
tract (Fig. 3, line (7)) that requires observers to be updated
upon attachment. Thus, our original contract is general
enough to be used to monitor such novel implementations
of patterns.

4. RELATED WORK
A number of authors have recognized the importance of

describing patterns precisely. The work in [20, 4], for exam-
ple, improves the traceability of design patterns in design
documentation by developing UML extensions. Other au-
thors have more directly addressed the requirements ques-
tion. Eden et al. use a higher-order logic formalism [7, 5] to
encode patterns as formulae. The primitives of the logic
include classes, methods, and the relations among them.
While the approach seems to capture the structural proper-
ties of interest, it provides only limited support for behav-
ioral properties. Mikkonen [14] specifies behavioral proper-
ties of patterns using an action system, the guarded com-
mands of which operate over abstract models and relations.
Taibi et al. combine these two approaches to capture both
structural and behavioral properties.

There does not seem to be much work focused explicitly
on monitoring design pattern specifications. In [19], the
authors discuss issues in testing software created using pat-
terns that rely heavily on the use of dynamic binding and dy-
namic dispatch, but the question of testing whether the pat-
terns are being used correctly is not considered. Techniques
for implementing design patterns may be worth mentioning.
Much of this work targets the development of pattern repos-
itories encoding individual patterns that can be applied to
an existing design automatically [6, 21]. More relevant to
our work, however, is the aspect-based implementation ap-
proach of Hanneman and Kiczales [9] discussed earlier.

5. DISCUSSION
The goal of our work was to develop a monitoring ap-

proach for determining whether design pattern requirements
are satisfied at runtime. As patterns cut across class bound-
aries, the requirements to be checked are also cross-cutting.
An AOP-based approach was therefore a natural choice.
The monitoring code common across all applications of a
given pattern is implemented as an abstract aspect; the
parts that vary among applications are expressed over ab-
stract functions and pointcuts. These functions and point-
cuts are defined in a subaspect corresponding to a particular
application of the pattern. The abstract aspect and sub-
aspect combined form the complete monitoring code for the
system in question.

Our monitors are fairly robust. Consider, for example,
the requirements defined for subjectMethods. Suppose a de-
signer, as part of evolving a system, adds a new method to
the class that plays the Subject role, and that this method
modifies the state of the object. Even if the new method
respects the invariants of the class, problems will arise if
the designer neglects to call notifyObs() after performing
the modifications, as this will leave the object inconsistent
with its observers. Such maintenance errors will be detected
by monitoring the new system without any changes to our
aspect-based monitor.

Our future work aims to investigate the applicability of
our monitoring approach to other types of design patterns.
In particular, we plan to investigate more complex patterns,
such as those used in concurrent and networked systems.

6. ACKNOWLEDGEMENTS
We would like to thank the anonymous referees for their

detailed comments on the first draft of this paper.

7. REFERENCES
[1] R. Binder. Testing object-oriented systems.

Addison-Wesley, 1999.

[2] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-oriented software
architecture: A system of patterns. Wiley, 1996.

[3] Y. Cheon and G. Leavens. A simple and practical
approach to unit testing: The jml and junit way. In
Proc. of ECOOP 2002, pages 231–255.
Springer-Verlag LNCS, 2002.

[4] J. Dong. UML extensions for pattern compositions. J.
of Object Technology, 3:149–161, 2002.

[5] A. Eden. A visual formalism for object-oriented
architecture. In Proceedings, Integrated Design and
Process Technology (IDPT-2002), June 2002.

93

[6] A. Eden, J. Gil, Y. Hirshfeld, and A. Yehudai. Toward
a mathematical foundation for design patterns.
Technical Report 004, Tel Aviv University, 1999.

[7] A. Eden, A. Yehudai, and J. Gil. Precise specification
and automatic application of design patterns. In
Automated Software Engineering, pages 143–152, 1997.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable OO Software.
Addison-Wesley, 1995.

[9] J. Hannemann and G. Kiczales. Design pattern
implementation in Java and AspectJ. In Proc. of
OOPSLA, pages 161–173. ACM, 2002.

[10] R. Johnson. Components, frameworks, patterns. In
Symposium on Software Reusability, 1997.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. An overview of AspectJ. In
Proc. 15th ECOOP, pages 327–353. Springer, 2001.

[12] C. Lopes, B. Tekinerdogan, W. de Meuter, and
G. Kiczales. Aspect oriented programming. In Proc. of
ECOOP’98. Springer, 1998.

[13] B. Meyer. Object-Oriented Software Construction.
Prentice Hall, 1997.

[14] T. Mikkonen. Formalizing design patterns. In
Proceedings of 20th ICSE, pages 115–124. IEEE
Computer Society Press, 1998.

[15] T. Reenskaug. Working with objects. Prentice-Hall,
1996.

[16] D. Riehle. Composite design patterns. In Proc. of
OOPSLA, pages 218–228. ACM, 1997.

[17] D. Riehle and H. Zullighoven. Understanding and
using patterns in software development. Theory and
Practice of Object Systems, 2(1):3–13, 1996.

[18] N. Soundarajan and J. Hallstrom. Responsibilities and
rewards: specifying design patterns. In Proc. of Int.
Conf. on Software Engineering (ICSE), 2004.

[19] W. Tsai, Y. Tu, W. Shao, and E. Ebner. Testing
extensible design patterns in object-oriented
frameworks through scenario templates. In Proc. of
COMPSAC, pages 166–171, 1999.

[20] J. Vlissides. Notation, notation, notation. C++
Report, April 1998.

[21] S. Yau and N. Dong. Integration in component-based
software development using design patterns. In 24th
Ann. Int. Computer Software Applications Conf.,
Taipei, Taiwan, October 2000.

94

DEET for Component-Based Software
Murali Sitaraman
Durga P. Gandi
Computer Science
Clemson University

Clemson, SC 29634-0974, USA
+1-864-656-3444

murali@cs.clemson.edu

Wolfgang Küchlin
 Carsten Sinz

Universität Tübingen,
W.-Schickard Institut für Informatik

Tübingen, Germany
+49-7071-29.77047

kuechlin@informatik.uni-
tuebingen.de

Bruce W . W eide
Computer Science and Engineering

The Ohio State University
Columbus, OH 43210, USA

+1-614-292-1517
weide.1@osu.edu

Abstract
The objective of DEET (Detecting Errors Efficiently without
Testing) is to detect errors automatically in component-based
software that is developed under the doctrine of design-by-
contract. DEET is not intended to be an alternative to testing
or verification. Instead, it is intended as a complementary and
cost-effective prelude. Unlike testing and run-time monitor-
ing after deployment, which require program execution and
comparison of actual with expected results, DEET requires
neither; in this sense, it is similar to formal verification. Un-
like verification, where the goal is to prove implementation
correctness, the objective of DEET is to show that an imple-
mentation is defective; in this sense, it is similar to testing.
The thesis is that if there is an error in a component-based
software system either because of a contract violation in the
interactions between components, or within the internal de-
tails of a component (e.g., a violated invariant), then it i s
likely—but not guaranteed—that DEET will find it quickly.
DEET is substantially different from other static checking
approaches that achieve apparently similar outcomes. Yet i t
builds on a key idea from one of them (Alloy): Jackson’s small
scope hypothesis. Among other things, the DEET approach
weakens full verification of component implementation cor-
rectness to static checking for errors, in a systematic way that
makes it clear exactly which defects could have been detected,
and which could have been overlooked.

Keywords

Design-by-contract, error detection, SAT solvers, software
component, specification, static analysis, static checking.

1. INTRODUCTION
This paper describes a new approach to detecting errors in
component-based software that is developed using the popular
paradigm known as design-by-contract, and presents results
from early experience with a prototype tool. We call the ap-
proach DEET for Detecting Errors Efficiently without Testing.
DEET has the potential to be effective and efficient, and the
potential to “scale up” to large component-based software
systems. It is intended to offer the following important bene-
fits over early testing:

• DEET can analyze one component at a time in a modular
fashion, i.e., it can detect mismatches between a compo-
nent implementation and its contract, even in isolation
from the rest of a component-based system.

• Since DEET does not require program execution or inlin-
ing of called procedures, it does not depend on code or
even stub availability for other components.

• DEET can detect substitutability bugs, i.e., contract viola-
tions that are literally undetectable by testing. Such bugs
arise from situations where a particular implementation of
a component requires less or delivers more than its con-
tract specifies, and where the correctness of the larger
system relies on such incidental behavior of that particu-
lar implementation.

• DEET is automated and does not require manual input
selection.

• When an error is detected, DEET can pinpoint the origin of
the error in the source code. In particular, it can detect in-
ternal contract violations among participating
components in a larger system—and assign blame. This
property makes it suitable for debugging component-
based software.

DEET bears some resemblance to other static analy-
sis/checking tools1, e.g., Alloy [38] and ESC [18]. Section 2
explores connections with these two systems in particular.
Section 3 explains the steps of the DEET approach with a de-
tailed example. Section 4 discusses other related work, and
Section 5 summarizes the paper.

2. ESC, ALLOY, AND DEET
From the synopsis of features given in the introduction, it may
appear that DEET is essentially the same as ESC or Alloy—two
well-known efforts in the same general direction. In fact, while
DEET shares some common objectives with these approaches,
it is complementary in nearly every respect, as explained in
this section. Only one technical detail from these systems has
been consciously adapted for use in DEET: Jackson’s small
scope hypothesis [37], which is discussed in Section 3.2.3.

2.1 Objectives, Context, and Assumptions
ESC and Alloy seek incremental improvements to current
software engineering practice, focusing on “real” languages

1 But should not be confused with N, N-diethyl-m-toluamide.

ABC News (7/3/02) summarized a New England Journal o f
Medicine report as follows: “DEET Is Best Bug Repellent.”

95

and “real” programmers—constraints that impose technical
complications which have proved unexpectedly troublesome.
The defects that can be detected in practice with these tools are
limited by (1) the failure of the “real” programming language
to ensure by fiat certain desirable properties of programs, to
prevent programming practices that complicate reasoning
about software behavior, and in general to have semantics that
facilitates modular reasoning; (2) the assumption that “real”
programmers are unwilling or even unable to write full specifi-
cations of intended functional behavior, and that they will
write only certain kinds of annotations that capture part of that
intent; and (3) an interest in a tool that can be used with any
software—component-based or not—that can be written in the
“real” language.2

By contrast, DEET is part of a long-term plan to explore the
foundations of future software engineering practice as it could
be. The overall project goal is not to live within the shackles
of current practice, but rather to remove them. DEET’s context
includes (1) a combined specification and implementation
language (Resolve [66]) that is expressly designed to support
modular reasoning, while still permitting the development of
“real” software by strictly disciplined use of “real” languages
such as C++ [34]; (2) a recognition, based on teaching experi-
ence [71], that tomorrow’s software engineers can be taught to
understand and even to write formal-language specifications,
just as they can be taught to write formal-language implemen-
tations; and (3) a focus on component-based software. The
project vision is to have an automatic verifier for functional
(and performance) correctness of component-based systems.
The purpose of an intermediate tool such as DEET is for soft-
ware engineers to find errors quickly before attempting full
verification, as this is likely to remain more efficient than full
verification and hence potentially give real-time feedback.

2.2 References and Aliasing
ESC deals with, among other things, “nil-dereference errors”
[18]. Among other things, it introduces a “downward closure”
rule for modifies clauses in contracts. This is used to account
for situations where aliases to instance fields of a class could
impact an object’s abstract state via unintended side effects.
This, in turn, leads to a “rep visibility requirement” and an-
other annotation construct, the depends clause, that is “a key
ingredient of our solution to the problem” [18]. Nonetheless,
it is admitted that “one problem in this area that has stumped
us is a form of rep exposure that we call abstract aliasing”[18];
see also [17]. The potential for aliasing technically does not
always prevent modular reasoning, but the above measures
help illustrate that it seriously complicates matters [79].

The Alloy approach “targets properties of the heap” [77] to
detect errors in implementations of linked data structures and
null dereferences. The extent to which the Alloy approach can
scale up to other properties remains an open question: “We
expect that the tool will work well for modular analysis of
even quite complex classes; how well it scales for analyses
amongst classes and whether it will be economical enough for
everyday use remains to be seen” [42].

Resolve has value semantics for all variables; there is no alias-
ing because the language does not permit it [49]. Resolve

2 ESC handles not just sequential programs but a class of

synchronization errors in multi-threaded programs. Alloy
and DEET so far are limited to sequential programs.

includes reference-free abstractions for lists, trees, etc., and
programs that use these components are not burdened with the
complication of reasoning about references or aliasing. How-
ever, it remains possible to write programs for situations where
explicit aliasing improves efficiency and would be exploited
in a language like Java. Using specifications of pointer-like
behavior [47], it is possible to reason about these programs
formally and to find errors in them using the DEET approach
(although the current prototype does not handle this). Tech-
niques used in ESC and/or Alloy to deal with aliasing may
prove helpful in such situations, but our initial focus is on
typical Resolve programs, in which pointers are not needed or
used. And in any case, the use of value semantics for all vari-
ables distinguishes DEET from ESC and Alloy.

2.3 Undefined or Invalid Variable Values
ESC reportedly has been successful in detecting failure-to-
initialize defects. Indeed, this seems to be one of its primary
uses: “… our experience has been that many ESC verifications
can be successfully completed with almost no specifications at
all about the contents and meanings of abstract types, other
than the specification of validity” [18].

The Alloy approach is tied to the Alloy Annotation Language
[42] and “is designed for object model properties: namely
what objects exist, how they are classified grossly into sets,
and how they are related to one another. It is not designed for
arithmetic properties…” [37].

In Resolve, every variable has an initial value upon declara-
tion. A variable is never “undefined” or “invalid” and there i s
no question about whether it “exists”, so there is no need for
DEET to detect such errors. DEET, rather than avoiding speci-
fications of “the contents and meanings of abstract types” and
“arithmetic properties” (of arithmetic types), is intended to
find defects related to fully specified component behavior.

2.4 Contracts and Other Assertions
ESC includes contract specification syntax, and most reported
examples involve these constructs. However, ESC does not
treat such assertions as complete contract specifications, but
merely as partial statements of intent (e.g., as specifying only
the property that a variable has been initialized). Moreover,
ESC seeks to avoid making programmers write loop invariants,
for example, because they can be “pedagogical and heavy-
handed” [18] and sometimes can be produced automatically.
For instance, in a definite for loop whose index i ranges from 1
to 10, the invariant 1 ≤ i ≤ 10 can be generated by a tool, allow-
ing ESC to detect some range errors without the programmer
having to write a loop invariant.

Alloy requires no annotations beyond the property to be
checked, and the assertions it checks are not necessarily parts
of formal contracts, although the authors “are hopeful that i t
will extend to the analysis of code in terms of abstract sets and
relations specified in an API” [37]. So, the current Alloy ap-
proach “expands calls inline” [77] rather than relying on
contract specifications, hence requires special translation to
handle recursive calls. Alloy relies on loop-unrolling to avoid
the need for programmer-supplied loop invariants.

DEET expects full contract specifications for components, and
additional internal assertions inherent in the Resolve syntax:
loop invariants, representation invariants, and abstraction
relations. This is necessary to study the impact of having

96

complete specifications on the quality of checking that can be
achieved. If it turns out that experience with DEET suggests
that future software engineers would be better off by learning
to write specifications than by avoiding them, then it becomes
our obligation to teach them how to write specifications.
Moreover, because we focus explicitly on component-based
software, DEET reasonably expects component libraries to
have the specifications and internal assertions needed for full
verification. This is because the extra cost of developing these
annotations can be amortized over many component uses. The
Resolve component catalog is an existence proof that a non-
trivial library of fully specified components can be developed.

2.5 Soundness and False Alarms
All the tools here might fail to detect errors. However, they
differ in why this is so. In ESC, there is no characterization of
which errors might have eluded detection. Moreover, ESC i s
unsound in the usual logical sense because “verification con-
dition generation is unsound”. The verification condition
produced is fed to ESC’s own refutation-based general theorem
prover that is claimed to be “sound, as far as we know”. ESC
can also produce false alarms, or “spurious warnings”. The
claim is that neither of these apparent technical shortcomings
is a big problem if, on balance, the system in practice finds
interesting classes of defects that actually do exist [18].

The idea of Alloy is that if an error is not detected, it is because
the “scope”, or subset of situations considered in the analysis,
has been limited. Specifically, the Alloy approach generates a
composite verification condition, and then limits the number
of heap cells for each type and the number of loop iterations
for each loop to turn this condition into a propositional for-
mula that can be fed to a back-end SAT-solver, which tries to
refute it. Any given error might have a witness only outside
this scope. Alloy is designed not to give false alarms, i.e., it i s
not supposed to report errors where none exist [37].

DEET is much like Alloy in this regard, with two major excep-
tions. First, the soundness of verification condition
generation has been established for most constructs of Re-
solve [22, 32, 67, 68]. The overall approach is still that the
verification condition needed for full verification is generated
from the relevant specifications and code. But then the scopes
of all variables are restricted—not based on the number of
heap cells in a data representation, but on the possible abstract
mathematical model values for the variables involved. As with
Alloy, this allows the verification condition to be recast as a
propositional error hypothesis that can be fed to a back-end
off-the-shelf SAT-solver in an effort to produce a witness to a
defect. So DEET, like Alloy, can fail to detect an error if there
are no witnesses to that error in the analyzed scope. But DEET
does not report errors in code that could be verified as correct.

In overall structure and in many technical details, DEET seems
to be a closer cousin of Alloy than of ESC. Nonetheless, there
are other significant technical differences between DEET and
Alloy. For example, DEET’s verification condition generator
automatically accounts for the “path conditions” associated
with various execution paths. The Alloy approach is based on
generating a control flow graph for the program to account for
the various execution paths, and is cleverly optimized to do
this [77]. A proposal in [42] suggests that loop-free code with
method invocations can be handled by generating verification
conditions using a logic similar to that used in ESC [17].

Two other differences between DEET and its predecessors are
important. In the process of looking for errors, DEET generates
the verification condition that would be needed to prove cor-
rectness. Proofs of this assertion can be attempted with
human-assisted theorem provers (e.g., PVS [60]) when DEET
finds no errors. And using the foundations for an extended
system for specification and verification of performance (both
time and space) [46, 69, 70], in principle DEET might be ex-
tended to detect errors relative to performance contracts.

3. DEET APPROACH
This section explains the DEET approach. As in [37], we
choose a simple list example to explain in detail, because only
with a concise example is it possible to illustrate concretely
the variety of technical issues involved. The example helps to
demonstrate the additional advantages of both the DEET and
Alloy approaches over testing alone. Finally, it highlights
some key differences between the DEET and Alloy approaches,
because it involves recursive code that is a client of a List
component contract, rather than being an implementation of a
list method that has direct access to the data representation.

Concept List_Template(type Entry);
uses Std_Integer_Fac, String_Theory;

Type List is modeled by (
Left, Right: Str(Entry)

);
exemplar P;
initialization
ensures|P.Left| = 0 and |P.Right| = 0;

Operation Insert(alters E: Entry;
updates P: List);

ensures P.Left = #P.Left and
P.Right = 〈#E〉 * #P.Right;

Operation Remove(replaces R: Entry;
updates P: List);

requires |P.Right| > 0;
ensures P.Left = #P.Left and
#P.Right = 〈R〉 * P.Right;

Operation Advance (updates P: List);
requires |P.Right| > 0;
ensures |P.Left| = |#P.Left| + 1 and
P.Left * P.Right = #P.Left * #P.Right;

…
end List_Template;

Figure 1: A Specification of List_Template

3.1 Example: A Defective Implementation
Figure 1 shows a skeleton of a contract specification for a
List_Template component in a dialect of Resolve [66]. In the
specification, the value space of a List object (with position) i s
modeled mathematically as a pair of strings of entries: those to
the “left” and those to the “right” of an imaginary “fence” that
separates them. Conceptualizing a List object with a position
makes it easy to explain insertion and removal at the fence. A
sample value of a List of Integers object, for example, is the
ordered pair (<3,4,5>, <4,1>). Insertions and removals are
explained as taking place between the two strings, specifically
at the left end of the right string.

97

Formally, the declaration of type List introduces the mathe-
matical model and, using an example List variable P, states
that both the left and right strings of a List are initially empty.
A requires clause serves as an obligation for a caller, whereas
an ensures clause is a guarantee from a correct implementation.
In the ensures clause of Insert, for example, #P and #E denote
the incoming values of P and E , respectively, and P and E
denote the outgoing values. The infix operator * denotes
string concatenation, the outfix operator 〈•〉 denotes string
construction from a single entry, and the outfix operator |•|
denotes string length.

Enhancement Reversal_Capability for
List_Template;

Operation Reverse(updates P: List);
requires |P.Left| = 0;
ensures P.Left = Rev(#P.Right) and

|P.Right| = 0;
 end Reversal_Capability;

Figure 2: Specification of a List Reversal Operation

Realization Recursive_Realiz for
Reversal_Capability;

Recursive Procedure Reverse(
updates P: List);

decreasing |P.Right|;
var E: Entry;
if (Right_Length(P) > 0) then
Remove(E, P); Reverse(P); Insert(E, P);

end;
end Reverse;

 end Recursive_Realiz;

Figure 3: A Defective Implementation of Reverse

An interesting aspect of the Insert specification is that its
behavior is relational. The semantics of alters mode for the
formal parameter E is that the result value of entry E is unde-
termined. This under-specification allows implementations
not to have to make expensive copies of non-trivial type pa-
rameters, which is an important issue in the design of generic
abstractions. It is well known that copying references, while
efficient, introduces aliasing and complicates reasoning [33,
49, 79]. The present specification is more flexible. It allows
the entry to be moved or swapped into the container structure
(efficiently, i.e., in constant time, by manipulating references
“under the covers”) and thus potentially to alter it, without
introducing aliasing [30]. Correspondingly, the Remove op-
eration is specified to remove an entry from P, and it replaces
the parameter R. Operation Advance allows the list insertion
position (fence) to be moved ahead. The rest of the specifica-
tion is in [68]; but it is not needed to understand this example.

Figure 2 contains the specification of an operation to reverse
(the right string of) a list. Here, Rev denotes the mathematical
definition of string reversal. Figure 3 shows an (incorrect)
recursive implementation. It uses the List operations given in
Figure 1. To demonstrate termination, the recursive procedure
has a progress metric using the keyword decreasing.

3.2 DEET Steps to Detect Errors

3.2.1 Generation of a Symbolic Reasoning Table
As a first step in modular static analysis—either to prove
correctness or to find errors—a symbolic reasoning table i s

generated [68]. The soundness and relative completeness of
the approach that justifies this step are established in [32].
Figure 4 contains a table for the code in Figure 3. A key ob-
servation is that this table can be produced mechanically from
the information in Figures 1, 2, and 3, as explained in [32, 68]
and summarized below. In the table, each program State i s
numbered. For each state, the Assume column lists verification
assumptions and the Confirm column lists the assertions to be
proved. The Path Condition column denotes under what con-
dition a given state will be reached.

Reasoning table generation involves the profligate use of
variable names, because each program variable name is ex-
tended with the name of the state to denote the value of the
variable in that state. P1, for example, denotes the value of
variable P in state 1. To prove that the procedure for Reverse i s
correct, we assume that its precondition is true in the initial
state and must confirm that its postcondition is true in the
final state. For modular analysis, we rely only on the behav-
ioral contracts of the called operations (i.e., Insert and
Remove). In particular, for the calling code to be correct, we
must be able to confirm that the precondition of a called opera-
tion is true in the state before the call; then we may assume
that the postcondition is true in the state after the call. The
recursive call to Reverse is treated just like any other call.
However, before the recursive call, we additionally need to
confirm that the progress metric decreases.

State Path Condi-
tion

Assume Confirm

0 |P0.Left| = 0

if (Right_Length(P) > 0) then

1 |P0.Right| > 0 P1 = P0 |P1.Right| > 0

 Remove(E, P);

2 |P0.Right| > 0 P2.Left = P1.Left ∧

P1.Right = <E2> *

 P2.Right

|P2.Left| = 0 ∧

|P2.Right| <

 |P0.Right|

 Reverse(P);

3 |P0.Right| > 0 E3 = E2 ∧

P3.Left =

 Rev(P2.Right) ∧

|P3.Right| = 0

 Insert(E, P);

4 |P0.Right| > 0 P4.Left = P3.Left ∧

P4.Right = <E3> *

 P3.Right

end;

5.1 |P0.Right| = 0 P5 = P0

5.2 |P0.Right| > 0 P5 = P4

P5.Left =

 Rev(P0.Right)
∧

|P5.Right| = 0

Figure 4: A Reasoning Table for the Reverse Procedure

The path condition in a given state serves as an antecedent for
the implications that are the actual assertions to be assumed

98

and confirmed in that state. In other words, assume/confirm
entries apply only when the path condition holds.

3.2.2 Generation of Error Hypotheses
To prove the correctness of the code, then, entails confirming
each obligation in the last column, using the assumptions in
the states above and including the state where the obligation
arises (but, critically for soundness, not the states below it in
the table [32]). Rather than attempting the non-trivial process
of verification using a general theorem-proving tool, DEET
instead looks for a witness to a bug in the code. In particular,
it attempts to find values for the variables that satisfy all
relevant assumptions but that fail to satisfy something that
needs to be confirmed. This is done by conjoining the as-
sumptions and the negation of the assertion to be confirmed,
and then seeking a satisfying assignment for the variables in
this error hypothesis—a witness to a bug.

To illustrate the idea, consider the assertions that need to be
confirmed in state 5 (arising from the postcondition of Re-
verse). In particular, consider the recursive case when the path
condition |P0.Right| > 0 holds. The code is defective if there i s
a set of assignments to the variables that satisfies the assertion
in Figure 5. In the figure, the conjunct numbered I is the path
condition, conjuncts II through VII are assumptions from
states 0 through 5, and conjunct VIII is the negation of the
assertion to be confirmed in state 5.

Error hypothesis generation also can be mechanized. There are
four error hypotheses for the present example, one each corre-
sponding to the confirm clauses in states 1 and 2, and two for
state 5 (one for the base case 5.1 and one for the recursive case
5.2). If a satisfying assignment exists for an error hypothesis
arising from an intermediate state (e.g., state 1 or 2 here), then
the code fails to live up to its part of the contract for an opera-
tion it calls. It is possible that the error hypothesis arising
from the final state at the end of the code (in state 5 in the
table) cannot be satisfied, even though intermediate errors
(e.g., violation of preconditions of called operations) are
found. The code still should be deemed defective under de-
sign-by-contract because the calling code violates a
requirement of a called operation.

(|P0.Right| > 0) ∧
I

(|P0.Left| = 0) ∧
II

(P1 = P0) ∧ III
(P2.Left = P1.Left ∧
P1.Right = <E2> * P2.Right) ∧ IV

(E3 = E2 ∧ P3.Left = Rev(P2.Right) ∧
|P3.Right| = 0) ∧ V

(P4.Left = P3.Left ∧
P4.Right = <E3> * P3.Right) ∧ VI

(P5 = P4) ∧ VII
(¬ (P5.Left = Rev(P0.Right) ∧
|P5.Right| = 0)) VIII

Figure 5: Error Hypothesis for Confirm Clause 5.2

3.2.3 Restriction of Scope
The search for a witness to an error hypothesis relies on Jack-
son’s small scope hypothesis (where “scope” is, loosely
speaking, a measure of the size of the input space to be
searched). Jackson notes that even though, for any given

scope, one can construct a program with a bug whose detection
requires a strictly larger scope, in practice, many bugs will be
detectable in small scopes [37]. If a bug is found within a
small scope, then the code is not consistent with the verifica-
tion conditions. If none is found in the given scope, then
there are no inconsistencies in that scope; yet, inconsistencies
might exist in a larger scope.

For DEET, we have explored restricting the scopes of partici-
pating variables by restricting their mathematical spaces,
instead of placing bounds on loop iterations or heap cells. It
is reasonable to begin with the most stringent restrictions. In
the example, for instance, we start by looking for a witness to
the error hypothesis in which all variables of type Entry have
exactly one value, and in which strings of type Entry are either
empty or contain just a single Entry with that value. Without
loss of generality, we use Z0 to stand for the single value of
type Entry. This in turn restricts the scope of the search for
strings to the two-element set {Str_Empty, Str_Z0}, where
Str_Empty denotes the empty string and Str_Z0 denotes the
string <Z0>.

These restrictions on scope lead to a (possibly large, but fi-
nite) propositional formula corresponding to each error
hypothesis generated from the code and the specifications,
e.g., the one in Figure 6. Each satisfying assignment for this
formula identifies a particular witness to a particular error
hypothesis. To conserve space, we have shown only a part of
the formula to use as a means of explaining how it can be
generated. In the conjuncts listed in Figure 6, the names of all
(Boolean) variables can be generated automatically. The vari-
able P0_Left_equals_Str_Empty being true, for example,
denotes that the left string of the program variable P in state 0
is equal to the empty string. In addition to the variables that
correspond directly to the symbols in Figure 5, variable names
corresponding to mathematical expressions involving string
length, reverse, and concatenation are needed as well. Given
this, the first two conjuncts in Figure 6 correspond directly to
those in Figure 5.

To assert that P1 = P0 (conjunct III in Figure 5), the formula
has to assert that the left strings of the two lists are equal and
that the right strings are equal. However, each string may have
only one of two values because of scope restriction: Str_Empty
or Str_Z0. The left strings of P0 and P1 will be equal if they
are both Str_Empty or if they are both Str_Z0. This observa-
tion leads to conjuncts in III in Figure 6. The rest of the
conjuncts are derived similarly. A list of additional conjuncts
needs to be generated to complete the propositional formula
generation, and only some of these additional conjuncts are
shown in Figure 6. For example, we need to assert that the
right string of a list cannot be both empty and contain a single
entry (although it could be longer), i.e.:

(¬ P0_Right_equals_Str_Empty ∨
 ¬ P0_Right_equals_Str_Z0)

The formula needs to make this assertion for the left and right
strings of each List variable in each state. Another set of asser-
tions is based on mathematical string length, e.g.:

(Len_P0_Right_equals_Zero ⇔
 P0_Right_equals_Str_Empty)

Other sets of assertions are generated for string reversal and
concatenation within the restricted scope. Notice that similar

99

conjuncts for, e.g., reversal of the left string of a list, are not
generated because they do not arise in the conjuncts corre-
sponding to the assertions in Figure 5. The complete formula
is at:

 http://www.cs.clemson.edu/~resolve/reports/RSRG-03-05.pdf

(¬Len_P0_Right_equals_Zero) I
(Len_P0_Left_equals_Zero)
II

((P1_Left_equals_Str_Empty ∧
P0_Left_equals_Str_Empty) III
 ∨ (P1_Left_equals_Str_Z0 ∧
P0_Left_equals_Str_Z0)) ∧
((P1_Right_equals_Str_Empty ∧

P0_Right_equals_Str_Empty)
 ∨ (P1_Right_equals_Str_Z0 ∧
P0_Right_equals_Str_Z0))
((P2_Left_equals_Str_Empty ∧
P1_Left_equals_Str_Empty) IV
 ∨ (P2_Left_equals_Str_Z0 ∧
P1_Left_equals_Str_Z0)) ∧
((P1_Right_equals_Str_Empty ∧

 Cat_E2_P2_Right_equals_Str_Empty)
 ∨ (P1_Right_equals_Str_Z0 ∧
 Cat_E2_P2_Right_equals_Str_Z0))
(E3_equals_Z0 ∧ E2_equals_Z0) ∧ V
((P3_Left_equals_Str_Empty ∧

 Rev_P2_Right_equals_Str_Empty)
 ∨ (P3_Left_equals_Str_Z0 ∧
 Rev_P2_Right_equals_Str_Z0)) ∧
(Len_P3_Right_equals_Zero)

((P4_Left_equals_Str_Empty ∧
P3_Left_equals_Str_Empty) VI
 ∨ (P4_Left_equals_Str_Z0 ∧
P3_Left_equals_Str_Z0)) ∧
((P4_Right_equals_Str_Empty ∧

 Cat_E3_P3_Right_equals_Str_Empty)
 ∨ (P4_Right_equals_Str_Z0 ∧
 Cat_E3_P3_Right_equals_Str_Z0))
((P5_Left_equals_Str_Empty ∧
P4_Left_equals_Str_Empty) VII
 ∨ (P5_Left_equals_Str_Z0 ∧
P4_Left_equals_Str_Z0)) ∧
((P5_Right_equals_Str_Empty ∧

 P4_Right_equals_Str_Empty)
 ∨ (P5_Right_equals_Str_Z0 ∧
P4_Right_equals_Str_Z0))
(¬ (((P5_Left_equals_Str_Empty ∧
VIII

 Rev_P0_Right_equals_Str_Empty) ∨
 (P5_Left_equals_Str_Z0 ∧
 Rev_P0_Right_equals_Str_Z0)) ∧
 (Len_P5_Right_equals_Zero)))

Additional Assertions

Unique Values (sample: P0.Right)

(¬ P0_Right_equals_Str_Empty ∨
 ¬ P0_Right_equals_Str_Z0)

String Length (sample: |P0.Right|)

(Len_P0_Right_equals_Zero ⇔
 P0_Right_equals_Str_Empty)

String Reverse (sample: Rev(P0.Right))

(Rev_P0_Right_equals_Str_Empty ⇔
 P0_Right_equals_Str_Empty) ∧
(Rev_P0_Right_equals_Str_Z0 ⇔
 P0_Right_equals_Str_Z0)

String Concatenate (sample: <E2> * P2.Right)

(¬ Cat_E2_P2_Right_equals_Str_Empty) ∧
(Cat_E2_P2_Right_equals_Str_Z0 ⇔
 (E2_equals_Z0 ∧
 P2_Right_equals_Str_Empty))

Figure 6: Selected Conjuncts Corresponding to Figure 5

The number of variables in the formula is bounded by the
product of the size of the restricted scope, the number of pro-
gram variables and expressions in the original verification
conditions, and the number of rows in the tracing table (i.e.,
the number of lines of code). The number of conjuncts de-
pends on the mathematical models and the assertions
involved, along with the number of generated variables.

3.2.4 Error Detection
The example illustrates that the formulas generated during this
process are not in conjunctive normal form (CNF). We do not
convert them to CNF, but rather apply a SAT-solver that can
handle arbitrary propositional formulas [41]; other state-of-
the-art SAT solvers such as BerkMin [28] or Chaff [54] could
be used by converting the formulas to CNF. The solver we
have used, developed by the co-authors at Tübingen, is based
on a Davis-Putnam-style [16] algorithm. It can handle formu-
las involving several thousand variables. For example, when
the formula in Figure 6 was (translated into the required input
format and) supplied to this solver, it produced the assign-
ment given in Figure 7 within a fraction of a second. In
addition, it concluded that this is the only solution.

Len_P0_Left_equals_Zero
P0_Left_equals_Str_Empty
P0_Right_equals_Str_Z0
Rev_P0_Right_equals_Str_Z0
P1_Left_equals_Str_Empty
P1_Right_equals_Str_Z0
P2_Left_equals_Str_Empty
E2_equals_Z0
P2_Right_equals_Str_Empty
Cat_E2_P2_Right_equals_Str_Z0
Rev_P2_Right_equals_Str_Empty
P3_Left_equals_Str_Empty
E3_equals_Z0
P3_Right_equals_Str_Empty
Cat_E3_P3_Right_equals_Str_Z0
Len_P3_Right_equals_Zero
P4_Left_equals_Str_Empty
P4_Right_equals_Str_Z0
P5_Left_equals_Str_Empty
P5_Right_equals_Str_Z0

Figure 7: Only Solution (true Vars) for Formula in Figure 6

The solution gives the value of each program variable in each
state. For example, the following variables are true in the wit-
ness: P0_Left_equals_Str_Empty, P0_Right_equals_Str_Z0,
P5_Left_equals_Str_Empty, and P5_Right_equals_Str_Z0.
This corresponds to a List input value of P = (< >, <Z0>) and an
output value of P = (< >, <Z0>). The code is defective because

100

the output value as required by the specification is P = (<Z0>,
< >). A problem with the code is identified here with a se-
verely restricted scope because the lengths of the left and right
strings resulting from the code and specification do not match.
(If no satisfying assignments were found, the scopes would
have to be enlarged and the process repeated.)

A key benefit of the modular error detection approach is that i t
is relatively easy to debug the code from the given solution.
Based on the finding in Figure 7, especially with the help of a
tool to improve the presentation, the programmer of Reverse
can infer how to fix the code. In particular, based on the input
that revealed a defect (P0), it is easy to see that the program is
erroneous when it is given a list P.Left = < > and P.Right =
<Z0>. The assignment from the SAT solver gives the values of
each variable in each state, making it relatively easy to debug.

3.3 Effectiveness and Efficiency of DEET
DEET should need to deal with a large number of statements
only rarely, because it examines not just one component, but
only one component operation, at a time. Still, to check scal-
ability in this dimension, we mechanically generated an error
hypothesis formula for a “synthetic” procedure body with
2000 statements, using operation specifications similar to the
ones given in the example [72]. The resulting formula in-
volved 6000 variables and twice as many conjuncts. The
solver found two solutions (witnesses to errors) in less than 2
seconds on a 1.2 MHz Athlon PC.

Much more experimentation is needed with this and other
solvers before we can reach any conclusions on the effective-
ness or efficiency of DEET. There is significant potential for
further improvements to take advantage of the kinds of formu-
las that arise from the DEET process, including parallelization
and specialized computer algebra techniques.

4. OTHER RELATED WORK
The idea of error detection within a small “scope”—borrowed
by DEET from Alloy—differs from most related work in fun-
damental ways, as noted in [29, 37, 42, 77], and we summarize
only additional differences here.

The benefits of static analysis are widely acknowledged, even
more so recently as a result of the extensive work in model
checking research and industrial practice [10, 14, 36]. Though
model checking has its origins in hardware verification, an
impressive collection of results spans a spectrum of program-
ming languages and software systems. Given that it i s
difficult to summarize even the most important work in this
area, we discuss only a representative sample.

Finite-state systems are the focus, though there have been
efforts to extend model checking to minimize the impact of
this inherent limitation (e.g., [5]). Holzman has employed
SPIN to detect numerous bugs in the PathStar processing
system developed in C. Java Pathfinder at NASA has been
used successfully to locate a variety of heap-related errors
[31]. To limit the search space, Bandera, a tool for analyzing
Java code, employs user-supplied abstractions [15, 58]
whereas Smith et al. have described a system that assists in
property specification [74]. The fundamental difference be-
tween DEET and such uses of model checkers is in the way a
finite-state model of program execution is devised, i.e., by
combining Jackson’s small scope hypothesis with assertions

that arise from verification conditions that are generated from
the code and component contract specifications.

Symbolic execution of programs, where concrete inputs used
in testing are replaced with symbolic values to generate con-
straints between inputs and outputs, have been used for
debugging and testing [12, 45] and verification [19]. Early
work on symbolic execution was limited by its inability to
handle complex types, loops, and dynamic data structures.
Coen et al. have shown that symbolic execution can be useful
for verification of safety-critical properties in an industrial
setting, but this requires severe limitations to be placed on the
code [13]. More recently, using symbolic execution for model
checking, the SLAM project [1] has shown how to handle
recursive calls in C code. Khurshid et al. have addressed prop-
erties of the heap and dynamic data structures [43]. Unlike
these efforts, whose focus is on verification, PREfix is a tool
based on symbolic execution for error detection [6]. While the
tool has been shown to reveal errors in large-scale C/C++
systems, it cannot handle properties such as invariants and i t
can produce false alarms.

With user-supplied loop invariants (similar to the DEET ap-
proach for handling loops), in [39] Jensen et a l . have
discussed how to prove heap-related properties and find coun-
terexamples. Their program has been shown to be quite
effective in practice. Their work differs from traditional
pointer analyses because they can answer more questions that
can be expressed as properties in first-order logic. While this
work focuses on linear linked lists and tree structures, more
recently Moller and Schwartzbach have extended the results to
all data structures that can be expressed as “graph types” [53].
There is also significant work in shape analysis, including
recent work on parametric shape analysis that allows more
questions to be answered concerning heaps [62]. Ramalingam
et al. describe how to check client conformance with compo-
nent constraints [61] using abstract interpretation. The goals
and methods of these related efforts are quite different from
ours because our focus is on the total correctness of compo-
nent-based software based on design-by-contract, not on
verifying heap properties.

Ernst provides an overview of the complementary merits of
dynamic and static analysis approaches for error detection in
[24]. While the benefits of writing assertions and using them
to detect errors in software are widely known [26, 78], asser-
tion checking is especially useful in component-based
software development to detect contractual violations among
collaborating components [2, 8, 21, 27, 52]. Eiffel is among
the earliest systems to popularize runtime assertion checking
[52]. iContract, a contract-checking tool for Java programs,
has similar objectives [20]. Using an executable industrial-
strength specification language, AsmL, Barnett et al. describe a
system for dynamic checking [2]. Cheon and Leavens have
used JML for writing assertions and for runtime assertion
checking of component-based Java programs [7, 8, 9]. The
benefit of contract checking in commercial development of a
component-based C++ software system is described in [34].
Use of wrappers to separate contract-checking code from un-
derlying components is described in [21, 22]. However, run-
time checking is difficult to modularize, requires that imple-
mentations of not just the unit being checked but all reused
components be available, detects only errors that arise from
particular implementations rather than their contracts (so
substitutability bugs are not revealed), and requires manual
input selection—all problems that DEET avoids.

101

There is considerable work on making SAT solvers efficient.
But that work is orthogonal to DEET, which is intended to use
an off-the-shelf solver (i.e., based only on its functional speci-
fication). Experimentation with different solvers for DEET is
necessary to develop an effective tool because of potentially
significant performance differences among solvers.

5. SUMMARY
The ultimate objective of formal verification techniques is to
prove that a piece of code (in our case, a software component)
is correct with respect to its specification. Experience shows,
however, that before attempting to prove correctness, it i s
usually cost-effective to look for behavioral errors that can be
found by simpler means. DEET is our first effort toward a
modular, static analysis approach for discovering errors of this
sort, including some that are not revealed by testing—which i s
the usual approach to finding code defects—or by existing
static analysis/checking tools. Some aspects of the DEET
approach have been automated at the time of writing, and
others are work in progress.

ACKNOWLEDGMENTS
This work is supported in part by the National Science Foun-
dation under grant CCR-0113181. We thank the reviewers for
observing, quite correctly, that some related work deserved a
more detailed discussion than in our original submission.

REFERENCES
1. T. Ball and S. K. Rajamani. The SLAM toolkit. CAV 2001,

pp. 260-264.

2. M. Barnett, W. Grieskamp, C. Kerer, W. Schulte, C. Szyper-
ski, N. Tillmann, and A. Watson. Serious specification for
composing components. In Proc. Sixth ICSE Workshop
on Component-Based Software Engineering, May 2003,
pp. 31-36.

3. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic
model checking without BDDs. Tools and Algorithms for
the Analysis and Construction of Systems (TACAS’99),
LNCS 1579, Springer-Verlag, 1999.

4. W. Blochinger, C. Sinz, and W. Küchlin. Parallel proposi-
tional satisfiability checking with dynamic learning.
Parallel Computing, 29(7), 2003, pp. 969–994.

5. T. Bultan, R.Gerber, and W. Pugh, Model-checking concur-
rent systems with unbounded integer variables: symbolic
representations, approximations, and experimental re-
sults. ACM Transactions on Programming Languages
and Systems (TOPLAS), 21(4), July 1999.

6. W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer
for finding dynamic programming errors. Software: Prac-
tice and Experience, 30(7), 2000, pp. 775–802.

7. Y. Cheon and G.T. Leavens. A simple and practical ap-
proach to unit testing: The JML and JUnit way. In
Magnusson, B., editor, ECOOP 2002 – Object-Oriented
Programming, 16th European Conference, Malaga,
Spain, Proceedings, LNCS 2374, Springer-Verlag, Berlin,
June 2002, pp. 231-255.

8. Y. Cheon and G.T. Leavens. A runtime assertion checker
for the Java modeling language (JML). In Proc. Int’l Conf.

Software Engineering Research and Practice, CSREA
Press, June 2002, pp. 322-328.

9. Y. Cheon and G.T. Leavens, M. Sitaraman, and S. H. Ed-
wards. Model variables: Cleanly supporting abstraction
in design by contract. Technical Report 03-10a, Depart-
ment of Computer Science, Iowa State University,
September 2003; available from archives.cs.iastate.edu.

10. D. Clarke, O. Grumberg and D. Long. Verification tools for
finite-state concurrent systems. In A Decade of
Concurrency - Reflections and Perspectives. LNCS 803,
Springer-Verlag, 1994.

11. D. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model
checking using satisfiability solving. Formal Methods in
System Design, 19(1):7{34}, 2001.

12. L. A. Clarke. A system to generate test data and symboli-
cally execute programs. IEEE Transactions on Software
Engineering, 2(3), September 1976, pp. 215-222.

13. A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezze.
Using symbolic execution for verifying safety-critical
systems. In Proc. 8th European Software Engineering
Conference held jointly with 9th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software
Engineering, 2001, pp. 142–151.

14. D. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A.
Tacchella, and M. Y. Vardi. Benefits of bounded model
checking at an industrial setting. In Gerard Berry, Hubert
Comon, and Alan Finkel, editors, Proc. Computer Aided
Verification, LNCS 2102, Springer-Verlag, 2001, pp. 435-
453.

15. J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S.
Laubach, H. Zheng, H. Bandera: extracting finite-state
models from Java source code. Proceedings of the 22nd
International Conference on Software Engineering, Lim-
eric, Ireland, 2000.

16. M. Davis and H. Putnam. A computing procedure for quan-
tification theory. Journal of the ACM 7, 1960, 201-215.

17. D. L. Detlefs, K. R. M. Leino, and G. Nelson. Wrestling with
Rep Exposure. Research Report 156, Compaq Systems
Research Center, July, 1998.

18. D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe.
Extended Static Checking. Research Report 159, Compaq
Systems Research Center, December, 1998.

19. L. K. Dillon. Using symbolic execution for verification of
Ada tasking programs. ACM Transactions on Program-
ming Languages and Systems, 12(4), 1990, pp. 643-669.

20. A. Duncan and U. Hölzle. Adding Contracts to Java with
Handshake. Technical Report TRCS98-32, Univ. of Cali-
fornia at Santa Barbara, Dec. 1998.

21. S. H. Edwards, G. Shakir, M. Sitaraman, B.W. Weide, and J.
Hollingsworth. A framework for detecting interface viola-
tions in component-based software. In Proc. 5th Int’l
Conf. Software Reuse, IEEE, June 1998, pp. 46-55.

22. S. H. Edwards, M. Sitaraman, B.W. Weide, and J.
Hollingsworth. Contract-Checking Wrappers for C++
Components. IEEE Trans. On Software Engineering,
2004, to appear.

102

23. G. W. Ernst, R. J. Hookway, and W. F. Ogden. Modular
verification of data abstractions with shared realizations.
IEEE Trans. Software Eng., 20(4), Apr. 1994, 288-307.

24. M. D. Ernst. Static and dynamic analysis: synergy and
duality. In WODA 2003: ICSE Workshop on Dynamic
Analysis, Portland, OR, May 2003, pp. 24-27.

25. J. Esparza, A. Kucera, and S. Schwoon. Model-checking
LTL with regular valuations for pushdown systems. In-
formation and Computation, 186(2), November 2003, pp.
355–376.

26. R.B. Findler, M. Latendresse, and M. Felleisen. Behavioral
contracts and behavioral subtyping. In Proc. 8th Euro-
pean Software Engineering Conference, ACM Press, New
York, NY, 2001, pp. 229–236.

27. R. B. Findler and M. Felleisen. Contract soundness for
object-oriented languages. In Proc. ACM SIGPLAN 2001
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), Oct. 2001, pp. 1-
15.

28. E. Goldberg, E. and Y. Novikov. BerkMin: A fast and
robust SAT-solver. In Proc. Design, Automation, and Test
in Europe Conference and Exposition (DATE), IEEE Com-
puter Society Press, 2002, 131-149.

29. O. Grumberg, D. E. Long. Model checking and modular
verification. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), v.16 n.3, pp.843-871, May
1994.

30. D.E. Harms and B.W. Weide. Copying and swapping:
influences on the design of reusable software compo-
nents. IEEE Transactions on Software Engineering,
17(5), 1991, pp. 424-435.

31. K. Havelund and T. Pressburger. Model checking Java
programs Using Java Pathfinder. International Journal
on Software Tools for Technology Transfer, 2(4),
Springer-Verlag, April 2000.

32. W. D. Heym. Computer Program Verification: Improve-
ments for Human Reasoning. Ph.D. Dissertation,
Department of Computer and Information Science, The
Ohio State University, Columbus, OH, 1995.

33. J. Hogg, D. Lea, A. Wills, D. deChampeaux, and R. Holt.
The Geneva Convention On The Treatment of Object Ali-
asing, http://gee.cs.oswego.edu/dl/aliasing/aliasing.html,
1997.

34. J.E. Hollingsworth, L. Blankenship, and B.W. Weide.
Experience report: Using RESOLVE/C++ for commercial
software. In Proc. ACM SIGSOFT 8th Int’l Symposium on
the Foundations of Software Engineering, ACM, Nov.
2000, pp. 11-19.

35. H.Hoos. SAT-encodings, search space structure, and local
search performance. Proc. 16th Intl. Joint Conf. On Artifi-
cial Intelligence (IJCAI’99), Stockholm, Sweden, Morgan
Kaufmann,1999, pp. 296–303.

36. G. J. Holzmann. The model checker SPIN. IEEE Transac-
tions on Software Engineering, 23(5), May 1997, pp.279-
295.

37. D. Jackson and M. Vaziri. Finding bugs with a constraint
solver. ACM SIGSOFT Software Engineering Notes, Sept.
2000, pp. 14-25.

38. D. Jackson. Alloy: a lightweight object modelling nota-
tion. ACM Transactions on Software Engineering and
Methodology (TOSEM), 11(2), April 2002, pp.256-290.

39. J. L. Jensen, M. E. Jorgensen, N. Klarlund, and M. I.
Schwartzbach. Automatic verification of pointer pro-
grams using monadic second-order logic. Proc. SIGPLAN
Conf. on Programming Language Design and Implemen-
tation, 1997.

40. C.B. Jones. Systematic Software Development Using VDM.
Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

41. A. Kaiser. A SAT-based Propositional Prover for Consis-
tency Checking of Automotive Product Data. Technical
Report WSI-2001-16, W.-Schickard Institut für Infor-
matik, Universität Tübingen, Tübingen, Germany, 2001.

42. S. Khurshid, D. Marinov, and D. Jackson. An analyzable
annotation language. Procs. 17th ACM Conference on Ob-
ject-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), ACM, Seattle, WA, 2002.

43. S. Khurshid, C. Pasareanu, and W. Visser. Generalized
symbolic execution for model checking and testing. In
Procs. 9th International Conference on Tools and Algo-
rithms for Construction and Analysis of Systems (TACAS
2003), Warsaw, Poland, April 2003.

44. S. Khurshid, D. Marinov, I. Shlyakhter, and D. Jackson. A
case for efficient solution enumeration. Procs. 6th Inter-
national Conference on Theory and Applications of
Satisfiability Testing (SAT), Portofino, Italy, May 2003.

45. J. C. King. Symbolic execution and program testing.
Communications of the ACM, vol. 19 (7), July 1976, 385-
394.

46. J. Krone, W. F. Ogden, and, M. Sitaraman. Modular Verifi-
cation of Performance Constraints. Technical Report
RSRG-03-04, Department of Computer Science, Clemson
University, Clemson, SC 29634-0974, May 2003, 25
pages; available at www.cs.clemson.edu/~resolve.

47. G. Kulczycki, M. Sitaraman, W. F. Ogden, and J. E.
Hollingsworth, Component Technology for Pointers: Why
and How, Technical Report RSRG-03-03, Department of
Computer Science, Clemson University, Clemson, SC
29634-0974, April 2003, 19 pages; available at
http://www.cs.clemson.edu/~resolve.

48. G. Kulczycki, M. Sitaraman, W. F. Ogden, and G. T. Leav-
ens, Preserving Clean Semantics for Calls with Repeated
Arguments, Technical Report RSRG-04-01, Department of
Computer Science, Clemson University, Clemson, SC
29634-0974, April 2003, 35 pages; available at
http://www.cs.clemson.edu/~resolve.

49. G. Kulczycki. Direct Reasoning. Ph.D. Dissertation, De-
partment of Computer Science, Clemson University,
Clemson, SC, May 2004.

50. K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using
data groups to specify and check side effects. In Proceed-
ings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation
(PLDI'02), 37(5), 2002, pp. 246-257.

51. D. Marinov and S. Khurshid. TestEra: a novel framework
for automated testing of Java programs. Procs. 16th IEEE
Conference on Automated Software Engineering (ASE),
San Diego, CA, 2001.

103

52. B. Meyer, Object-oriented Software Construction, 2nd

Edition, Prentice Hall, Upper Saddle River, NJ, 1997.

53. A. Moller and M. I. Schwartzbach, The pointer assertion
logic engine. ACM SIGPLAN Notices, 36(5), May 2001,
pp.221-231.

54. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S.
Malik. Chaff: engineering an efficient SAT solver. In
Proceedings of the 38th Design Automation Conference.
ACM, 2001, 530-535.

55. P. Muller, A. Poetzsch-Heffter, and G. T. Leavens. Modular
specification of frame properties in JML. Concurrency,
Computation Practice and Experience, 15, 2003, pp. 117-
154.

56. J. W. Nimmer and M. D. Ernst. Static verification of dy-
namically detected program invariants: integrating
Daikon and ESC/Java. In Proceedings of RV’01, First
Workshop on Runtime Verification, Paris, France, July
2001.

57. J.W. Nimmer and M.D. Ernst. Invariant inference for static
checking: an empirical evaluation. In Proceedings of the
ACM SIGSOFT 10th International Symposium on the
Foundations of Software Engineering (FSE 2002),
Charleston, SC, November 2002, pp. 11-20.

58. C. Pasareanu, M.B. Dwyer, and W. Visser. Finding feasible
counter-examples when model checking abstracted Java
programs. In Proceedings of the 7th International Con-
ference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’01), 2001.

59. S. Prestwich. Local search on SAT-encoded coloring
problems. Proc. 6th Intl. Conf. On Theory and Applica-
tions of Satisfiability Testing (SAT 2003), Santa
Margherita Ligure, Italy, Springer, 2003, pp. 105–119.

60. S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal
verification of fault-tolerant architectures: prolegomena
to the design of PVS. IEEE Trans. Software Engineering,
21(2), Feb. 1995, 107-125.

61. D. Ramalingam, A. Warshavsky, J. Field , D. Goyal, M.
Sagiv. Deriving specialized program analyses for certify-
ing component-client conformance. ACM SIGPLAN
Notices, 37(5), May 2002.

62. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. In ACM Tran. on Program-
ming Languages and Systems 24, 3 (2002), 217-298.

63. C. Sinz, W. Blochinger, and W. Küchlin. PaSAT - parallel
SATchecking with lemma exchange: implementation and
applications. In H. Kautz und B. Selman, Hrsg., LICS’2001
Workshop on Theory and Applications of Satisfiability
Testing (SAT’2001), Electronic Notes in Discrete Math., 9,
Elsevier, Boston, MA, June 2001.

64. C. Sinz, T. Lumpp, J. Schneider, and W. Küchlin. Detection
of dynamic execution errors in IBM System Automation’s
rulebased expert system. Information and Software Tech-
nology, 44(14), November 2002, pp. 857–873.

65. C. Sinz. Verifikation regelbasierter Konfigurationssys-
teme. Dissertation, Fakultät für Informations- und
Kognitionswissenschaften, Universität Tübingen, 2003.

66. M. Sitaraman and B.W. Weide. Component-based software
using RESOLVE. ACM SIGSOFT Software Engineering
Notes 19, 4 (1994), pp. 21-67.

67. M. Sitaraman, B. W. Weide, and W. F. Ogden. On the prac-
tical need for abstraction relations to verify abstract data
type representations. IEEE Transactions on Software En-
gineering, 23(3), March 1997, pp. 157-170.

68. M. Sitaraman, S. Atkinson, G. Kulczycki, B.W. Weide, T.
Long, P. Bucci, S. Pike, W. Heym, and J.E. Hollingsworth.
Reasoning about software-component behavior. In Pro-
ceedings of the 6th International Conference on
Software Reuse, LNCS 1844, Springer-Verlag, 2000, pp.
266-283.

69. M. Sitaraman. Compositional performance reasoning.
Procs. Fourth ICSE Workshop on Component-Based
Software Engineering: Component-Certification and
System Prediction, Toronto, CA, May 2001.

70. M. Sitaraman, J. Krone, G. Kulczycki, W. F. Ogden, and A.
L. N. Reddy. Performance specification of software com-
ponents. ACM SIGSOFT Symposium on Software Reuse,
May 2001.

71. M. Sitaraman, T. J. Long, B. W. Weide, J. E. Harner, and L.
Wang. A formal approach to component-based software
engineering: education and evaluation. In Procs. of the
International Conference on Software Engineering, IEEE,
Toronto, Canada, May 2001, pp. 601-609.

72. M. Sitaraman, D. P. Gandi, W. Küchlin, C. Sinz, and B. W.
Weide. The Humane Bugfinder: Modular Static Analysis
Using a SAT Solver. Technical Report RSRG-03-05, De-
partment of Computer Science, Clemson University,
Clemson, SC 29634-0974, May 2003, 18 pages; available
at http://www.cs.clemson.edu/~resolve.

73. M. Sitaraman, B. W. Weide, and W. F. Ogden. Design,
Specification, and Analysis of Software Components. CS
372 Course Notes, Clemson University, Clemson, SC
29634-0974, 2003.

74. R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil.
PROPEL: an approach supporting property elucidation.
Proceedings of the 24th International Conference on
Software Engineering, May 2002.

75. F. Tip. A survey of program slicing techniques. Journal
of Programming Languages, 3(3), 1995, pp. 121–189.

76. M. Vardi. On the complexity of modular model checking.
In Proc. 10th IEEE Symposium on Logic in Computer Sci-
ence, 1995, pp. 101-111.

77. M. Vaziri and D. Jackson. Checking heap-manipulating
procedures with a constraint solver. TACAS’03, Warsaw,
Poland, 2003.

78. J. M. Voas. How assertions can increase test effectiveness.
IEEE Software 14, 2 (Feb. 1997), pp. 118-122.

79. B.W. Weide and W.D. Heym. Specification and verifica-
tion with references. In Proceedings OOPSLA Workshop
on Specification and Verification of Component-Based
Systems, ACM, 2001.

80. B.W.Weide. Component-based systems. In Encyclopaedia
of Software Engineering, ed. J. J. Marciniak, John Wiley
and Sons, 2001.

81. J. M. Wing. A specifier’s introduction to formal methods.
IEEE Computer, 29(9), Sep. 1990, pp. 8-24.

104

SAVCBS 2004
POSTER ABSTRACTS

105

UML Automatic Verification Tool (TABU)∗

M. Encarnación Beato
Escuela Universitaria de

Informática
Universidad Pontificia de

Salamanca
Salamanca, Spain

ebeato@upsa.es

Manuel Barrio-Solórzano
Facultad de Informática

Universidad de Valladolid
Valladolid, Spain

mbarrio@infor.uva.es

Carlos E. Cuesta
Facultad de Informática

Universidad de Valladolid
Valladolid, Spain

cecuesta@infor.uva.es

ABSTRACT
The use of the UML specification language is very widespread
due to some of its features. However, the ever more complex
systems of today require modeling methods that allow errors
to be detected in the initial phases of development. The use
of formal methods make such error detection possible but
the learning cost is high.

This paper presents a tool which avoids this learning cost,
enabling the active behavior of a system expressed in UML
to be verified in a completely automatic way by means of
formal method techniques. It incorporates an assistant for
the verification that acts as a user guide for writing prop-
erties so that she/he needs no knowledge of either temporal
logic or the form of the specification obtained.

Keywords
Formal methods, automatic verification, UML active be-
haviour, formal UML verification

1. INTRODUCTION
The Unified Modeling Language (UML) [3, 5] has unques-

tionable advantages as a visual modeling technique, and this
has meant that its applications have multiplied rapidly since
its inception. To the characteristics of UML itself must be
added numerous tools that exist in the market to help in
its use (Rational Rose, Argo UML, Rhapsody ...). However,
unfortunately, none of them guarantee specification correct-
ness.

However, it is widely accepted that error detection in the
early phases of development substantially reduces cost and
development time, as the errors detected are not transmitted
to or amplified in later phases. It would thus be very useful
to have a tool that would allow the integration of this semi-
formal development method with a formal method to enable

∗Supported by Junta de Castilla y León (Spain) in the Re-
search Project VA117/03

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAVCBS ’04 NewPort Beach, California USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

system verification. This paper presents a tool —TABU
(Tool for the Active Behaviour of UML)— to carry out this
integration by providing a formal framework in which to
verify the UML active behaviour.

The tool uses SMV [4] (Symbolic Model Verifier) like for-
mal specification, as it has the adequate characteristics for
representing the active behaviour of a specification in UML.
The main reason for this is that it is based on labeled tran-
sition systems and because it allows the user’s own defined
data types to be used, thus facilitating the definition of vari-
ables. It also uses symbolic model checking for the verifica-
tion, which means that the test is automatic, always obtains
an answer and more importantly, should the property not
be satisfied generates a means of identifying the originating
error.

The tool carries out, with no intervention on the user’s
part, a complete, automatic transformation of the active be-
haviour specified in UML into an SMV specification, focus-
ing mainly on reactive systems in which the active behaviour
of the classes is represented through state diagrams, while
activity diagrams are used to reflect the behaviour of class
operations. XMI [6] (XML Metadata Interchange) is used
as the input format, thus making it independent of the tool
used for the system specification.

On the other hand, the tool has a versatile assistant that
guides the user in writing properties to be verified using
temporal logic. The verification is carried out in such a way
that the user needs no knowledge of either formal languages
or temporal logic to be able to take advantage of its po-
tential; something which has traditionally been difficult to
overcome when deciding on the use of formal methods. In
addition, notions of the form of the specification obtained
are unnecessary: that is, knowledge of the internal structure
of variables or modules obtained is not required for verifi-
cation. Figure 1 is a graphical representation of the tool’s
architecture, the engineer only need knowledge of UML and
the system studied, the tool obtain automatically the formal
representation in SMV from textual representation in XMI.
Parallel, a wizard helps to write properties to verified using
LTL (Linear Temporal Logic), moreover if the property is
not satisfied, the tool shows a counterexample trace.

The rest of the paper shows the functionalities of the tool
illustrated through a case study. It is analysed in terms of
two main aspects of the tool: how to obtain a formal specifi-
cation from the UML diagrams, and how the assistant helps
and guides in verifying properties. This is followed by a re-
view of the work in the same field from the literature and,
finally, the conclusions are presented along with possible fu-

106

��������	
���

��������	
����������������������������������
���� !"#$�%&���"�!$&��'���()))�()���*��+�
),-��-�����).&/�
%&�)0	*�1-
)�2��0��
 �3-+��-�).&/%�4��+����
�%&��������	
�����������+���
+-�0����&�����������(��(56�7��4���
��%&��8�-��	�
���%&�����*��+-+���
����%&����0�	+�	�.�
9
�: 3�7�)%&����0�	+�	�
����%&����0�	+�	,�	
�����4�5�)%&����0�	+�	,�	
���
���)%&�����*��+-+���
���%&����+-����������-������.&/��������	
��������4�)�
��)%&��8�-��	�
�%&����+�+�
���������������������������2��0���&���'��-�������;&����<
�������������������������
�&����=&--����+�&���������������>�����
���?�*�-+��� �	��&����$����+�-����2��0���&���'��-����)?�*�-+��� �	
��&����$����+�-���
���?�*�-+��� �	��&����$����+���
�1���+9������-�*����@0*1���@�)�
���?�*�-+��� �	��&����$����+��
�0���'��-+��������-�*����@'-�
�@)�
���?�*�-+��� �	��>��	-��A-1��$����+��
3��+������-�*����@'-�
�@)�
���?�*�-+��� �	��>��	-��A-1��$����+��
/�-'������-�*����@'-�
�@)�
���?�*�-+��� �	��>��	-��A-1��$����+��
B1
+	-�+������-�*����@'-�
�@)�
���?�*�-+��� �	��C-��
0-����D��$����+�
�������������������������������2��0���&���'��-���((E�+�	��
�-2�	�FE4?G?745$��7�F����;B

���-+��<�������������������������
�����?�*�-+��� �	��B

���-+�������������>��5���
�������?�*�-+��� �	��&����$����+�-����)?�*�-+��� �	��&����$����+�-��
�
�������?�*�-+��� �	��&����$����+���
�1���+9������-�*����@0*1���@�)�
�������?�*�-+��� �	��&����$����+��
�0���'��-+��������-�*���
�@'-�
�@)�
�������?�*�-+��� �	��>��	-��A-1��$����+��
3��+������-�*���
@'-�
�@)�
�������?�*�-+��� �	��>��	-��A-1��$����+��
/�-'������-�*���
@'-�
�@)�
�������?�*�-+��� �	��>��	-��A-1��$����+��
B1
+	-�+������-�*���
@'-�
�@)�
�������?�*�-+��� �	��B

���-+�������+���
�����������������������������������2��0���&���'��-���((E�+�	��
�-2�	�FE4?G?745$��7�F�H3����I����;B

���-+��$�<�������������������������
���������?�*�-+��� �	��B

���-+��$������������>������

#-	-�0��	�-�0	*�1-��-�*+����-������-�+	-
'�	�-��J�	�-��A-�-K�-
L
�����
*��-����AK��
����
-	�����	�'��-	��-��
0���'��-��J����*
�
�
+��-�M*��	���2-�+��-
��-
��-	-�+�	L
+��-
����.&/K�9�M*��0�	��+-
����*�	�M*���-�+	-
'�	�-��J����&,K��������0�	+-���+��-�+������
�*-��
0���'��-��J�	�-��A-�-���.&/K��
���		��+-�

 �����'�����M*���
+-����0	�1-��J�
��	�-��������'�	�-�0	��	�
��-K�
�
8-����������-�	�0	�
�+-��J����*���
���
�
+��-���
�����
+�+�

�����
����0	�'*���-�K����'�	�-�M*��
�����0	*�1���-�-�*�������

-
0��+�
�+	-+-��
����-�+	-
'�	�-��J��#*��N��
������-	�-��-
����*
�J�M*��������0�	+-���+��-�+����	�'��2-������-��
0���'��-��J
��.&/�
����		�
0����������	�'��2-������&,��#-	-�	�-��A-	��
+-
���0	�1-��J�
�������	O�0	�0���-��
�+��0�	-��
�-���*-�-
�M*��0�	��+-
-
��*	-	��-���		����J�����-��
0���'��-��J��/-��
0���'��-��J����&,
�1+���-�0-	-��-�-�*�������
�
�
+��-
�0*�������+	-	
������
-0N����PQ	�'E
��$2��0��
F�

 ����0*+�����0-	+��-�
��*+���A-�*�
�
+��-���������M*��	�'��2-���
���0�	+-���+�����*��-2�	��-*+��O+�����$
+��
�
+��-�
�	O���
+����
��
��
+�+-
�0�	
Q�0��Q�+�Q��-
K�����A-���0�	�*�0�M*�R���������
��+-���K�����*-��
�	O�	�'�-������	0�	O������-	-�+�	L
+��-
��O

���0��2-
�M*��0�	��+-�����*�	���*-���
+-���+-��-�-�����
�
+��-��$�
�12�+����M*��
��0�	
��*�K��
�M*���-��-9�	L-������
����0�	+-���+�
�M*�
0*����	�'��2-	
����*-��
0���'��-��J���.&/K�
����*�+	��+-�1�N
��-��*�������
��-
�
�����2��0����#�	�����K�2*+��������
�
+��-����
�-2�	��-*+��O+���K�
��0	�
�+-����
�
+��-����*-�'�+���0�-��	-�M*�
0�	��+�����0	�1-	�M*����
��
+-��
����8�
+�	�-�'*���-���		��+-��+��

/-���	�'��-��J����+��-
��
+-
��
0���'��-����
���
������+-	O�SQ��Q�
�-Q���Q�+��-��-����0	�1-��J�����-��-����A�����-�+	-
'�	�-��J
	�-��A-�-�-��&,��C��8-9�M*�������-	K�����S�����+�K�M*����
0	���0-���12�+��������
+-�+�
�
���
�
+�����+��	-	��-�*+���A-��J
����N+���
�'�	�-��
�H�&,I����*��N+����
����'�	�-��-�0��-��+�
*+���A-���9�	��������K�.&/K�����-�	-�
����+	-
0-	�+��-��*
*-	���
���'�	�-�M*��
�-�0�
�1���-0	����8-	��-
���+-2-
������
��N+���

'�	�-��
K�M*��0�	��+��	�-��A-	�0	*�1-
�'�	�-��
�����
�
+��-K����-

'-
�
�����-��
�������
-		��������
�'+D-	�K�-���-+-������-������-
������0�
�1����-���+����J�����		�	�
K�
��+��	�����������+����
M*��
�-����
-	��������	�*��N+����'�	�-�������M*��	�-��A-	��-
�
0���'��-��J�����
�
+��-�9��-��
0���'��-��J����0	�0���-��
�

�����������	
���

���������
��
����

������
������������

��������
������������

������
������
������

����
�
�����

���
��������

���

���
�������

����
���������

������� !"��������	
���

�������

�����

����
�#��
���
����

���
���
����
���
��������
�$����

�
�%�&!

�

�
����'����
�$����

�
������
�$����

�
�()

���
���

�������������
����

���
��
����

�*���'��*�����
��
����

���
��'�
�������

���
���
"����

�����
��
����

���
��'����
�$����

�
�+

�����#��
����

'�������,�
"��������
�

����
�

��
��

�$
��
��

�

��
�&!

�����

���

�������

%%��	���������
����-.
%%��	���������
���
����-.
%%��	�����������
�����
-.

������

		
������
�����������

���		
������
����
���������

		
������
�����������

		
������
������������

���		
������
��
���������

%%������ %%������
%%������

%%������
%%������

���������	
��

$���

�
���
�������
���/�0

-����
������	��	�.

�����
�����	���
���
����

0	�0�=T(�-

�	+�>H!-	2�+-�
+-��-��=�0�	-+��-
U��+	�#��U�P	�+���-����%

H!-	2�+-�
+-��-��=���+�'��-	!-	2�+-IIV
0	�07=T(-

�	+�>H0� �		��+�����?
!-	2�+-�
+-��-��=���0	�1-	�-���IV
0	�04=T(�-

�	+�>H!-	2�+-�
+-��-��=���0	�1-	#�
U�	�+���-���

%H!-	2�+-�
+-��-��
+=���0	�1-���#������+W�DIIV
0	�05=T(�-

�	+
>H!-	2�+-�
+-��-��=�1+��	#�B��-��-�����

!-	2�+-�
+-��-��=�1+��	#��+	��*����IV
0	�0�=T(�-

�	+
>H!-	2�+-�
+-��-��=���+�'��-	!-	2�+-���

?H!-	2�+-�
+-��-��=�1+��	#�B��-��-���U
�������������������%�?
!-	2�+-�
+-��-��=�1+��	#��+	��*����IIV
0	�0T=T(�-

�	+�?H!-	2�+-�
+-��-��=���0-	-	#��
I
��
�����������������HP!-	2�+-�
+-��-��=���0-	-	#��

.

H!-	2�+-�
+-��-��=�1+��	#��+	��*�����U
�������������������P!-	2�+-�
+-��-��=���0-	-	#��

U
�������������������%HP!-	2�+-�
+-��-��=���0-	-	#��

.

!-	2�+-�
+-��-��=������'��-	#�B��-��-��IIIV
0	�06=T(�-

�	+�>H�		�	#����
%H�-2�	��
+-��-��=���0	�1-	IIV
0	�0�=T(�-

�	+�>H'�!	-+-���+�$		�	����%
�-2�	��
+-��-��=�
0�	-#�IV
0	�0�=T(�-

�	+�>H	�+���-����%
�-2�	��
+-��-��
+=���0	�1-	$		�	�
�����+W�DIV

�������"12
1������/�0�

-���������2�
��������.

��

��	����

314�����
-��������5��
	�5�$$$.

$*��

)XX)
)XXXXXXXXXXXXXXXXXX�&-��&��*���XXXXXXXXXXXXXXXXXXX)
)XX)
&��./$��-�HI�E

)XX)
)XXXXXXXXXXXXXX����-������-	-+��
��XXXXXXXXXXXXXX)
)XX)

����+	�!-	2�+-(1����-V
���1�+��0�	-���(1����-V
����+	�#�(1����-V
���0*�
-	 -���-	(1����-V

���0� �		��+�(1����-V
����		�	#�(1����-V
���-�+*-��A-	�-���!-	2�+-(1����-V

�����0*�
-	!-	2�+-(1����-V
���-�+*-��A-	�-��� -2�	�(1����-V
���	�+���-(1����-V
����		�	(1����-V
�����		��+�(1����-V
���'�!	-+-���+�$		�	(1����-V

)XX)
)XXXXXXXXXXXXXXXX� �-

��
+-��
�XXXXXXXXXXXXXXXXX)
)XX)

)XXXXX��
+-����'���-

(�!-	2�+-�XXXXX)
���!-	2�+-�
+-��-(!-	2�+-H'�!	-+-���+�$		�	K�0*�
-	 -���-	K
)XXXXX��
+-����'���-

(��-2�	��XXXXX)
����-2�	��
+-��-(�-2�	�H�+	�#�K��+	�!-	2�+-K��		�	K
)XX)
)XXXXXXXXXXXXXXXXXXX�#	�0�	+��
�XXXXXXXXXXXXXXXXXXX)
)XX)
0	�0�=T(�-

�	+�>H!-	2�+-�
+-��-��=�0�	-+��-�U��+	�#��U�P	�+���-����%
�������������������H!-	2�+-�
+-��-��=���+�'��-	!-	2�+-IIV
0	�07=T(-

�	+�>H0� �		��+�����?�!-	2�+-�
+-��-��=���0	�1-	�-���IV
0	�04=T(�-

�	+�>H!-	2�+-�
+-��-��=���0	�1-	#��U�	�+���-���
�������������������%H!-	2�+-�
+-��-��
+=���0	�1-���#������+W�DIIV
0	�05=T(�-

�	+�>H!-	2�+-�
+-��-��=�1+��	#�B��-��-�����
�������������������!-	2�+-�
+-��-��=�1+��	#��+	��*����IV
0	�0�=T(�-

�	+�>H!-	2�+-�
+-��-��=���+�'��-	!-	2�+-���
�������������������?H!-	2�+-�
+-��-��=�1+��	#�B��-��-���U
�������������������%�?�!-	2�+-�
+-��-��=�1+��	#��+	��*����IIV
0	�0T=T(�-

�	+�?H!-	2�+-�
+-��-��=���0-	-	#��
I���
�����������������HP!-	2�+-�
+-��-��=���0-	-	#��
�.
�������������������H!-	2�+-�
+-��-��=�1+��	#��+	��*�����U
�������������������P!-	2�+-�
+-��-��=���0-	-	#��
�U
�������������������%HP!-	2�+-�
+-��-��=���0-	-	#��
�.
�������������������!-	2�+-�
+-��-��=������'��-	#�B��-��-��IIIV

6
���71�
�����"12

������������

8
����	��
���
����

�
���
��������
��

��������
�������� ��	
��
������� �������	
������
������� ��	�������	
���
�������������� ��		����
������������	
�������
��������������� ��	����
�����	
�� ����

	
��������
�������� ��	��
�������
�� �	����
��
������� ��	
���!���	���������
�������������� ��	����
�����	
�� �	����
����
��������������� ��	����
�����	
����	����
����

������������
�������� ��	��
������� �������	������
������� ��	�������	���
�������������� ��		����
������������	�������
��������������� ��	����
�����	�� ����

�������

) & 9 :;< = > ?;:@

)))))))) +
)))))))) +

�����

���

�

�
���

�

�
���)))))))) +

������� ������� ������� ����� ����� ����� ����� �����

����� ����� ����� ����� ����� ������� ������� ������� �������

����������������������������������� ���������� ����� �����

�������
�

�����
����

�������
�

������
�*�������
��

��������
1�����
�����A3

Figure 1: Tool architecture

ture work.

2. FROM UML TO SMV
The tool input is a UML specification which has been for-

matted using the XMI exchange syntax. From this input, a
SMV specification is automatically generated. Three kinds
of diagram are taken into account when transforming the
active behaviour from UML into SMV: class, state and ac-
tivity diagrams. The first provides information concerning
the elements that make up the system and their relation-
ships, while the second and third provide information about
the behaviour, through time, of each of those elements.

In order to show how the tool works we use the example of
an automatic teller machine (figures 2, 3, 4, the diagrams of
card class have been omitted by fault of space), both because
it is a very well known example, and because it incorporates
in its specification most of the existing building blocks of
statemachine and activity diagrams.

The following is the basic description of the system. First
of all, the user introduces the credit card followed by a pin
number. The system checks whether it is correct and, if
not it allows the user to try again. If the user introduces
three consecutive wrong pin numbers, the card will not be
returned to the user. Once the right pin is introduced, the
user will be allowed to push the operation button. This op-
eration updates the card information including the available
left-over. At any time, the user can push the cancel button
that will make the card to be returned and an error signal
to be generated.

3. CLASS DIAGRAM
The fundamental concept taken as our starting point is

that of the active class. The system is specified in terms
of active classes which are associated to the reception of
signals. The behaviour of each active class is reflected in a
different SMV module, which in turn is instantiated in the
main module by each of the class objects.

Each SMV module, representing a class, needs the signals
the class receives as its input parameters, and those the

%%��	���������
����-.
%%��	���������
���
�-.
%%��	������#0���-.

���

%
%
��
�
�
�
�

%%������

������		
������
���������������

���		
������
�������������

%%��	�������

�
���-.
%%��	��������/#��
�����-.

�

�
������
;�+$$&���+

%%��	���������
����-.
%%��	���������
���
�-.
%%��	������
���
���
�-.

����

%%��	������
�������-.
%%��	���������/#��
�����-.

#0���������
;�+$$=���+

		
������
��������

		
������
����������

%%������

%%������

%%������

%%��	��������/�����-.
%%��	�����������A�������
�-.

		
������
����������

		
������
�������

%%��	�������

�
-.
%%��	�������0-.

%%������ %%������ 		
������
����������

%%������

/�0���-.
/�0�

�
�-. ����������

%%������
%%������ %%������

		
������
�����������

		
������
����������

���		
������
��
����������

���		
������
����
������

%%������

�������		
������
����������������

		
������
������ ��

%
%
��
�
�
�
�

Figure 2: Class diagram

�������

�����

8���#��
�����

���
���
�
���
����

/�0��	���8������

���
���	��
�

�*���'�
���
���
�

/�0A�����

���
��'���1$�

�
������
�+

���/#��
�����

'�������A�������1

/�0A�������
�

/�0A�������1

/�0��
�

/�0��1 ��������1

������A�������
�

���/������'��

�

'��0

�������

�

���'�/�0�

�
�

�������

�

�
���
#0���

-�
BCB?.

-�
BCB>.

-�
BCB9.

-�
BCB ?.

-�
BCB)=.

-�
BCB) .
-�
BCB)&.

-�
BCB99. -�
BCB9=.

-�
BCB&@.

Figure 3: State diagram of the ATM class

class emits as output parameters. Thus, the said signals are
reflected in the class diagram using the stereotypes <<send>>
and <<signal>> as shown in figure 2.

Here, the signals okPin, errorPin and updateBalanceCard

correspond the the signals emitted by the Card class, while
introPin, introCard and returnCard are the ones it re-
ceives.

An additional class called environment also has to be in-
cluded. It has no associated behaviour and contains details
of the signals produced outside the system and which are
input signals.

4. STATE MACHINES
Behaviour of each of the active objects is reflected through

state machine and activity diagrams. To correctly control
the evolution of a state machine, the state it is in at any
given moment must be known. This is achieved by using a
separate variable to store this information for each machine.

In addition, the fact that combined states, both sequential
and concurrent, may appear within a machine means that
additional variables are needed in order to deal with the
submachines. These will be dealt with following the same
reasoning as for the main machine, with the exception of
the peculiarities they possess with respect to activation and
deactivation.

As for the evolution machines, the SMV operator next

is used. This represents the value taken by the variable in

107

the following step. The state machine is initiated using the
init operator. As far as the machine for the ATM class
is concerned (see Figure 3), the SMV representation of the
outermost machine behaviour is as shown below:

/***** Statemachine for state: ATM *****/
st_ATM:{checkBalance,waitOperation,active,inactive,returningCard};
/***** Evolution of statemachine for class: ATM*****/

init(st_ATM) := inactive;
next(st_ATM) := case {

tr_G_9 : checkBalance;
tr_G_7 : waitOperation;
tr_G_4 : active;
tr_G_29 | tr_G_16: inactive;
tr_G_12 | tr_G_13: returningCard;
default : st_ATM; };

Where tr_G_9, tr_G_7, tr_G_4. . . represent the firing of
transitions tr_G_9, tr_G_7, tr_G_4. . . The block default

represents the behaviour where there is no change of state,
that is, when no transition present in the machine is fired
and it remains in the same state during the following step.

A similar reasoning has been used for the behaviour of the
submachines, based on having a different machine for each
sequential composite state and for each region of a concur-
rent composite state. By doing so, the behaviour associated
to the concurrent composite state checkBalance of Figure 3
is represented in terms of the following machines:

/***** Statemachine for state: checkBalanceATM *****/
st_checkBalanceATM :{updateATM,checkATM,FINAL,DontKnow};

/***** Statemachine for state: checkBalanceCard *****/
st_checkBalanceCard :{checkCard,FINAL,DontKnow};

/** Evolution statemachine state: checkBalanceATM ***/
init(st_checkBalanceATM) := DontKnow;
next(st_checkBalanceATM) := case {

tr_G_12 | tr_G_13 : DontKnow;
tr_G_9 : checkATM;
tr_G_44 : updateATM;
tr_G_46 : FINAL;
default : st_checkBalanceATM; };

/** Evolution statemachine state: checkBalanceCard ***/
init(st_checkBalanceCard) := DontKnow;
next(st_checkBalanceCard) := case {

tr_G_12 | tr_G_13: DontKnow;
tr_G_9 : checkCard;
tr_G_38 : FINAL;
default : st_checkBalanceCard; };

Where DontKnow is the state of a machine which is deac-
tivated. Deactivation can take place either because of the
firing of transition tr_G_13, the cancel button is pushed, or
because both submachines reach the final state and tr_G_12

is fired by termination. Its syntax is the following:
tr_G_12:=in_checkBalance & in_FINALcheckBalanceATM &

in_FINALcheckBalanceCard;

5. ACTIONS
The evolution of an active object can lead to different

actions, including sending signals and modifying the value
of class attributes.

With regard to sending signals, it can happen in any of
the following situations: (1) the firing of a transition, if the
signal is among the transition effects; (2) the activation of
a state, if the signal is among its entry actions; and (3) the
deactivation of a state, if the signal is among its exit ac-
tions. Taking into account that both state activation and
deactivation are due to the firing of some transition, sig-
nal evolution can be represented in a similar way to state
machine evolution.

/�0��	

�������	
���1$�

�
������
���� !�'�
�������

���1$�

�
������
�%� !
'���1$�

�
������
�����1$�

�
������
�()5��

�
���

-�
BCB<<.

Figure 4: Activity diagram for the activity checkEr-
rors

As for modifying the value of an attribute, very much the
same philosophy can be followed. This means that it will
be specified through the use of the SMV operators init and
next. Attributes will be initialised with init if they have
an initial value in the class diagram, whereas their evolution
(next) will depend on the firing of transitions. For instance,
the SMV behaviour for the attribute errorCounter in class
ATM, which keeps track of how many wrong consecutive pin
numbers have been introduced, is the following (see Fig-
ures 2, 3 and 4).

/***** Attribute: errorCounter *****/
ATM_errorCounter: 0..3;
init(ATM_errorCounter):=0;
next(ATM_errorCounter) := case {

tr_G_55: ATM_errorCounter +1;
tr_G_29 | tr_G_16: 0;
default : ATM_errorCounter; };

6. VERIFICATION
Having obtained a system specification in a formal lan-

guage with a solid mathematical basis means that it is pos-
sible to check whether the system complies with certain de-
sirable properties. As with the formal specification methods,
the increasing complexity of software systems requires the
development of new verification methods and tools to carry
it out either automatically or semi-automatically.

In our tool, verification is carried out using the SMV tool
model checker. With this, it is possible to make the verifi-
cation process completely automatic. That is, given a prop-
erty, a positive or negative reply is always obtained.

The property must be expressed in a temporal logic present
in SMV, CTL (Computation Tree Logic) or LTL (Linear
Temporal Logic). This property writing is not a trivial prob-
lem. To write them correctly, advanced knowledge of logics
and the type of specification obtained from the system is
necessary. Our tool overcomes this problem as it has an as-
sistant that guides the user through the writing of properties
until the property to be verified is finally obtained following
the appropriate syntax.

Our starting point was the pattern classification proposed
by Dwyer et al [2] to which our own cataloguing of the differ-
ent properties to be automatically verified has been added.

6.1 Property patterns
The property writing assistant is based on the pattern

scheme proposed by Dwyer et al [2] where it is established a
first classification between patterns of occurrence and order.
Most of the properties of a system to be verified in practice,
fit in with one of these two categories.

Occurrence patterns describe properties with respect to

108

the occurrence of a state or signal during the evolution of
a system. These include absence (never), universality (al-
ways), existence (sometimes) and bounded existence (ap-
pearing a certain number of times). Order patterns estab-
lish properties with respect to the order in which they oc-
cur. They include: precedence (s precedes p), response (s
responds to p), and combinations of both: chain precedence
(s and t precede p or p precedes s and t), chain response (s
and t respond to p or p responds to s and t), and constrain
chain (s and t without z respond to p).

On the other hand, each kind of pattern has a scope of
application which indicates the system execution on which
it must be verified. There are five basic scopes: Global
(the entire program execution), Before R (the execution up
to a given property), After Q (the execution after a given
property), Between Q and R (any part of the execution from
a given property to another given property) and after Q until
R (like between but the designated part of the execution
continues even if the second property does not occur).

6.2 Property classification
The different properties to be verified have been cata-

logued to establish limits for the scopes (Q and R) and to
specify the order of properties when more than one must be
determined (s, t o z), so that the user does not need to know
or understand the structure of the specification obtained
in SMV to carry out verification The established property
types are:

• A state machine is in a particular state.

• An object activity is in a particular state.

• A signal or event is produced.

• Value comparison of an attribute.

The tool will automatically generate the property in the
adequate format, in accordance with the chosen option and
the selected pattern and scopes. Once we have the properties
to be verified, it is possible, using the tool itself, to execute
the SMV model checker to carry out the verification. If the
property is not satisfied, it generates a trace showing a case
where it is not verified.

For example, for the automatic teller machine, it would be
possible to verify that the card is never retained; this means
that the signal retained never happens (pattern: absence,
scope: global) .

As expected, the result of the checker is false. If the gen-
erated counterexample trace is analyzed (see next table), it
can be seen that the card is retained when there has been 2
wrong pin numbers and again errorPin is generated.

Step 62 63 64 |:65

st_ATM active active active active
st_active checkingPin updateError updateError updateError

st_checkErrors DontKnow checking BRANCH retaining
errorPin 1 0 0 0

ATM_errorCounter 2 2 2 2
retained 0 0 0 1

7. CONCLUSIONS AND FUTURE LINES OF
WORK

This paper presents a tool whose main aim is to integrate
formal methods with semi-formal ones in such a way as to

be transparent for the user. It verifies the UML active be-
haviour using SMV. Although this is not a new idea —there
are other works that use formal methods to verify the be-
haviour of UML specifications [7, 1, 8]— as far as we know
at the present time, nowhere are activity and state diagrams
jointly verified, using the former to represent the behaviour
of the class operations.

However, the most innovative characteristic of the tool
is that, in spite of using the potential of temporal logic to
verify systems, the user need have no knowledge of all the
technical intricacies of such logics. Most of the former re-
lated works do not verify automatically, except vUML [7]
although it doesn’t fully exploit the use of temporal logics,
implementing a limited verification based on checking that
it is impossible to reach error states. These error states are
introduced by the user in the diagrams, so the diagrams are
more complicated.

It should also be pointed out, though it has not been dis-
cussed here through lack of space, that the representative
elements of both state and activity diagrams are included in
this approach, something that cannot be said of other con-
tributions in this field, in which few of the characteristics
provided by UML (history states, deferred events, transi-
tions fired by termination...) are dealt with.

As for future lines of work, some kind of treatment of the
traces obtained in the verification when the property is not
satisfied would seem to be of great interest. More precisely,
that the representation of the traces should be visual instead
of written, by using either some of the UML diagrams or an
animated representation of the state and activity machines
which could help the user to locate the error source very
quickly.

8. ADDITIONAL AUTHORS
Additional authors: Pablo de la Fuente (Universidad de

Valladolid) email: pfuente@infor.uva.es)

9. REFERENCES
[1] A. Darvas, I. Majzik, and B. Beny. Verification of UML

Statechart Models of Embedded Systems. In Proc. 5th
IEEE Design and Diagnostics of Electronic Circuits
and Systems Workshop (DDECS 2002), IEEE
Computer Society TTTC, pages 70–77, Abril 2002.

[2] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett.
Patterns in Property Specifications for Finite-State
Verification. In Proceedings of the 21st International
Conference on Software Engineering, Mayo 1999.

[3] J. R. G. Booch and I. Jacobson. The Unified Modeling
Language. Addison-Wesley, 1999.

[4] K. L. McMillan. Symbolic Model Checking. An
approach to the state explosion problem. PhD thesis,
Carnegie Mellon University, Mayo 1992.

[5] OMG. UML 2.0 Diagram Interchange Final Adopted
Specification. OMG Document pct/03-09-01, 2003.

[6] OMG. XML Metadata Interchange (XMI) v 2.0. OMG
Document 2003-05-02, 2003.

[7] I. Porres. Modeling and Analyzing Software Behavior in
UML. PhD thesis, Department of Computer Science,
Åbo Akademi University, Noviembre 2001.

[8] W. Shen, K. Compton, and J. Huggins. A Toolset for
Supporting UML Static and Dynamic Model Checking.
pages 147–152. IEEE Computer Society, 2002.

109

Integration of Legacy Systems in Software Architecture

Maria Wahid Chowdhury
Department of Computer Science

University of Victoria
PO Box 3055, STN CSC

Victoria, BC, Canada V8W 3P6
Email: mwchow@uvic.ca

Phone no: 250-477-9420

Muhammad Zafar Iqbal
Professor & Head,

Computer Science and Engineering Department,
Shah Jalal University of Science and Technology

Sylhet-3114, Bangladesh
Email: i_am_zafar@yahoo.com

Phone: 880-821-713491(Ext: 154)

ABSTRACT
Most Companies have an environment of disparate legacy
systems, applications, processes and data sources. Maintaining
legacy systems is one of the difficult challenges that modern
enterprises are facing today. The commercial market provides a
variety of solutions to this increasingly common problem of
legacy system modernization. However, understanding the
strengths and weaknesses of each modernization technique is
paramount to select the correct solution and the overall success of
a modernization effort. This paper examines the strengths and the
weaknesses of several modernization techniques in order to help
engineers to select the right technique to modernize a legacy
system.

Categories and Subject Descriptors
D.3.3 [Management]: Life Cycle

General Terms
Design.

Keywords
Legacy system, reengineering, integration.

1. INTRODUCTION
Software systems are critical assets for companies and incorporate
key knowledge acquired over the life of an organization.
Companies spend a lot of money on software systems. To get a
return on that investment, these software systems must be usable
for a number of years. The lifetime of software systems is very
variable though many large systems remain in use for many years.
Organizations rely on the services provided by these systems and
any failure of these services would have a serious effect on the
day to day running of business. These old systems have been
given the name legacy systems.

Legacy systems incorporate a large number of changes
continuously to reflect evolving business practices. Repeated
modification has a cumulative effect on system complexity.
Usually, a legacy system has to pass through many developers
evolving over decades to satisfy new requirements. These systems
are matured, heavily used, and constitute massive corporate assets.
Today, legacy systems must be designed to be capable of
integrating with other applications within the enterprise. However,
scrapping legacy systems and replacing them with more modern
software involves significant business risk. Replacing a legacy
system is a risky business strategy for a number of reasons [4]: a)
There is rarely a complete specification of the legacy system.
Therefore, there is no straightforward way of specifying a new
system, which is functionally identical to the system that is in use,
b) Business processes and the ways in which legacy systems
operate are often inextricably inter-twined. If the system is
replaced, these processes will also have to change, with
potentially unpredictable costs and consequences, c) Important
business rules may be embedded in the software and may not be
documented elsewhere, d) New software development is itself
risky because there may be unexpected problems with a new
system. In general, a legacy system has following characteristics:

1. High maintenance cost.
2. Complex structure.
3. Obsolete support software.
4. Obsolete hardware.
5. Lack of technical expertise
6. Business critical.
7. Backlog of change requests.
8. Poorly documented.
9. Embedded business knowledge.
10. Poorly understood.

2. ARCHITECTURE DESIGN
CONSTRAINTS AND ISSUES

A legacy system significantly resists modification and evolution
to meet new and constantly changing business requirements.
Legacy systems have not been designed to accommodate changes
because of the following reasons:

• The Legacy system was designed for the immediate
needs. When constructed, it was not expected that it
would be in service for many years.

• There may be some constraints (as for example: low

110

cost) that were satisfied by the development of legacy
system.

 Before making any change, it is necessary to assess the feasibility
of making changes and to determine the impact of the changes on
the rest of the system. Due to the complex structure of legacy
systems, they require considerable effort to understand. The
challenge in the integration of legacy systems is to understand the
functionality, design, operation and performance of the system
and to anticipate the types of changes that will be required over
the integration steps. After years of maintaining, upgrading
and enhancing the legacy system, the user manuals and system
design documentation are often out of date, inaccurate, and fail to
reflect the current system's capabilities and operations. As a result
legacy system architectures are often poorly documented. This
emerges as a new kind of problem when integrating a legacy
system into an overall system architecture design and
specification.
Architectural issues include gross organization and global control
structure; protocols for communication, synchronization, and data
access; assignment of functionality to design elements; physical
distribution; composition of design elements; scaling and
performance; and selection among alternatives (an architectural
style). [1]. Some of the constraints found in integrating legacy
system are on how to deal with components, connectors,
semantics or topology.
Perhaps the most obvious component constraint relates to the
component types allowed by the architectural style. There are also
a number of constraints when one component needs or manages to
collaborate with other components. This includes collaborator
location and availability, information such as transfer protocol,
data format, schema and content (including method signatures and
interfaces) as well as architectural assumptions. Furthermore,
there may be constraints on the types of access that the
components must provide, e.g. interface access to the database, to
the application logic, or to internal objects of the component. We
must be careful about incompatible data and file formats,
hardware incompatibility, software dependency on hardware,
proprietary protocols and networks when integrating a legacy
system. Other problems posed by legacy systems are the absence
of clear interfaces, and insufficient encapsulation.
In summary, the most important issues to consider when
integrating a legacy system are:
1. Data: how data is going to be integrated. That is, identify and
link records on the same subject or other entity in disparate
systems. One solution is to use metadata. However, this leads to
one problem; because the same metadata can have different
meanings in different applications, companies must develop
custom interfaces between applications. Another approach is to
perform data integration at the semantic level (based on actual
content, not the metadata).
2. Connectivity to each component in the architecture.
3. Routing of messages between components.
4. Validation and transformation of data into and out of each
application.
5. Interfacing with each application based on its own syntactical
and semantic requirements.
6. There exist some security issues that must be addressed. We
must pay attention to the legacy system's security mechanisms.
7. Conformity to organizational and business process structures.
The legacy system must be adapted to new business policies.
The above issues make us wonder: What is the format in which
data is interchanged? How does the application interpret a

message it receives? What is the impact of changing a message
definition?

3. ARCHITECTURE DESIGN
STRATEGIES

There are basically two approaches to reuse legacy systems:
reengineering and integration. Re-engineering means re-
structuring. Re-structuring a legacy system's code requires that the
system and code are well documented and/or can be automatically
analyzed and transformed by an automatic process. Re-
engineering a system is slow. Integration is faster and cheaper
than re-engineering. To integrate a legacy system, we must define
the role of each subsystem, define interfaces for each subsystem,
and build an object wrapper for each subsystem.
An integration strategy can be intrusive or non-intrusive. An
integration strategy that requires knowledge of the internals of a
legacy system is called intrusive (white box) integration, while
integration strategy that requires the knowledge of external
interfaces of a legacy system is called non-intrusive (black box)
integration. A connection to an application system is considered
non-intrusive if an existing entry or exit point is used. If
application source code is modified, the connection is considered
intrusive. Intrusive connections are used when custom coding is
developed to handle specific application needs or to increase
performance. Non-intrusive connections are recommended for use
if the information required from the application is already
available from an existing interface and the transaction volume is
low to moderate. Intrusive integration requires an initial reverse
engineering process to gain an understanding of the internal
system operation. After the code is analyzed and understood,
intrusive integration often includes some system or code
restructuring. There are two major approaches for legacy systems
integration: application integration and data integration.

3.1. Application integration
 The guiding philosophy behind this approach is that applications
contain the business logic of the enterprise, and the solution lies in
preserving that business logic by extending the application's
interfaces to interoperate with other or sometimes newer
applications. There are some major classes of application
integration solutions given below:

User Interface Modernization: The user interface (UI) is
the most visible part of a system. Modernizing the UI improves
usability and is greatly appreciated by final users. A common
technique for UI modernization is Screen scraping, as shown in
Figure 1, consists of wrapping old, text-based interfaces with new
graphical interfaces. [2]

Figure 1. Legacy System Wrapping Using Screen Scrapping

Point-to-point integration: In Point-to-point integration,
communication channels are developed between each pair of
applications. Such a solution is expensive, because the number of

111

interfaces required grows exponentially. With n applications, n*(n
- 1) interfaces may be required since each application may need an
interface with other application. The impact of minor changes in
communication requirements and that of adding a new application
is significant. Maintenance is clearly a problem due to the number
of nodes.

Figure 2 (a). point-to-point integration

Message routers: Point-to-point integration exponentially
increases the number of interfaces. This can be reduced to a linear
increase through the use of middleware � message-oriented or
based on the Common Object Request Broker Architecture
(CORBA).

Figure 2(b). message router

The solution requires interfacing each application to the message
bus through an adapter. Each application has only one
programmatic interface, the message bus. Applications
communicate by publishing a message to the bus, which delivers
message to those who subscribe. Subscription topics of queues let
subscribers receive only messages they are interested in. The
Middleware product may also provide value-added services such
as guaranteed delivery, certified delivery, transactional messaging,
message transformation (using brokers) and so on. [1]

CGI integration: The Common Gateway Interface (CGI) is a
standard for interfacing external applications with information
servers, such as HTTP or Web servers. Legacy integration using
the CGI is often used to provide fast web access to existing assets
including mainframes and transaction monitors. [2]

Figure 3. CGI Integration

3.2. Data Integration
 The guiding philosophy behind integration of data is that the real
currency of the enterprise is its data. The implied business logic in
the data and metadata can be easily manipulated directly by
applications in the new architecture of the enterprise. Some data
integration solutions are described below:

XML Integration: The Extensible Markup Language (XML�)
is a broadly adopted format for structured documents and data on
the Web. [2]

Figure 4. XML Wrapping

XML is a simple and flexible text format derived from standard
generalized markup language (SGML) (ISO 8879) and developed
by the World Wide Web Consortium® (W3C). XML is expanding
from its origin in document processing and becoming a solution
for data integration.

Data replication: Database replication is the process of
copying and maintaining database objects in multiple databases
that make up a distributed database system.

Figure 5. Data Replication

Replication provides users with fast, local access to shared data
and greater availability to applications because alternative data
access options exist. Even if one site becomes unavailable, users
can continue to query, or even update, data at other locations.
Database replication is often used to enable decentralized access
to legacy data stored in mainframes.

4. EXAMPLE OF GENERIC
ARCHITECTURES

Java J2EE Connector architecture: Java J2EE Connector
architecture defines a standard set of services that allow
developers to quickly connect and integrate their applications with
virtually any back-end enterprise information system. These
services are supplied as "plug-in" connectors.

Sun ONE: Sun Open Net Environment (Sun ONE) is Sun's
standards-based software vision, architecture, platform, and

112

expertise for building and deploying Services on Demand. The
network is all about servicing the communities, stockholders,
customers, and employees.

OMG MDA: Computing infrastructures are expanding their
reach in every dimension. New platforms and applications must
interoperate with legacy systems. MDA is a new architectural
approach that provides companies with the tools necessary to
integrate all the various middleware technologies (such as
CORBA, EJB, XML, SOAP and .NET). MDA addresses the
complete life cycle of designing, implementing, integrating and
managing applications and data using open standards. MDA
provides an architecture that assures portability, cross platform
interoperability, platform independence, domain specificity, and
productivity.

B2B: B2B integration or B2Bi is basically about the secured
coordination of information among businesses and their
information systems.

EAI: As the need to meet increasing customer and business
partner expectations for real-time information continued to rise,

Figure 6. Enterprise Application Integration

companies are forced to link their disparate systems to improve
productivity, efficiency, and, ultimately, customer satisfaction.
EAI is the process of creating an integrated infrastructure for
linking disparate systems, applications, and data sources across
the corporate enterprise.

CORBA: CORBA allows applications to communicate with one
another no matter where they are located or who has designed
them. With CORBA, users gain access to information
transparently, without them having to know what software or
hardware platform it resides on or where it is located on an
enterprises� network. This characteristic makes CORBA an
excellent technology to integrate legacy systems.

XML: XML improves the web functionality by providing more
flexible and adaptable information identification (tags).

SOAP: The Simple Object Access Protocol (SOAP) is a standard
that specifies how two applications can exchange XML
documents over HTTP.

Java RMI: Java Remote Method Invocation (RMI) enables the
programmer to create distributed Java technology-based
applications in which methods of remote java objects can be
invoked from other Java virtual machines, possibly on different
hosts. Java RMI is well suited to be used in the application level
of integration.

JDBC: JDBC technology is an API that lets user access to
virtually any tabular data source from the Java programming
language. The JDBC API allows developers to take advantage of
the Java platform's "Write Once, Run AnywhereTM" capabilities
for industrial strength, cross-platform applications that require
access to enterprise data.

DCOM: The Distributed Component Object Model (DCOM) is
a protocol that enables software components to communicate
directly over a network in a reliable, secure, and efficient manner.

5. CONCLUSION
There are different approaches to the modernization of legacy
assets including reengineering (white-box) and wrapping (black-
box). Before starting any legacy modernization effort, every
possible option should be considered and business and strategic
factors also need to be considered for ensuring long-term success.
Present-day systems are the potential source of future legacy
problems. To eliminate future legacy problems from present-day
systems, systems should be built by using modular engineering
and configurable infrastructure.

6. REFERENCES
[1] Architectural Integration Styles for Large-Scale Enterprise
Software system, By Jonas Anderson, Pontus Johnson,
Department of industrial and Control Systems. Royal Institute of
Technology, Sweden.

[2] A Survey of Legacy System Modernization Approaches:
http://www.sei.cmu.edu/publications/documents/00.reports/00tn0
03.html
[3] OMG Model Driven Architecture, http://www.omg.org/mda/
[4] Software Engineering, Sixth Edition, By: Ian Sommervile.

113

Toward Specification and Composition
 of BoxScript Components

H. Conrad Cunningham
Computer & Information Science

University of Mississippi
(662) 915-5358

cunningham@cs.olemiss.edu

Yi Liu
Computer & Information Science

University of Mississippi
(662) 915-7602

liuyi@cs.olemiss.edu

Pallavi Tadepalli
Computer & Information Science

University of Mississippi
(662) 915-7602

pallavi@cs.olemiss.edu

ABSTRACT
BoxScript is a Java-based, component-oriented programming
language whose design seeks to address the needs of teachers and
students for a clean, simple language. This paper briefly
describes BoxScript and presents the authors’ preliminary ideas
on specification of components and their compositions.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification –
class invariants, formal methods, programming by contract.

General Terms
Design, Languages, Verification.

Keywords
Component, composition, specification, BoxScript.

1. INTRODUCTION
The goal of component-oriented programming is to enable a
software system to be built quickly and reliably by assembling
separately developed software components to form the system.
The system should be flexible enough to be readily adapted to
changing requirements by replacing, adding, or removing
components. The concepts and languages that support this
approach should be taught to students in computing science and
software engineering programs.
In 2002 the first author taught an advanced software engineering
class focused on Component Software in which the second and
third authors were students [4]. The class used an approach to
design similar to the “UML Components” approach of Cheesman
and Daniels [2]. For the programming projects, the class used the
Enterprise JavaBeans (EJB) component model and technology.
EJB is a component model for building server-side, enterprise-
class applications [11]. The complexity of the EJB technology
meant it was not ideal for use in an academic course. The
technology got in the way of teaching the students how to “think
in components” cleanly. The students had to map their designs
into the EJB technology [2, 7] and struggle to master enough of
the technology to complete their term projects.
As a result, the second author undertook the design of a simple,
component-oriented language with features that support its use in
teaching. This language, called BoxScript, is described in section
2. Section 3 discusses the authors’ preliminary ideas on how to
specify BoxScript components and their composition formally
and section 4 summarizes and identifies areas for further work.

2. BOXSCRIPT
BoxScript is a Java-based, component-oriented programming
language whose design seeks to address the needs of teachers and
students for a clean, simple language. The component concept is
shown in Figure 1 [5].

A component is called a box. A box is a strongly encapsulated
module that hides its internal details while only exposing its
interfaces. There are two types of interfaces. A provided interface
describes the operations that a box implements and that other
boxes may use. A required interface describes the operations that
the box requires and that must be implemented by another box. A
BoxScript interface is represented syntactically by a Java
interface, that is, by a set of related operation signatures. Each
occurrence of an interface in a box has an interface handle, which
identifies that occurrence uniquely within the box, and a type,
which is the Java interface type. Each box has a corresponding
box description (.box) file that gives the needed declarations.
An abstract box is a box that describes the provided and required
interfaces but does not implement the provided interfaces. An
abstract box should be implemented by concrete boxes, i.e.,
atomic or compound boxes. Figure 2a shows an abstract box
description DateAbs. Its provided interface DayCal calculates
the day of the week for a date. Figure 2b shows another abstract
box description CalendarAbs, which has one provided and one
required interface. Its provided interface Display takes the time
range and displays the calendar accordingly.

An atomic box is the basic element in BoxScript. It does not
contain any other boxes. It must supply an implementation for

Component 1 Component 2

interface

inner
component

provided required provided required

Figure 1. Components and Their Interconnections

abstract box DateAbs
{ provided interface DayCal Dc;
 //Dc is handle of interface DayCal
}

Figure 2a. DateAbs.box
abstract box CalendarAbs
{ provided interface Display Dis;
 required interface DayCal DayC;
}

Figure 2b. CalendarAbs.box

114

each provided interface, that is, a Java class that implements
the interface. The description of an atomic box gives the box
name and, if appropriate, the name of the abstract box it
implements. It also gives its provided and required interfaces by
listing their interface types and handles. Figure 3a and 3b show
atomic box descriptions Date and Calendar. Date implements
DateAbs and Calendar implements CalendarAbs.

A compound box is a box composed from other boxes. It does not
implement its provided interfaces, but uses the implementations
provided by its constituent boxes. Each constituent box is given
an identifier, called its box handle, to enable it to be uniquely
identified as a participant within the composition. The box
description for a compound box not only supplies the information
given in the atomic box, but also specifies (1) the boxes from
which this compound box is composed, (2) the sources of its
provided and required interfaces, and (3) the connection
information that describes how the constituent box interfaces are
“wired” together. To provide flexibility, a compound box can be
declared to be composed from either concrete or abstract boxes.
BuildCalendar (in Figures 4a and 4b) is composed from
abstract boxes DateAbs and CalendarAbs. When we configure
BuildCalendar, we substitute concrete boxes such as Date
and Calendar for the corresponding abstract boxes.

BoxScript uses the box handles to expose and connect the
interfaces of the constituent boxes. The composed from
declaration in BuildCalendar assigns boxD and boxC as the
box handles for DateAbs and CalendarAbs, respectively. The
provided interface and required interface
declarations give the types of the interfaces, their interface
handles, and their sources. The source is a box handle and
interface handle associated with a constituent box. In
BuildCalendar, interface handle D identifies an interface of
type Display that is mapped to interface handle Dis of the box
with box handle boxC (i.e., CalendarAbs). The connect
statement connects a required interface of one box to a provided
interface of another. In BuildCalendar, the required interface
with handle DayC of the box with box handle boxC (i.e.,
boxC.DayC) is connected to the provided interface with handle
Dc of the box with box handle boxD (i.e. boxD.Dc).

The composition of boxes into a compound box hides all provided
interfaces that are not explicitly exposed and must expose every
required interface that is not wired to a provided interface of a
box within the composition. In the example, provided interface
Display is exposed. Figures 5a and 5b illustrate the composition
process.

Atomic and compound boxes may either be standalone or
implementations of abstract boxes. All the implementations of an
abstract box are variants of the abstract box. The intention is that
one variant can be safely substituted for another. When one box
substitutes for another, the substitute must satisfy the specification
of the original box. A variant’s provided interfaces should supply
at least the operations of the abstract box and the variant’s
required operations should be at most those of the abstract box.

3. SPECIFICATION
In BoxScript, as in the Cheesman-Daniels approach [2], one basic
unit for specifying functionality is the interface. An interface is a
set of operation signatures (name, parameter types and order, and
return value types) that are related. BoxScript uses Java interfaces
for its interface types.
In the Cheesman-Daniels approach, the semantics of an interface
is specified in terms of an interface information model [2], which
is expressed graphically as a UML type (class) diagram
augmented by Object Constraint Language (OCL) [12] invariants.
For BoxScript, we simplify the presentation and consider the
information model to consist of a pair (V,I), where V is a set of
abstract variables representing the abstract state of the component
instance associated with the interface and I is an invariant
representing the valid values of the abstract state.
An invariant is an assertion that must be kept true in all states of a
box that are visible to its clients [6]. We attach invariants to an
interface to specify the unchanging properties of the objects that
implement the interface. In the model, symbol I denotes the
conjunction of all the invariants attached to an interface.

DayCal

DateAbs CalendarAbs
provided
interfaces

required
interfaces

DayCal Display
Dc Dis

DayC

Figure 5a. DateAbs and CalendarAbs

provided
interfaces

BuildCalendar

DateAbs CalendarAbs

provided
interfaces

required
interfaces

DayCal Diaplay

DayCal

Dc Dis

DayC

Figure 5b. Composition

provided
interfaces

Display
D

provided
interfaces

boxD boxC

 abstract box BuildCalendarAbs
 { provided interface Display D;}

Figure 4a. BuildCalendarAbs.box
 box BuildCalendar implements

 BuildCalendarAbs
 { composed from DateAbs boxD,

 CalendarAbs boxC;
 // boxD is box handle for DateAbs
 // boxC is box handle for CalendarAbs
 provided interface

 Display D from boxC.Dis;
 connect boxC.DayC to boxD.Dc;
 }

Figure 4b. BuildCalendar.box

box Date implements DateAbs
{ provided interface DayCal Dc; }

Figure 3a. Date.box
box Calendar implements CalendarAbs
{ provided interface Display Dis;
 required interface DayCal DayC;
}

Figure 3b. Calendar.box

115

We specify the semantics of an individual operation using
precondition and postcondition assertions. A precondition
expresses the requirements that any call of the operation must
satisfy. That is, it gives valid values of the operation arguments
and the interface’s abstract state from which the operation can be
safely called. A postcondition expresses properties that are
ensured in return by the execution of the call. It gives the results
of the operation in terms of the arguments and abstract state. We
require any operation that is called with the precondition true to
terminate eventually with the postcondition true.
To provide precise specification about the relationships of
operations calls to each other, we can include history sequences
[3], which record the sequence of operation calls. This allows
assertions about the sequences to appear in the invariants,
preconditions, and postconditions.
A box interface x extends box interface y (syntactically) if and
only if type(x) = type(y) or type(y) extends type(x) in the Java
type system. That is, all the operation signatures in y also appear
in x, but x may have additional operations. Type extension does
not allow either covariant or contravariant changes to operations.
Box interface x satisfies interface y when x provides at least the
operations required by y and the operations of x have an
equivalent meaning to the matching operations in y. More
formally, box interface x satisfies box interface y if and only if:

• x extends y

• I(x) & C(x,y) ⇒ I(y)
• (∀m : m ∈ y :
 (pre(y,m) & C(x,y)& I(y) ⇒ pre(x,m))
 & (post(x,m)& C(x,y)& I(x) ⇒ post(y,m)))
Above, I(x) refers to the invariant for x and pre(x,m) and
post(x,m) refer to the precondition and postcondition,
respectively, for operation m on interface x. Assertion C(x,y)
is a coupling invariant that relates the equivalent aspects of the
interface information models for x and y.

The above definition of satisfaction is motivated by Meyer’s
treatment of inheritance in the design by contract approach (and
the Eiffel language) [8] and the concept of a coupling invariant in
program and data refinement [9].
The second basic unit of specification is the box. A box is a
program module that encapsulates some functionality behind its
provided interfaces. A client of the box may call an operation on
a provided interface. To carry out this operation, a box may
invoke operations on its required interfaces, each of which is
connected to a provided interface of some box. The specification
for a provided interface must be satisfied by the implementation
of the box; the specification for a required interface must be
satisfied by a provided interface of some box.
A box’s information model is formed by joining the information
models of its provided interfaces. It may have new abstract state
variables and a box invariant that defines the validity of the box’s
state. For a box B, let I(B) be its box invariant, C(B) be the
coupling invariant that ties it to the interface information models,
and prov(B) be the provided interfaces. For any box B, it must
be the case that:

(∀p: p ∈ prov(B): I(p)) & C(B) ⇒ I(B)

An atomic box must supply implementations for its provided
interfaces as a cluster of Java classes. The implementations of the
interfaces within an atomic box may interact directly with each
other and share internal state. A provided interface thus must
preserve the invariants of all the box’s provided interfaces [10]. A
convenient way to achieve this is for all of the provided interfaces
of an atomic box to have the same information model (V,I).
A compound box composes one or more other boxes to form the
“larger” box. As is the case with any box, a compound box has a
specification as described above. It has a box information model
(i.e., abstract state and box invariant) and interface specifications
for the provided and required interfaces. The box invariant ties
together the information models of the provided interfaces to form
the information model for the compound box.
As with the atomic box, a compound box must provide
implementations for its provided interfaces and it may use its
required interfaces in doing so. However, unlike the atomic box,
the compound box defers the implementation of a provided
interface to one of its constituent boxes. The interface handle in
the compound box is either the same as in the constituent box or it
may be an alias that is linked to an interface of the constituent
box. Similarly, a required interface of the compound box may be
a required interface of one or more constituent boxes. A
constituent box may have provided interfaces that are not exposed
by the compound box. However, a required interface of a
constituent box must either be exposed outside the compound box
or be satisfied by some provided interface within the compound
box. Thus the box invariant for a compound box must relate the
properties expected for its interfaces to the related properties of
the corresponding interfaces of constituent boxes.
More formally, for any compound box B, the following must
hold:

• (∀p: p ∈ prov(B): I(p)) & C(B) ⇒ I(B)
• (∀p: p ∈ prov(B):
 (∃D,q: D ∈ const(B) & q ∈ prov(D)
 & q = alias(B,p): q satisfies p))
• (∀D,r: D ∈ const(B) & r ∈ req(D):
 (∃s: s ∈ req(B) & r = alias(B,s):
 s satisfies r) OR
 (∃E,q: E ∈ const(B) & q ∈ prov(E)
 & connected(B,r,q): q satisfies r))
In the above, const(B) denotes the set of boxes that are
composed to form compound box B, alias(B,q) is the function
that maps an interface q of compound box B to an interface in a
constituent box, req(B) is the set of required interfaces of box B
and connected(B,r,p) is an assertion that required interface r
is connected to provided interface p. This information is available
from the box description. The box invariant may be used in
showing that one interface within the box satisfies another.
Consider a valid relationship between a concrete box B and an
abstract box A that it implements. Clearly, if abstract box A
specifies the presence of a provided interface p, then concrete box
B must have a provided interface that satisfies p. If concrete box
B has a required interface r, then abstract box A must specify a
required interface that satisfies r. In terms of operations, the
provided interfaces of B should supply at least the operations of A,
and the required operations of B should be at most those of A. A

116

similar situation occurs if we consider an abstract box that extends
another abstract box.
More formally, box B satisfies box A if and only if:
• I(B) & C(A,B) ⇒ I(A)
• (∀p: p ∈ prov(A): (∃q: q ∈ prov(B):
 handle(q) = handle(p) & q satisfies p))
• (∀r: r ∈ req(B):(∃s: s ∈ req(A):
 handle(r) = handle(s) & s satisfies r))
Above, C(A,B) denotes a coupling invariant for the refinement
of the information model when replacing A by B. In particular,
C(A,B) serves as the coupling invariant for showing that the
interfaces of B have the needed satisfaction relationship with the
corresponding interfaces of A. The notation handle(p) refers to
the interface handle of interface p.

A compound box may be composed of abstract boxes. At runtime,
an instance of a variant of the abstract box is configured into the
instance of the compound box. As noted above, the variant must
satisfy the specification for the abstract box it implements. That
is, the variant is the same as the abstract box from the perspective
of its specification. Thus the box invariant of the compound box
can transparently address the different variants.

4. CONCLUSION
BoxScript is a Java-based, component-oriented programming
language that is under development by the authors. Its design
seeks to address the needs of teachers and students by providing a
simple and clean language, yet one that can be used to solve
practical problems. It introduces a notation for components and
their composition but uses the Java language (which is familiar to
most students) to express the internal details of components.
This paper briefly describes the concepts of BoxScript and
presents the authors’ preliminary ideas on formal specification of
BoxScript components and their compositions. Although formal
specification and verification were not design goals for BoxScript,
its relatively simple design, which is based on strongly
encapsulated modular units, seems to be amenable to the
application of formal techniques. The ideas outlined in this paper
do seem promising, but considerable work is needed to elaborate
the formalism and experiment with the pragmatics of the
approach. In particular, several examples need to be worked out
to demonstrate the concepts and techniques. It will also be helpful
to adapt the BoxScript approach to enable use of techniques and
tools such as those associated with the Java Modeling Language
(JML) [6].
The approach sketched in this paper is likely insufficient to
capture the full semantics of calls to the required interfaces, in
particular, calls that may lead to reentrance into the calling box
(e.g., call-backs). The greybox approach [1] or a similar technique
may be needed to enable verification of compound boxes.
This paper approaches specification of program semantics in a
manner that is language-oriented, that is, somewhat bottom-up
and compositional. The ideas should also be addressed from a
software engineering perspective, seeking techniques that can be
applied effectively in a more top-down, decompositional manner.

5. ACKNOWLEDGMENTS
This work was supported, in part, by a grant from Acxiom
Corporation titled “The Acxiom Laboratory for Software
Architecture and Component Engineering (ALSACE).” The
design and implementation of BoxScript is part of a Liu’s
dissertation project under the direction of Cunningham. We thank
the reviewers for their many helpful comments on this paper.

6. REFERENCES
[1] M. Büchi and W. Weck. The Greybox Approach: When

Blackbox Specifications Hide Too Much, Technical Report
No. 297a, Turku Centre for Computer Science, Finland,
August 1999.

[2] J. Cheesman and J. Daniels. UML Components: A Simple
Process for Specifying Component-Based Software, Addison
Wesley, 2001.

[3] H. C. Cunningham and Y. Cai. “Specification and
Refinement of a Message Router,” In Proceedings of the
Seventh International Workshop on Software Specification
and Design, IEEE, December 1993.

[4] H. C. Cunningham, Y. Liu, P. Tadepalli, and M. Fu.
“Component Software: A New Software Engineering
Course,” Journal of Computing Sciences in Colleges, Vol.
18, No. 6, pp. 10-21, June 2003.

[5] W. Fleisch. “Applying Use Cases for the Requirements
Validation of Component-Based Real Time Software,” In
Proceedings of the Second IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, p. 75,
IEEE, 1999.

[6] G. T. Leavens and Y. Cheon. “Design by Contract with
JML,” draft paper, Iowa State University, August 2004.

[7] Y. Liu and H. C. Cunningham. “Mapping Component
Specifications to Enterprise JavaBeans Implementations,” In
Proceedings of the ACM Southeast Conference, pp. 177-181,
April 2004.

[8] B. Meyer. Object-Oriented Software Construction, Second
Edition, Prentice Hall, 1997.

[9] C. Morgan. Programming from Specifications, Prentice Hall
International, 1994.

[10] P. Müller. Modular Specification and Verification of Object-
Oriented Programs, Lecture Notes in Computer Science
2262, Springer-Verlag, 2002.

[11] I. Singh, B. Stearns, M. Johnson, and the Enterprise Team.
Designing Enterprise Applications with the J2EETM
Platform, Second Edition. Addison Wesley, 2002.

[12] J. Warmer and A. Kleppe. The Object Constraint Language:
Precise Modeling with UML, Addison-Wesley, 1999.

117

Hierarchical Presynthesized Components for Automatic
Addition of Fault-Tolerance: A Case Study∗

[Extended Abstract]

Ali Ebnenasir
Software Engineering and Network Systems

Laboratory
Department of Computer Science and

Engineering
Michigan State University

East Lansing MI 48824 USA

ebnenasi@cse.msu.edu

Sandeep S. Kulkarni
Software Engineering and Network Systems

Laboratory
Department of Computer Science and

Engineering
Michigan State University

East Lansing MI 48824 USA

sandeep@cse.msu.edu

ABSTRACT
We present a case study for automatic addition of fault-
tolerance to distributed programs using presynthesized dis-
tributed components. Specifically, we extend the scope of
automatic addition of fault-tolerance using presynthesized
components for the case where we automatically add hier-
archical components to fault-intolerant programs. Towards
this end, we present an automatically generated diffusing
computation program that provides nonmasking
fault-tolerance. Since presynthesized components provide
reuse in the synthesis of fault-tolerant distributed programs,
we expect that our method will pave the way for automatic
addition of fault-tolerance to large-scale programs.

Keywords
Fault-tolerance, Automatic addition of fault-tolerance, For-
mal methods, Program synthesis, Distributed programs

1. INTRODUCTION
In this paper, we present a case study for automatic ad-

dition of presynthesized fault-tolerance components to dis-
tributed programs using a software framework called Fault-
Tolerance Synthesizer (FTSyn) [5]. Specifically, we use FT-
Syn to add distributed components with hierarchical topol-
ogy to a diffusing computation program to provide recov-
ery in the presence of faults. Presynthesized fault-tolerance
components provide reuse in the synthesis of fault-tolerant

∗This work was partially sponsored by NSF CAREER CCR-
0092724, DARPA Grant OSURS01-C-1901, ONR Grant
N00014-01-1-0744, NSF grant EIA-0130724, and a grant
from Michigan State University.

Permissionto make digital or hardcopiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthisnoticeandthefull citationon thefirst page.To copy otherwise,to
republish,to postonserversor to redistributeto lists,requiresprior specific
permissionand/ora fee.
SAVCBS ’04 Newport Beach,California,USA
Copyright 2004ACM X-XXXXX-XX-X/XX/XX ...$5.00.

distributed programs from their fault-intolerant version. Such
reuse is particularly beneficial in dealing with the exponen-
tial complexity of synthesis [7]. Also, fault-tolerance com-
ponents provide an abstraction that simplifies the reasoning
about the fault-tolerance and functional concerns.

The FTSyn framework incorporates the results of [9] where
the synthesis algorithm automatically specifies and adds
presynthesized fault-tolerance components, namely detec-
tors and correctors, to fault-intolerant programs during the
synthesis of their fault-tolerant version. It is shown in the
literature [6] that such components are necessary and suffi-
cient for the manual design of fault-tolerant programs. As
a result, we expect to benefit from their generality in auto-
matic addition of fault-tolerance as well.

In [9], the synthesis algorithm is applied to programs where
the underlying communication topology between processes
is linear. In this paper, we show how we add hierarchical
presynthesized components to distributed programs. Specif-
ically, we add tree-like structured components to a diffusing
computation program where processes are arranged in an
out-tree, where the indegree of each node is at most one.

This case study shows that the synthesis method pre-
sented in [9] handles presynthesized components (respec-
tively, distributed programs) with different topologies. Also,
we extend the scope of synthesis for the case where we simul-
taneously add multiple presynthesized components to the
program being synthesized. Moreover, the use of presyn-
thesized components provides a theoretical foundation for
automated development of component-based systems where
we reason about the correctness of each individual compo-
nent and the composition of components.
The organization of the paper. In Section 2, we present
preliminary concepts. In Section 3, we describe how we
formally represent a hierarchical fault-tolerance component.
Subsequently, in Section 4, we show how we automatically
add a hierarchical component to a diffusing computation
program. Finally, we make concluding remarks and discuss
future work in Section 5.

2. PRELIMINARIES
In this section, first, we present basic concepts in Subsec-

tion 2.1. Then, in Subsection 2.2, we represent the formal

118

problem statement of adding fault-tolerance components to
programs (adapted from [9]). In Subsection 2.3, we give an
informal overview of the synthesis method presented in [9].

2.1 Basic Concepts
We specify programs in terms of their state space and

their transitions. The definition of specifications is adapted
from Alpern and Schneider [1]. The definition of faults and
fault-tolerance is adapted from Arora and Gouda [2] and
Kulkarni and Arora [7]. The issues of modeling distributed
programs is adapted from [7, 4].
Program. A program p is specified by a finite set of vari-

ables, say V = {v0, v2, .., vq}, and a finite set of processes,
say P = {P0, · · · , Pn}, where q and n are positive integers.
Each variable vi is associated with a finite domain of values
Di (1 ≤ i ≤ q). A state of p is of the form: 〈l0, l2, .., lq〉
where ∀i : 0 ≤ i ≤ q : li ∈ Di. The state space of p, Sp, is
the set of all possible states of p.

A process, say Pj (0 ≤ j ≤ n), in p is associated with
a set of program variables, say rj , that Pj can read and a
set of variables, say wj , that Pj can write. Also, process
Pj consists of a set of transitions of the form (s0, s1) where
s0, s1 ∈ Sp.

A state predicate of p is any subset of Sp. A state predi-
cate S is closed in the program p iff (if and only if) ∀s0, s1 :
(s0, s1) ∈ p : (s0 ∈ S ⇒ s1 ∈ S). A sequence of states,
〈s0, s1, ...〉, is a computation of p iff the following two con-
ditions are satisfied: (1) ∀j : j > 0 : (sj−1, sj) ∈ p, and
(2) if 〈s0, s1, ...〉 is finite and terminates in state sl then
there does not exist state s such that (sl, s) ∈ p. A finite
sequence of states, 〈s0, s1, ..., sn〉, is a computation prefix of
p iff ∀j : 0 < j ≤ n : (sj−1, sj) ∈ p ; i.e., a computation
prefix need not be maximal. The projection of program p

on state predicate S, denoted as p|S, consists of transitions
{(s0, s1) : (s0, s1)∈p ∧ s0, s1∈S}.
Distribution issues. We model distribution by identify-
ing how read/write restrictions on a process affect its tran-
sitions. A process Pj cannot include transitions that write a
variable x, where x /∈ wj . Given a single transition (s0, s1),
it appears that all the variables must be read to execute
that transition. For this reason, read restrictions require
us to group transitions and ensure that the entire group is
included or the entire group is excluded. For example, in
a program with two Boolean variables a and b and a pro-
cess Pr that cannot read b, the transition from the state
〈a = 0, b = 0〉 to 〈a = 1, b = 0〉 can be included iff the tran-
sition from 〈a = 0, b = 1〉 to 〈a = 1, b = 1〉 is also included.
The grouping of these two transitions makes the value of b

irrelevant for Pr.
Specification. A specification is a set of infinite sequences
of states that is suffix-closed and fusion-closed. Suffix closure

of the set means that if a state sequence σ is in that set then
so are all the suffixes of σ. Fusion closure of the set means
that if state sequences 〈α, s, γ〉 and 〈β, s, δ〉 are in that set
then so are the state sequences 〈α, s, δ〉 and 〈β, s, γ〉, where
α and β are finite prefixes of state sequences, γ and δ are
suffixes of state sequences, and s is a program state.

Following Alpern and Schneider [1], we let the specifica-
tion consist of a safety specification and a liveness specifica-

tion. For a suffix-closed and fusion-closed specification, the
safety specification can be specified as a set of bad transi-
tions [6] that a program is not allowed to execute, that is,
for program p, its safety specification is a subset of Sp×Sp.

Given a program p, a state predicate S, and a specification

spec, we say that p satisfies spec from S iff (1) S is closed in
p, and (2) every computation of p that starts in a state in S

is in spec. If p satisfies spec from S and S 6={}, we say that
S is an invariant of p for spec.

We do not explicitly specify the liveness specification in
our algorithm; the liveness requirements for the synthesis
is that the fault-tolerant program eventually recovers to its
invariant from where it satisfies its specification.
Faults. A class of faults f for a program p with state space
Sp, is a subset of the set Sp × Sp. A sequence of states,
σ = 〈s0, s1, ...〉, is a computation of p in the presence of f

(denoted p[]f) iff the following three conditions are satisfied:
(1) every transition t ∈ σ is a fault or program transition;
(2) if σ is finite and terminates in sl then there exists no
program transition originating at sl, and (3) the number of
fault occurrences (i.e., transitions) in σ is finite.

We say that a state predicate T is an f -span (read as
fault-span) of p from S iff the following two conditions are
satisfied: (1) S ⇒ T and (2) T is closed in p[]f .
Nonmasking fault-tolerance. Given a program p, its
invariant, S, its specification, spec, and a class of faults, f ,
we say p is nonmasking f -tolerant for spec from S iff the
following two conditions hold: (i) p satisfies spec from S;
(ii) there exists a state predicate T such that T is an f -span
of p from S, and every computation of p[]f that starts from
a state in T has a state in S.

2.2 Problem Statement
In this subsection, we adapt the problem statement pre-

sented in [9] where the authors add presynthesized fault-
tolerance components to a program p, with state space Sp,
invariant S ⊆ Sp, specification spec, and faults f , in order
to synthesize a fault-tolerant program p′ with the new in-
variant S′ in the new state space Sp′ . Since each component
has its own set of variables, we expand the state space of p

to Sp′ by adding a fault-tolerance component to it.
To create a projection from the states and the transitions

of p′ to the states and the transitions of p, we define an
onto function H: Sp′ → Sp, which can be applied on the
domain of states, state predicates, transitions, and groups
of transitions.

Now, since we require p′ not to include new behaviors
in the absence of faults, the invariant S′ cannot contain
states s′0 whose image H(s′0) is not in S. Otherwise, in the
absence of faults, p′ will include computations in the new
state space Sp′ that do not have corresponding computations
in p. Hence, we have H(S′) ⊆ S. Likewise, we require p′ not
to contain a transition (s′0, s

′
1) in p′|S′ that does not have a

corresponding transition (s0, s1) in p|H(S′) (where H(s′0) =
s0 and H(s′1) = s1). Otherwise, p′ may create a new way
for satisfying spec in the absence of faults. Therefore, the
problem of adding fault-tolerance components to programs
is as follows:

The Addition Problem.

Given p, S, spec, f , with state space Sp such that
p satisfies spec from S,

Sp′ is the new state space due to adding fault-tolerance
components to p,
H : Sp′ → Sp is an onto function,

Identify p′ and S′ ⊆ Sp′ such that
H(S′) ⊆ S,
H(p′|S′) ⊆ p|H(S′), and
p′ is nonmasking f -tolerant for spec from S′.

119

2.3 The Synthesis Method
In this subsection, we present an informal overview of the

synthesis method presented in [9]. We note that the presen-
tation of this subsection suffices for this paper, however, the
interested reader may refer to [9] for a formal presentation.

To deal with the exponential complexity [7] of synthesiz-
ing distributed programs, the synthesis algorithm presented
in [9] provides a hybrid approach where it uses heuristics
(developed in [8]) along with presynthesized fault-tolerance
components. Specifically, the algorithm of [9] first uses heuris-
tics under distribution restrictions to add recovery from a
specific deadlock state sd. If the heuristics fail then the
synthesis algorithm adds presynthesized correctors to re-
solve the deadlock state sd (cf. Section 3 for a formal def-
inition of detectors/correctors). To add a presynthesized
component (i.e., detectors/correctors), the synthesis algo-
rithm automatically (i) specifies the required component;
(ii) extracts the necessary component from an existing com-
ponent library; (iii) ensures that the components do not
interfere with the program execution, i.e., the program and
the presynthesized components satisfy their specifications in
the presence of each other, and (iv) adds the components.

To automatically specify and add the required compo-
nents during the synthesis of a distributed program p with
n processes {P1, · · · , Pn}, the synthesis algorithm of [9] in-
troduces a high atomicity processes Phighi

corresponding to
each Pi (1 ≤ i ≤ n). Each Phighi

is allowed to read all
program variables and has the write abilities of Pi. At the
outset of the synthesis, process Phighi

has no actions to exe-
cute, where an action atomically updates program variables
when a specific condition holds. For a specific deadlock state
sd, the synthesis algorithm determines whether there exists a
high atomicity process Phighi

that can add recovery from sd,
given its high atomicity abilities. Since high atomicity pro-
cesses have read access to all program variables, they may
add recovery actions whose guards are global state predi-
cates; i.e., high atomicity actions.

If Phighk
, for some 1 ≤ k ≤ n, succeeds in adding high

atomicity recovery from sd then the synthesis algorithm au-
tomatically specifies and extracts the desired detectors for
the refinement of the added high atomicity recovery actions.
If the presynthesized detectors do not interfere with program
execution then the refinement will be successful. Otherwise,
the synthesis algorithm of [9] fails to add recovery to sd.

3. SPECIFYING HIERARCHICAL COMPO-
NENTS

In this section, we describe the specification and the rep-
resentation of hierarchical fault-tolerance components (i.e.,
detectors and correctors). Specifically, we concentrate on
detectors and we consider a special subclass of correctors
where a corrector consists of a detector and a write action
on the local variables of a process. We have adapted the
specification of detectors from [6].
Specification. Let X and Z be state predicates. Let ‘Z
detects X’ be the problem specification. Then, ‘Z detects
X’ stipulates that

• (Safety) When Z holds, X must hold as well.
• (Liveness) When the predicate X holds and continu-

ously remains true, Z will eventually hold and contin-
uously remain true.

We represent the safety specification specd of a detector as
a set of transitions that a detector is not allowed to execute.

specd = {(s0, s1) : (Z(s1) ∧ ¬X(s1))}

The Representation of Hierarchical Detectors. We
focus on the representation of a detector with a tree-like
structure as a special case of hierarchical detectors. The
hierarchical detector d consists of n elements di (0 ≤ i < n),
its safety specification specd, its variables, and its invariant
U . The element d0 is placed at the root of the tree and
other elements of the detector are placed in other nodes of
the tree. Let i � j denote the parenting relation between
nodes di and dj , where di is the parent of dj . Each node di

has its own detection predicate Xi and witness predicate Zi

represented by a Boolean variable yi. The siblings of a node
can detect their detection predicate in parallel. However, the
truth-value of the detection predicate of each node depends
on the truth-value of its children. In other words, node di

can witness if all its children have already witnessed. The
element di can read/write the y values of its children and its
parent (0 ≤ i < n). Moreover, each element di is allowed to
read the variables that Pi can read. We present the template
action of the detector di as follows ((0 ≤ i, j, k < n) ∧ (∀r :
j ≤ r ≤ k : i � r)):

DAi : (LCi) ∧ (yj ∧ · · · ∧ yk) ∧ (yi = false)
−→ yi := true;

Using action DAi (0 ≤ i < n), each element di of the hier-
archical detector witnesses (i.e., sets the value of yi to true)
whenever (i) the condition LCi becomes true, where LCi

represents a local condition that di atomically checks (by
reading the variables of Pi), and (ii) its children dj , · · · , dk

have already witnessed. The above action is an abstract ac-
tion that should be instantiated by the synthesis algorithm
during the synthesis of a specific program in such a way that
the program and the detector do not interfere. We represent
the invariant of the hierarchical detector by the predicate U ,
where

U = {s : (∀i : (0 ≤ i < n) : (yi(s)⇒ (∀j : i � j : LCj))}

Note that yi(s) represents the value of yi at the state s.

4. CASE STUDY: DIFFUSING COMPUTA-
TION

In this section, we present an overview of synthesizing a
nonmasking diffusing computation program by adding presyn-
thesized components. The synthesized program provides the
same behavior as the nonmasking diffusing computation pro-
gram manually designed in [3]. For reasons of space, we omit
the actions of the synthesized program and refer the reader
to [10].

The diffusing computation (DC) program (adapted from
[3]) consists of four processes {P0, P1, P2, P3} whose underly-
ing communication is based on a tree topology. The process
P0 is the root of the tree. Processes P1 and P2 are the chil-
dren of P0 (i.e., (0 � 1) ∧ (0 � 2)) and P3 is the child of P2

(i.e., 2 � 3). Starting from a state where every process is
green, P0 initiates a diffusing computation throughout the
tree by propagating the red color towards the leaves. The
leaves reflect the diffusing computation back to the root by
coloring the nodes green. Afterwards, when all processes
become green again, the cycle of diffusing computation re-
peats.

When the root process (i.e., the node whose parent is it-
self) is green, it starts a session of diffusing computation

120

by changing its color to red and toggling its session num-
ber, which is a binary value. If a process Pj (0 ≤ j ≤ 3)
is green and its parent is red and its session number is not
the same as its parent then it copies the color and the ses-
sion number of its parent to propagate the wave of diffusing
computation. If a process Pj (0 ≤ j ≤ 3) is red and all its
children are green and have the same session number as Pj

then Pj changes its color to green to reflect back the wave
of diffusing computation.

In each session of diffusing computation, every process Pj

meets one of the following requirements: (i) Pj and its par-
ent have both started participating; (ii) Pj and its parent
have both completed the current session of diffusing compu-
tation; (iii) Pj has not started participating in the current
session whereas its parent has, and (iv) Pj has completed
participating in the current session whereas its parent has
not. These requirements identify the program invariant.

Fault transitions can perturb the color and the session
number of the processes. Also, faults may perturb the un-
derlying communication topology of the program by chang-
ing the parenting relationship in the tree.
Intermediate Nonmasking Program. The faults may
perturb the state of the DC program to the states where the
program may fall in a non-progress cycle or reach a dead-
lock state. For example, faults may perturb the program
to states where all processes are green and P0 is no longer
the root process. No program action will be enabled from
such states; i.e., deadlock states. To add recovery from such
states, FTSyn assigns a high atomicity process Phighj

to
each process Pj (0 ≤ j < 4). A process Phighj

may add high
atomicity recovery actions to resolve some deadlock states.
Adding Presynthesized Detectors. To refine the guard
of high atomicity actions, FTSyn automatically identifies
the interface of the required component. The component
interface is a triple 〈X, R, i〉, where X is the detection pred-
icate of the required component, R is a relation that repre-
sents the topology of the required component, and i is the
index of the process that performs the local write action af-
ter the detection of X. Using the interface of the required
presynthesized component, the synthesis algorithm queries
an existing library of presynthesized components. The syn-
thesis algorithm automatically instantiates an instance of
the template action presented in Section 3 with the appro-
priate local condition. The local conditions are automat-
ically identified based on the set of readable variables of
each process.
Interference-freedom. The interference-freedom requires
the synthesized program to provide recovery in the pres-
ence of faults, and satisfy the specification of the DC pro-
gram in the absence of faults. Currently, FTSyn reduces
the interference-freedom requirements to the satisfiability
problem and automatically verifies them using SAT solvers.
Although the synthesized nonmasking program is correct by
construction, we verified the synthesized program using the
SPIN model checker to gain more confidence on the imple-
mentation of FTSyn.
Complexity. The verification of interference-freedom and
the addition of presynthesized components can be done in
polynomial time in the state space of program-component
composition (cf. [9] for proof).

5. CONCLUSION AND FUTURE WORK
In this paper, we presented a case study for adding presyn-

thesized fault-tolerance components to programs using a
hybrid synthesis method (presented in [9]) that combines
heuristics presented in [8] with pre-synthesized detectors
and correctors. Specifically, we showed how we add presyn-
thesized detectors and correctors [6] to fault-intolerant dis-
tributed programs that have hierarchical topology. This case
study extends the scope of synthesis using presynthesized
components to the cases where we (i) use hierarchical com-
ponents, and (ii) simultaneously add multiple components.
Currently, except the extraction of the components from
an existing library of presynthesized components, we auto-
matically perform other steps of the synthesis (e.g., com-
ponent specification, interference-freedom verification). As
an extension to this work, we plan to apply efficient compo-
nent extraction techniques where we identify the appropriate
components during synthesis. Also, we plan to extend this
work to programs with higher number of processes and more
complicated topologies.

6. REFERENCES
[1] B. Alpern and F. B. Schneider. Defining liveness.

Information Processing Letters, 21:181–185, 1985.

[2] A. Arora and M. G. Gouda. Closure and convergence:
A foundation of fault-tolerant computing. IEEE
Transactions on Software Engineering,
19(11):1015–1027, 1993.

[3] A. Arora, M. G. Gouda, and G. Varghese. Constraint
satisfaction as a basis for designing nonmasking
fault-tolerant systems. Journal of High Speed
Networks, 5(3):293–306, 1996.

[4] P. Attie and A. Emerson. Synthesis of concurrent
programs for an atomic read/write model of
computation. ACM TOPLAS (a preliminary version
of this paper appeared in PODC96), 23(2), March
2001.

[5] A. Ebnenasir and S. S. Kulkarni. FTSyn: A
framework for automatic synthesis of fault-tolerance.
http://www.cse.msu.edu/~ebnenasi/research/

tools/ftsyn.htm.

[6] S. S. Kulkarni. Component-based design of
fault-tolerance. PhD thesis, Ohio State University,
1999.

[7] S. S. Kulkarni and A. Arora. Automating the addition
of fault-tolerance. Formal Techniques in Real-Time
and Fault-Tolerant Systems, page 82, 2000.

[8] S. S. Kulkarni, A. Arora, and A. Chippada.
Polynomial time synthesis of byzantine agreement.
Symposium on Reliable Distributed Systems, 2001.

[9] S. S. Kulkarni and A. Ebnenasir. Adding
fault-tolerance using pre-synthesized components.
Technical report MSU-CSE-03-28, Department of
Computer Science, Michigan State University, East
Lansing, Michigan, USA. A revised version is
available at http: // www. cse. msu. edu/ ~sandeep/
auto_ component_ techreport. ps , 2003.

[10] S. S. Kulkarni and A. Ebnenasir. Hierarchical
presynthesized components for automatic addition of
fault-tolerance: A case study. Technical Report
MSU-CSE-04-41, Computer Science and Engineering,
Michigan State University, East Lansing, Michigan,
September 2004.

121

Using Wrappers to Add Run-Time Verification Capability
to Java Beans

Vladimir Glina
Department of Computer Science

Virginia Tech
660 McBryde Hall, Mail Stop 0106

Blacksburg, VA 24061, USA
vglina@vt.edu

 Stephen Edwards
Department of Computer Science

Virginia Tech
660 McBryde Hall, Mail Stop 0106

Blacksburg, VA 24061, USA
edwards@cs.vt.edu

ABSTRACT
Because of limited information exchange between component
providers and users, both these parties should perform component
verification. Java Modeling Language, a notation which allows
writing of behavioral specifications for Java programs, can be
used for verification purposes. This paper shows that placing JML
specifications in separate wrappers distributed in the binary form
alongside components gives component buyers an additional
value. The wrapper can serve for Java components verification on
the user’s side, verification checks can be enabled and disabled on
per-class or per-package basis at run-time, and there is no
performance overhead when they are disabled, unlike the
traditional variant when checking code generated from JML
specifications is placed directly into the underlying class
bytecode. The paper describes wrapper design for Java Beans run-
time verification and discusses advantages and challenges of it.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
programming by contract, assertion checkers, class invariants;
F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—pre- and post-
conditions, invariants, assertions; D.2.3 [Software Engineering]:
Coding Tools and Techniques—object-oriented programming;
D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids; D.3.2 [Programming Languages]: Language
Classifications – design languages, constraint and logic
languages

General Terms
Languages, Verification.

Keywords
JML, Java Beans, run-time verification, design by contract, events
handling

1. INTRODUCTION
Construction of software from commercial off-the-shelf (COTS)
components is getting more and more popular. But limited
information exchange between component providers and
component users is a serious problem for it. Because of that, both
component provider and user must perform component
verification [1].
Assertion checking is an effective means to improve quality of
software verification [2]. One of assertion checking tools is Java
Modeling Language (JML), a notation for formal specification of
behavior and interfaces of Java classes and methods. JML
implements the Design by Contract (DBC) software development
principle [3]: JML specifications (pre-conditions, post-conditions,
and class invariants) placed in special comments within Java
source code are transformed by the JML compiler into run-time
checks. Originally that checks were placed directly into Java
program bytecode. It created substantial performance overhead,
so checks were removed before shipping software and did little
for customers.
This paper discusses using JML-based assertion checking
wrappers for verification and specification of Java Beans. The
paper states that for component users this approach adds value to
components by providing the following:

• checking the quality of connections between components;
• saving component user’s time on producing tests;
• distribution checks in binary form alongside beans so that

checks can be included without access to source code;
• run-time enabling or disabling checks on per-class or per-

package basis;
• avoiding performance overhead when checks are excluded.

2. ASSERTION CHECKING WRAPPER
 IMPLEMENTATION
Assertion checking wrapper design for Java classes was proposed
in [4]. The main idea of wrapper design for Java Beans is the
same. Checking code is moved to a separate class, so that there
are two classes extending the same interface: an unwrapped
original class and the wrapper class which only provides assertion
checking and calls methods of the unwrapped class to realize all
other functionality. Objects of either class are created by a class
factory, which allows separating the decision which class to
instantiate from the object requesting the instance. Users can

122

Figure 1. A fragment of the MyBean bean source code

enable or disable assertions on per-class basis, at run-time.

Wrapper-based design uses a customized version of the JML
compiler jmlc which automatically generates four class files
from the original source code shown in Figure 1. These classes, as
Figure 2 shows, are:

• the implementation class providing original
functionality (MyBeanImplementation);

• the wrapper class containing assertion checks
(MyBeanWrapper);

• an interface that both the classes mentioned above
implement (MyBean);

• a factory class (MyBeanFactory).

Figure 3 shows how inheritance is addressed. If MyBean inherits
from GeneralBean, all the generated classes related to
MyBean inherit from the corresponding classes related to
GeneralBean. It means that if a class has JML specifications,
all its superclasses are to be transformed by the JML compiler
regardless of whether they have specifications or not.
As Figure 4 shows, the interface just re-declares all the public
methods of the original bean class.

MyBeanFactory

MyBeanImplementation MyBeanWrapper

MyBean

Figure 2. Transformation of the original class

GeneralBean

GeneralBeanImplementation GeneralBeanWrapper

MyBeanImplementation MyBeanWrapper

GeneralBeanFactory

MyBeanFactory

MyBean

Figure 3. Inheritance: MyBean inherits from GeneralBean

In Figure 5, the wrapper corresponding to our sample bean is
shown. The wrapper class masks the implementation class and
adds assertion checks before and after every method. To do that, it
holds the reference to the wrapped instance of the implementation
class in the wrappedObject field. All the methods of the
original class have corresponding methods in the wrapper class.
Being called, the wrapper class methods at first perform pre-
condition checks, then call the corresponding methods of the
implementation class to perform core behavior, and after that
make post-condition checks. The isEnabled object defines
whether to perform particular checks at run-time. There is one
such an object for every wrappable class and one similar object
for each Java package. Thanks to these objects, it is possible to
activate and deactivate run-time verification on per-class or per-
package basis without access to source code, using a graphic
control panel displaying the tree which maps the Java package
nesting structure.
Figure 6 shows the factory class code. For every constructor in
the original class, there is a corresponding factory method in the
factory class. The factory queries its isEnabled field to decide
what version of the object, wrapped or unwrapped, to create.
The implementation class has the same code as the original class

Figure 4. The interface that both wrapped and unwrapped
classes implement

public class MyBean implements PropertyChangeListener {
 protected /*@ spec_public @*/ int NonNegativeValue;
 //@ requires newValue >= 0;
 public void setNonNegativeValue(int newValue){
 // implementation goes here …
 }
 // …
}

public interface MyBean {
 public void setNonNegativeValue(int newValue);
 // …
 }

123

Figure 5. The wrapper class

shown in Figure 1 except it gets another name:

public class MyBeanImplementation {
 // implementation goes here…
 }

When a method returns an object, the object becomes wrapped
when created.
A method of a wrapped object can have an exceptional
postcondition for type T which describes what must hold true for
the method to throw an exception of type of T (or a subtype of T).
After a wrapped object method throws an exception, the wrapper
checks if the corresponding exceptional postcondition is present
and observed, and then the exception is rethrown. Otherwise, the
assertion checking fails.
Non-public method calls and the same class method calls are
checked in the same way as in the case of checking wrappers for
regular Java classes [4].
To enable using wrapped object with existing code which does
not use assertion checking and is probably available in the binary
form only, the authors of [4] are implementing a custom class
loader that can transform bytecode at load time if checking
wrappers are used.

 Figure 6. The factory class

 Figure 7. Original instantiate method

Assertion checking wrappers for Java Beans require less change
in coding practices in comparison with the ones for regular Java
classes. In the latter case, developers have to get used to accessing
attributes of classes through getters and setters that are added into
the interface besides the methods defined in the original class,
whereas properties of Beans can not be accessed other than
through accessors. Also, all Java Beans are usually accessed
through interfaces, not concrete classes.
Nevertheless, certain changes in Java Beans run-time
environment, as well as in coding practice, are required for
assertion checking wrappers implementation. Typically, a user
can instantiate a bean either by using operator new, or by calling
one of the java.beans.Beans.instantiate methods.
The latter variant is equivalent to call of the method

java.beans.Beans.instantiate(ClassLoader
cls, String BeanName, BeanContext
BeanContext, AppletInitializer initializer
),

a fragment of which is shown in Figure 7, with some (or none)
arguments set to null. After wrapper design implementation, an
attempt to instantiate a bean using new will result in a compile-
time error because the name of the unwrapped bean class is now
belongs to the interface. The implementation of the
instantiate method itself is to be changed in the place
responsible for bean instantiation when there is no serialized
object. The changes are shown in bold in Figure 8.

public class MyBeanWrapper implements MyBean {
 MyBeanImplementation wrappedObject;
 public static CheckingPrefs isEnabled = null;
 public void setNonNegativeValue(int newValue) {
 if(isEnabled.precondition()) {
 // the actual precondition check
 checkPre$setNonNegativeValue$MyBean(newValue);
 }
 wrappedObject.setNonNegativeValue(newValue);
 }
 // … }

public class MyBeanFactory {
 public static CheckingPrefs isEnabled = null;

public static MyBean instantiate() {
 MyBean result = new MyBeanImplementation();
 if (isEnabled != null && isEnabled.wrap()) {
 result = new MyBeanWrapper(result, isEnabled);
 }
 return result;
 }
}

public static Object instantiate(ClassLoader cls, String
beanName, BeanContext beanContext, AppletInitializer
initializer) throws java.io.IOException,
ClassNotFoundException {
 // …

if(result == null) {
 // No serialized object, try just instantiating the class
 Class cl;
 try {
 if(cls == null) {
 cl = Class.forName(beanName);
 }
 else {
 cl = cls.loadClass(beanName);
 }
 }
 catch (ClassNotFoundException ex) {
 if (serex != null) {
 throw serex;
 }
 throw ex;
 }
 }
}

124

 Figure 8. The modified version of the instantiate method

3. TOWARDS SPECIFICATION OF
JAVABEANS BEHAVIOR

The most substantial problem on the way of using design-by-
contract tools for software components specification is dealing
with concurrency, callbacks, and event handling. In this paper, we
will describe how to use JML to check contracts on events a Java
Bean is registered for.
As an example, let us suppose that there is a bean called
TickGenerator which models a generator of electric
impulses. For us it is enough to know this bean has the following
properties: IsPowerOn of type boolean and
NumberOfTicks of type int. When IsPowerOn == true,
NumberOfTicks periodically increases. A bean user can revert
the IsPowerOn value by clicking the corresponding button on
the bean graphical interface. IsPowerOn and
NumberOfTicks are bounded properties. The MyBean bean
we dealt with at the beginning of the paper has registered itself
with TickGenerator to be notified about changes of the
properties values. The events handling logic of MyBean and the
corresponding JML specifications are shown in Figure 9.
Of course, MyBean has very artificial events handling that is easy
to describe. Nevertheless, it shows that JML specifications can be
of benefit for events handling verification. The future work

Figure 9. Specification of the Bean event handling

includes specifying event broadcasting, interaction of a group of
components where one of them is listening for others, and beans
serving in complicated environments that are hard to formalize
(for instance, beans working with the FTP protocol).

4. ACKNOWLEDGMENTS
Our thanks to ACM SIGCHI for allowing us to modify templates
they had developed.

5. REFERENCES
[1] Beydeda, S., and Gruhn, V. The Self-Testing COTS
 components (STECC) Strategy – a new form of improving
 component testability. Proceedings of the 29th Euromicro
 Conference(EUROMICRO’03) (Belek-Antalya, Turkey,
 September 1-6, 2003). IEEE Computer Society, Los
 Alamitos, CA, 2003, 107 – 114.
[2] J.M.Voas. Quality time: How assertions can increase test
 effectiveness. IEEE Software, 14, 2 (Feb. 1997), 118-119.
[3] G.Leavens, Y.Cheon. Design by Contract with JML.
 ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf,
 draft, 2004.
[4] Tan, R., Edwards, S., “An Assertion Checking Wrapper
 Design for Java”, Proceedings of the Specification and
 Verification of Component-Based Systems workshop
 (SAVCBS’03), (Helsinki, Finland, September 1-2, 2003).
 Technical Report #03-11, Dept. of Computer Science, Iowa
 State University Ames, IA, 2003, 29-34.

public static Object instantiate(ClassLoader cls, String
beanName, BeanContext beanContext, AppletInitializer
initializer) throws java.io.IOException,
ClassNotFoundException {
 //…
 if(result == null) {
 Class cl;
 String factoryName = beanName.concat("Factory");
 try {
 if(cls == null) {
 cl = Class.forName(factoryName);
 }
 else {
 cl = cls.loadClass(factoryName);
 }
 Method instantiation = cl.getMethod("instantiate",
 null);
 result = instantiation.invoke(cl, null);
 }
 catch(ClassNotFoundException ex) {
 if (serex != null) {
 throw serex;
 }
 throw ex;
 }
}

public class MyBean implements PropertyChangeListener {
protected /*@ spec_public @*/ int NonNegativeValue;
 // …
 /*@ requires evt.getPropertyName() == “isPowerOn”;
 @ ensures NonNegativeValue == 0;
 @ also
 @ requires evt.getPropertyName() == “numberOfTicks”;
 @ ensures NonNegativeValue % 2 == 1;
 @*/
 public void propertyChange(PropertyChangeEvent evt) {
 int n;
 if(evt.getPropertyName().equals(“isPowerOn”) {
 n = 0;
 }
 else {
 if(evt.getPropertyName().equals(“numberOfTicks”) {
 n = 4 * n + 1;
 }
 }
 setNonNegativeValue(n);
 }
}

125

Integrating Specification and Documentation in an
Object-Oriented Language

[Extended Abstract]

Jie Liang
Department of Computing and Software

McMaster University
Hamilton ON Canada, L8S 4K1

liangj2@mcmaster.ca

Emil Sekerinski
Department of Computing and Software

McMaster University
Hamilton ON Canada, L8S 4K1

emil@mcmaster.ca

1. INTRODUCTION
This paper reports on the integration of specification and documen-
tation features into an object-oriented programming language and
its compiler. The goal of this integration is to improve software
quality, in particular correctness, extensibility, and maintainability
in a uniform and coherent manner. The language taken is Lime,
an action-based concurrent object-oriented language developed at
McMaster University. The concurrency aspect of Lime is moti-
vated by the observation that concurrency is increasingly used to
improve responsiveness of programs. Concurrency in Lime is ex-
pressed by attachingactionsto objects. This eliminates the concep-
tual distinction between objects and threads. For the theory behind
this approach and an implementation scheme the reader is referred
to [12].

This paper focuses on features that are being added in order to im-
prove software quality. We argue that specification and documenta-
tion means need to be integrated in a programming language. The
documentation can be easier kept up-to-date if there is no need to
switch between the programing and documentation environments;
outdated documentation is a common problem [11]. If specifica-
tions are “first-class citizens”, then the means for structural checks,
composition, reuse, and documentation can be extended to specifi-
cations, in addition to offering the possibility for behavioral checks.
We argue that for object-oriented programs to support specifica-
tion, a strict separation of subclassing (code sharing) and subtyp-
ing (substitutability) is needed. Such a separation allows each class
to serve as a superclass (be reused) or of a supertype (be imple-
mented) and any child class to either inherit the implementation of
the parent class, the behavioral specification, or both. Behavioral
specifications are expressed by preconditions, postconditions, and
invariants. These and other intermediate annotations can be writ-
ten using quantifiers and other standard mathematical notation, and
can be checked at run-time. The associated documentation tool
generates a description of the interface of each class that includes
the preconditions and postconditions of the methods, the class in-

SAVCBS’04Newport Beach, California, USA

variant, the subtype hierarchy, and the subclass hierarchy. Mathe-
matical symbols in the source file are represented by Unicode char-
acters. The compiler, LimeC, generates code for the Java Virtual
Machine and the documentation tool, LimeD, generates HTML.
The behavioral specifications are embedded in the generated JVM
files. When inheriting from a class of a different compilation unit,
both LimeC and LimeD extract these specifications from the object
files of classes; the source code and separate documentation are not
needed.

2. INTEGRATING SPECIFICATIONS
The interface specification languages in the Larch family [13], JML
[2, 3] and Eiffel [10] specify the behavior of their modules by
Hoare-style correctness assertions.

Design by Contract(DBC), proposed by Meyer for Eiffel [10], is a
formal technique for dynamically checking specification violation
during run-time. The idea behind DBC is that a class and its client
have a “contract” with each other. The client must guarantee cer-
tain conditions before calling a method defined by the class, and in
return the class guarantees certain properties that will hold after the
call. In Eiffel, the contracts are defined by program code, and are
translated into executable code by the compiler. Thus, any violation
of the contract can be detected immediately during run-time.

The lack of assertions and design by contract features in Java has
led to some languages and run-time assertion checking tools, such
as Alloy Annotation Language (AAL) [6], Jass [1], and iContract [7].
AAL is a language for annotating Java code based on the Alloy
modeling language.

JML, which stands for “Java Modeling Language,” is a behavioral
interface specification language (BISL) designed to specify Java
modules. JML adds assertions to Java by writing them as special
comments (/*@ ... @*/ or //@ ...). It is based on the use of precon-
ditions, postconditions and invariants. JML uses Java’s expression
syntax to write the predicates used in assertions. Java expressions
lack some expressiveness that makes more specialized assertion
languages convenient for writing behavioral specifications; JML
solves this problem by extending Java’s expressions with some spec-
ification constructs, such as quantifiers.

Lime integrates assertions as programming language constructs, as
Eiffel does; for offering a trade-off between checking for correct-
ness and efficiency, assertion checking can be selectively enabled

126

and disabled. Lime offersclass invariants, precondition, andpost-
conditionsto specify module behavior. In addition, Lime hasassert
statements which specify a constraint on an intermediate state in a
method body.

To have more expressiveness for writing behavioral specifications,
Lime allows the following constructs in expressions:

• Boolean operators⇒, ⇐, ⇔. Note that⇔ means the same
as = for expressions of typeboolean; however,⇔ has a
lower precedence.

• old e for referring to a value in the pre-state. It is used in
postconditions to indicate an expression whose value is taken
from the pre-state of a method call. For example,old(x +
y) denotes the value ofx + y evaluated in the pre-state of a
method call.

• resultfor referring to the value or object that is being returned
by a method. It is used in a method’s postcondition. Its type
is the return type of the method.

• linear quantifications∗ x |P •E, where∗ is a quantifier oper-
ator;x is the bound variable;P is the range;E is the body of
the quantification;∗ is ∀, ∃, Σ, Π, MAX, MIN , orNUM .
The range has the formElow � x � Eup, where� is either
< or ≤.

To make the source code and generated documentation more read-
able and meaningful, we use a number of mathematical symbols.
With the aid of Unicode and UTF-8 encoding, these mathematical
symbols can be parsed by the compiler and displayed on any word
processor that supports UTF-8 enconding for editing source code
and inside generated documentation on web browsers.

Since Java and JVM do not support behavioral specifications, we
need a way to store the preconditions, postconditions and invariants
in a Javaclassfile. When handling inheritance and separate compi-
lation, we only get information about other compilation units from
their Java class file. The reason is that in some situation such as
using a library class, we may not have the source code. The class
invariant, preconditions and postconditions are therefore stored in
Java class files as constant strings. They are extracted as constant
values from the constant pool by LimeC and LimeD.

3. TYPES AND CLASSES
Inheritance is a language mechanism that allows new object defini-
tions to be based on existing ones. A new class inherits the prop-
erties of its parents, and may introduce new properties that extend,
modify or defeat its inherited properties. Subtyping and subclass-
ing are conceptually different views of inheritance: Subtyping is
related to specification and interface inheritance; subclassing is a
mechanism for implementation reuse.

Cook [4] points out that in most strongly-typed object-oriented lan-
guages subtyping are subclasses are combined and equated, and in-
heritance is basically restricted to satisfy the requirements of sub-
typing. It has been argued that this eliminates several important op-
portunities for code reuse [8, 10]. Currently, only a few languages,
such as POOL-I, Theta, PolyTOIL and Sather, support separating
subtyping and subclassing to some degree.

τ extend σ

1. τ inherits every non private attributeaσ of σ: τ.A ⊇ σ.A.

2. For any non private methodmσ of σ there is a corresponding
methodmτ of τ , such that

• mτ hasmσ ’s signature:mτ .Sig = mσ.Sig.

• mτ hasmσ ’s implementation:mτ .Imp = mσ.Imp.

Figure 1: Definition of extend

τ implement σ1, σ2, ..., σn

1. τ preserves invariants of all supertypesσ1, σ2, ..., σn: τ.I ⇒Vn
i=1 σi.I.

2. τ inherits all non private attributes from all supertypes
σ1, σ2, ..., σn:
τ.A ⊇

Sn
i=1 σi.A.

3. For any non private methodmσi of each supertypeσi there
is a corresponding methodmτ of τ , such that

• mτ hasmσi ’s signature (mτ .Sig = mσi .Sig).

• mτ weakens preconditions:mτ .P re ⇐
Wn

i=1(mσi ∈
σi.M ∧mσi .P re).

• mτ strengthens postconditions: mτ .Post ⇒Vn
i=1(mσi ∈ σi.M ⇒ mσi .Post).

Figure 2: Definition of implement

Syntactic subtyping can be extended to behavioral subtyping. The
essence of behavioral subtyping is summarized by Liskov and Wing’s
subtype requirement [9]:

Letφ(x) be a property provable about objectsx of type
T . Thenφ(y) should be true for objectsy of typeS
whereS is a subtype ofT .

We propose an inheritance mechanism that strictly separates sub-
classing from subtyping and makes inheritance more flexible. Any
class in Lime can act as a superclass or a supertype. A class con-
tains a syntactic interface, the specified behavior, and an implemen-
tation. A child class has the choice of inheriting either the behav-
ioral specification, the implementation, or both.

A Lime class definition consists of a class invariant (I), a set of at-
tributes (A) and a set of methods (M). We model a class as a triple
〈I, A, M〉. A method is composed of a signature (Sig), behav-
ioral specification and implementation (Imp). The method signa-
ture includes name, access, return and parameters’ types. The be-
havioral specification consists of a precondition (Pre) and postcon-
dition (Post). The implementation is the source code of the method
body. We model a method as a quadruple〈Sig, Pre, Post, Imp〉.

Lime uses theextendclause to handle single subclassing (Figure
1) and theimplementclause to handle multi-subtyping (Figure 2).
The case of combined subclassing and subtyping is expressed by
the inherit clause. The subtyping definitions follows that of [9];
JML uses the generalization of [5]. For example, the class header

class Sub extend Sup2 implement Sup1

127

Sup1Sup2

Sub

Figure 3: Inheritance graph in Lime

Sup1

Sup1_C
Sup2_C

Sup2

Sub

Sub_C

Figure 4: Inheritance graph of generated Java classes

builds an inheritance relation shown by the inheritance graph in
Figure 3. Solid and dashed arcs are used to represent subtype and
subclass relationships, respectively.

We sketch how the inheritance relationship is implemented in the
generated executable Java class file. Java supports single inheri-
tance of classes and multiple inheritance of interfaces that can only
contain method signatures and constant static variables. For each
Lime source file, we generate two Java class files. One stores a Java
class that contains all the information in the original Lime file, and
its name ends with “C”, the other stores a Java interface that still
uses its original name. The graph in Figure 4 shows the inheritance
relationship among the generated Java classes. In Java, it would
be legal to assign an instance ofSubC to a variable declared as of
type Sup1or Sup2. According to our definition ofextend, imple-
mentand inherit, classSub is Sup1’s subclass, not subtype. The
compiler checks whether the variable being assigned is of a super-
type of the instance’s class. From the inheritance graph view, this
amounts to checking whether there exists a path that is composed
of all solid arcs between two types.

In the following example, classPolygonis only a subclass ofRect-
angle, not a subtype. It can reuse the code in classRectanglesuch
as methodboundingBox. It also overrides methodmoveandarea.
Quantifier∀ is used for specifying the behavior of methodmove. In
the initialization,MAX andMIN are used for calculation.

abstract class Shape
protected attr x, y : integer;
public abstract method boundingBox : Rectangle;
public method area : integer

return 0
public method move (dx, dy : integer)

begin
x : = x + dx;
y := y + dy

end
initialization(x, y : integer)

begin
self.x := x;
self.y := y

end
end

class Rectangle inherit Shape
protected attr w, h : integer;
public method boundingBox : Rectangle

return new Rectangle(x, y, w, h)
public method area : integer

return w * h
initialization(x, y, w, h : integer)

begin
super.initialization(x, y);
self.w := w;
self.h := h

end
end

class Polygon extend Rectangle implement Shape
protected attr i, n : integer;
attr Xs : array of integer;
attr Ys : array of integer;
invariant n> 0
initialization(Xs, Ys : array of integer, n: integer)

begin
self.n := n;
x := Xs[0];
y := Ys[0];
w := (MAX i | 0 ≤ i < n •Xs[i])−

(MIN i | 0 ≤ i < n •Xs[i]);
h := (MAX i | 0 ≤ i < n • Y s[i])−

(MIN i | 0 ≤ i < n • Y s[i]);
i : = 0;
while i < n-1 do

self.Xs[i], self.Ys[i] := Xs[i+1], Ys[i+1];
end

public method move (dx, dy : integer)
post∀ i | 0 ≤ i < n− 1 • (dx =

old Xs[i] - Xs[i]) ∧ (dy = old Ys[i] -Ys[i])
begin

super.move(dx, dy);
i := 0;
while i < n - 1 do

Xs[i], Ys[i] := Xs[i] - dx, Ys[i] - dy
end

public method area : integer
...

end
end

4. DOCUMENTATION GENERATION
Lime’s support for automatic documentation generation was influ-
enced by early work on literate programming and documentation
system likeJavadocand Doxygen. Both Javadoc and Doxygen
generate on-line interface documentation in HTML format. The

128

design for LimeD is along those lines:

• LimeD generates documentation directly from the source code;

• LimeD provides a behavioral interface specification, not only
a syntactic interface;

• LimeD shows the subclass and subtype hierarchies.

For a project, LimeD generates a summary page and a page for
each individual class. For quickly accessing class documentation,
a list with linked indices for all classes is generated and acts as
a navigation menu. The documentation of each individual class
starts with the class description extracted from the documentation
comment in the source file. Documentation comments can contain
embedded HTML code. The document may contain the following
parts:

• Class Invariant with the invariant defined in the current class
and the invariants inherited from all supertypes. The inher-
ited invariants are conjoined to generate a single expression.
All the information is extracted from the current class and
from the Java class files of all supertypes.

• Class Hierarchy displayed graphically; Lime supports sin-
gle subclassing.

• Type Hierarchy presented as an indented list; Lime supports
multiple subclassing.

• Attribute with all non-private attributes defined in the cur-
rent class.

• Inherited Attribute with all attributes inherited from super-
classes and supertypes.

• Method contains all methods defined in the current class. It
gives the method signature and the precondition and postcon-
dition defined in the current class. If the method redefines or
implements a method of a supertype, it also gives the pre-
condition and postcondition defined in supertypes. These are
extracted from the Javaclassfiles of all supertypes.

• Inherited Method contains all inherited methods. It gives
the method signature, precondition and postcondition.

5. OUTLOOK
Currently the development is still in an experimental stage. An
exception handling mechanism needs to be integrated and the spec-
ification language needs to be extended with abstract date types.
Currently specifications can only use the data types of the program-
ming language.

6. REFERENCES
[1] D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim. Jass -

Java with assertions. In K. Havelund and G. Rosu, editors,
Proceedings of the First Workshop on Runtime Verification,
Electronic Notes in Theoretical Computer Science,
volume 55. Elsevier Science, July 2001.

[2] L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll. An overview of JML
tools and applications. InEighth International Workshop on
Formal Methods for Industrial Critical Systems (FMICS 03),

Electronic Notes in Theoretical Computer Science,
volume 66, pages 1–17, Trondheim, Norway, June 5–7,
2003. Elsevier Science.

[3] Y. Cheon and G. T. Leavens. A Runtime Assertion Checker
for the Java Modeling Language (JML). InInternational
Conference on Software Engineering Research and Practice
(SERP), pages 322–328. Computer Science Research,
Education, and Applications (CSREA) Press, Las Vegas,
Nevada, USA, June 2002.

[4] W. R. Cook, W. L. Hill, and P. S. Canning. Inheritance is not
subtyping. InProceedings of the ACM Conference on
Principles of Programming Languages (POPL ’90), pages
125–135, San Francisco, January 1990. ACM Press.
Addison-Wesley.

[5] K. K. Dhara and G. T. Leavens. Forcing behavioral
subtyping through specification inheritance. InProceedings
of the 18th international Conference on Software
Engineering,, pages 258–267, Berlin, Germany, March 1996.
IEEE Computer Society Press.

[6] S. Khurshid, D. Marinov, and D. Jackson. An analyzable
annotation language. InACM SIGPLAN Notices ,
Proceedings of the 17th ACM SIGPLAN conference on
Object-Oriented Programming, Systems, Languages, and
Applications, volume 37, pages 231–245, Seattle,
Washington, USA, November 2002.

[7] R. Kramer. iContract - the Java design by contract tool.
TOOLS 26: Technology of Object-Oriented Languages and
Systems, pages 295–307, 1998.

[8] B. B. Kristensen, O. L. Madsen, B. Moeller-Pedersen, and
K. Nygaard. The BETA programming language. In B. D.
Shriver and P. Wegner, editors,Research Directions in
Object-Oriented Programming. MIT Press, 1987.

[9] B. H. Liskov and J. M. Wing. A behavioral notion of
subtyping.ACM Transactions on Programming Languages
and Systems, 16(6):1811–1841, November 1994.

[10] B. Meyer.Object-Oriented Software Construction 2nd
edition. Prentice-Hall, 1997.

[11] A. L. Powell, J. C. French, and J. C. Knight. A systematic
approach to creating and maintaining software
documentation. InProceedings of the 1996 ACM symposium
on Applied Computing, pages 201–208, Philadelphia,
Pennsylvania, February 1996.

[12] E. Sekerinski. Concurrent object-oriented programs: From
specification to code. InFirst International Symposium on
Formal Methods for Components and Objects, FMCO 02,
Lecture Notes in Computer Science 2852, pages 403–423,
Leiden, The Netherlands, 2003. Springer-Verlag.

[13] J. M. Wing. Writing Larch interface language specification.
ACM Transactions on Programming Languages and Systems,
9(1):1–24, January 1987.

129

Designing a Programming Language to Provide Automated
Self-testing for Formally Specified Software Components

Roy Patrick Tan
Department of Computer Science

Virginia Tech
660 McBryde Hall, Mail Stop 0106

Blacksburg, VA 24061, USA

rtan@vt.edu

Stephen H. Edwards
Department of Computer Science

Virginia Tech
660 McBryde Hall, Mail Stop 0106

Blacksburg, VA 24061, USA

edwards@cs.vt.edu

1. INTRODUCTION
Writing software is an error-prone activity. Compilers

help detect some of these errors: syntactic mistakes plus
those semantic mistakes that can be detected through the
type system. However, locating faults beyond those de-
tectable by the compiler (and other static analysis tools)
is often relegated to the programmer, who must write thor-
ough tests to ensure confidence in the correctness of the
software.

Although the specification and verification community has
traditionally focused on decreasing software bugs by static
verification, research has increasingly explored the dynamic
analysis of the conformance of software components to its
specifications. That is, researchers are investigating systems
that can tell us whether a program’s behavior is consistent
with its specification while the program is being executed.
While dynamic techniques do not offer the same degree of
assurance as full static verification, they may provide useful
pragmatic benefits without the human intervention needed
by currrent generation verification tools. When interpreted
as a testing technique, dynamic analysis offers us a glimpse
of future testing tools that offer another line of automatic
error detection that augments the compiler, and helps the
programmer reduce the number of tests he has to write.

Modern unit testing tools such as JUnit allow some au-
tomation of the testing process. Specifically, they allow the
automated execution of tests. The job of writing tests re-
mains the responsibility of the programmer. In writing a
test for a software component, the programmer must a. ex-
ercise a component such that a bug is likely to manifest; and
b. write code to detect the bug.

Current research suggests that the use of formal specifi-
cations, coupled with the right infrastructure, may allevi-
ate much of the tedious process of writing the tests. For
example, JML-JUnit [?] removes the need to write code
that detects a component failure. It can act as a test-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAVCBS ’04

oracle by checking Java classes against their specifications
as the test cases are being executed. While JML-Junit sug-
gests an ideal strategy for combining test execution with
specification-based oracles, an appropriate test case gen-
eration strategy is necessary for effective performance [?,
Tan04]

Not surprisingly, formal specifications can also play a role
in automatically generating the test-cases themselves. Ko-
rat [?], for example, can quickly generate linked data struc-
tures for inputs by using an invariant checker to filter out
impossible structures. A method to automatically generate
test-cases proposed by one of the authors also leverages the
runtime-checking of specifications [?].

The possibility of combining these supporting techniques
into a unified approach to dynamic verification leads to a
new question: what form would such a consolidated test-
ing tool take? Based on the concept that the best tool is
one that is so transparent it is invisible, we envision infus-
ing the necessary infrastructure directly within the program-
ming language itself. A language that provides the necessary
support for formal behavioral description could generate a
compiled component that has the ability to execute and re-
port the results of tests it has created for itself. This would
amount to a built-in self-testing capability that comes for
free, as a side effect of writing formal specifications.

2. A VISION FOR A NEW STYLE OF PRO-
GRAMMING LANGUAGE

We envision that in the future, when a software compo-
nent is ready for testing, it will have a formal specification
written for it. Ideally, the specification would be complete,
correct, and written well before the implementation. More
probably, the specification might have missing parts, incor-
rect parts, and would have evolved as the implementation
was written.

In any case, when the developer is ready to test his com-
ponent, he runs his testing tool, and the tool will automat-
ically generate the test-cases, run them, determine which
tests passed or failed, and generate a report. This report
will tell the programmer which parts of the component it
found to be inconsistent with its specification. Depending
on the report, the software engineer may fix some of his im-
plementation code; he may refine his specifications; or he
may write additional tests that the automated tool does not
cover. The process iterates until the developer is confident

130

public void testPush() {

IntStack stack = new IntStack();

stack.push(5);

Assert.assertTrue(stack.size() == 1);

Assert.assertTrue(stack.top() == 5);

}

Figure 1: A JUnit test case method for an integer
stack.

that the component works as specified.
In this scenario, the software developer writes much fewer

test cases, though he is not completely rid of writing them.
Just like most modern programmers do not normally need
to bother with low-level details such as register allocation,
programmers of the future will not have to write lower-level
test cases. Instead, the programmer may concentrate on
writing test cases for more subtle, hard-to-find bugs.

The programmer here never has to write any code to de-
termine the correct behavior of the component under test.
Instead, he has to write formal specifications. Making the
programmer write specifications may be the most difficult
part of transitioning from the current way of writing soft-
ware. However, this may be mitigated in part by the fact
that the techniques we are considering to bring us closer to
this vision do not require complete or comprehensive speci-
fications.

3. TECHNIQUES FOR AUTOMATED UNIT
TESTING

Much of the ground work for our scenario for the future
of unit testing has already been done. We believe it is pos-
sible to automate at least partially the two things a devel-
oper has to do manually in testing: exercise the compo-
nent, and detect a fault if it occurs. The apporoaches we
have been looking at have these two key aspects: software
components have to be specified formally, and that there
is a runtime environment that executes these specifications
alongside the implementation. That is, specifications such
as preconditions, postconditions, and class invariants must
be checkable at runtime, whenever a method is called—a
design-by-contract style of specification execution.

3.1 Using Specifications as a Test-Oracle
Figure 1 is an example of what a JUnit test case method

for a stack may look like. Take note the two assertTrue

calls, these assertions tells JUnit what must be true after the
push statement. Every test of push has to have “assertions”
similar to the one in Figure 1. It would be advantageous if
we could write assertions in a single location that tells JUnit
what must be true after every call to the push method.

Using the Java Modeling Language (JML) [?], to spec-
ify Java classes, you can do exactly this. The commented
parts of Figure 2 is the postcondition of the push method.
Since JML can execute the postcondition every time the
push method is called, there is no more need to write asser-
tions for the push test. Instead we can let JML detect the
fault for us.

This is in fact what the JML-JUnit tool does; it uses
JML’s runtime checking of specifications as a test oracle.
Thus, with formal specifications and the right runtime in-

//@ensures size() == \old(size()) + 1

//@ && top() == x;

public void push(int x) {

//...

}

Figure 2: A partial JML specification of the push
method.

init

finalize

push

pop

depth

Figure 3: A flow graph for a stack component

frastructure, specifications can be used to check correct be-
havior in lieu of manual assertions inserted in test cases.

3.2 Test cases generation
In [?], one of the authors (Edwards) presents a strategy

of generating test cases using flow graphs which in turn is
based on the methodology described by Zweben and Heym
[?]. We present a brief explanation:

Given a specified component, we build a graph where any
walk represents a possible object lifetime. We define a flow-
graph as follows:

A flowgraph is a directed graph where each ver-
tex represents one operation provided by the com-
ponent and a directed edge from vertex v1 to v2

indicates the possibility that control may flow
from v1 to v2.[?]

In other words, when there is an edge from v1 to v2, it
means that there exists an object state where v2 can be
legally called after v1. A flowgraph for any component
can be constructed in the following way: Represent every
method as a node in a graph. Construct a complete, di-
rected graph with self-loops from these vertices. And then,
add two more nodes, begin and end; place a directed edge
from begin to every node and from every node to end. Addi-
tionally, there is an edge going from begin to end. Figure 3,
for example, is a flowgraph for a stack component.

131

Thus, a walk from the begin vertex to the end vertex rep-
resents a sequence of method calls from object initialization
to object finalization, i.e. a possible object lifetime. It is
easy to see that each feasible walk can be a test-case for the
component.

There are two problems that come to mind, one is that
some of the walks may be infeasible. For example, the se-
quence of method calls represented by begin → push →
pop → pop for a stack component may be infeasible, be-
cause the last pop call violates the method’s precondition.
The other problem is that there are a pontentially infinite
number of feasible walks through the graph.

The problem of infeasible walks can be solved by using
the dynamic execution of specifications to detect them. An
infeasible path is detected when a precondition failure occurs
while executing a sequence of method calls represented by a
walk on the flowgraph.

The second problem of choosing the right walks to use as
test-cases is an open topic for research. There are several
possible ways to achieve this:

• Random walk. Random walks are simple to implement
but may not be best.

• Bounded exhaustive enumeration. For example, choose
all walks going through 5 nodes or less.

• Various machine-learning algorithms. Tonella [?], for
example, reports on an experiment that uses evolu-
tionary algorithms to essentially generate these walks.

Work is ongoing to investigate the efficacy of each of these
strategies.

4. SUPPORTING AUTOMATED TESTING
In the previous section, we see that a software developer

who is willing to write formal specifications may be able to
take advantage of a higher level of automated testing. Aside
from the developer’s willingness to write the formal specifi-
cations, however, the developer must possess tools that can
take advantage of these specifications.

What are the necessary requirements to be able to build
these tools? What language features must exist for our au-
tomated testing strategy to work? The basic necessities are
that the programming language must have its components
formally specifiable, and that there is a runtime system that
can execute the specifications in a design-by-contract style.

We believe that any language with design-by contract
style specifications (and the ability to check them at run-
time) is amenable to the automated testing strategy we
outline above. However, we have also listed a number of
secondary characteristics that may be beneficial:

• Simple specification language—a simple language al-
lows for easier programmer buy-in, part of this is to
have the specification language be as close as possible
to the implementation language, to make it easier to
learn.

• Support for modular reasoning—modular reasoning means
that each module (e.g. a class) is as encapsulated as
possible; that it can be reasoned about in isolation
of the rest of the program, and thus can be tested in
isolation.

• Small programming language—a small language with-
out too many features may make for simpler specifica-
tion.

• Ability to measure other metrics—such as time for ev-
ery method call, code coverage, etc.

Several programming languages have the necessary char-
acteristics to implement tools that follow our testing strat-
egy. The aforementioned JML-JUnit tool, for example, al-
ready uses runtime checkable specifications as a test oracle.
Eiffel, which popularized design by contract, is certainly a
candidate for this type of tool. Theoretically, design-by-
contract extensions to popular scripting languages such as
Python [?] and Ruby can also be used.

Each of these languages, however, also have characteris-
tics that makes building automated testing tools for them
difficult. For example, Java allows direct access of data
members, breaking modularity of reasoning. The meta-
programming features of Python and Ruby, might allow de-
velopers to circumvent specification checking. Eiffel breaks
the Liskov substitution principle [?] All the languages con-
sidered are also fairly feature-rich; building a tool that cov-
ers all the features of one of these languages may be beyond
the resources of academic researchers. The use of reference
semantics in all these languages introduce aliasing, which
also introduces all the difficulties associated with specifying
them.

We have decided to take on the challenge of designing a
new programming language and its runtime system. Ten-
tatively called Sulu, we are designing it with the goal that
every component written in this language can be tested au-
tomatically. By implementing a new language we will have
the advantage of having complete control of the language,
we can make it only as large as necessary, place only the fea-
tures we require. It can also serve as a platform for future
research.

5. DISCUSSION
We discuss many of the technical concepts of building the

automated testing tools that we envision. But beyond build-
ing the tools, we must be able to measure their effectiveness.
We must also measure other metrics like the number of test
cases, the time it takes for the automated process to gener-
ate them, and the time it takes to execute the tests.

By deciding to implement a new programming language,
we encounter a new set of challenges; what features should
we put in the new language? What should be left out? We
must strike a balance between making it small enough to
be easy to implement, and big enough to show that our
techniques are also applicable to mainstream languages.

The key elements of a specification language and the abil-
ity to check the specifications against the implementation at
runtime will be included, of course, but what about other
features? Sulu will be component-based. That is, it will
have strong separation of an object’s specification and its
implementation. It will use value semantics to avoid the
difficulties of specifying aliased variables. Performance con-
cerns will be addressed somewhat by allowing a swap oper-
ator [?].

We are still actively evaluating whether to include other
features, such as the object-oriented concepts of inheritance
and polymorphism. These features may make results from

132

future experiments more comparable to mainstream lan-
guages, but it may also mean a much more complicated
implementation and specification language.

Another crucial question that may need to be addressed is
the cost/benefit to the software developer. Will the promise
of automated test-case generation convince practitioners to
write formal specifications? How effective should the tools
be to facilitate this change?

If the developer does write formal specifications, this ar-
tifact may be useful for other analysis tools. How can tradi-
tional verification tools be used in conjuction with the test-
ing tools to help us build better, more reliable software?

6. CONCLUSION AND RELATED WORK
In this paper, we have outlined our vision for unit testing,

that testing tools will come to the fore as another level of
automatic error detection.

We have discussed the techniques we are implementing as
we develop our testing platform, but there is a fair amount
of other research on the automatic generation of test cases.
ASTOOT [?] and DAISTS [?] approach the problem quite
differently. They automatically generate test cases directly
from algebraic specifications through term-rewriting.

Korat [?] is a system that automatically generates linked
data structures that can be used as parameters for methods
under test. Korat’s use of a “representation invariant” to
filter out infeasible data structures is similar and may be
compatible with our technique.

Tonella [?] describes a system in Java that uses an evo-
lutionary algorithm to generate method sequences essen-
tially equivalent to walks in our flowgraph model. However,
he does not consider the problem of infeasible method se-
quences.

The basic techniques to achieve this vision already exist,
and discussed how we can support our techniques in a mod-
ern programming language.

133

Open Incremental Model Checking (Extended Abstract)

Nguyen Truong Thang Takuya Katayama
School of Information Science

Japan Advanced Institute of Science and Technology
email: {thang, katayama}@jaist.ac.jp

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—formal methods, model checking

1. INTRODUCTION
Separation of concerns is the core of successful software [5].
One of the most prominent form of concerns are hyperslices
[5] or features. A system is structured by composing sev-
eral separate features. The terms feature, hyperslice and
component are used interchangeably henceforth.

This paper focuses on the interaction between two compo-
nents: base and extension. Specifically, the extension refines
or modifies the base, i.e. the interferences of the base and
extension execution paths occur. Unlike traditional modu-
lar model checking methods which treat systems as static,
a new method of model checking, called open incremental
model checking (OIMC) in our opinion, is proposed to ad-
dress the changes to systems [1]. Given a base component,
an extension component is attached such that the extension
does not violate some property inherent to the base. A prim-
itive model and a simple verification procedure are suggested
to ensure the consistency between two components [1]. The
model checking is executed in an incremental manner within
the extension component only. This approach is also open
for various kinds of changes. This paper is quite different the
work of [1] in several key points such as proposing a general-
ized model with overriding capability (Section 3), an explicit
consistency condition among components (Section 4). More
importantly, we also examine key issues not addressed in
[1] such as the soundness (Section 5.1) and scalability (Sec-
tion 5.2). Discussion about the contribution of this paper,
its future and related work are presented in Section 6.

2. BACKGROUND
CTL is a restricted subset of CTL∗ in which each tempo-
ral operator among X (“next”), F (“eventually”), G (“al-
ways”), U (“until”) and R (“release”) must be preceded by

a quantifier of A (“for all paths”) and E (“for some path”).
With respect to CTL, the incremental verification method
has been attempted by [1]. Its key ideas are:

• Proposing a simple formal model whose interface is
fixed with single exit and single reentry. Importantly,
this model is additive, i.e. the extension is not allowed
to override any behavior of the base.

• Presenting a verification algorithm to check whether a
property continues to hold at those exit states. Fun-
damentally, the algorithm is based on the assumption
about labels at all reentry states. From the assump-
tion, the conclusion about the extension component
with respect to the property is drawn. The unproven
assumption is a weakness of [1] in terms of soundness.

In this paper, the formal interface is generalized to accom-
modate multiple exit and reentry points with overriding ca-
pability. The soundness of OIMC with respect to this gener-
alized model is then tackled in two aspects: proving assump-
tions at reentry states instead of simply assuming them (1);
and based on the proven facts at reentry states, proving the
property preservation in the base component (2). Later, the
scalability problem of OIMC is discussed with respect to the
reality that many subsequent extension components will be
incorporated into the newly evolved system. We investigate
the complexity of OIMC under such a situation to preserve
the property of the original base component.

3. FEATURE SPECIFICATION MODEL
Each component is separately modeled via a state transition
model. Let AP be a set of atomic propositions.

Definition 1. A state transition model M is a tuple 〈S,
Σ, s0, R, L〉 where S is a set of states, Σ is the set of input
events, s0 ∈ S is the initial state, R ⊆ S × PL(Σ) → S
is the transition function (where PL(Σ) denotes the set of
propositional logic expressions over Σ), and L : S → 2AP

labels each state with the set of atomic propositions true in
that state.

Typically, there are two components to consider: a base
and an extension. Between the base and its extension is an
interface consisting of exit and reentry states. An exit state
is the state where control is passed to the extension. On the

134

other hand, a reentry state is the point at which the base
regains control. A base is expressed by a transition model
B and an interface I , where B = 〈SB , ΣB , soB , RB , LB〉.
An interface is a tuple of two state sets I = 〈exit, reentry〉,
where exit, reentry ⊆ SB and exit, reentry �= ∅. On the
other hand, an extension is represented by a model E =
〈SE , ΣE , �, RE , LE〉, if considered separately from the base
B. � denotes no-care value. The interface of E is J =
〈in, out〉.

E can be inserted to B via the compatible interface states
according to the following.

• An exit state ex ∈ exit of B can be matched to an
in-state i ∈ in if LE(i) ⊆ LB(ex).

• A reentry state re ∈ reentry of B can be matched to
an out-state o ∈ out if LB(re) ⊆ LE(o).

Subsequently, states ex and re will be used in place of i and
o whenever interface states are referred.

Definition 2. Composing the base B with the extension
E, through the interfaces I and J produces a composition
model C = 〈SC , ΣC , s0C , RC , LC〉. C is defined from B =
〈SB , ΣB , s0B , RB , LB〉 and E = 〈SE , ΣE , �, RE , LE〉.

• SC = SB ∪ SE ; ΣC = ΣB ∪ ΣE ; s0C = s0B ;

• RC is defined from RB and RE. For each s ∈ SC, let
∨E

s =
W

pli where (s, pli) ∈ Dom(RE),

– ∀(s, pli) ∈ Dom(RE): RC(s, pli) = RE(s, pli)

– ∀(s, plB) ∈ Dom(RB): RC(s, plB∧¬∨E
s) = RB(s,

plB ∧ ¬∨E
s)

• ∀s ∈ SB , s �∈ I.exit ∪ I.reentry : LC(s) = LB(s);

• ∀s ∈ SE , s �∈ J.in ∪ J.out : LC(s) = LE(s);

• ∀s ∈ I.exit ∪ I.reentry : LC(s) = LB(s) ∪ LE(s);

The propositional logic expressions between different tran-
sitions from the same state are disjoint. ∨E

s represents the
union of all events directing to the extension from a state s.
In the composition definition above, a transition (s, plB, s′)
in B can be partially or completely overridden by E. In
case of being overridden, s is certainly an exit state because
overriding only occurs at exit states. The transition is com-
pletely removed from C if plB ∧ ¬∨E

s = false. Otherwise,
it is partially overridden. This is another key difference be-
tween our model and the former [1] in which E is not al-
lowed to override any transition in B. The former is called
additive-only composition, while ours is limited overriding.

Definition 3. The closure of a property p, cl(p), is the
set of all sub-formulae of p, including itself.

Definition 4. The truth values of state s with respect to
a set of CTL properties ps within a model M = 〈S, Σ, s0, R,
L〉, denoted VM (s, ps), is a function: S × 2CTL → 2CTL

defined according to the following:

• VM (s, ∅) = ∅
• VM (s, {p} ∪ ps) = VM (s, {p}) ∪ VM (s, ps)

• VM (s, {p}) =

j {p} if M, s |= p
{¬p} otherwise

CTL denotes the set of all CTL properties. Hereafter,
VM (s, {p}) = {p} (or {¬p}) is written in the shorthand form
as VM (s, p) = p (or ¬p) for individual property p.

In the subsequent discussion, incremental model checking is
represented by an assumption model checking [4] in E only
rather than in C. The assumption function for that model
checking is a function As : I.reentry → 2CTL. In such
a situation, the reentry states re in E are assumed with
truth values seeded from B, VB(re, cl(p)), namely As(re) =
VB(re, cl(p)).

Definition 5. The assumption function As is proper at
a reentry state re if the assumed truth values are exactly
those resulted at re from the standard model checking in C,
i.e. VB(re, cl(p)) = VC(re, cl(p)).

4. PROPERTIES PRESERVATION AT BASE
STATES

A property p is adhered to the base B = 〈SB , ΣB , s0B , RB,
LB〉 if it holds for every state in B, i.e. ∀s ∈ SB : B, s |= p.
An extension E is composable with B with respect to p if
∀s ∈ SB : C, s |= p where C is the composition of B and E.

The key problem this paper tries to deal with is: Given B
and p, what are the conditions for E so that B and E are
composable with respect to p?

With respect to the generalized model, the soundness issue is
very important. It will be discussed in Section 5.1. Another
question relates to the scalability of OIMC (Section 5.2) with
respect not only to E but also to many future extensions to
the composition C.

4.1 A Theorem on Component Consistency
Due to the inside-out characteristic of model checking, dur-
ing verifying p in B, VB(s, cl(p)) are recorded at each state
s. The truth values VB(ex, cl(p)) at any exit state ex serve
as the conformance for the composition between B and E.

Definition 6. B and E are in conformance at the exit
state ex (with respect to cl(p)) if VB(ex, cl(p)) = VE(ex, cl(p)).

Theorem 7. Given a base B and a property p, an ex-
tension E is attached to B at some interface states. Fur-
ther, suppose that the assumption function As defined during
model checking E is proper. If B and E conform with each
other at all exit states, ∀s ∈ SB : VB(s, cl(p)) = VC(s, cl(p)).

The theorem holds regardless of composition type, either
additive or overriding. Due to space limitation, the proof
of the theorem is skipped. Figure 1 depicts the composition

135

.

. . .

B

. . .

ex

s1

s2

s1

s2

f

AG f

f

f*

f

f

AG f f

f*

ex

.

E

.

. . .

B’

. . .

s3 s3f

f*

f

f*

f* f*

f*

f*
f*

f*

f

B, ex |= AG f B’, ex |= AG f

E, ex |= AG f

AG f

AG f!f !f AG f

AG f

C, ex |= AG f

ev

ev

Figure 1: An illustration of base-overriding composition conformance. The truth value with respect to the
property p = AG f is preserved at ex as well as all states in B.

preserving the property p = AGf when B and E are in con-
formance. The composition is done via a single exit state
ex. Further, E overrides the transition ex-s3 whose input
event is ev in B. B′ is the remainder of B after removing
all overridden transitions. f∗ denotes that f holds at all
intermediate states along the computation path. In the fig-
ure, within B, p = AG f holds at s2, ex and s3 but not at
s1. As VE(ex, p) = VB′(ex, p) = VB(ex, p) = AG f , B and
E conform at ex. While the edge ex-s3 is removed, the new
paths in E together with the remaining computation tree in
B′ still preserve p at ex directly; and consequently s2 indi-
rectly. For s1, its truth value VC(s1, p) = ¬p is preserved as
well. On the other hand, s3 is not affected by E. In this fig-
ure, we do not care about the descendant states in E. Thus,
E is intentionally left open-end so that the reentry state re
is not explicitly displayed. In this part, what E can deliver
at ex is important regardless of ex’s descendants. The ar-
guments are still valid when the downstream of E converges
to the reentry state re.

From Theorem 7, if there is a conformance at all exit states,
all truth values with respect to cl(p), surely including p,
at base states are preserved. The following corollary is the
answer to the problem earlier prescribed in this section - the
key of this paper.

Corollary 8. Given a model B and a CTL property p
adhered to it, an extension E is attached to B at some inter-
face states. Further, suppose that the assumption function
As is proper. E does not violate p inherent to B if B and
E conform with each other at all exit states.

The properness of As is a major part for the soundness of
the incremental verification which is mentioned with in Sec-
tion 5.1. Instead of assuming As’s properness, we need to
prove it.

4.2 Open Incremental Model Checking
From Corollary 8, the preservation constraints are required
at exit states only. Corresponding to an exit state ex, the

algorithm to verify a preservation constraint in E can be
briefly described as follows:

1. Seeding all reentry states re with VB(re, cl(p)).

2. Executing the standard CTL model checking proce-
dure in E from re states backward to ex. The formula
to check are ∀φ ∈ cl(p).

3. At the end of the the model checking procedure, check-
ing if VE(ex, cl(p)) = VB(ex, cl(p)).

4. Repeating the procedure for other exit states.

At the end of the process, if at all exit states, the truth
values with respect to cl(p) are matched respectively. B
and E are composable.

5. SOUNDNESS AND SCALABILITY ISSUES
5.1 Soundness Issue
In Section 4, the assumption function As is constructed by
copying the truth values at reentry states re in B directly.
The copying step implicitly assumes that As is proper at all
reentry states. For the soundness of OIMC, this section is
mainly concerned with proving As’s properness, i.e. check-
ing whether Theorem 7 remains valid if the assumption on
the properness of As is dropped. Thus, the soundness prob-
lem in essence consists of two parts:

1. Proving that As is proper at all reentry states (This
is to make sure that the label seeding steps at reentry
states are correct). (Soundness Problem 1)

2. Based on the above As’s properness, proving that the
truth values with respect to cl(p) are preserved at all
exit states and hence at all base states. (Soundness
Problem 2)

In OIMC, we are only concerned with the interface states
between B and E because at these states, the associated

136

ex1 ex2

E [f U g]

(f,!g)

e1

B

E

e2

E [f U g]

(f,!g)
e2

e1

(f,!g) (f,!g)

(f,!g)

E [f U g]E [f U g]

(_ ,g)

(_ ,g)

Figure 2: A composition failing to preserve p =
E [f U g] in case of extension-only cyclic dependency.

computation trees are first to change, if any. Certainly, the
property changes at these states then propagate to ascen-
dant states in B. By an observation, if the truth values
with respect to cl(p) are preserved at all interface states,
the same thing happens at all base states.

Between these interface states are dependency relations due
to CTL model checking, i.e. from a state s to any descendant
state d of s. If VC(d, cl(p)) �= VB(d, cl(p)) then it is likely
that VC(s, cl(p)) �= VB(s, cl(p)). These interface states to-
gether define a dependency structure. The soundness of The-
orem 7 after dropping the assumption on As’s properness is
examined. The results are as follows:

• The theorem is sound if the dependency structure is
acyclic, regardless of composition type (additive or
overriding).

• The theorem is sound if the composition is additive,
regardless of the dependency structure.

• It may fail in some extreme cases of overriding com-
position with cyclic dependency.

The failing case is illustrated in Figure 2. Two exit states
are mutually reentry states in E, namely cyclic dependency
between ex1 and ex2. Further, E overrides critical paths
rooted at ex1 and ex2, whose associated input events are e1

and e2, with respect to p = E [f U g]. Initially, p = E [f U g]
holds at both ex1 and ex2. However, after the overriding
composition, at these states, the property no longer holds
(being crossed out). The assumption function As is not
proper at both states. Thus, the result of OIMC within E
is not correct due to incorrect label seeding.

5.2 Scalability Issue
So far, we have investigated only one-step extension in which
E is attached to B. We are concerned with the application
of OIMC for subsequent extensions to C. We consider the
n-th version (Cn = C(n−1) + En) during software evolution
as a structure of components B, E1, E2, ..., En. Here, Ei

is the extension component to the (i− 1)-th evolved version
(C(i−1)). The initial version is C0 = B. The complexity

of verification does not change after adding feature En ac-
cording to Theorem 9 below whose proof is skipped. OIMC
maintains its scalability - the incremental characteristic.

Theorem 9. Suppose that any pair of base and extension
components C(i−1) and Ei respectively conform at all exit

states, i = 1, (n− 1). The complexity of the incremental
verification for confirming En not violating the property p
in B only depends on the size of En (proportional to the
number of states and transitions in En).

6. CONCLUSION
Compared with the earlier work [1], this paper differs in
several significant points. They include: a precise and gen-
eralized formal model of feature-based software with over-
riding possibility (1); the soundness problem of OIMC, espe-
cially in case of cyclic dependency between interface states,
via two sub-problems: the properness of As and proper-
ties preservation at exit states (2); an unified condition,
VE(ex, cl(p)) = VB(ex, cl(p)), for any legal composition of
B and E (3); and the scalability of OIMC (4).

Comparing to the modular verification work [2, 3, 4], there
is a fundamental difference in characteristic between those
and the work of both [1] and ours. Modular verification
in those work are rather closed. Even though it is based
on component-based modular model checking, it is not pre-
pared for changes. If a component is added, the whole sys-
tem of many existing components and the new component
is re-checked altogether. On the contrary, the approach in
[1] and this paper is incrementally modular. It is also open
for future changes. We only check the new system partially
within the new component and its interface with the rest
of the system. Certainly, this merit comes at the cost of
“fixed” conditions at exit states. This “fixed” constraint
can cause false negatives to some legal extensions. One of
the future work is to relax the conformance condition based
on matching truth values with respect to cl(p).

7. REFERENCES
[1] K. Fisler and S. Krishnamurthi. Modular verification of

collaboration-based software designs. In Proc.
Symposium on the Foundations of Software
Engineering, September 2001.

[2] O. Grumberg and D. E. Long. Model checking and
modular verification. In International Conference on
Concurrency Theory, volume 527 of Lecture Notes of
Computer Science. Springer-Verlag, 1991.

[3] O. Kupferman and M. Y. Vardi. Modular model
checking. In Compositionality: The Significant
Difference, volume 1536 of Lecture Notes in Computer
Science. Springer-Verlag, 1998.

[4] K. Laster and O. Grumberg. Modular model checking
of software. In Conference on Tools and Algorithms for
the Constructions and Analysis of Systems, 1998.

[5] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton.
N-degrees of separation: Multi-dimensional separation
of concerns. In Proc. ICSE, pages 109 – 117, 1999.

137

Toward Structural and Behavioral Analysis
For Component Models

Hanh-Missi TRAN
LIFL

∗

missi@lifl.fr

Philippe BEDU

EDF - R&D
†

philippe.bedu@edf.fr

Laurence DUCHIEN
LIFL

∗

laurence.duchien@lifl.fr

Hai-Quan NGUYEN
EDF - R&D

†

quan.nguyenhai@edf.fr

Jean PERRIN
EDF - R&D

†

jean.perrin@edf.fr

ABSTRACT
Component use is becoming more and more prevalent every
day. Indeed advantages such as greater productivity repre-
sent interesting qualities for the creation of industrial ap-
plications. Important efforts are made to help engineers
through the improvement of the design and the description
of components and through the specification of contracts.
However most of the approaches that associate components
and contracts propose only run-time checking. In software
architecture design, it would be useful to consider contracts
when we check the validity of the architecture. Our work
takes place in the context of the RM-ODP(Reference Model
for Open Distributed Processing) and more precisely the
DASIBAO methodology. This paper presents a component-
based model associated with several contracts and it de-
scribes some verifications that can be performed on them.

Keywords
RM-ODP, structural and behavioral analysis,component-based
architecture, ADL, assembly

1. INTRODUCTION
Software architecture is used as a main part of the specifi-

cation of component-based systems. Reasoning about soft-
ware architectures improves design, program understanding,
and formal analysis. Nowadays most of the software ar-
chitects tend to agree that the design of sophisticated and

∗Laboratoire d’Informatique Fondamentale de Lille
Université des Sciences et Technologies de Lille
59655 - Villeneuve d’Ascq Cedex, France
†Electricité de France - Research Division
1, Avenue du General de Gaulle
92141 - Clamart Cedex, France

software-intensive distributed applications has to be per-
formed according to different viewpoints. As proposed in
UML’s “4+1” viewpoint model [9], IEEE1471 [3] or ISO
RM-ODP (Reference Model for Open Distributed Proces-
sing)[2], the separation of concerns during architecture spe-
cification helps the designers to manage the complexity of
the development process. Viewpoints give some guidance
on the models to be produced during a design process as
well as the objectives of these models. EDF R&D (Electri-
city of France Group) has opted for a methodology of archi-
tecture design based on RM-ODP, which recommends the
separation of stakeholders concerns and proposes five view-
points. On top of this reference model, EDF is implementing
an incremental specification method called DASIBAO [8].
This method defines the different transformations between
the viewpoints and particularly between the models carried
by each viewpoint. This approach takes all its dimension
within the framework of the OMG-MDA (Object Manage-
ment group Model-Driven Architecture) [1] where designers
are expected to produce collections of models from different
viewpoints.

However the various models built with this specification
method have to guarantee an acceptable level of quality for
the system to be created. Our work focuses on the fourth
viewpoint which specifies the abstract structure of a model
and its deployment in a distributed environment. This work
is quite original because it introduces formal analysis abili-
ties in the global architecture specification process based on
RM-ODP. This paper presents our approach to model ar-
chitectures in ODP’s systems and a set of tools integrated
in the CASBA (Component Assembly Structural & Beha-
vioral Analyzer) system that has been developed jointly by
LIFL and EDF R&D. Section 2 introduces our composition
model. Then, Section 3 presents some structural elements
that can be checked such as the meta-model conformance,
the operation signature compatibility and the pre- and post-
conditions. Section 4 proposes some behavioral contracts for
handling behavioral composition. We propose a description
language to specify the behavioral contracts and we check
some liveness and safety properties. To avoid an explosion
of the number of states, we propose some cuts to reduce
behavioral composition. Then we present the results of our
verification tool applied to a real application used by EDF.
Finally, we conclude and give some perspectives.

138

2. COMPONENT TYPES MODEL
Our architecture is specified with components. The con-

cept of component used in this architecture is based on the
following definition from Szyperski[14]: “A software com-
ponent is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A soft-
ware component can be deployed independently and is sub-
ject to composition by third parties.” The elements needed
to describe our component model and the relations between
them are taken into account in the metamodel represented
in Figure 1.

2.1 Components
Our approach only handles component as component type.

Components may have attributes which represent their state.
Moreover they are described by provided and required inter-
faces. A component communicates with other components
through its interfaces. In our model, an interface is repre-
sented by a port which is associated with a single service.
A service is specified by its signature which is composed of
a name and of ingoing and outgoing parameters.

2.2 Components assembly
The model does not include explicit connectors between

components. Nonetheless, if an architect needs one, he can
model it in a component. Communications between compo-
nents or more precisely between their ports are specified by
an assembly link. The semantics of a link corresponds to
a synchronous call from the required port to the provided
port. The choice regarding a port structure involves that a
required port can only be bound to a provided port whereas
a provided port can be bound to several required ports.

2.3 Components composition
In order to build a complex architecture, we use compo-

site components. They are differentiated from primitive
components because they contain subcomponents which
may be primitive components and also composite compo-
nents hence a recursive definition of a component. The ports
of a composite component are called delegated ports. In-
deed a call to a provided port of a composite component is
forwarded to a provided port of one of its subcomponents.
Moreover a call from a required port of a composite com-
ponent results from the forwarding of a call from a required
port from one of its subcomponents.

2.4 Functional contracts
The conditions of validity of a component assembly are

improved by associating an assembly contract composed
of a pre-condition and a post-condition to each port.
These conditions focus on the attributes of the component
and on the parameters of the signature. Thus in addition to
the verification of the signature compatibility between two
linked ports, there is an analysis that checks respectively
the compatibility of the precondition and postcondition of a
port with the precondition and postcondition of the linked
port.

Furthermore behavioral contracts are added to the com-
ponents. These contracts describe the expected behavior of
a component and are used to generate the behavior of the
components assembly. An appropriate tool has been deve-
loped to check some properties on it.

3. STRUCTURAL VERIFICATION
Our tool provides basic verification features common to

several ADLs (Architecture Description Languages). It of-
fers a syntactic verification by checking if the components
model is in accordance with the metamodel. The metamodel
is translated into an XML schema to use the mechanism of
validation of XML documents against XML schema.

Another analysis focuses on the assembly links. The pre-
vious mechanism verifies that a required port is bound to
only one provided port. Moreover there is an analysis on
the compatibility of the signatures of bound ports that is
based only on their parameters. Indeed we consider that the
name of the signature can only be used to identify the port
and that it does not give the semantics of the service of the
port. The compatibility of a port signature with another
uses the notions of covariance and contravariance. These
concepts are bound to the paradigm of object-oriented pro-
gramming. They are distinct mechanisms: “The so-called
contravariance rule correctly captures the subtyping relation.
A covariant rule, instead, characterizes the specialization of
code”[6]. The compatibility of port signatures is characte-
rized by three levels. There is a strong compatibility
of the signature of the required port with the signature of
the provided port when there is a contravariance of the in-
going parameters and a covariance of the outgoing parame-
ters. If there is a covariance instead of a contravariance or
vice versa, there is only a weak compatibility. There is
no compatibility when there is neither a covariance nor a
contravariance between the parameters.

The compatibility of the assembly contracts associated
with a required port and a provided port is checked on top
of these verifications. Three levels characterize this com-
patibility. In our model, pre-conditions and post-conditions
specify conjunctions and disjunctions of linear inequations.
Given P1 and P2 two logical formulas and x1,...,xn the va-
lues in these logical formulas, the strong compatibility can
be checked by:
∀ (x1,...,xn) ∈ {(x1,...,xn)/P1(x1,...,xn)=true}, P1(x1,...,xn)
⇒ P2(x1,...,xn)

Our tool uses CiaoProlog[4], an implementation of Prolog
that offers a constraint solver on real values. Because Ciao-
Prolog finds values that solve the constraints, it checks in
fact:
¬ (∃ (x1,...,xn) ∈ {(x1,...,xn)/P1(x1,...,xn)=true}, ¬(P1(x1,...,xn)
⇒ P2(x1,...,xn)))

Given P1 and P2 two logical formulas and x1,...,xn the
values in these logical formulas, the weak compatibility can
be checked by:
∃ (x1,...,xn) ∈ {(x1,...,xn)/P1(x1,...,xn)=true}, P1(x1,...,xn)
∩ P2(x1,...,xn) 6= ∅

Our pre-conditions and post-conditions are written in a
language very close to Java Modeling Language (JML)[10]
which can be used as a design by contract language for Java.
For example, instead of using the keyword result, the post-
condition is specified with the name of the outgoing parame-
ter. More complex pre-conditions and post-conditions could
be expressed by the use of boolean expressions on top of
the arithmetical ones. The research of solutions could be
made by associating the use of a constraint solver and a
SAT solver.

The previous verifications correspond to a structural ap-
proach. The analysis of the behavioral contracts performs
verifications in a dynamic approach.

139

Figure 1: Metamodel of components composition

4. BEHAVIORAL VERIFICATION
In order to check if the system runs as required, the be-

havior of the component assembly is analyzed. Several parts
of the behavior of the component assembly need to be des-
cribed: they are called behavioral contracts. This sec-
tion first presents the language to specify the behavioral
contracts and then the verifications that are performed.

4.1 Component behavior
A component can be viewed as either a black box or a

white box. Thus its external behavior can be distinguished
from its internal one. The external and internal behaviors
are the same in the case of a primitive component. Its beha-
vior is composed of the ways its ports are called. These com-
munications are described in behavioral contracts. We dis-
tinguish dependences from synchronizations as shown
in the metamodel (figure 1). A dependence represents a
behavioral contract which specifies the internal communica-
tions of a component. It consists of the specification of the
required ports that are needed by a provided port and the
way they are called by the provided port. A synchronization
deals with the concurrency issues.

In order to get the internal behavior of a composite com-
ponent, we add the behavior specified by the composition
links, the assembly links between its subcomponents to the
behavior of its subcomponents. A communication through
either an assembly link or a composition link represents a
call from a port to another port.

4.2 Description language
The execution of a service is represented by a sequence of

events. Given a sequence S, its execution is translated into
S.call → S.begin → S.end → S.return. This means that S
is called, then begins, ends and finally returns a value. The
operator → symbolizes a partial order because the relation
is not reflexive but symmetric and transitive. The operators
of the description language are based on this operator.

The sequence and alternative operators are both used in
the specification of dependences and synchronizations. Let
A et B be two services. A;B means that A is executed
and then B is executed. It is translated into A.call →
A.begin → A.end → A.return → B.call → B.begin → B.end
→ B.return. A|B means that either A or B is executed.
Thus possible traces are either A.call → A.begin → A.end
→ A.return or B.call → B.begin → B.end → B.return.

The other two operators are only used in dependences.
The call operator represents the communication from a pro-

vided port to the required ports and the parallel operator
represents parallel composition of services. Let A, B and C
be three services. A{B} means that the execution of A is
composed of the execution of B. It is translated into A.call
→ A.begin → B.call → B.begin → B.end → B.return →
A.end → A.return. A{B‖C} means that the execution of A
is composed of the interleaving execution of B and C.

The last operator * is used to specify that there can be an
undetermined number of executions of a service or that this
service is not executed. For example, if we specify A*|B, it
means that either the service A is executed several times or
not at all or the service B is executed. This operation may
be used to describe loops.

The null sequence symbolized by ∅ comes in addition to
these operators. It indicates that no service is executed.

4.3 Behavior verification
In order to analyze on the behavior of a component model,

we transform the behavioral elements into FSP (Finite State
Process)[11] processes. We operate this translation first by
generating a behavior formed of the behaviors of the com-
position and assembly links and the dependences and then
by making a composition of it with the synchronizations.
The analysis uses a verification tool for concurrent systems,
named LTSA (Labelled Transition System Analyser)[12],
which supports FSP and a LTL (Linear Temporal Logic)
checker to check safety and liveness properties such as dead-
locks or absence of reachability.

This approach works well when applied on small archi-
tectures. However large architectures are represented by
complex hierarchical component structure and the analy-
sis of the behavior of such architectures may lead to state
explosion problems. Thus the behavior of composite com-
ponents has to be minimized. This approach is close to the
TRACTA approach[7]. Both are based on FSP but because
the behavioral contracts are described with our own lan-
guage, the produced FSP specifications do not use all the
features of this language.

4.4 Behavior minimization
The first way to obtain the external behavior from the

internal behavior of a composite component is to use the
FSP minimization operator. However the FSP processes
describe a composite component internal behavior. More-
over each time an analysis uses its external behavior, the
internal behavior of each subcomponent is minimized again.
To address this problem, we have decided to perform this
minimization with our description language. This operation

140

Figure 2: Architecture of the CALCIUM coupler

aims at producing the behavior of a composite component
as if it were a primitive component. Thus this behavior is
composed of dependences and synchronizations.

The transitivity of the operator → is the basis of the re-
duction of an internal behavior into an external one. Indeed
the calling operator is based on the operator → and the be-
haviors of the dependences and the assembly and delegation
links use the calling operator. The beginning of the mini-
mization consists in transforming the ports that do not call
any other ports into the null sequence. Then the transitivity
of the calling operator allows the behavior to be reduced.

The minimization of synchronizations may lead to the
loss of information on the behavior. Because our language
is based on services and not on events, it is currently not
tractable enough to realize a minimization on it. Our ver-
ification tool uses the minimization based on our behavior
language but only minor changes would be needed in order
to use the minimization feature in FSP.

5. RESULTS
The most significant example verified by our verification

tool is an existing application from EDF. The figure 2 gives
an idea of the complexity of the architecture. Required and
provided ports are symbolized respectively by - and +. The
example represents the use of a generic coupler of scien-
tific code named CALCIUM[5] which first version was devel-
opped in 1994. This coupler is used to study the interactions
between codes of different domains in physics. It manages
the exchange of values between the codes.

Several assembly and behavioral contracts are added to
the architecture shown in the figure 2. The structural verifi-
cation takes some time to be performed, due to the number
of compatibilities of assembly contracts to be checked. The
behavioral analysis can not be done because of the explo-
sion of the number of states. For example, the potential
state space for the behavior of the component Coordination
is wide of 2170 states and an usual desktop computer does
not have enough memory to handle it.

6. CONCLUSION AND FUTURE WORK
Our component model is used to specify functional ar-

chitectures in the computational viewpoint. We integrate
contracts into the model to carry out strong verifications
on the components model. Assembly contracts add con-
ditions to the validity of components assembly. Moreover
behavioral contracts specify the communications within a
component. Furthermore the use of behavior minimization

associates hierarchical composition with behavioral compo-
sition in our architecture. The verifications we describe are
implemented by tools in CASBA. These tools can be called
from a graphical interface integrated in the modelling tool
ArgoUML [13] which allows the design and the analysis of
component model based on our metamodel.

The structural and behavioral verifications of our compo-
nent model represent only a part in our approach of archi-
tecture building. Indeed we now need to specify how to go
from a computational viewpoint, which is the fourth view-
point in RM-ODP, to an engineering viewpoint which is its
last one. Thus our goal is to integrate non functional require-
ments in functional architectures in order to produce tech-
nical architectures. This leads us to propose a new concept
called architectural figure inspired by previous works on
the reuse of architectural systems such as the architectural
patterns and styles. This architectural figure represents a
component model slightly different from our previous model
which allows us to transform the functional architecture into
a technical one. Thus our future work will focus on providing
tools to describe figures associated with quality attributes,
to realize the transformation of functional architectures into
technical ones with architectural figures and to analyse qua-
lity aspects of the produced architectures.

7. REFERENCES
[1] www.omg.org/mda.

[2] Iso/iec, open distributed processing reference model -
parts 1, 2, 3, 4. ISO 10746 or ITU-T X.901, 1995.

[3] Recommended practice for architectural description.
IEEE Standard P1471, 2000.

[4] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo,
P. Lopez, and G. Puebla. The ciao prolog system: A
next generation logic programming environment.
Technical Report 3/97.1, CLIP, April 2004.

[5] C. Caremoli and J.-Y. Berthou. CALCIUM V2: Guide
d’utilisation.

[6] G. Castagna. Covariance and contravariance: conflict
without a cause. ACM Transactions on Programming
Languages and Systems, 17(3):431–447, 1995.

[7] D. Giannakopoulou. Model Checking for Concurrent
Software Architectures. PhD thesis, Imperial College
of Science Technology and Medecine, University of
London, March 1999.

[8] A. W. Group. Dasibao: Methodology for
architecturing odp systems. Technical report, EDF
R&D, 2002.

[9] P. Kruchten. The 4+1 view model of architecture.
IEEE Software, 12(5):42–50, November 1995.

[10] G. Leavens and Y. Cheon. Design by contract with
jml. Draft paper, March 2004.

[11] J. Maggee and J. Kramer. Concurrency - State Models
and Java Program. John Wiley & Sons, 1999.

[12] J. Maggee, J. Kramer, and D. Giannakopoulou.
Behaviour analysis of software architectures. In
Proceedings of the 1st Working IFIP Conference on
Software Architecture (WICSA1), 1999.

[13] J. E. Robbins. Cognitive Support Features for Software
Development Tools. PhD thesis, University of
California, Irvine, 1999.

[14] C. Szyperski. Component Software - Beyond Object
Programming. 1998.

141

	Title page
	TABLE OF CONTENTS
	WORKSHOP INTRODUCTION
	Verification of Multithreaded ObjectOriented
	Encapsulating Concurrency as an Approach to Unification
	Basic Laws of Object Modeling
	Selective Open Recursion:
	CTL Modelchecking
	Automatic Extraction of Sliced Object State Machines for
	Formalizing Lightweight Verification
	Verification of Evolving Software
	Compositional Quality of Service Semantics
	An Analysis Framework for Security in Web Applications
	Synthesis of "correct" adaptors for protocol enhancement
	Monitoring Design Pattern Contracts
	DEET for Component-Based Software
	UML Automatic Verification Tool (TABU)
	Integration of Legacy Systems in Software Architecture
	Toward Specification and Composition
	Hierarchical Presynthesized Components for Automatic
	Using Wrappers to Add Run-Time Verification Capability
	Integrating Specification and Documentation in an
	Designing a Programming Language to Provide Automated
	Open Incremental Model Checking (Extended Abstract)
	Toward Structural and Behavioral Analysis

