
Ontology-based Description and Reasoning
for Component-based Development on the Web

Claus Pahl
Dublin City University, School of Computing

Dublin 9, Ireland

ABSTRACT
Substantial efforts are currently been made to transform the Web
from a document-oriented platform for human consumption into
a software-oriented application-to-application platform. The Web
Services Framework provides the necessary languages, protocols,
and support techniques. Even though Web services exhibit a basic
component model, much can be gained by fully embracing soft-
ware component technology for the Web. We propose to base this
endeavour on ontology technology – an integral element of the Se-
mantic Web. We will introduce an ontology that in particular pro-
vides a rich reasoning framework for behavioural aspects of Web
services or, indeed, components on the Web.

1. THE WEB AND SOFTWARE DEVELOP-
MENT AND DEPLOYMENT

The Web is undergoing dramatic changes at the moment. From
a human-oriented document publishing framework it has more and
more developed into a platform where we can equally well find
software applications. The application-to-application use of the
Web is one of the recent endeavours to enhance the capabilities of
the platform. TheWeb Servicesinitiative [18] bundles these efforts
to provide software applications in form of targeted services.

The current Web is a platform comprisingdescription languages
(such as HTML),protocols (such as HTTP), andtools (such as
browsers and search engines) to support search, retrieval, trans-
portation, and display of documents. The Web Services Frame-
work provides a similar set of technologies – a description language
WSDL (Web Service Description Language) for software services,
a protocol SOAP (Simple Object Access Protocol) for service inter-
actions, and tool support in form of UDDI (Universal Description,
Discovery, and Integration Service) – a registry and marketplace
where providers and users of Web services can meet.

Web services are important for middleware architectures. Var-
ious architectures, e.g. CORBA, have been established, but inter-
operability between these individual architectures, in particular in
distributed environments, is still a major problem. Web services
can, due to the ubiquity of the Web, provide interoperability.

Clearly, Web Services can encapsulate software components from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAVCBS’03 - ESEC/FSE’03 Workshop,Sept 1-2, 2003, Helsinki, Finland.
Copyright 2003 ACM 1-58113-743-5/03/0009 ...$5.00.

various architectures and provide uniform Web-based interfaces and
Web-based communication infrastructures for the component de-
ployment. Web services themselves exhibit a simplecomponent
model[5, 16]. Even though service deployment has been the fo-
cus so far, the support of component-style deployment is, how-
ever, only one aspect of the Web Services Framework. We would
like to emphasise here the importance of the development aspect –
component-based software developmentusing theWeb as the devel-
opment platformis often neglected or treated as a secondary aspect.
Component development for the Web and using the Web requires
the support by specific Web technologies that we will discuss here.

Besides services at the core of the Web Service Framework, we
also look at current trends in this area. In particular Web service
coordination creating service processes and interactions is an as-
pect that has received much attention [10, 1], and that is also of
importance from a component-oriented perspective.

2. COMPONENT-BASED SOFTWARE DE-
VELOPMENT FOR THE WEB

Component-based software development [9, 16] is an ideal tech-
nology to support Web-based software development. As already
mentioned, Web Services are based on a simple component model.
A service encapsulates a coherent collection of operations. A cen-
tral objective of component technology – central also for Web ser-
vices – is the separation of computation and connection.Compu-
tational aspectsare abstracted by interface descriptions. Usually,
a set of semantically described, coherent operations forms an in-
terface. Connectionis more than plugging a provided operation
into a requested operation – the coordination (or choreography) of
services and their operations to more complex service processes is
another important aspect of connectivity.

The (automated) interaction between component providers and
clients becomes crucial in this context. Due to the nature of the
Web platform, automation of these processes is highly important.
The description of provided and required services needs to be sup-
ported. Reasoning to support matching of provided and required
services is essential. Two aspects shall be distinguished:

• Component connection and interactionis based on plugging
components together when a client requests services of a
provider, possibly involving connectors or glue code. The
semantical description of both provided and required com-
ponent (or service) interfaces is essential in the Web context.

• The composition of services tocoordinated service processes
exhibiting a predefinedinteraction patternis the other aspect
[13]. Several extensions of the Web Services framework in
this direction have already been made – such as the Web Ser-

vices Flow Language WSFL [10] or the Web Services Coor-
dination Language WSCL [1].

The architecture of this approach is illustrated in Figure 1. Critical
for both forms is development support for a style of software de-
velopment that is strongly based on retrieving and assembling suit-
able off-the-shelf components from a range of different component
repositories. Reuse is the central theme for component develop-
ment on the Web. The heterogeneity, distribution, and decentral-
isation requires a high degree of robustness and dependability of
software components for the Web.

3. ONTOLOGIES AND COMPONENTS

3.1 Semantics and Knowledge
Describing the semantics of components means to express knowl-

edge about the behaviour or other, non-functional aspects of a com-
ponent or component process. This knowledge comprises:

• Domain knowledgefrom the application domain – basic en-
tities and their properties are defined. This aspect – usually
known as domain modelling in requirements engineering –
is a widely accepted method.

• Software-related knowledgein relation to the type of seman-
tics – behavioural semantics could express the behaviour of
operations in a state-based system, techniques such as refine-
ment could be defined. This is – due to the distributed and
collaborative development on the Web – an emerging aspect.

3.2 The Semantic Web
In the context ofcomponent-based Web service development,

the description of knowledge and also reasoning about knowledge
are essential requirements. This requirement, in principle, can be
satisfied through the techniques of another activity in the Web con-
text – the Semantic Web initiative [18]. Description of and reason-
ing about knowledge is the objective ofontology technology, which
is at the core of the Semantic Web. It provides XML-based knowl-
edge description and ontology languages. Ontology languages fa-
cilitate the hierarchical description of concepts from a domain and
their properties and support reasoning about these concepts and
properties through a suitable logic.

The aim of theSemantic Webis to open the Web to process-
ing by software agents. The exploitation of the full potential of
the Web as an information network is currently hampered by the
fact that information is provided for human consumption. Software
processing, e.g. searches using search engines, is often inaccurate
and error-prone. Adding semantical descriptions to Web resources
and logic to reason about properties based onontologies shared
between Web usersis the key contribution of the Semantic Web.

The application of ontologies is certainly not limited to appli-
cation domains; they can also be used to capture software develop-
ment principles and reasoning techniques.

3.3 Ontology Languages
The Semantic Web is based on the Resource Description Frame-

work RDF – an XML-based language to express properties in terms
of triples (Subject, Property, Object) [18]. Subjects (or concepts)
are defined in terms of their properties in relation to other, already
defined objects (concepts). We could, for instance, say that a com-
ponent has an author,(Component, hasAuthor, Author) .
In this way, based on some basic concepts, a hierarchy of com-
plex, semantically defined concepts can be created. The ontology
language DAML+OIL [18] (most likely the future Ontology Web

Language OWL) is an extension of RDF by a rich set of operators
and features to support ontology description and reasoning.

Reasoning is a central aspect that needs to be supported by a
suitable logic. DAML+OIL is essentially a very expressive descrip-
tion logic. Description logics [2] are first-order logics that provide
operators to specify concepts and their properties.

3.4 Ontology Support for Component-based
Service Description and Composition

3.4.1 Description – Interface and Interaction
Ontology languages usually support the notions of concepts and

properties (or roles)1. Ontology languages are application-domain
independent. In the context of component-based Web services, the
first essential question is what the description logic concepts and
roles represent. An intuitive choice might be to use concepts to rep-
resent services or operations, and to express their properties using
roles. We, however, suggest a different approach (Fig. 2).Con-
ceptsrepresentdescriptions of service properties. Rolesare used to
represent theservicesthemselves. Roles are usually interpreted as
relations on classes of individuals (that represent concepts) – here
they are interpreted as accessibility relations on states. This choice
enables us to view a description logic specification as the speci-
fication of a state-based system with descriptions of state proper-
ties through concepts and specification of state transitions through
roles. We actually distinguish two role types.Descriptional roles
correspond to the classical use of roles as properties – examples in
our ontology are preCond, postCond, opName, or opDescr, see Fig.
2. Transitional rolesare roles representing operations, as we have
just introduced.

Roles – supposed to represent services and operations here –
are classically used in description logics to express simple con-
cept properties. For instance, for a conceptComponent , the term
∀hasAuthor.Author is a value restrictionthat says that all
components have authors. For a conceptState , theexistentially
quantified expression∃preCond.valid(input) says that for
a given class of states, there is at least one for with a precon-
dition valid(input) holds. Concepts are usually interpreted
by classes of objects (called individuals). BothhasAuthor and
preCond are roles – interpreted by relations on classes of individ-
uals. ∀update .∀postCond . equal(retrieve(id),doc)
means that by executing operationupdate a state is reached that
is described by postconditionequal(retrieve(id),doc) .

Even though some extensions of description logics exist in the
literature [2], special attention has to be dedicated to roles if the
needs arising from the application of ontology technology to com-
ponents and services as suggested here have to be addressed. Ele-
ments of the language that need attention are: operations and pa-
rameters, service processes, and interactions of (provided and re-
quested) services. We have developed a description logic that sat-
isfies these criteria [14] – see Figure 2. At the core of this logic is
a richrole expression sublanguage.

Operations – names and parameters: Usually, individuals can
be named in description logics, but the notion of a variable or an
abstract name is unknown. We have introduced names as roles,
since they are here required as part of role expressions, interpreted
as constant functions. Parameterisation is expressed through func-
tional (sequential) composition of roles. We can express a parame-
terised role such as∀Login ◦ id .post whereid is a name that
is a parameter to operation (role)Login .

1We focus here on description logic as the underlying ontology
language – instead of the more verbose DAML+OIL.

Repository

~~~~~~
~~~~
~~~~~
~~~~

~~~~~~
~~~~
~~~~~
~~~~

~~~~~~
~~~~
~~~~~
~~~~

Component/
Service

Component/
Service

Ontology

requires provides

match

interact

the Web

Client Provider

Figure 1: Ontology-based Component Development for the Web

Processes – role expressions: Besides the sequential (functional)
composition of roles (representing operations and parameters), other
forms of composition of services to service processes are required
[14]. These composition operators include non-deterministic choice,
iteration, and parallel composition; the following is an example
∀Login; !(Catalog + Quote); Purchase . post . The
semantics of these operators can be defined in a transition system-
based semantics for the logic.

Interaction – ports and the service life cycle: It is important to
cover all aspects of the composition process including the matching
of specifications, the connection of services, and the actual interac-
tion between services [13, 14]. This is actually a central part of the
life cycle of a service. A more network-oriented notion of ports,
representing services in a component architecture is the central no-
tion. Send and receive operations need to be distinguished – which
means for the logic that role names can appear in these two forms.

The central aim of bringing ontology technology to component
and Web service development is in enable meaningful, knowledge-
level interaction through semantically decribed interfaces. Ontolo-
gies provide domain- and software development-related knowledge
representation techniques for interfaces. Knowledge describing in-
terfaces enables meaningful interaction.

3.4.2 Reasoning – Support for Service Matching
Reasoning in description logic is based on the central idea of

subsumption– which is the subclass (or subset) relationships be-
tween classes that interpret either concepts (sets) or roles (rela-
tions). A composition activity that requires reasoning support in
this context isservice or component matching. The compatibility
of a service requirements specification and the description of a pro-
vided service has to be verified.

Three research aspects are important in relation to matching
support. Firstly, the subsumption idea has to be related to suitable
matching notionsfor components and services. Secondly, the spe-
cific nature ofrolesandrole expressionsrepresenting (composite)
operations has to be addressed. Thirdly, thetractability of the re-
sult logical framework has to be considered. These research issues
shall now be looked at in more detail.

Subsumption and matching: Matching between specifications
of required and provided services can be expressed in form of clas-
sical notion used in computing, such as refinement or simulation
[14]. For service interfaces we propose arefinementnotion, which,
if based on a design-by-contract matching notion on pre- and post-

conditions, can be proven to imply subsumption [3]. For service
process we propose asimulationnotion on role expressions, which
can also be proven to imply subsumption.

Role expressions and transitions: Roles are used to represent
operations, i.e. roles have a transitional character. Essential is here
suitable reasoning support for transitional roles. Alink betweende-
scription logicanddynamic logic(a logic of programs [7]) provides
this support. Schild [15] investigates a correspondence between
role-based concept descriptions in description logic and modal op-
erators in dynamic logic. This correspondence allows us to adapt
modal logic reasoning about state-based system behaviour into de-
scription logics. This correspondence is the essential benefit of
chosing to represent services as roles, and not as concepts. Aspects
of process calculi such as simulation notions can also be adapted
for the description logic context [14].

Tractability: Tool support and automation are critical points for
the success of the proposed component-based Web service devel-
opment and deployment framework. Therefore, the tractability and
a high degree of automation are desirable – even tough difficult to
achieve.Decidability and complexitytend cause tractability prob-
lems in various logics. Here, we have proposed avery expressive
description logic. Some properties of the proposed framework,
however, seem to indicate that these problems can be adequately
addressed. Transitional roles can be limited to interpretation by
functions. Negation as an operator (known to cause difficulty) is
not required for role expressions. Furthermore, application domain
ontologies can be integrated through admissible concrete domains.

The specification of service and operation semantics often in-
volves concepts from the application domain. Description logic
theory [2] introduces a technique calledconcrete domainsto han-
dle the intoduction of specific classes of objects and their predicates
into an existing semantics – an abstract example would be a number
domain with its predicates. In order to retain the decidability in this
framework, anadmissibilitycriterion has to be satisfied. We have
shown that this is possible for standard application domains such
as numerical domains and domains of similar complexity [14].

4. RELATED WORK
DAML-S[6] is an ontology for Web services. DAML-S supports

a range of descriptions for different service aspects from textual de-
scriptions to behavioural semantics. The central difference between
DAML-S and our framework it that DAML-S models services as

Operation

Condition

Signature invariant Signature

Condition

postStatepreState

outSign

postCond

inSign

preCond

 opDescr opName

DescriptionName
...

Figure 2: Service Process Ontology focussing on Operations

concepts, whereas we model services (more precisely operations of
a service) as roles. The essential benefit of our approach is the cor-
respondence between description logics and dynamic logic. This
correspondence allows us to establish a richer reasoning framework
in particular for the behavioural aspects of service descriptions.

The correspondence betweendescription logic and dynamic logic
was explored by Schild [15] around a decade ago, but has, despite
its potential, not found its way into recent applications of ontology
technology for software development. We have enhanced a descrip-
tion logic by results from two other software-engineering related
areas –modal logics[7] andprocess calculi. Both have been used
extensively to provide foundations for component-based software
development, e.g. [11, 4]. For instance, advanced refinement and
matching techniques [3] can be adapted for this context. Dynamic
logic as an extension of Hoare logic can provide the framework.
Design-by-contract is an important approach for the description of
behavioural properties [12, 17, 8].

Description logic[2] relates toknowledge engineering– rep-
resenting and reasoning about knowledge. The combination of
knowledge and software engineering can result in fruitful outcomes.

5. CONCLUSIONS
Substantial effort is currently been made to make the Web a

software development and deployment platform – the Web Services
initiative. Component technology is ideally suited to support soft-
ware development for the Web. However, this new application con-
text also poses some challenges for component technology. Firstly,
the Web is a ubiquitous platform, widely accepted and standard-
ised. This requires component development techniques to adapt to
this environment and to adhere to the standards of the Web. Sec-
ondly, the Web as a development platform is less well explored. As
a consequence of distribution, decentralisation, and heterogeneity,
the composition and assembly activities need to be well supported.

We have illustrated that technologies from another Web initia-
tive – ontologies – can provide support for component-oriented
Web service development. Ontology technology to represent and
reason about knowledge can be adapted for components. We have
explored the foundations for a composition framework for the Web.
The framework is based on an ontology for components and ser-
vices that incorporates reasoning support for behavioural aspects.
An ontology – agreed and shared by developers and clients – can
capture domain and software-technical knowledge.

Ultimately we aim to support flexible, collaborative, and adap-
tive component-based structures for the Web, ideally formed from
federating, agent-like components. This would create an innova-
tive, more autonomous software organisation. Of course, much
work remains to be done until this vision is accomplished, but

work also remains towards a fully implemented support environ-
ment. Aspects of automation will, if at all, be difficult to achieve.

6. REFERENCES
[1] A. Banerji et.al.Web Services Conversation Language.

http://www.w3.org/TR/wscl10/, 2003.
[2] F. Baader, D. McGuiness, D. Nardi, and P. Schneider, editors.The

Description Logic Handbook. Cambridge University Press, 2003.
[3] R. Back and J. von Wright.The Refinement Calculus: A Systematic

Introduction. Springer-Verlag, 1998.
[4] A. Brogi, E. Pimentel, and A. Rold́an. Compatibility of Linda-based

Component Interfaces. In A. Brogi and E. Pimentel, editors,Proc.
ICALP Workshop on Formal Methods and Component Interaction.
Elsevier Electronic Notes in Theoretical Computer Science, 2002.

[5] F. Curbera, N. Mukhi, and S. Weerawarana. On the Emergence of a
Web Services Component Model. InProc. 6th Int. Workshop on
Component-Oriented Programming WCOP2001, 2001.

[6] DAML-S Coalition. DAML-S: Web Services Description for the
Semantic Web. In I. Horrocks and J. Hendler, editors,Proc. First
International Semantic Web Conference ISWC 2002, LNCS 2342,
pages 279–291. Springer-Verlag, 2002.

[7] D. Kozen and J. Tiuryn. Logics of programs. In J. van Leeuwen,
editor,Handbook of Theoretical Computer Science, Vol. B, pages
789–840. Elsevier Science Publishers, 1990.

[8] G. Leavens and A. Baker. Enhancing the Pre- and Postcondition
Technique for More Expressive Specifications. In R. France and
B. Rumpe, editors,Proceedings 2nd Int. Conference UML’99 - The
Unified Modeling Language. Springer Verlag, LNCS 1723, 1999.

[9] G. Leavens and M. Sitamaran.Foundations of Component-Based
Systems. Cambridge University Press, 2000.

[10] F. Leymann. Web Services Flow Language (WSFL 1.0), 2001.
www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.

[11] M. Lumpe, F. Achermann, and O. Nierstrasz. A Formal Language
for Composition. In G. Leavens and M. Sitamaran, editors,
Foundations of Component-Based Systems, 2000.

[12] B. Meyer. Applying Design by Contract.Computer, pages 40–51,
Oct. 1992.

[13] C. Pahl. A Formal Composition and Interaction Model for a Web
Component Platform. In A. Brogi and E. Pimentel, editors,Proc.
ICALP Workshop on Formal Methods and Component Interaction.
Elsevier Electronic Notes in Theoretical Computer Science, 2002.

[14] C. Pahl. An Ontology for Software Component Matching. InProc.
Fundamental Approaches to Software Engineering FASE’2003.
Springer-Verlag, LNCS Series, 2003.

[15] K. Schild. A Correspondence Theory for Terminological Logics:
Preliminary Report. InProc. 12th Int. Joint Conference on Artificial
Intelligence. 1991.

[16] C. Szyperski. Component Technology - What, Where, and How? In
Proc. 25th International Conference on Software Engineering
ICSE’03, pages 684–693. 2003.

[17] J. Warmer and A. Kleppe.The Object Constraint Language –
Precise Modeling With UML. Addison-Wesley, 1998.

[18] World Wide Web Consortium.Web Initiaves. www.w3.org, 2003.

