
DEET for Component-Based Software
Murali Sitaraman
Durga P. Gandi
Computer Science
Clemson University

Clemson, SC 29634-0974, USA
+1-864-656-3444

murali@cs.clemson.edu

Wolfgang Küchlin
 Carsten Sinz

Universität Tübingen,
W.-Schickard Institut für Informatik

Tübingen, Germany
+49-7071-29.77047

kuechlin@informatik.uni-
tuebingen.de

Bruce W . W eide
Computer Science and Engineering

The Ohio State University
Columbus, OH 43210, USA

+1-614-292-1517
weide.1@osu.edu

Abstract
The objective of DEET (Detecting Errors Efficiently without
Testing) is to detect errors automatically in component-based
software that is developed under the doctrine of design-by-
contract. DEET is not intended to be an alternative to testing
or verification. Instead, it is intended as a complementary and
cost-effective prelude. Unlike testing and run-time monitor-
ing after deployment, which require program execution and
comparison of actual with expected results, DEET requires
neither; in this sense, it is similar to formal verification. Un-
like verification, where the goal is to prove implementation
correctness, the objective of DEET is to show that an imple-
mentation is defective; in this sense, it is similar to testing.
The thesis is that if there is an error in a component-based
software system either because of a contract violation in the
interactions between components, or within the internal de-
tails of a component (e.g., a violated invariant), then it i s
likely—but not guaranteed—that DEET will find it quickly.
DEET is substantially different from other static checking
approaches that achieve apparently similar outcomes. Yet i t
builds on a key idea from one of them (Alloy): Jackson’s small
scope hypothesis. Among other things, the DEET approach
weakens full verification of component implementation cor-
rectness to static checking for errors, in a systematic way that
makes it clear exactly which defects could have been detected,
and which could have been overlooked.

Keywords

Design-by-contract, error detection, SAT solvers, software
component, specification, static analysis, static checking.

1. INTRODUCTION
This paper describes a new approach to detecting errors in
component-based software that is developed using the popular
paradigm known as design-by-contract, and presents results
from early experience with a prototype tool. We call the ap-
proach DEET for Detecting Errors Efficiently without Testing.
DEET has the potential to be effective and efficient, and the
potential to “scale up” to large component-based software
systems. It is intended to offer the following important bene-
fits over early testing:

• DEET can analyze one component at a time in a modular
fashion, i.e., it can detect mismatches between a compo-
nent implementation and its contract, even in isolation
from the rest of a component-based system.

• Since DEET does not require program execution or inlin-
ing of called procedures, it does not depend on code or
even stub availability for other components.

• DEET can detect substitutability bugs, i.e., contract viola-
tions that are literally undetectable by testing. Such bugs
arise from situations where a particular implementation of
a component requires less or delivers more than its con-
tract specifies, and where the correctness of the larger
system relies on such incidental behavior of that particu-
lar implementation.

• DEET is automated and does not require manual input
selection.

• When an error is detected, DEET can pinpoint the origin of
the error in the source code. In particular, it can detect in-
ternal contract violations among participating
components in a larger system—and assign blame. This
property makes it suitable for debugging component-
based software.

DEET bears some resemblance to other static analy-
sis/checking tools1, e.g., Alloy [38] and ESC [18]. Section 2
explores connections with these two systems in particular.
Section 3 explains the steps of the DEET approach with a de-
tailed example. Section 4 discusses other related work, and
Section 5 summarizes the paper.

2. ESC, ALLOY, AND DEET
From the synopsis of features given in the introduction, it may
appear that DEET is essentially the same as ESC or Alloy—two
well-known efforts in the same general direction. In fact, while
DEET shares some common objectives with these approaches,
it is complementary in nearly every respect, as explained in
this section. Only one technical detail from these systems has
been consciously adapted for use in DEET: Jackson’s small
scope hypothesis [37], which is discussed in Section 3.2.3.

2.1 Objectives, Context, and Assumptions
ESC and Alloy seek incremental improvements to current
software engineering practice, focusing on “real” languages

1 But should not be confused with N, N-diethyl-m-toluamide.

ABC News (7/3/02) summarized a New England Journal o f
Medicine report as follows: “DEET Is Best Bug Repellent.”

and “real” programmers—constraints that impose technical
complications which have proved unexpectedly troublesome.
The defects that can be detected in practice with these tools are
limited by (1) the failure of the “real” programming language
to ensure by fiat certain desirable properties of programs, to
prevent programming practices that complicate reasoning
about software behavior, and in general to have semantics that
facilitates modular reasoning; (2) the assumption that “real”
programmers are unwilling or even unable to write full specifi-
cations of intended functional behavior, and that they will
write only certain kinds of annotations that capture part of that
intent; and (3) an interest in a tool that can be used with any
software—component-based or not—that can be written in the
“real” language.2

By contrast, DEET is part of a long-term plan to explore the
foundations of future software engineering practice as it could
be. The overall project goal is not to live within the shackles
of current practice, but rather to remove them. DEET’s context
includes (1) a combined specification and implementation
language (Resolve [66]) that is expressly designed to support
modular reasoning, while still permitting the development of
“real” software by strictly disciplined use of “real” languages
such as C++ [34]; (2) a recognition, based on teaching experi-
ence [71], that tomorrow’s software engineers can be taught to
understand and even to write formal-language specifications,
just as they can be taught to write formal-language implemen-
tations; and (3) a focus on component-based software. The
project vision is to have an automatic verifier for functional
(and performance) correctness of component-based systems.
The purpose of an intermediate tool such as DEET is for soft-
ware engineers to find errors quickly before attempting full
verification, as this is likely to remain more efficient than full
verification and hence potentially give real-time feedback.

2.2 References and Aliasing
ESC deals with, among other things, “nil-dereference errors”
[18]. Among other things, it introduces a “downward closure”
rule for modifies clauses in contracts. This is used to account
for situations where aliases to instance fields of a class could
impact an object’s abstract state via unintended side effects.
This, in turn, leads to a “rep visibility requirement” and an-
other annotation construct, the depends clause, that is “a key
ingredient of our solution to the problem” [18]. Nonetheless,
it is admitted that “one problem in this area that has stumped
us is a form of rep exposure that we call abstract aliasing”[18];
see also [17]. The potential for aliasing technically does not
always prevent modular reasoning, but the above measures
help illustrate that it seriously complicates matters [79].

The Alloy approach “targets properties of the heap” [77] to
detect errors in implementations of linked data structures and
null dereferences. The extent to which the Alloy approach can
scale up to other properties remains an open question: “We
expect that the tool will work well for modular analysis of
even quite complex classes; how well it scales for analyses
amongst classes and whether it will be economical enough for
everyday use remains to be seen” [42].

Resolve has value semantics for all variables; there is no alias-
ing because the language does not permit it [49]. Resolve

2 ESC handles not just sequential programs but a class of

synchronization errors in multi-threaded programs. Alloy
and DEET so far are limited to sequential programs.

includes reference-free abstractions for lists, trees, etc., and
programs that use these components are not burdened with the
complication of reasoning about references or aliasing. How-
ever, it remains possible to write programs for situations where
explicit aliasing improves efficiency and would be exploited
in a language like Java. Using specifications of pointer-like
behavior [47], it is possible to reason about these programs
formally and to find errors in them using the DEET approach
(although the current prototype does not handle this). Tech-
niques used in ESC and/or Alloy to deal with aliasing may
prove helpful in such situations, but our initial focus is on
typical Resolve programs, in which pointers are not needed or
used. And in any case, the use of value semantics for all vari-
ables distinguishes DEET from ESC and Alloy.

2.3 Undefined or Invalid Variable Values
ESC reportedly has been successful in detecting failure-to-
initialize defects. Indeed, this seems to be one of its primary
uses: “… our experience has been that many ESC verifications
can be successfully completed with almost no specifications at
all about the contents and meanings of abstract types, other
than the specification of validity” [18].

The Alloy approach is tied to the Alloy Annotation Language
[42] and “is designed for object model properties: namely
what objects exist, how they are classified grossly into sets,
and how they are related to one another. It is not designed for
arithmetic properties…” [37].

In Resolve, every variable has an initial value upon declara-
tion. A variable is never “undefined” or “invalid” and there i s
no question about whether it “exists”, so there is no need for
DEET to detect such errors. DEET, rather than avoiding speci-
fications of “the contents and meanings of abstract types” and
“arithmetic properties” (of arithmetic types), is intended to
find defects related to fully specified component behavior.

2.4 Contracts and Other Assertions
ESC includes contract specification syntax, and most reported
examples involve these constructs. However, ESC does not
treat such assertions as complete contract specifications, but
merely as partial statements of intent (e.g., as specifying only
the property that a variable has been initialized). Moreover,
ESC seeks to avoid making programmers write loop invariants,
for example, because they can be “pedagogical and heavy-
handed” [18] and sometimes can be produced automatically.
For instance, in a definite for loop whose index i ranges from 1
to 10, the invariant 1 ≤ i ≤ 10 can be generated by a tool, allow-
ing ESC to detect some range errors without the programmer
having to write a loop invariant.

Alloy requires no annotations beyond the property to be
checked, and the assertions it checks are not necessarily parts
of formal contracts, although the authors “are hopeful that i t
will extend to the analysis of code in terms of abstract sets and
relations specified in an API” [37]. So, the current Alloy ap-
proach “expands calls inline” [77] rather than relying on
contract specifications, hence requires special translation to
handle recursive calls. Alloy relies on loop-unrolling to avoid
the need for programmer-supplied loop invariants.

DEET expects full contract specifications for components, and
additional internal assertions inherent in the Resolve syntax:
loop invariants, representation invariants, and abstraction
relations. This is necessary to study the impact of having

complete specifications on the quality of checking that can be
achieved. If it turns out that experience with DEET suggests
that future software engineers would be better off by learning
to write specifications than by avoiding them, then it becomes
our obligation to teach them how to write specifications.
Moreover, because we focus explicitly on component-based
software, DEET reasonably expects component libraries to
have the specifications and internal assertions needed for full
verification. This is because the extra cost of developing these
annotations can be amortized over many component uses. The
Resolve component catalog is an existence proof that a non-
trivial library of fully specified components can be developed.

2.5 Soundness and False Alarms
All the tools here might fail to detect errors. However, they
differ in why this is so. In ESC, there is no characterization of
which errors might have eluded detection. Moreover, ESC i s
unsound in the usual logical sense because “verification con-
dition generation is unsound”. The verification condition
produced is fed to ESC’s own refutation-based general theorem
prover that is claimed to be “sound, as far as we know”. ESC
can also produce false alarms, or “spurious warnings”. The
claim is that neither of these apparent technical shortcomings
is a big problem if, on balance, the system in practice finds
interesting classes of defects that actually do exist [18].

The idea of Alloy is that if an error is not detected, it is because
the “scope”, or subset of situations considered in the analysis,
has been limited. Specifically, the Alloy approach generates a
composite verification condition, and then limits the number
of heap cells for each type and the number of loop iterations
for each loop to turn this condition into a propositional for-
mula that can be fed to a back-end SAT-solver, which tries to
refute it. Any given error might have a witness only outside
this scope. Alloy is designed not to give false alarms, i.e., it i s
not supposed to report errors where none exist [37].

DEET is much like Alloy in this regard, with two major excep-
tions. First, the soundness of verification condition
generation has been established for most constructs of Re-
solve [22, 32, 67, 68]. The overall approach is still that the
verification condition needed for full verification is generated
from the relevant specifications and code. But then the scopes
of all variables are restricted—not based on the number of
heap cells in a data representation, but on the possible abstract
mathematical model values for the variables involved. As with
Alloy, this allows the verification condition to be recast as a
propositional error hypothesis that can be fed to a back-end
off-the-shelf SAT-solver in an effort to produce a witness to a
defect. So DEET, like Alloy, can fail to detect an error if there
are no witnesses to that error in the analyzed scope. But DEET
does not report errors in code that could be verified as correct.

In overall structure and in many technical details, DEET seems
to be a closer cousin of Alloy than of ESC. Nonetheless, there
are other significant technical differences between DEET and
Alloy. For example, DEET’s verification condition generator
automatically accounts for the “path conditions” associated
with various execution paths. The Alloy approach is based on
generating a control flow graph for the program to account for
the various execution paths, and is cleverly optimized to do
this [77]. A proposal in [42] suggests that loop-free code with
method invocations can be handled by generating verification
conditions using a logic similar to that used in ESC [17].

Two other differences between DEET and its predecessors are
important. In the process of looking for errors, DEET generates
the verification condition that would be needed to prove cor-
rectness. Proofs of this assertion can be attempted with
human-assisted theorem provers (e.g., PVS [60]) when DEET
finds no errors. And using the foundations for an extended
system for specification and verification of performance (both
time and space) [46, 69, 70], in principle DEET might be ex-
tended to detect errors relative to performance contracts.

3. DEET APPROACH
This section explains the DEET approach. As in [37], we
choose a simple list example to explain in detail, because only
with a concise example is it possible to illustrate concretely
the variety of technical issues involved. The example helps to
demonstrate the additional advantages of both the DEET and
Alloy approaches over testing alone. Finally, it highlights
some key differences between the DEET and Alloy approaches,
because it involves recursive code that is a client of a List
component contract, rather than being an implementation of a
list method that has direct access to the data representation.

Concept List_Template(type Entry);
uses Std_Integer_Fac, String_Theory;

Type List is modeled by (
Left, Right: Str(Entry)

);
exemplar P;
initialization
ensures|P.Left| = 0 and |P.Right| = 0;

Operation Insert(alters E: Entry;
updates P: List);

ensures P.Left = #P.Left and
P.Right = 〈#E〉 * #P.Right;

Operation Remove(replaces R: Entry;
updates P: List);

requires |P.Right| > 0;
ensures P.Left = #P.Left and
#P.Right = 〈R〉 * P.Right;

Operation Advance (updates P: List);
requires |P.Right| > 0;
ensures |P.Left| = |#P.Left| + 1 and
P.Left * P.Right = #P.Left * #P.Right;

…
end List_Template;

Figure 1: A Specification of List_Template

3.1 Example: A Defective Implementation
Figure 1 shows a skeleton of a contract specification for a
List_Template component in a dialect of Resolve [66]. In the
specification, the value space of a List object (with position) i s
modeled mathematically as a pair of strings of entries: those to
the “left” and those to the “right” of an imaginary “fence” that
separates them. Conceptualizing a List object with a position
makes it easy to explain insertion and removal at the fence. A
sample value of a List of Integers object, for example, is the
ordered pair (<3,4,5>, <4,1>). Insertions and removals are
explained as taking place between the two strings, specifically
at the left end of the right string.

Formally, the declaration of type List introduces the mathe-
matical model and, using an example List variable P, states
that both the left and right strings of a List are initially empty.
A requires clause serves as an obligation for a caller, whereas
an ensures clause is a guarantee from a correct implementation.
In the ensures clause of Insert, for example, #P and #E denote
the incoming values of P and E , respectively, and P and E
denote the outgoing values. The infix operator * denotes
string concatenation, the outfix operator 〈•〉 denotes string
construction from a single entry, and the outfix operator |•|
denotes string length.

Enhancement Reversal_Capability for
List_Template;

Operation Reverse(updates P: List);
requires |P.Left| = 0;
ensures P.Left = Rev(#P.Right) and

|P.Right| = 0;
 end Reversal_Capability;

Figure 2: Specification of a List Reversal Operation

Realization Recursive_Realiz for
Reversal_Capability;

Recursive Procedure Reverse(
updates P: List);

decreasing |P.Right|;
var E: Entry;
if (Right_Length(P) > 0) then
Remove(E, P); Reverse(P); Insert(E, P);

end;
end Reverse;

 end Recursive_Realiz;

Figure 3: A Defective Implementation of Reverse

An interesting aspect of the Insert specification is that its
behavior is relational. The semantics of alters mode for the
formal parameter E is that the result value of entry E is unde-
termined. This under-specification allows implementations
not to have to make expensive copies of non-trivial type pa-
rameters, which is an important issue in the design of generic
abstractions. It is well known that copying references, while
efficient, introduces aliasing and complicates reasoning [33,
49, 79]. The present specification is more flexible. It allows
the entry to be moved or swapped into the container structure
(efficiently, i.e., in constant time, by manipulating references
“under the covers”) and thus potentially to alter it, without
introducing aliasing [30]. Correspondingly, the Remove op-
eration is specified to remove an entry from P, and it replaces
the parameter R. Operation Advance allows the list insertion
position (fence) to be moved ahead. The rest of the specifica-
tion is in [68]; but it is not needed to understand this example.

Figure 2 contains the specification of an operation to reverse
(the right string of) a list. Here, Rev denotes the mathematical
definition of string reversal. Figure 3 shows an (incorrect)
recursive implementation. It uses the List operations given in
Figure 1. To demonstrate termination, the recursive procedure
has a progress metric using the keyword decreasing.

3.2 DEET Steps to Detect Errors

3.2.1 Generation of a Symbolic Reasoning Table
As a first step in modular static analysis—either to prove
correctness or to find errors—a symbolic reasoning table i s

generated [68]. The soundness and relative completeness of
the approach that justifies this step are established in [32].
Figure 4 contains a table for the code in Figure 3. A key ob-
servation is that this table can be produced mechanically from
the information in Figures 1, 2, and 3, as explained in [32, 68]
and summarized below. In the table, each program State i s
numbered. For each state, the Assume column lists verification
assumptions and the Confirm column lists the assertions to be
proved. The Path Condition column denotes under what con-
dition a given state will be reached.

Reasoning table generation involves the profligate use of
variable names, because each program variable name is ex-
tended with the name of the state to denote the value of the
variable in that state. P1, for example, denotes the value of
variable P in state 1. To prove that the procedure for Reverse i s
correct, we assume that its precondition is true in the initial
state and must confirm that its postcondition is true in the
final state. For modular analysis, we rely only on the behav-
ioral contracts of the called operations (i.e., Insert and
Remove). In particular, for the calling code to be correct, we
must be able to confirm that the precondition of a called opera-
tion is true in the state before the call; then we may assume
that the postcondition is true in the state after the call. The
recursive call to Reverse is treated just like any other call.
However, before the recursive call, we additionally need to
confirm that the progress metric decreases.

State Path Condi-
tion

Assume Confirm

0 |P0.Left| = 0

if (Right_Length(P) > 0) then

1 |P0.Right| > 0 P1 = P0 |P1.Right| > 0

 Remove(E, P);

2 |P0.Right| > 0 P2.Left = P1.Left ∧

P1.Right = <E2> *

 P2.Right

|P2.Left| = 0 ∧

|P2.Right| <

 |P0.Right|

 Reverse(P);

3 |P0.Right| > 0 E3 = E2 ∧

P3.Left =

 Rev(P2.Right) ∧

|P3.Right| = 0

 Insert(E, P);

4 |P0.Right| > 0 P4.Left = P3.Left ∧

P4.Right = <E3> *

 P3.Right

end;

5.1 |P0.Right| = 0 P5 = P0

5.2 |P0.Right| > 0 P5 = P4

P5.Left =

 Rev(P0.Right)
∧

|P5.Right| = 0

Figure 4: A Reasoning Table for the Reverse Procedure

The path condition in a given state serves as an antecedent for
the implications that are the actual assertions to be assumed

and confirmed in that state. In other words, assume/confirm
entries apply only when the path condition holds.

3.2.2 Generation of Error Hypotheses
To prove the correctness of the code, then, entails confirming
each obligation in the last column, using the assumptions in
the states above and including the state where the obligation
arises (but, critically for soundness, not the states below it in
the table [32]). Rather than attempting the non-trivial process
of verification using a general theorem-proving tool, DEET
instead looks for a witness to a bug in the code. In particular,
it attempts to find values for the variables that satisfy all
relevant assumptions but that fail to satisfy something that
needs to be confirmed. This is done by conjoining the as-
sumptions and the negation of the assertion to be confirmed,
and then seeking a satisfying assignment for the variables in
this error hypothesis—a witness to a bug.

To illustrate the idea, consider the assertions that need to be
confirmed in state 5 (arising from the postcondition of Re-
verse). In particular, consider the recursive case when the path
condition |P0.Right| > 0 holds. The code is defective if there i s
a set of assignments to the variables that satisfies the assertion
in Figure 5. In the figure, the conjunct numbered I is the path
condition, conjuncts II through VII are assumptions from
states 0 through 5, and conjunct VIII is the negation of the
assertion to be confirmed in state 5.

Error hypothesis generation also can be mechanized. There are
four error hypotheses for the present example, one each corre-
sponding to the confirm clauses in states 1 and 2, and two for
state 5 (one for the base case 5.1 and one for the recursive case
5.2). If a satisfying assignment exists for an error hypothesis
arising from an intermediate state (e.g., state 1 or 2 here), then
the code fails to live up to its part of the contract for an opera-
tion it calls. It is possible that the error hypothesis arising
from the final state at the end of the code (in state 5 in the
table) cannot be satisfied, even though intermediate errors
(e.g., violation of preconditions of called operations) are
found. The code still should be deemed defective under de-
sign-by-contract because the calling code violates a
requirement of a called operation.

(|P0.Right| > 0) ∧
I

(|P0.Left| = 0) ∧
II

(P1 = P0) ∧ III
(P2.Left = P1.Left ∧
P1.Right = <E2> * P2.Right) ∧ IV

(E3 = E2 ∧ P3.Left = Rev(P2.Right) ∧
|P3.Right| = 0) ∧ V

(P4.Left = P3.Left ∧
P4.Right = <E3> * P3.Right) ∧ VI

(P5 = P4) ∧ VII
(¬ (P5.Left = Rev(P0.Right) ∧
|P5.Right| = 0)) VIII

Figure 5: Error Hypothesis for Confirm Clause 5.2

3.2.3 Restriction of Scope
The search for a witness to an error hypothesis relies on Jack-
son’s small scope hypothesis (where “scope” is, loosely
speaking, a measure of the size of the input space to be
searched). Jackson notes that even though, for any given

scope, one can construct a program with a bug whose detection
requires a strictly larger scope, in practice, many bugs will be
detectable in small scopes [37]. If a bug is found within a
small scope, then the code is not consistent with the verifica-
tion conditions. If none is found in the given scope, then
there are no inconsistencies in that scope; yet, inconsistencies
might exist in a larger scope.

For DEET, we have explored restricting the scopes of partici-
pating variables by restricting their mathematical spaces,
instead of placing bounds on loop iterations or heap cells. It
is reasonable to begin with the most stringent restrictions. In
the example, for instance, we start by looking for a witness to
the error hypothesis in which all variables of type Entry have
exactly one value, and in which strings of type Entry are either
empty or contain just a single Entry with that value. Without
loss of generality, we use Z0 to stand for the single value of
type Entry. This in turn restricts the scope of the search for
strings to the two-element set {Str_Empty, Str_Z0}, where
Str_Empty denotes the empty string and Str_Z0 denotes the
string <Z0>.

These restrictions on scope lead to a (possibly large, but fi-
nite) propositional formula corresponding to each error
hypothesis generated from the code and the specifications,
e.g., the one in Figure 6. Each satisfying assignment for this
formula identifies a particular witness to a particular error
hypothesis. To conserve space, we have shown only a part of
the formula to use as a means of explaining how it can be
generated. In the conjuncts listed in Figure 6, the names of all
(Boolean) variables can be generated automatically. The vari-
able P0_Left_equals_Str_Empty being true, for example,
denotes that the left string of the program variable P in state 0
is equal to the empty string. In addition to the variables that
correspond directly to the symbols in Figure 5, variable names
corresponding to mathematical expressions involving string
length, reverse, and concatenation are needed as well. Given
this, the first two conjuncts in Figure 6 correspond directly to
those in Figure 5.

To assert that P1 = P0 (conjunct III in Figure 5), the formula
has to assert that the left strings of the two lists are equal and
that the right strings are equal. However, each string may have
only one of two values because of scope restriction: Str_Empty
or Str_Z0. The left strings of P0 and P1 will be equal if they
are both Str_Empty or if they are both Str_Z0. This observa-
tion leads to conjuncts in III in Figure 6. The rest of the
conjuncts are derived similarly. A list of additional conjuncts
needs to be generated to complete the propositional formula
generation, and only some of these additional conjuncts are
shown in Figure 6. For example, we need to assert that the
right string of a list cannot be both empty and contain a single
entry (although it could be longer), i.e.:

(¬ P0_Right_equals_Str_Empty ∨
 ¬ P0_Right_equals_Str_Z0)

The formula needs to make this assertion for the left and right
strings of each List variable in each state. Another set of asser-
tions is based on mathematical string length, e.g.:

(Len_P0_Right_equals_Zero ⇔
 P0_Right_equals_Str_Empty)

Other sets of assertions are generated for string reversal and
concatenation within the restricted scope. Notice that similar

conjuncts for, e.g., reversal of the left string of a list, are not
generated because they do not arise in the conjuncts corre-
sponding to the assertions in Figure 5. The complete formula
is at:

 http://www.cs.clemson.edu/~resolve/reports/RSRG-03-05.pdf

(¬Len_P0_Right_equals_Zero) I
(Len_P0_Left_equals_Zero)
II

((P1_Left_equals_Str_Empty ∧
P0_Left_equals_Str_Empty) III
 ∨ (P1_Left_equals_Str_Z0 ∧
P0_Left_equals_Str_Z0)) ∧
((P1_Right_equals_Str_Empty ∧

P0_Right_equals_Str_Empty)
 ∨ (P1_Right_equals_Str_Z0 ∧
P0_Right_equals_Str_Z0))
((P2_Left_equals_Str_Empty ∧
P1_Left_equals_Str_Empty) IV
 ∨ (P2_Left_equals_Str_Z0 ∧
P1_Left_equals_Str_Z0)) ∧
((P1_Right_equals_Str_Empty ∧

 Cat_E2_P2_Right_equals_Str_Empty)
 ∨ (P1_Right_equals_Str_Z0 ∧
 Cat_E2_P2_Right_equals_Str_Z0))
(E3_equals_Z0 ∧ E2_equals_Z0) ∧ V
((P3_Left_equals_Str_Empty ∧

 Rev_P2_Right_equals_Str_Empty)
 ∨ (P3_Left_equals_Str_Z0 ∧
 Rev_P2_Right_equals_Str_Z0)) ∧
(Len_P3_Right_equals_Zero)

((P4_Left_equals_Str_Empty ∧
P3_Left_equals_Str_Empty) VI
 ∨ (P4_Left_equals_Str_Z0 ∧
P3_Left_equals_Str_Z0)) ∧
((P4_Right_equals_Str_Empty ∧

 Cat_E3_P3_Right_equals_Str_Empty)
 ∨ (P4_Right_equals_Str_Z0 ∧
 Cat_E3_P3_Right_equals_Str_Z0))
((P5_Left_equals_Str_Empty ∧
P4_Left_equals_Str_Empty) VII
 ∨ (P5_Left_equals_Str_Z0 ∧
P4_Left_equals_Str_Z0)) ∧
((P5_Right_equals_Str_Empty ∧

 P4_Right_equals_Str_Empty)
 ∨ (P5_Right_equals_Str_Z0 ∧
P4_Right_equals_Str_Z0))
(¬ (((P5_Left_equals_Str_Empty ∧
VIII

 Rev_P0_Right_equals_Str_Empty) ∨
 (P5_Left_equals_Str_Z0 ∧
 Rev_P0_Right_equals_Str_Z0)) ∧
 (Len_P5_Right_equals_Zero)))

Additional Assertions

Unique Values (sample: P0.Right)

(¬ P0_Right_equals_Str_Empty ∨
 ¬ P0_Right_equals_Str_Z0)

String Length (sample: |P0.Right|)

(Len_P0_Right_equals_Zero ⇔
 P0_Right_equals_Str_Empty)

String Reverse (sample: Rev(P0.Right))

(Rev_P0_Right_equals_Str_Empty ⇔
 P0_Right_equals_Str_Empty) ∧
(Rev_P0_Right_equals_Str_Z0 ⇔
 P0_Right_equals_Str_Z0)

String Concatenate (sample: <E2> * P2.Right)

(¬ Cat_E2_P2_Right_equals_Str_Empty) ∧
(Cat_E2_P2_Right_equals_Str_Z0 ⇔
 (E2_equals_Z0 ∧
 P2_Right_equals_Str_Empty))

Figure 6: Selected Conjuncts Corresponding to Figure 5

The number of variables in the formula is bounded by the
product of the size of the restricted scope, the number of pro-
gram variables and expressions in the original verification
conditions, and the number of rows in the tracing table (i.e.,
the number of lines of code). The number of conjuncts de-
pends on the mathematical models and the assertions
involved, along with the number of generated variables.

3.2.4 Error Detection
The example illustrates that the formulas generated during this
process are not in conjunctive normal form (CNF). We do not
convert them to CNF, but rather apply a SAT-solver that can
handle arbitrary propositional formulas [41]; other state-of-
the-art SAT solvers such as BerkMin [28] or Chaff [54] could
be used by converting the formulas to CNF. The solver we
have used, developed by the co-authors at Tübingen, is based
on a Davis-Putnam-style [16] algorithm. It can handle formu-
las involving several thousand variables. For example, when
the formula in Figure 6 was (translated into the required input
format and) supplied to this solver, it produced the assign-
ment given in Figure 7 within a fraction of a second. In
addition, it concluded that this is the only solution.

Len_P0_Left_equals_Zero
P0_Left_equals_Str_Empty
P0_Right_equals_Str_Z0
Rev_P0_Right_equals_Str_Z0
P1_Left_equals_Str_Empty
P1_Right_equals_Str_Z0
P2_Left_equals_Str_Empty
E2_equals_Z0
P2_Right_equals_Str_Empty
Cat_E2_P2_Right_equals_Str_Z0
Rev_P2_Right_equals_Str_Empty
P3_Left_equals_Str_Empty
E3_equals_Z0
P3_Right_equals_Str_Empty
Cat_E3_P3_Right_equals_Str_Z0
Len_P3_Right_equals_Zero
P4_Left_equals_Str_Empty
P4_Right_equals_Str_Z0
P5_Left_equals_Str_Empty
P5_Right_equals_Str_Z0

Figure 7: Only Solution (true Vars) for Formula in Figure 6

The solution gives the value of each program variable in each
state. For example, the following variables are true in the wit-
ness: P0_Left_equals_Str_Empty, P0_Right_equals_Str_Z0,
P5_Left_equals_Str_Empty, and P5_Right_equals_Str_Z0.
This corresponds to a List input value of P = (< >, <Z0>) and an
output value of P = (< >, <Z0>). The code is defective because

the output value as required by the specification is P = (<Z0>,
< >). A problem with the code is identified here with a se-
verely restricted scope because the lengths of the left and right
strings resulting from the code and specification do not match.
(If no satisfying assignments were found, the scopes would
have to be enlarged and the process repeated.)

A key benefit of the modular error detection approach is that i t
is relatively easy to debug the code from the given solution.
Based on the finding in Figure 7, especially with the help of a
tool to improve the presentation, the programmer of Reverse
can infer how to fix the code. In particular, based on the input
that revealed a defect (P0), it is easy to see that the program is
erroneous when it is given a list P.Left = < > and P.Right =
<Z0>. The assignment from the SAT solver gives the values of
each variable in each state, making it relatively easy to debug.

3.3 Effectiveness and Efficiency of DEET
DEET should need to deal with a large number of statements
only rarely, because it examines not just one component, but
only one component operation, at a time. Still, to check scal-
ability in this dimension, we mechanically generated an error
hypothesis formula for a “synthetic” procedure body with
2000 statements, using operation specifications similar to the
ones given in the example [72]. The resulting formula in-
volved 6000 variables and twice as many conjuncts. The
solver found two solutions (witnesses to errors) in less than 2
seconds on a 1.2 MHz Athlon PC.

Much more experimentation is needed with this and other
solvers before we can reach any conclusions on the effective-
ness or efficiency of DEET. There is significant potential for
further improvements to take advantage of the kinds of formu-
las that arise from the DEET process, including parallelization
and specialized computer algebra techniques.

4. OTHER RELATED WORK
The idea of error detection within a small “scope”—borrowed
by DEET from Alloy—differs from most related work in fun-
damental ways, as noted in [29, 37, 42, 77], and we summarize
only additional differences here.

The benefits of static analysis are widely acknowledged, even
more so recently as a result of the extensive work in model
checking research and industrial practice [10, 14, 36]. Though
model checking has its origins in hardware verification, an
impressive collection of results spans a spectrum of program-
ming languages and software systems. Given that it i s
difficult to summarize even the most important work in this
area, we discuss only a representative sample.

Finite-state systems are the focus, though there have been
efforts to extend model checking to minimize the impact of
this inherent limitation (e.g., [5]). Holzman has employed
SPIN to detect numerous bugs in the PathStar processing
system developed in C. Java Pathfinder at NASA has been
used successfully to locate a variety of heap-related errors
[31]. To limit the search space, Bandera, a tool for analyzing
Java code, employs user-supplied abstractions [15, 58]
whereas Smith et al. have described a system that assists in
property specification [74]. The fundamental difference be-
tween DEET and such uses of model checkers is in the way a
finite-state model of program execution is devised, i.e., by
combining Jackson’s small scope hypothesis with assertions

that arise from verification conditions that are generated from
the code and component contract specifications.

Symbolic execution of programs, where concrete inputs used
in testing are replaced with symbolic values to generate con-
straints between inputs and outputs, have been used for
debugging and testing [12, 45] and verification [19]. Early
work on symbolic execution was limited by its inability to
handle complex types, loops, and dynamic data structures.
Coen et al. have shown that symbolic execution can be useful
for verification of safety-critical properties in an industrial
setting, but this requires severe limitations to be placed on the
code [13]. More recently, using symbolic execution for model
checking, the SLAM project [1] has shown how to handle
recursive calls in C code. Khurshid et al. have addressed prop-
erties of the heap and dynamic data structures [43]. Unlike
these efforts, whose focus is on verification, PREfix is a tool
based on symbolic execution for error detection [6]. While the
tool has been shown to reveal errors in large-scale C/C++
systems, it cannot handle properties such as invariants and i t
can produce false alarms.

With user-supplied loop invariants (similar to the DEET ap-
proach for handling loops), in [39] Jensen et a l . have
discussed how to prove heap-related properties and find coun-
terexamples. Their program has been shown to be quite
effective in practice. Their work differs from traditional
pointer analyses because they can answer more questions that
can be expressed as properties in first-order logic. While this
work focuses on linear linked lists and tree structures, more
recently Moller and Schwartzbach have extended the results to
all data structures that can be expressed as “graph types” [53].
There is also significant work in shape analysis, including
recent work on parametric shape analysis that allows more
questions to be answered concerning heaps [62]. Ramalingam
et al. describe how to check client conformance with compo-
nent constraints [61] using abstract interpretation. The goals
and methods of these related efforts are quite different from
ours because our focus is on the total correctness of compo-
nent-based software based on design-by-contract, not on
verifying heap properties.

Ernst provides an overview of the complementary merits of
dynamic and static analysis approaches for error detection in
[24]. While the benefits of writing assertions and using them
to detect errors in software are widely known [26, 78], asser-
tion checking is especially useful in component-based
software development to detect contractual violations among
collaborating components [2, 8, 21, 27, 52]. Eiffel is among
the earliest systems to popularize runtime assertion checking
[52]. iContract, a contract-checking tool for Java programs,
has similar objectives [20]. Using an executable industrial-
strength specification language, AsmL, Barnett et al. describe a
system for dynamic checking [2]. Cheon and Leavens have
used JML for writing assertions and for runtime assertion
checking of component-based Java programs [7, 8, 9]. The
benefit of contract checking in commercial development of a
component-based C++ software system is described in [34].
Use of wrappers to separate contract-checking code from un-
derlying components is described in [21, 22]. However, run-
time checking is difficult to modularize, requires that imple-
mentations of not just the unit being checked but all reused
components be available, detects only errors that arise from
particular implementations rather than their contracts (so
substitutability bugs are not revealed), and requires manual
input selection—all problems that DEET avoids.

There is considerable work on making SAT solvers efficient.
But that work is orthogonal to DEET, which is intended to use
an off-the-shelf solver (i.e., based only on its functional speci-
fication). Experimentation with different solvers for DEET is
necessary to develop an effective tool because of potentially
significant performance differences among solvers.

5. SUMMARY
The ultimate objective of formal verification techniques is to
prove that a piece of code (in our case, a software component)
is correct with respect to its specification. Experience shows,
however, that before attempting to prove correctness, it i s
usually cost-effective to look for behavioral errors that can be
found by simpler means. DEET is our first effort toward a
modular, static analysis approach for discovering errors of this
sort, including some that are not revealed by testing—which i s
the usual approach to finding code defects—or by existing
static analysis/checking tools. Some aspects of the DEET
approach have been automated at the time of writing, and
others are work in progress.

ACKNOWLEDGMENTS
This work is supported in part by the National Science Foun-
dation under grant CCR-0113181. We thank the reviewers for
observing, quite correctly, that some related work deserved a
more detailed discussion than in our original submission.

REFERENCES
1. T. Ball and S. K. Rajamani. The SLAM toolkit. CAV 2001,

pp. 260-264.

2. M. Barnett, W. Grieskamp, C. Kerer, W. Schulte, C. Szyper-
ski, N. Tillmann, and A. Watson. Serious specification for
composing components. In Proc. Sixth ICSE Workshop
on Component-Based Software Engineering, May 2003,
pp. 31-36.

3. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic
model checking without BDDs. Tools and Algorithms for
the Analysis and Construction of Systems (TACAS’99),
LNCS 1579, Springer-Verlag, 1999.

4. W. Blochinger, C. Sinz, and W. Küchlin. Parallel proposi-
tional satisfiability checking with dynamic learning.
Parallel Computing, 29(7), 2003, pp. 969–994.

5. T. Bultan, R.Gerber, and W. Pugh, Model-checking concur-
rent systems with unbounded integer variables: symbolic
representations, approximations, and experimental re-
sults. ACM Transactions on Programming Languages
and Systems (TOPLAS), 21(4), July 1999.

6. W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer
for finding dynamic programming errors. Software: Prac-
tice and Experience, 30(7), 2000, pp. 775–802.

7. Y. Cheon and G.T. Leavens. A simple and practical ap-
proach to unit testing: The JML and JUnit way. In
Magnusson, B., editor, ECOOP 2002 – Object-Oriented
Programming, 16th European Conference, Malaga,
Spain, Proceedings, LNCS 2374, Springer-Verlag, Berlin,
June 2002, pp. 231-255.

8. Y. Cheon and G.T. Leavens. A runtime assertion checker
for the Java modeling language (JML). In Proc. Int’l Conf.

Software Engineering Research and Practice, CSREA
Press, June 2002, pp. 322-328.

9. Y. Cheon and G.T. Leavens, M. Sitaraman, and S. H. Ed-
wards. Model variables: Cleanly supporting abstraction
in design by contract. Technical Report 03-10a, Depart-
ment of Computer Science, Iowa State University,
September 2003; available from archives.cs.iastate.edu.

10. D. Clarke, O. Grumberg and D. Long. Verification tools for
finite-state concurrent systems. In A Decade of
Concurrency - Reflections and Perspectives. LNCS 803,
Springer-Verlag, 1994.

11. D. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model
checking using satisfiability solving. Formal Methods in
System Design, 19(1):7{34}, 2001.

12. L. A. Clarke. A system to generate test data and symboli-
cally execute programs. IEEE Transactions on Software
Engineering, 2(3), September 1976, pp. 215-222.

13. A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezze.
Using symbolic execution for verifying safety-critical
systems. In Proc. 8th European Software Engineering
Conference held jointly with 9th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software
Engineering, 2001, pp. 142–151.

14. D. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A.
Tacchella, and M. Y. Vardi. Benefits of bounded model
checking at an industrial setting. In Gerard Berry, Hubert
Comon, and Alan Finkel, editors, Proc. Computer Aided
Verification, LNCS 2102, Springer-Verlag, 2001, pp. 435-
453.

15. J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S.
Laubach, H. Zheng, H. Bandera: extracting finite-state
models from Java source code. Proceedings of the 22nd
International Conference on Software Engineering, Lim-
eric, Ireland, 2000.

16. M. Davis and H. Putnam. A computing procedure for quan-
tification theory. Journal of the ACM 7, 1960, 201-215.

17. D. L. Detlefs, K. R. M. Leino, and G. Nelson. Wrestling with
Rep Exposure. Research Report 156, Compaq Systems
Research Center, July, 1998.

18. D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe.
Extended Static Checking. Research Report 159, Compaq
Systems Research Center, December, 1998.

19. L. K. Dillon. Using symbolic execution for verification of
Ada tasking programs. ACM Transactions on Program-
ming Languages and Systems, 12(4), 1990, pp. 643-669.

20. A. Duncan and U. Hölzle. Adding Contracts to Java with
Handshake. Technical Report TRCS98-32, Univ. of Cali-
fornia at Santa Barbara, Dec. 1998.

21. S. H. Edwards, G. Shakir, M. Sitaraman, B.W. Weide, and J.
Hollingsworth. A framework for detecting interface viola-
tions in component-based software. In Proc. 5th Int’l
Conf. Software Reuse, IEEE, June 1998, pp. 46-55.

22. S. H. Edwards, M. Sitaraman, B.W. Weide, and J.
Hollingsworth. Contract-Checking Wrappers for C++
Components. IEEE Trans. On Software Engineering,
2004, to appear.

23. G. W. Ernst, R. J. Hookway, and W. F. Ogden. Modular
verification of data abstractions with shared realizations.
IEEE Trans. Software Eng., 20(4), Apr. 1994, 288-307.

24. M. D. Ernst. Static and dynamic analysis: synergy and
duality. In WODA 2003: ICSE Workshop on Dynamic
Analysis, Portland, OR, May 2003, pp. 24-27.

25. J. Esparza, A. Kucera, and S. Schwoon. Model-checking
LTL with regular valuations for pushdown systems. In-
formation and Computation, 186(2), November 2003, pp.
355–376.

26. R.B. Findler, M. Latendresse, and M. Felleisen. Behavioral
contracts and behavioral subtyping. In Proc. 8th Euro-
pean Software Engineering Conference, ACM Press, New
York, NY, 2001, pp. 229–236.

27. R. B. Findler and M. Felleisen. Contract soundness for
object-oriented languages. In Proc. ACM SIGPLAN 2001
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), Oct. 2001, pp. 1-
15.

28. E. Goldberg, E. and Y. Novikov. BerkMin: A fast and
robust SAT-solver. In Proc. Design, Automation, and Test
in Europe Conference and Exposition (DATE), IEEE Com-
puter Society Press, 2002, 131-149.

29. O. Grumberg, D. E. Long. Model checking and modular
verification. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), v.16 n.3, pp.843-871, May
1994.

30. D.E. Harms and B.W. Weide. Copying and swapping:
influences on the design of reusable software compo-
nents. IEEE Transactions on Software Engineering,
17(5), 1991, pp. 424-435.

31. K. Havelund and T. Pressburger. Model checking Java
programs Using Java Pathfinder. International Journal
on Software Tools for Technology Transfer, 2(4),
Springer-Verlag, April 2000.

32. W. D. Heym. Computer Program Verification: Improve-
ments for Human Reasoning. Ph.D. Dissertation,
Department of Computer and Information Science, The
Ohio State University, Columbus, OH, 1995.

33. J. Hogg, D. Lea, A. Wills, D. deChampeaux, and R. Holt.
The Geneva Convention On The Treatment of Object Ali-
asing, http://gee.cs.oswego.edu/dl/aliasing/aliasing.html,
1997.

34. J.E. Hollingsworth, L. Blankenship, and B.W. Weide.
Experience report: Using RESOLVE/C++ for commercial
software. In Proc. ACM SIGSOFT 8th Int’l Symposium on
the Foundations of Software Engineering, ACM, Nov.
2000, pp. 11-19.

35. H.Hoos. SAT-encodings, search space structure, and local
search performance. Proc. 16th Intl. Joint Conf. On Artifi-
cial Intelligence (IJCAI’99), Stockholm, Sweden, Morgan
Kaufmann,1999, pp. 296–303.

36. G. J. Holzmann. The model checker SPIN. IEEE Transac-
tions on Software Engineering, 23(5), May 1997, pp.279-
295.

37. D. Jackson and M. Vaziri. Finding bugs with a constraint
solver. ACM SIGSOFT Software Engineering Notes, Sept.
2000, pp. 14-25.

38. D. Jackson. Alloy: a lightweight object modelling nota-
tion. ACM Transactions on Software Engineering and
Methodology (TOSEM), 11(2), April 2002, pp.256-290.

39. J. L. Jensen, M. E. Jorgensen, N. Klarlund, and M. I.
Schwartzbach. Automatic verification of pointer pro-
grams using monadic second-order logic. Proc. SIGPLAN
Conf. on Programming Language Design and Implemen-
tation, 1997.

40. C.B. Jones. Systematic Software Development Using VDM.
Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

41. A. Kaiser. A SAT-based Propositional Prover for Consis-
tency Checking of Automotive Product Data. Technical
Report WSI-2001-16, W.-Schickard Institut für Infor-
matik, Universität Tübingen, Tübingen, Germany, 2001.

42. S. Khurshid, D. Marinov, and D. Jackson. An analyzable
annotation language. Procs. 17th ACM Conference on Ob-
ject-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), ACM, Seattle, WA, 2002.

43. S. Khurshid, C. Pasareanu, and W. Visser. Generalized
symbolic execution for model checking and testing. In
Procs. 9th International Conference on Tools and Algo-
rithms for Construction and Analysis of Systems (TACAS
2003), Warsaw, Poland, April 2003.

44. S. Khurshid, D. Marinov, I. Shlyakhter, and D. Jackson. A
case for efficient solution enumeration. Procs. 6th Inter-
national Conference on Theory and Applications of
Satisfiability Testing (SAT), Portofino, Italy, May 2003.

45. J. C. King. Symbolic execution and program testing.
Communications of the ACM, vol. 19 (7), July 1976, 385-
394.

46. J. Krone, W. F. Ogden, and, M. Sitaraman. Modular Verifi-
cation of Performance Constraints. Technical Report
RSRG-03-04, Department of Computer Science, Clemson
University, Clemson, SC 29634-0974, May 2003, 25
pages; available at www.cs.clemson.edu/~resolve.

47. G. Kulczycki, M. Sitaraman, W. F. Ogden, and J. E.
Hollingsworth, Component Technology for Pointers: Why
and How, Technical Report RSRG-03-03, Department of
Computer Science, Clemson University, Clemson, SC
29634-0974, April 2003, 19 pages; available at
http://www.cs.clemson.edu/~resolve.

48. G. Kulczycki, M. Sitaraman, W. F. Ogden, and G. T. Leav-
ens, Preserving Clean Semantics for Calls with Repeated
Arguments, Technical Report RSRG-04-01, Department of
Computer Science, Clemson University, Clemson, SC
29634-0974, April 2003, 35 pages; available at
http://www.cs.clemson.edu/~resolve.

49. G. Kulczycki. Direct Reasoning. Ph.D. Dissertation, De-
partment of Computer Science, Clemson University,
Clemson, SC, May 2004.

50. K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using
data groups to specify and check side effects. In Proceed-
ings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation
(PLDI'02), 37(5), 2002, pp. 246-257.

51. D. Marinov and S. Khurshid. TestEra: a novel framework
for automated testing of Java programs. Procs. 16th IEEE
Conference on Automated Software Engineering (ASE),
San Diego, CA, 2001.

52. B. Meyer, Object-oriented Software Construction, 2nd

Edition, Prentice Hall, Upper Saddle River, NJ, 1997.

53. A. Moller and M. I. Schwartzbach, The pointer assertion
logic engine. ACM SIGPLAN Notices, 36(5), May 2001,
pp.221-231.

54. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S.
Malik. Chaff: engineering an efficient SAT solver. In
Proceedings of the 38th Design Automation Conference.
ACM, 2001, 530-535.

55. P. Muller, A. Poetzsch-Heffter, and G. T. Leavens. Modular
specification of frame properties in JML. Concurrency,
Computation Practice and Experience, 15, 2003, pp. 117-
154.

56. J. W. Nimmer and M. D. Ernst. Static verification of dy-
namically detected program invariants: integrating
Daikon and ESC/Java. In Proceedings of RV’01, First
Workshop on Runtime Verification, Paris, France, July
2001.

57. J.W. Nimmer and M.D. Ernst. Invariant inference for static
checking: an empirical evaluation. In Proceedings of the
ACM SIGSOFT 10th International Symposium on the
Foundations of Software Engineering (FSE 2002),
Charleston, SC, November 2002, pp. 11-20.

58. C. Pasareanu, M.B. Dwyer, and W. Visser. Finding feasible
counter-examples when model checking abstracted Java
programs. In Proceedings of the 7th International Con-
ference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’01), 2001.

59. S. Prestwich. Local search on SAT-encoded coloring
problems. Proc. 6th Intl. Conf. On Theory and Applica-
tions of Satisfiability Testing (SAT 2003), Santa
Margherita Ligure, Italy, Springer, 2003, pp. 105–119.

60. S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal
verification of fault-tolerant architectures: prolegomena
to the design of PVS. IEEE Trans. Software Engineering,
21(2), Feb. 1995, 107-125.

61. D. Ramalingam, A. Warshavsky, J. Field , D. Goyal, M.
Sagiv. Deriving specialized program analyses for certify-
ing component-client conformance. ACM SIGPLAN
Notices, 37(5), May 2002.

62. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. In ACM Tran. on Program-
ming Languages and Systems 24, 3 (2002), 217-298.

63. C. Sinz, W. Blochinger, and W. Küchlin. PaSAT - parallel
SATchecking with lemma exchange: implementation and
applications. In H. Kautz und B. Selman, Hrsg., LICS’2001
Workshop on Theory and Applications of Satisfiability
Testing (SAT’2001), Electronic Notes in Discrete Math., 9,
Elsevier, Boston, MA, June 2001.

64. C. Sinz, T. Lumpp, J. Schneider, and W. Küchlin. Detection
of dynamic execution errors in IBM System Automation’s
rulebased expert system. Information and Software Tech-
nology, 44(14), November 2002, pp. 857–873.

65. C. Sinz. Verifikation regelbasierter Konfigurationssys-
teme. Dissertation, Fakultät für Informations- und
Kognitionswissenschaften, Universität Tübingen, 2003.

66. M. Sitaraman and B.W. Weide. Component-based software
using RESOLVE. ACM SIGSOFT Software Engineering
Notes 19, 4 (1994), pp. 21-67.

67. M. Sitaraman, B. W. Weide, and W. F. Ogden. On the prac-
tical need for abstraction relations to verify abstract data
type representations. IEEE Transactions on Software En-
gineering, 23(3), March 1997, pp. 157-170.

68. M. Sitaraman, S. Atkinson, G. Kulczycki, B.W. Weide, T.
Long, P. Bucci, S. Pike, W. Heym, and J.E. Hollingsworth.
Reasoning about software-component behavior. In Pro-
ceedings of the 6th International Conference on
Software Reuse, LNCS 1844, Springer-Verlag, 2000, pp.
266-283.

69. M. Sitaraman. Compositional performance reasoning.
Procs. Fourth ICSE Workshop on Component-Based
Software Engineering: Component-Certification and
System Prediction, Toronto, CA, May 2001.

70. M. Sitaraman, J. Krone, G. Kulczycki, W. F. Ogden, and A.
L. N. Reddy. Performance specification of software com-
ponents. ACM SIGSOFT Symposium on Software Reuse,
May 2001.

71. M. Sitaraman, T. J. Long, B. W. Weide, J. E. Harner, and L.
Wang. A formal approach to component-based software
engineering: education and evaluation. In Procs. of the
International Conference on Software Engineering, IEEE,
Toronto, Canada, May 2001, pp. 601-609.

72. M. Sitaraman, D. P. Gandi, W. Küchlin, C. Sinz, and B. W.
Weide. The Humane Bugfinder: Modular Static Analysis
Using a SAT Solver. Technical Report RSRG-03-05, De-
partment of Computer Science, Clemson University,
Clemson, SC 29634-0974, May 2003, 18 pages; available
at http://www.cs.clemson.edu/~resolve.

73. M. Sitaraman, B. W. Weide, and W. F. Ogden. Design,
Specification, and Analysis of Software Components. CS
372 Course Notes, Clemson University, Clemson, SC
29634-0974, 2003.

74. R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil.
PROPEL: an approach supporting property elucidation.
Proceedings of the 24th International Conference on
Software Engineering, May 2002.

75. F. Tip. A survey of program slicing techniques. Journal
of Programming Languages, 3(3), 1995, pp. 121–189.

76. M. Vardi. On the complexity of modular model checking.
In Proc. 10th IEEE Symposium on Logic in Computer Sci-
ence, 1995, pp. 101-111.

77. M. Vaziri and D. Jackson. Checking heap-manipulating
procedures with a constraint solver. TACAS’03, Warsaw,
Poland, 2003.

78. J. M. Voas. How assertions can increase test effectiveness.
IEEE Software 14, 2 (Feb. 1997), pp. 118-122.

79. B.W. Weide and W.D. Heym. Specification and verifica-
tion with references. In Proceedings OOPSLA Workshop
on Specification and Verification of Component-Based
Systems, ACM, 2001.

80. B.W.Weide. Component-based systems. In Encyclopaedia
of Software Engineering, ed. J. J. Marciniak, John Wiley
and Sons, 2001.

81. J. M. Wing. A specifier’s introduction to formal methods.
IEEE Computer, 29(9), Sep. 1990, pp. 8-24.

