
Preliminary Design of JML:

A Behavioral Interface Specification Language for Java

Gary T. Leavens
Dept. of Computer Science, Iowa State University

Ames, Iowa 50011-1041 USA
e-mail: leavens@cs.iastate.edu

Albert L. Baker
ABC Virtual Communications, Inc., 1501 50th Street, Suite 200
West Des Moines, IA 50266, USA e-mail: abaker@abcv.com

Clyde Ruby
Dept. of Computer Science, Iowa State University

Ames, Iowa 50011-1041 USA
e-mail: ruby@cs.iastate.edu

Abstract

JML is a behavioral interface specification language tailored
to Java(TM). Besides pre- and postconditions, it also allows
assertions to be intermixed with Java code; these aid verifi-
cation and debugging. JML is designed to be used by working
software engineers; to do this it follows Eiffel in using Java
expressions in assertions. JML combines this idea from Eif-
fel with the model-based approach to specifications, typified
by VDM and Larch, which results in greater expressiveness.
Other expressiveness advantages over Eiffel include quanti-
fiers, specification-only variables, and frame conditions.

This paper discusses the goals of JML, the overall approach,
and describes the basic features of the language through ex-
amples. It is intended for readers who have some familiar-
ity with both Java and behavioral specification using pre- and
postconditions.

Copyright c© 1998-2005 Iowa State University
This paper is part of JML and is distributed under the

terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your
option) any later version.

1 Introduction

JML stands for “Java Modeling Language” [LBR99]. JML is
a behavioral interface specification language (BISL) [Win87]
designed to specify Java [AGH00, GJSB00] modules. Java
modules are classes and interfaces.

The main goal of our research on JML is to better under-
stand how to make BISLs (and BISL tools) that are practical
and effective for production software environments. In order
to understand this goal, and the more detailed discussion of
our goals for JML, it helps to define more precisely what a
behavioral interface specification is. After doing this, we re-
turn to describing the goals of JML, and then give a brief
overview of the tool support for JML and an outline of the
rest of the paper.

1.1 Behavioral Interface Specification

As a BISL, JML describes two important aspects of a Java
module:

• its interface, which consists of the names and static in-
formation found in Java declarations, and

• its behavior, which tells how the module acts when used.

BISLs are inherently language-specific [Win87], because
they describe interface details for clients written in a spe-
cific programming language, For example, a BISL tailored
to C++, such as Larch/C++ [Lea97], describes how to use
a module in a C++ program. A Larch/C++ specification
cannot be implemented correctly in Java, and a JML specifi-
cation cannot be correctly implemented in C++ (except for
methods that are specified as native code).

JML specifications can either be written in separate files
or as annotations in Java program files. To a Java com-
piler such annotations are comments that are ignored [LvH85,
LvHKBO87, Ros95, Tan94, Tan95]. This allows JML specifi-
cations, such as the specification in Figure 1, to be embedded
in Java program files. This example of a behavioral interface
specification in JML is written as annotations in a Java pro-
gram file, IntMathOps.java.

The specification in Figure 1 describes a Java class,
IntMathOps that contains one static method (function mem-
ber) named isqrt. The single-line comments to the far right
(which start with //) give the line numbers in this specifi-
cation; they are ignored by both Java and JML. Comments
with an immediately following at-sign, //@, or, as on lines
3–10, C-style comments starting with /*@, are annotations.
Annotations are treated as comments by a Java compiler,
but JML processes the text of an annotation. The text of an
annotation is either the remainder of a line following //@ or
the characters between the annotation markers /*@ and @*/.
In the second form, at-signs (@) at the beginning of lines are
ignored; they can be used to help the reader see the extent
of an annotation.

1

public class IntMathOps { // 1

// 2

/*@ public normal_behavior // 3

@ requires y >= 0; // 4

@ assignable \nothing; // 5

@ ensures 0 <= \result // 6

@ && \result * \result <= y // 7

@ && ((0 <= (\result + 1) * (\result + 1)) // 8

@ ==> y < (\result + 1) * (\result + 1)); // 9

@*/ //10

public static int isqrt(int y) //11

{ //12

return (int) Math.sqrt(y); //13

} //14

} //15

Figure 1: The file IntMathOps.java

In Figure 1, interface information is declared in lines 1
and 11. Line 1 declares a class named IntMathOps, and line
11 declares a method named isqrt. Note that all of Java’s
declaration syntax is allowed in JML, including, on lines 1 and
11, that the names declared are public, that the method is
static (line 11), that its return type is int (line 11), and
that it takes one int argument.

Such interface declarations must be found in a Java mod-
ule that correctly implements this specification. This is au-
tomatically the case in the file IntMathOps.java shown in
Figure 1, since that file also contains the implementation. In
fact, when Java annotations are embedded in .java files, the
interface specification is the actual Java source code.

To be correct, an implementation must have both the spec-
ified interface and the specified behavior. In the specifica-
tion of Figure 1, the behavioral information is specified in
the annotation text on lines 3–10.1 The keywords public

normal_behavior are used to say that the specification is
intended for callers (hence “public”), and that when the pre-
condition is satisfied a call must return normally, without
throwing an exception (hence “normal”). In such a public
specification, only names with public visibility may be used.2

On line 4 is a precondition, which follows the keyword
requires.3 On line 5 is frame condition, which says that
this method, when called, does not assign to any locations.
On lines 6–9 is a postcondition, which follows the keyword

1In JML method specifications must be placed either before the
method’s header, as shown in Figure 1, or between the method’s header
and its body. In this document, we always place the specification before
the method header. This convention is followed by many Java tools, in
particular by Javadoc; It has the advantage of working in all cases, even
when the method has no body.

2In a protected specification, both public and protected identifiers
can be used. In a specification with default (i.e., no) visibility speci-
fied, which corresponds to Java’s default visibility, public and protected
identifiers can be used, as well as identifiers from the same package with
default visibility. A private specification can use any identifiers that
are available. The privacy level of a method specification cannot allow
more access than the method being specified. Thus a public method
may have a private specification, but a private method may not have a
public specification.

3The keyword pre can also be used as a synonym for requires.

ensures.4 The precondition says what must be true about
the arguments (and other parts of the state); if the precon-
dition is true, then the method must terminate normally in
a state that satisfies the postcondition. This is a con-
tract between the caller of the method and the implementor
[Hoa69, Jon90, Jon91, GHG+93, Mey92a, Mey97, Mor94].
The caller is obligated to make the precondition true, and
gets the benefit of having the postcondition then be satisfied.
The implementor gets the benefit of being able to assume the
precondition, and is obligated to make the postcondition true
in that case.

In general, pre- and postconditions in JML are written
using an extended form of Java expressions. In this case,
the only extension visible is the keyword \result, which is
used in the postcondition to denote the value returned by
the method. The type of \result is the return type of the
method; for example, the type of \result in isqrt is int.
The postcondition says that the result is an integer approx-
imation to the square root of y. The first conjunct on line
6, 0 <= \result, says that the result is non-negative. The
second and third conjuncts state that the result is an integer
approximation to the square root of the argument y. The
second conjunct, on line 7, says that the result squared is no
larger than the argument, y. The third conjunct, on lines
8–9, is an implication; it has two expressions connected by
==>, which means implication in JML. This implication says
that if the result plus one squared is non-negative, then the
result plus one squared is strictly larger than y.5 Note that
the behavioral specification does not give an algorithm for
finding the square root.

Method specifications may also be written in Java’s docu-
mentation comments. The following is an example. The part
that JML sees is enclosed within the HTML “tags” <jml> and
</jml>.6 As in Figure 2, one can use surrounding tags <pre>
and </pre> to tell javadoc to ignore what JML sees, and to
leave the formatting of it alone. The <pre> and </pre> tags
are not required by JML tools (including jmldoc, which does
a better job of formatting specifications than does javadoc).

Because we expect most of our users to write specifi-
cations in Java code files, most of our examples will be
given as annotations in .java files as in the previous spec-
ifications. However, it is possible to use JML to write
documentation in separate, non-Java files, such as the file
IntMathOps2.jml-refined in Figure 3. Since these files are
not Java program files, JML requires the user to omit the
code for concrete methods in such a file (except that code

4The keyword post can also be used as a synonym for ensures.
5The result plus one squared will become negative if the result is

larger than 46340, due to integer overflow. Patrice Chalin pointed out
that in an earlier version of this specification there were overflow prob-
lems [Cha02]. In Java integer arithmetic, one plus the maximum integer
is the minimum integer. This specification deals with such problems by
limiting the result to be a positive integer and by the implication on lines
8–9. See Figure 3 below for another way to deal with these problems.

6Since HTML tags are not case sensitive, in this one place JML is
also not case sensitive. That is, the syntax also permits the tags <JML>,
</JML>. For compatibility with ESC/Java, JML also supports the tags
<esc>, </esc>, <ESC>, and </ESC>.

2

public class IntMathOps4 {

/** Integer square root function.

* @param y the number to take the root of

* @return an integer approximating

* the positive square root of y

* <pre><jml>

* public normal_behavior

* requires y >= 0;

* assignable \nothing;

* ensures 0 <= \result

* && \result * \result <= y

* && ((0 <= (\result + 1) * (\result + 1))

* ==> y < (\result + 1) * (\result + 1));

* </jml></pre>

**/

public static int isqrt(int y)

{

return (int) Math.sqrt(y);

}

}

Figure 2: The file IntMathOps4.java

//@ model import org.jmlspecs.models.*;

public /*+@ spec_bigint_math @+*/ class IntMathOps2 {

/*@ public normal_behavior

@ requires y >= 0;

@ assignable \nothing;

@ ensures -y <= \result && \result <= y;

@ ensures \result * \result <= y;

@ ensures y < (Math.abs(\result) + 1)

@ * (Math.abs(\result) + 1);

@*/

public static int isqrt(int y);

}

Figure 3: The file IntMathOps2.jml-refined

for “model” methods can be present, see Section 2.3.1). The
specification in Figure 3 shows how this is done, using a semi-
colon (;), as in a Java abstract method declaration.

Besides files with suffixes of .jml-refined or .jml,
JML also works with files with the suffixes .spec and
.spec-refined. All these files use Java’s syntax, and one
must use annotation markers just as in a .java file. How-
ever, since these kinds of files files are not Java files, in such
a file one must also omit the code for concrete, non-model
methods.

The specification in Figure 3 is written in
spec_bigint_math mode [Cha04]. This means that in-
teger mathematics inside the specifications in the class
IntMathOps2 are done in infinite precision arithmetic,
instead of the usual Java arithmetic. This leads to a simpler

//@ refine "IntMathOps2.jml-refined";

//@ model import org.jmlspecs.models.*;

public class IntMathOps2 {

public static int isqrt(int y)

{

return (int) Math.sqrt(y);

}

}

Figure 4: The file IntMathOps2.java

specification, especially in the ensures clause.7

The specification in Figure 3 also demonstrates that
ensures clauses can be repeated in a specification. In
IntMathOps2’s specification of isqrt, there are three ensures
clauses; all of them must be satisfied. Thus the meaning is the
same as the conjunction of all of the postconditions specified
in the individual ensures clauses. This specification is also
more underspecified than the specifications given previously,
as it allows negative numbers to be returned as results.

The specification in Figure 3 would be implemented in the
file IntMathOps2.java, which is shown in Figure 4. This
file contains a refine clause, which tells the reader of the
.java file what is being refined and the file in which to find
its specification.

To summarize, a behavioral interface specification de-
scribes both the interface details of a module, and its be-
havior. The interface details are written in the syntax of the
programming language; thus JML uses the Java declaration
syntax. The behavioral specification uses pre- and postcon-
ditions.

1.2 Lightweight Specifications

Although we find it best to illustrate JML’s features in this
paper using specifications that are detailed and complete, one
can use JML to write less detailed specifications. In particu-
lar, one can use JML to write “lightweight” specifications (as
in ESC/Java). The syntax of JML allows one to write spec-
ifications that consist of individual clauses, so that one can
say just what is desired. More precisely, a lightweight spec-
ification is one that does not use a behavior keyword (like
normal_behavior). By way of contrast, we call a specifica-
tion a heavyweight specification if it uses one of the behavior
keywords.

For example, one might wish to specify just that isqrt

should be called only on positive arguments, but not want to
be bothered with saying anything formal about the locations
that can be assigned to by the method or about the result.
This could be done as shown in Figure 5. Notice that the only

7 Because the current ESC/Java2 tool does not understand
spec_bigint_math mode, the specification uses uses annotation markers
/*+@ and @+*/. These markers are understood by the ISU JML tools,
but are considered to be comments by ESC/Java2.

3

public class IntMathOps3 {

//@ requires y >= 0;

public static int isqrt(int y)

{

return (int) Math.sqrt(y);

}

}

Figure 5: The file IntMathOps3.java

specification given in that figure is a single requires clause.
Since the specification of isqrt has no behavior keyword, it
is a lightweight specification.

What is the access restriction, or privacy level, of such a
lightweight specification? The syntax for lightweight speci-
fications does not have a place to specify the privacy level,
so JML assumes that such a lightweight specification has the
same level of visibility as the method itself. (Thus, the speci-
fication is implicitly public.) What about the omitted parts
of the specification, such as the ensures clause? JML assumes
nothing about these. In the example of Figure 5, when the
precondition is met, an implementation might either signal an
exception or terminate normally, so this specification techni-
cally allows exceptions to be thrown. However, the gain in
brevity often outweighs the need for this level of precision.

JML has a semantics that allows most clauses to be sensi-
bly omitted from a specification. When the requires clause
is omitted, for example, it means that no requirements are
placed on the caller. When the assignable clause is omitted,
it means that nothing is promised about what locations may
not be assigned to by the method; that is, the method may
assign to all locations that it can otherwise legally assign to.
When the ensures clause is omitted, it means that nothing
is promised about the state resulting from a method call.

1.3 Goals

As mentioned above, the main goal of our research is to better
understand how to develop BISLs (and BISL tools) that are
practical and effective. We are concerned with both techni-
cal requirements and with other factors such as training and
documentation, although in the rest of this paper we will only
be concerned with technical requirements for the BISL itself.
The practicality and effectiveness of JML will be judged by
how well it can document reusable class libraries, frameworks,
and Application Programming Interfaces (APIs).

We believe that to meet the overall goal of practical and
effective behavioral interface specification, JML must meet
the following subsidiary goals.

• JML must be able to document the interfaces and be-
havior of existing software, regardless of the analysis and
design methods used to create it.

If JML were limited to only handling certain Java fea-
tures, certain kinds of software, or software designed
according to certain analysis and design methods, then

some APIs would not be amenable to documentation us-
ing JML. This would mean that some existing software
could not be documented using JML. Since the effort put
into writing such documentation will have a proportion-
ally larger payoff for software that is more widely reused,
it is important to be able to document existing software
components.

(However, it should be noted that we make some excep-
tions to this goal. One is that JML requires that all
subtypes be behavioral subtypes [DL96, Lea97, Win87]
of their supertypes. This is done because otherwise one
cannot reason modularly about programs that use sub-
typing and dynamic dispatch. Another is that we specify
Object’s method equals as a pure method, which pro-
hibits even benevolent side effects in any equals method
that takes an Object as an argument. This is done to
permit purity checking for collection classes that contain
objects as members and use equals to compare them,
as in the collection types found in java.util.)

• The notation used in JML should be readily understand-
able by Java programmers, including those with only
standard mathematical training.

A preliminary study by Finney [Fin96] indicates that
graphic mathematical notations, such as those found in Z
[Hay93, Spi92, WD96] may make such specifications hard
to read, even for programmers trained in the notation.
This accords with our experience in teaching formal spec-
ification notations to programmers. Hence, our strat-
egy for meeting this goal has been to shun most special-
purpose mathematical notations in favor of Java’s own
expression syntax.

• The language must be capable of being given a rigorous,
formal semantics, and must also be amenable to tool
support.

This goal also helps ensure that the specification lan-
guage does not suffer from logical problems, which would
make it less useful for static analysis, prototyping, and
testing tools.

We also have in mind a long range goal of a specification
compiler, that would produce prototypes from specifications
that happen to be constructive [WLB00].

Our partners at Compaq SRC and the University of Ni-
jmegen have other goals in mind. At Compaq SRC, the goal
is to make static analysis tools for Java programs that can
help detect bugs. At the University of Nijmegen, the goal is
to be able to do full program verification on Java programs.

As a general strategy for achieving these goals, we have
tried to blend the Eiffel [Mey92a, Mey92b, Mey97], Larch
[Win87, Win90, GHG+93, Lea00], and refinement calculus
[Bac88, BvW98, MV94, Mor94] approaches to specification.
From Eiffel we have taken the idea that assertions can be
written in a language that is based on Java expressions. We
also adapt the “old” notation from Eiffel, which appears in
JML as \old, instead of the Larch-style annotation of names

4

with state functions. However, Eiffel specifications, as writ-
ten by Meyer, are typically not as detailed as model-based
specifications written, for example, in Larch BISLs or in
VDM-SL [FL98, Org96, Jon90]. Hence, we have combined
these approaches, by using syntactic ideas from Eiffel and
semantic ideas from model-based specification languages.

JML also has some other differences from Eiffel (and its
cousins Sather and Sather-K). The most important is the
concept of specification-only declarations. These declarations
allow more abstract and exact specifications of behavior than
is typically done in Eiffel; they allow one to write specifica-
tions that are similar to the spirit of VDM or Larch BISLs.
A major difference is that we have extended the syntax of
Java expressions with quantifiers and other constructs that
are needed for logical expressiveness, but which are not al-
ways executable. Finally, we ban side-effects and other prob-
lematic features of code in assertions.

On the other hand, our experience with Larch/C++ has
taught us to adapt the model-based approach in two ways,
with the aim of making it more practical and easy to learn.
The first adaptation is again the use of specification-only
model variables. An object will thus have (in general) sev-
eral such model fields, which are used only for the purpose of
describing, abstractly, the values of objects. This simplifies
the use of JML, as compared with most Larch BISLs, since
specifiers (and their readers) hardly ever need to know about
algebraic-style specification. It also makes designing a model
for a Java class or interface similar, in some respects, to de-
signing an implementation data structure in Java. We hope
that this similarity will make the specification language easier
to understand. (This kind of model also has some technical
advantages that will be described below.)

The second adaptation is hiding the details of mathemat-
ical modeling behind a facade of Java classes. In the Larch
approach to behavioral interface specification [Win87], the
mathematical notation used in assertions is presented directly
to the specifier. This allows the same mathematical notation
to be used in many different specification languages. How-
ever, it also means that the user of such a specification lan-
guage has to learn a notation for assertions that is different
than their programming language’s notation for expressions.
In JML we use a compromise approach, hiding these details
behind Java classes. These classes have objects with many
“pure” methods, in the sense that they do not use side-effects
(at least not in any observable way). Such classes are in-
tended to present the underlying mathematical concepts us-
ing Java syntax. Besides insulating the user of JML from
the details of the mathematical notation, this compromise
approach also insulates the design of JML from the details of
the mathematical logic used for theorem proving.

We have generally taken features wholesale from the refine-
ment calculus [Bac88, BvW98, MV94, Mor94]. Our adap-
tation of it consists in blending it with the idea of inter-
face specification and adding features for object-oriented pro-
gramming. We are using the adaptation of the refinement
calculus by Büchi and Weck [BW00], which helps in spec-
ifying callbacks. However, since the refinement calculus is

mostly needed for advanced specifications, in the remainder
of this paper we do not discuss the JML features related to
refinement, such as model programs.

1.4 Tool Support

Our partners at Compaq SRC have built a tool, ESC/Java,
that does static analysis for Java programs [LNS00].
ESC/Java uses a subset of the JML specification syntax, to
help detect bugs in Java code. At the University of Ni-
jmegen the LOOP tool [Hui01, JvdBH+98] is being adapted
to use JML as its input language. This tool would generate
verification conditions that could be checked using a theorem
prover such as PVS or Isabelle/HOL. At the Massachusetts
Institute of Technology (MIT), the Daikon invariant detec-
tor project [ECGN01] is using a subset of JML to record
invariants detected by runs of a program. Recent work uses
ESC/Java to validate the invariants that are found.

In the rest of the section we concentrate on the tool support
found in the JML release from Iowa State. Iowa State’s JML
release has tool support for: static type checking of speci-
fications, run-time assertion checking, generation of HTML
pages, and generation of unit testing harnesses. Use a web
browser on the JML.html file in the Iowa State JML release
to access more detailed documentation on these tools.

1.4.1 Type Checking Specifications

Details on how to run the JML checker can be found in its
manual page, which is part of the JML release. Here we
only indicate the most basic uses of the checker. Running
the checker with filenames as arguments will perform type
checking on all the specifications contained in the given files.
For example, one could check the specifications in the file
UnboundedStack.java by executing the following command.

jml UnboundedStack.java

One can also pass several files to the checker. For example,
the following shows a handy pattern to catch all of the JML
files in the current directory.

jml *.*j* *.*spec*

One can also pass directories to the JML checker, for ex-
ample the following will check all the specifications in the
current directory.

jml .

By default, the checker does not recurse into subdirectories,
but this can be changed by using the -R option. For example,
the following checks specifications in the current directory
and all subdirectories.

jml -R .

5

rm -fr $HOME/MJ/javadocs

jmldoc -Q -private -d $HOME/MJ/javadocs \

-link file:/cygwin/usr/local/jdk1.4/docs/api \

-link file:/cygwin/usr/local/antlr/javadocs \

--sourcepath $HOME/MJ \

org.multijava.dis \

org.multijava.javadoc org.multijava.mjc \

org.multijava.mjdoc org.multijava.util \

org.multijava.util.backend org.multijava.util.classfile \

org.multijava.util.compiler org.multijava.util.jperf \

org.multijava.util.lexgen org.multijava.util.msggen \

org.multijava.util.optgen org.multijava.util.optimize \

org.multijava.util.testing

Figure 6: An example of running jmldoc.

To allow specifications to be split into several files and to
allow documentation of code without changing existing files,
the checker recognizes several filename suffixes. The follow-
ing are considered to be “active” suffixes: .refines-java,
.refines-spec, .refines-jml, .java, .spec, and .jml;
There are also three “passive” suffixes: .java-refined,
.spec-refined, and .jml-refined. Files with passive suf-
fixes can be used in refinements (see Section 1.1) but should
not normally be passed explicitly to the checker on its com-
mand line. Graphical user interface tools for JML should, by
default, only present the active suffixes for selection. Among
files in a directory with the same prefix, but with different
active suffixes, the one whose suffix appears first in the list of
active suffixes above should be considered primary by such a
tool.

Files with different suffixes should be connected to each
other using @coderefines clauses. We give several examples
in the remainder of this paper.

1.4.2 Generating HTML Documentation

To generate HTML documentation that can be browsed on
the web, one uses the jmldoc tool.8 This tool is a replacement
for javadoc that understands JML specifications. In addition
to generating web pages for JML files and for JML annotated
Java files, jmldoc also generates the indexes and other HTML
files that surround these and provide access, in the same way
that javadoc does.

For example, Figure 6 shows how we use jmldoc to gener-
ate the HTML pages for the MultiJava project. The options
used in this invocation of jmldoc make jmldoc be quiet (-Q),
document all members (including private ones) of classes
and interfaces (-private), write the HTML files relative to
$HOME/MJ/javadocs (-d), link to existing HTML files for the
JDK and for ANTLR (-link), and find listed packages rela-
tive to $HOME/MJ (--sourcepath). More details on running
jmldoc are available from its manual page, which is part of
the JML release.

8The jmldoc tool is generously provided by David Cok; thanks
David!.

1.4.3 Run Time Assertion Checking

The JML runtime assertion checking compiler is called jmlc.
It type checks assertions (so there is no need to run jml sep-
arately), and then generates a class file with the executable
parts of the specified assertions, invariants, preconditions,
and postconditions (and other JML constructs) checked at
run-time. Its basic usage is similar to a Java compiler, as
shown in the following example.

jmlc TestUnboundedStack.java UnboundedStack.java

This will produce output telling what the compiler is do-
ing, as well as class files TestUnboundedStack.class and
UnboundedStack.class.

To run or test a program compiled with jmlc, you should
use the script jmlrac. The jmlrac script runs the result-
ing code with a CLASSPATH that includes various JAR files
containing code needed for run-time assertion checking, as
follows.

jmlrac org.jmlspecs.samples.stacks.TestUnboundedStack

Using the jmlrac script is necessary. If you do not use
jmlrac to run the program, you will get errors, since the code
that jmlc compiles expects various runtime library classes to
be available.

More details on invoking jmlc and jmlrac are available
from their manual pages, which are available in the JML
release. See also the README.html file in the JML release
for more details and troubleshooting tips. Details on the
implementation of jmlc are found in a paper by Cheon and
Leavens [CL02a].

1.4.4 Unit Testing with JML

The run time assertion checker is also integrated with
a tool, jmlunit that can write out a JUnit [BG98]
test oracle class for given Java files. For example,
to generate the classes UnboundedStack_JML_Test and
UnboundedStack_JML_TestData from UnboundedStack, one
would execute the following.

jmlunit UnboundedStack.java

The file UnboundedStack_JML_Test.java will then con-
tain code for an abstract class to drive the tests. This class
uses the runtime assertion checker to decide test success or
failure. (Tests are only as good as the quality of the specifica-
tions; hence the specifications must be reasonably complete
to permit reasonably complete testing.)

The file UnboundedStack_JML_TestData.java will con-
tain code for the superclass of UnboundedStack_JML_Test

that must be used to fill in test data for such test-
ing. You need to fill in the test data in the code for
this subclass, as described in the comments. The file
UnboundedStack_JML_TestData.java is produced automat-
ically the first time you run jmlunit as described above.
However, subsequent runs of jmlunit never overwrite or

6

change an _JML_TestData.java file such as this if it exists.
Hence it is safe to edit the file to add test data (and even
additional test methods if you wish).

To run the test use the script jml-junit, as shown in Fig-
ure 7.

More details on invoking these tools can be found in their
manual pages which ship with the JML release. More discus-
sion on this integration of JML and JUnit are explained in
the ECOOP 2002 paper by Cheon and Leavens [CL02b].

JML also provides a tool, jtest, that combines both jmlc

and jmlunit. The jtest tool both compiles a class with run-
time assertion checks enabled using jmlc, and also generates
the test oracle and test data classes, using jmlunit.

1.5 Outline

In the next sections we describe more about JML and its
semantics. See Section 2, for examples that show how Java
classes and interfaces are specified; this section also briefly
describes the semantics of subtyping and refinement. See
Section 3, for a description of the expressions that can be
used in specifications. See Section 4, for conclusions from
our preliminary design effort. See the JML Reference Manual
[LPC+05] for details on the syntax and semantics of JML.

2 Class and Interface Specifications

In this section we give some examples of JML class specifica-
tions that illustrate the basic features of JML.

2.1 Abstract Models

A simple example of an abstract class specification is the ever-
popular UnboundedStack type, which is presented in Fig-
ure 8. It would appear in a file named UnboundedStack.java.

This specification contains the declaration of a model field,
an invariant, and some method specifications. These are de-
scribed below.

2.1.1 Model Fields

In the fourth non-blank line of UnboundedStack.java, a
model data field, theStack, is declared. Since it is declared
using the JML modifier model, such a field is not part of
the Java implementation, and must appear in an annotation;
however, for purposes of the specification we treat it much
like any other Java field (i.e., as a variable location). That is,
we imagine that each instance of the class UnboundedStack

has such a field.
The type of the model field theStack is a type designed

for mathematical modeling, JMLObjectSequence. Objects of
this type are sequences of objects. This type is provided
by JML in the package org.jmlspecs.models, which is im-
ported in the second non-blank line of the figure. Note that
this import declaration is not part of the Java implementa-
tion, since it is modified by the keyword model. Such model

package org.jmlspecs.samples.stacks;

//@ model import org.jmlspecs.models.*;

public abstract class UnboundedStack {

/*@ public model JMLObjectSequence theStack;

@ public initially theStack != null

@ && theStack.isEmpty();

@*/

//@ public invariant theStack != null;

/*@ public normal_behavior

@ requires !theStack.isEmpty();

@ assignable theStack;

@ ensures theStack.equals(

@ \old(theStack.trailer()));

@*/

public abstract void pop();

/*@ public normal_behavior

@ assignable theStack;

@ ensures theStack.equals(

@ \old(theStack.insertFront(x)));

@*/

public abstract void push(Object x);

/*@ public normal_behavior

@ requires !theStack.isEmpty();

@ assignable \nothing;

@ ensures \result == theStack.first();

@*/

public /*@ pure @*/ abstract Object top();

}

Figure 8: The file UnboundedStack.java

7

jml-junit org.jmlspecs.samples.stacks.UnboundedStack_JML_TestData

Figure 7: Running tests using jml-junit.

imports must also appear in annotation comments. In gen-
eral, any declaration form in Java can have the @codemodel
modifier, with the same meaning. That is, a model decla-
ration is only used for specification purposes, and does not
have to appear in an implementation.

At the end of the model field’s declaration in Figure 8
is an initially clause. (Such clauses are adapted from
RESOLVE [OSWZ94] and the refinement calculus [Bac88,
BvW98, MV94, Mor94].) Model fields cannot be explicitly
initialized (and thus cannot be final), because there is no
storage directly associated with them. However, one can use
an initially clause to describe an abstract initialization for
a model field. Initially clauses can be attached to any field
declaration, including non-model fields, and permit one to
constrain the initial values of such fields. Knowing something
about the initial value of the field permits data type induc-
tion [Hoa72, Win83] for abstract classes and interfaces. The
initially clause must be true of the field’s starting value.
That is, all reachable objects of the type UnboundedStack

must have been created as empty stacks and subsequently
modified using the type’s methods.

2.1.2 Invariants

Following the model field declaration is an invariant. An
invariant does not have to hold during the execution of an
object’s methods, but it must hold, for each reachable object
in each publicly visible state; i.e., for each state outside of
a public method or constructor’s execution, and at the be-
ginning and end of each public method’s execution.9 The
figure’s invariant just says that the value of theStack should
never be null.

2.1.3 Method Specifications

Following the invariant are the specifications of the methods
pop, push, and top. We describe the new aspects of these
specifications below.

2.1.3.1 The Assignable Clause The use of the
assignable10 clauses in the behavioral specifications of pop

9In JML invariants also apply to non-public methods as well. The
only exception is that a private method or constructor may be marked
with the helper modifier; such methods cannot assume and do not need
to establish the invariant.

10For historical reasons, one can also use the keyword modifiable as
a synonym for assignable. Also, for compatibility with (older versions
of) ESC/Java [LNS00], in JML, one can also use the keyword modifies

as a synonym for assignable. In the literature, the most common key-
word for such a clause is modifies, and what JML calls the “assignable
clause” is usually referred to as a “modifies clause”. However, in JML,
“assignable” most closely corresponds to the technical meaning, so we
use that throughout this document. Users of JML may write whichever
they prefer, and may mix them if they please.

and push is interesting (and another difference from Eiffel).
These clauses give frame conditions [BMR95]. In JML, the

frame condition given by a method’s assignable clause only
permits the method to assign to a location, loc, if:

• loc is mentioned in the method’s assignable clause,

• loc is a member of a data group mentioned in the
method’s assignable clause (see Section 2.2),

• loc was not allocated when the method started execution,
or

• loc is local to the method (i.e., a local variable, including
the method’s formal parameters).

For example, push’s specification says that it may only assign
to theStack (and locations in theStack’s data group). This
allows push to assign to theStack (and the members of its
data group), or to call some other method that makes such
an assignment. Furthermore, push may assign to the formal
parameter x itself, even though that location is not listed
in the assignable clause, since x is local to the method.
However, push may not assign to fields not mentioned in the
assignable clause; in particular it may not assign to fields
of its formal parameter x,11 or call a method that makes such
an assignment.

The design of JML is intended to allow tools to statically
check the body of a method’s implementation to determine
whether its assignable clause is satisfied. This would be
done by checking each assignment statement in the imple-
mentation to see if what is being assigned to is a location
that some assignable clause permits. It is an error to as-
sign to any other allocated, non-local location. However, to
do this, a tool must conservatively track aliases and changes
to objects containing the locations in question. Also, arrays
can only be dynamically checked, in general.12 Furthermore,
JML will flag as an error a call to a method that would assign
to locations that are not permitted by the calling method’s
assignable clause. It can do this using the assignable

clause of the called method.
In JML, a location is modified by a method when it is

allocated in both the pre-state of the method, reachable in
the post-state, and has a value that is different in these two
states. The pre-state of a method call is the state just af-
ter the method is called and parameters have been evalu-
ated and passed, but before execution of the method’s body.
The post-state of a method call is the state just before the
method returns or throws an exception; in JML we imag-
ine that \result and information about exception results is
recorded in the post-state.

11Assuming that x is not the same object as this!
12Thanks to Erik Poll for discussions on checking of assignable clauses.

8

Since modification only involves objects allocated in the
pre-state, allocation of an object, using Java’s new operator,
does not itself cause any modification. Furthermore, since
the fields of new objects are locations that were not allocated
when the method started execution, they may be assigned to
freely.

The reason assignments to local variables are permitted by
the assignable clause is that a JML specification takes the
client’s (i.e., the caller’s) point of view. From the client’s
point of view, the local variables in a method are newly-
allocated, and thus assignments to such variables are invisible
to the client. Hence, in JML, it is an error to list the loca-
tions corresponding to formal parameters in the assignable

clause. However, the locations corresponding to fields or ar-
ray elements of such formal parameters can be sensibly men-
tioned in the assignable clause. Furthermore, when formal
parameters are used in a postcondition, JML interprets these
as meaning the value initially given to the formal in the pre-
state, since assignments to the formals within the method do
not matter to the client.

JML’s interpretation of the assignable clause does not per-
mit either temporary side effects or benevolent side effects.
A method with a temporary side effect assigns to a location,
does some work, and then assigns the original value back to
that location. In JML, a method may not have temporary
side effects on locations that it is not permitted to modify
[RL00]. A method has a benevolent side effect if it assigns to
a location in a way that is not observable by clients. In JML,
a method may not have benevolent side effects on locations
that it is not permitted to modify [Lei95b, Lei95a].

Because JML’s assignable clauses give permission to assign
to locations, it is safe for clients to assume that only the listed
locations (and locations of their data group members) may
have their values modified. Because locations listed in the
assignable clause are the only ones that can be modified,
we often speak of what locations a method can “modify,”
instead of the more precise “can assign to.”

What does the assignable clause say about the modifica-
tion of locations? In particular, although the “location” for a
model field or model variable cannot be directly assigned to in
JML, its value is determined by the concrete fields and vari-
ables that it (ultimately) depends on, specifically the mem-
bers of its data group. That is, a model field or variable can
be modified by assignments to the concrete members of its
data group (see Section 2.2). Thus, a method’s assignable
clause only permits the method to modify a location if the
location:

• is mentioned in the method’s assignable clause,

• is a member of a data group mentioned in the
assignable clause (see Section 2.2),

• was not allocated when the method started execution,
or

• is local to the method.

In the specification of top, the assignable clause says that
a call to top that satisfies the precondition cannot assign to
any locations. It does this by using the store-ref “\nothing.”
Unlike some formal specification languages (including Larch
BISLs and older versions of JML), when the assignable

clause is omitted in a heavyweight specification, the default
store-ref for the assignable clause is \everything. Thus an
omitted assignable clause in JML means that the method can
assign to all locations (that could otherwise be assigned to by
the method). Such an assignable clause plays havoc with for-
mal reasoning, and thus if one cares about verification, one
should give an assignable clause explicitly if the method is
not pure (see Section 2.3.1).

2.1.3.2 Old Values When a method can modify some
locations, they may have different values in the pre-state and
post-state of a call. Often the post-condition must refer to
the values held in both of these states. JML uses a nota-
tion similar to Eiffel’s to refer to the pre-state value of a
variable. In JML the syntax is \old(E), where E is an ex-
pression. (Unlike Eiffel, we use parentheses following \old to
delimit the expression to be evaluated in the pre-state explic-
itly. JML also uses backslashes (\) to mark the keywords it
uses in expressions; this avoids interfering with Java program
identifiers, such as “old”.)

The meaning of \old(E) is as if E were evaluated in
the pre-state and that value is used in place of \old(E)

in the assertion. It follows that, an expression like
\old(myVar).theStack may not mean what is desired, since
only the old value of myVar is saved; access to the field
theStack is done in the post-state. If it is the field, theStack,
not the variable, myVar, that is changing, then probably what
is desired is \old(myVar.theStack). To avoid such prob-
lems, it is good practice to have the expression E in \old(E)

be such that its type is either the type of a primitive value,
such as an int, or a type with immutable objects, such as
JMLObjectSequence.

As another example, in pop’s postcondition the expression
\old(theStack.trailer()) has type JMLObjectSequence,
so it is immutable. The value of theStack.trailer() is
computed in the pre-state of the method.

2.1.3.3 Reference Semantics Note also that, since
JMLObjectSequence is a reference type, one must use equals
instead of == to compare instances of this type for equal-
ity of values. For example, in the postcondition of the
pop method, we use equals to compare theStack and
\old(theStack.trailer()), as these may yield different ob-
jects. Using == would be a mistake, since it would only com-
pare them for object identity.

As in Java itself, most types are reference types, and hence
many expressions yield references (i.e., object identities or
addresses), as opposed to primitive values. This means that
==, except when used to compare pure values of primitive
types such as boolean or int, is reference equality. As in
Java, to get value equality for reference types one uses the

9

equals method in assertions. For example, the predicate
myString == yourString, is only true if the objects denoted
by myString and yourString are the same object (i.e., if the
names are aliases); to compare their values one must write
myString.equals(yourString).

2.1.3.4 Correct Implementation The specification of
push does not have a requires clause. This means that the
method imposes no obligations on the caller. (The mean-
ing of an omitted requires clause is that the method’s pre-
condition is true, which is satisfied by all states, and hence
imposes no obligations on the caller.) This seems to imply
that the implementation must provide a literally unbounded
stack, which is surely impossible. We avoid this problem, by
following Poetzsch-Heffter [PH97] in releasing implementa-
tions from their obligations to fulfill the postcondition when
Java runs out of storage. In general, a method specified with
normal_behavior has a correct implementation if, whenever
it is called in a state that satisfies its precondition, either

• the method terminates normally in a state that satisfies
its postcondition, having assigned to only the locations
permitted by its assignable clause, or

• Java signals an error, by throwing an exception that in-
herits from java.lang.Error.

We discuss the specification of methods with exceptions in
the next subsection.

2.1.4 Models and Lightweight Specifications

In specifying existing code, one often does not want to in-
troduce new model fields or think up new names for them.
And sometimes, especially for fields with simple, atomic val-
ues, the field name itself is so “natural” that it would be
difficult to think up a second good name for a model field
that would be an abstraction of it. Thus JML provides two
modifiers, spec_public and spec_protected that can used
to make existing fields public or protected, for purposes of
specification.

For example, consider the (lightweight) specification of the
class Point2D in Figure 9. In this specification the private
fields, x and y are specified as spec_public, which allows
them to be used in the public invariant clause and in the (im-
plicitly public) specifications of the constructors and methods
of Point2D.

Note that these specifications would be illegal without the
use of spec_public, since JML requires that public specifi-
cations only mention publicly-visible names (see Section 1.1).

However, spec_public is more than just a way to change
the visibility of a name for specification purposes. When
applied to fields it can be considered to be shorthand for the
declaration of a model field with the same name. That is, the
declaration of x in Point2D can be thought of as equivalent
to the following declarations, together with a rewrite of the
Java code that uses x to use _x instead (where we assume _x

is not used elsewhere).

package org.jmlspecs.samples.prelimdesign;

//@ model import org.jmlspecs.models.JMLDouble;

public class Point2D

{

private /*@ spec_public @*/ double x = 0.0;

private /*@ spec_public @*/ double y = 0.0;

//@ public invariant !Double.isNaN(x);

//@ public invariant !Double.isNaN(y);

//@ public invariant !Double.isInfinite(x);

//@ public invariant !Double.isInfinite(y);

//@ ensures x == 0.0 && y == 0.0;

public Point2D() { }

/*@ requires !Double.isNaN(xc);

@ requires !Double.isNaN(yc);

@ requires !Double.isInfinite(xc);

@ requires !Double.isInfinite(yc);

@ assignable x, y;

@ ensures x == xc && y == yc;

@*/

public Point2D(double xc, double yc) {

x = xc;

y = yc;

}

//@ ensures \result == x;

public /*@ pure @*/ double getX() {

return x;

}

//@ ensures \result == y;

public /*@ pure @*/ double getY() {

return y;

}

/*@ requires !Double.isNaN(x+dx);

@ requires !Double.isInfinite(x+dx);

@ assignable x;

@ ensures JMLDouble.approximatelyEqualTo(x,

@ \old(x+dx), 1e-10);

@*/

public void moveX(double dx) {

x += dx;

}

/*@ requires !Double.isNaN(y+dy);

@ requires !Double.isInfinite(y+dy);

@ assignable y;

@ ensures JMLDouble.approximatelyEqualTo(y,

@ \old(y+dy), 1e-10);

@*/

public void moveY(double dy) {

y += dy;

}

}

Figure 9: The file Point2D.java

10

//@ public model int x;

private int _x; //@ in x;

//@ private represents x <- _x;

So in this way of thinking spec_public is not just an access
modifier, but shorthand for declaration of a model field. This
model field declaration is a commitment to readers that they
can understand the specification using these model fields,
even if the underlying private fields are changed, just as if
the model field were declared explicitly. The model fields
that are implicit allow such changes to be made without af-
fecting the readers of the specification.

For example, suppose one wanted to change the implemen-
tation of Point2D, to use polar coordinates. To do that while
keeping the public specification unchanged, one would declare
the model fields x and y explicitly. One would then declare
other fields for the polar and rectangular coordinates (and
perhaps additional model fields as well). One would then
also need to give explicit declarations that the new concrete
fields are members of the model fields data groups, and give
appropriate represents clauses. (See Section 2.2.2.1, for more
on data group membership and represents clauses.) All of
this is exactly analogous to what is done implicitly in the the
desugaring described above.

Similar remarks apply to spec_protected. The
spec_public and spec_protected shorthands were bor-
rowed from ESC/Java, but the desugaring described above
is novel with JML.

2.2 Data Groups

In this subsection we present two example specifica-
tions. The two example specifications, BoundedThing and
BoundedStackInterface, are used to describe how model
(and concrete) fields can be related to one another, and
how dependencies among them affect the meaning of the
assignable clause. Along the way we also demonstrate how
to specify methods that can throw exceptions and other fea-
tures of JML.

2.2.1 Specification of BoundedThing

The specification in the file BoundedThing.java, shown in
Figure 10, is an interface specification with a simple abstract
model. In this case, there are two model fields MAX_SIZE and
size.

After discussing the model fields, we describe the other
parts of the specification below.

2.2.1.1 Model Fields in Interfaces In the specification
in Figure 10, the fields MAX_SIZE and size are both declared
using the modifier instance. Because of the use of the key-
word instance, these fields are thus treated as normal model
fields, i.e., as an instance variable in each object that imple-
ments this interface. By default, as in Java, fields are static
in interfaces, and so if instance is omitted, the field decla-
rations would be treated as class variables. The instance

package org.jmlspecs.samples.stacks;

public interface BoundedThing {

//@ public model instance int MAX_SIZE;

//@ public model instance int size;

/*@ public instance invariant MAX_SIZE > 0;

public instance invariant

0 <= size && size <= MAX_SIZE;

public instance constraint

MAX_SIZE == \old(MAX_SIZE);

@*/

/*@ public normal_behavior

ensures \result == MAX_SIZE;

@*/

public /*@ pure @*/ int getSizeLimit();

/*@ public normal_behavior

ensures \result <==> size == 0;

@*/

public /*@ pure @*/ boolean isEmpty();

/*@ public normal_behavior

ensures \result <==> size == MAX_SIZE;

@*/

public /*@ pure @*/ boolean isFull();

/*@ also

public behavior

assignable \nothing;

ensures \result instanceof BoundedThing

&& size == ((BoundedThing)\result).size;

signals_only CloneNotSupportedException;

@*/

public Object clone ()

throws CloneNotSupportedException;

}

Figure 10: The file BoundedThing.java

11

keyword tells the reader that the variable being declared is
not static, but has a copy in each instance of a class that
implements this interface.

Java does not allow non-static fields to be declared in in-
terfaces. However, JML allows non-static model (and ghost)
fields in interfaces when one uses instance. The reason for
this extension is that such fields are essential for defining the
abstract values and behavior of the objects being specified.13

In specifications of interfaces that extend or classes that
implement this interface, these model fields are inherited.
Thus, every object that has a type that is a subtype of the
BoundedThing interface is thought of, abstractly, as having
two fields, MAX_SIZE and size, both of type int.

2.2.1.2 Invariants and History Constraint Three
pieces of class-level specification come after the abstract
model in the specification shown in Figure 10.

The first two are invariant clauses. Writing several in-
variant clauses in a specification, like this is equivalent to
writing one invariant clause which is their conjunction. Both
of these invariants are instance invariants, because they use
the instance modifier. By default, in interfaces, invariants
and history constraints are static, unless marked with the
instance modifier. Static invariants may only refer to static
fields, while instance invariants can refer to both instance and
static fields.

The first invariant in the figure says that in every publicly
visible state, every reachable object that is a BoundedThing

must have a positive MAX_SIZE field. The second invariant
says that, in each publicly visible state, every reachable object
that is a BoundedThing must have a size field that is non-
negative and less than or equal to MAX_SIZE.

Following the invariants is a history constraint [LW94].
Like the invariants, it uses the modifier instance, because
it refers to instance fields. A history constraint is used to
say how values can change between earlier and later publicly-
visible states, such as a method’s pre-state and its post-state.
This prohibits subtype objects from making certain state
changes, even if they implement more methods than are spec-
ified in a given class. The history constraint in the specifica-
tion of BoundedThing says that the value of MAX_SIZE cannot
change, since in every pre-state and post-state, its value in
the post-state, written MAX_SIZE, must equal its value in the
pre-state, written \old(MAX_SIZE).

2.2.1.3 Details of the Method Specifications Follow-
ing the history constraint are the interfaces and specifications
for four public methods. Notice that, if desired, the at-signs
(@) may be omitted from the left sides of intermediate lines,
as we do in this specification.

The use of == in the method specifications is okay, since
in each case, the things being compared are primitive val-
ues, not references. The notation <==> can be read “if

13Furthermore, static model fields must have concrete implementa-
tions in the interfaces in which they are declared, if they are to have
any representation at all. See Section 2.2.2.1, for more on this subject.

and only if”. It has the same meaning for Boolean val-
ues as ==, but has a lower precedence. Therefore, the
expression “\result <==> size == 0” in the postcondi-
tion of the isEmpty method means the same thing as
“\result == (size == 0)”.

2.2.1.4 Adding to Method Specifications The spec-
ification of the last method of BoundedThing, clone, is in-
teresting. Note that it begins with the keyword also. This
form is intended to tell the reader that the specification given
is in addition to any specification that might have been given
in the superclass Object, where clone is declared as a pro-
tected method. A form like this must be used whenever a
specification is given for a method that overrides a method
in a superclass, or that implements a method from an imple-
mented interface.

2.2.1.5 Specifying Exceptional Behavior The
specification of clone also uses behavior instead of
normal_behavior. In a specification that starts this way,
one can describe not just the case where the execution
returns normally, but also executions where exceptions are
thrown. In such a specification, the conditions under which
exceptions can be thrown can be described by the predicate
in the signals clauses,14 and the conditions under which
the method may return without throwing an exception are
described by the ensures clause. In this specification, the
clone method may always throw the exception, because
it only needs to make the predicate “true” true to do so.
When the method returns normally, it must make the given
postcondition true.

In JML, a normal_behavior specification can be thought
of as a syntactic sugar for a behavior specification to which
the following clause is added [RL05].

signals (java.lang.Exception) false;

This formalizes the idea that a method with a
normal_behavior specification may not throw an exception
when the specification’s precondition is satisfied.

JML also has a specification form exceptional_behavior,
which can be used to specify when a method may not return
normally. A specification that uses exceptional_behavior

can be thought of as a syntactic sugar for a behavior speci-
fication to which the following clause is added [RL05].

ensures false;

This formalizes the idea that a method with an
exceptional_behavior specification may not return nor-
mally when the specification’s precondition is satisfied. Thus,
when the precondition of such a specification case holds, some
exception must be thrown (unless the execution encounters
an error or is permitted to not return to the caller).

Since, in the specification of clone, we want to allow the
implementation to make a choice between either returning

14The keyword “exsures” can also be used in place of signals.

12

normally or throwing an exception, and we do not wish
to distinguish the preconditions under which each choice
must be made, we cannot use either of the more specialized
forms normal_behavior or exceptional_behavior. Thus
the specification of clone demonstrates the somewhat un-
usual case when the more general form of a behavior speci-
fication is needed.

The specification of clone also illustrates the
signals_only clause. The signals_only clause in the
example says that the method may only throw an exception
that is a subtype of CloneNotSupportedException when
the exceptional behavior’s precondition is true. This says
the same thing as the following, more verbose, signals clause.

signals (Exception e)

e instanceof CloneNotSupportedException;

The signals clause itself only describes what must be true
when the exceptions it applies to are thrown; it does not
constrain a method’s behavior with respect to exceptions that
are not subtypes of the exceptions named. For example, a
signals clause of the form

signals (CloneNotSupportedException) true;

would only say that a CloneNotSupportedException can al-
ways be thrown; it would not prohibit other exceptions that
are not subtypes of CloneNotSupportedException from be-
ing thrown. For example, if clone were specified with such
a signals clause, then an implementation could legally throw
a NullPointerException. To prevent such a possibility, in
many cases it is preferable to use a signals_only clause to
limit what exceptions may be thrown.

Finally note that in the specification of clone, the normal
postcondition says that the result will be a BoundedThing and
that its size will be the same as the model field size. The
use of the cast in this postcondition is necessary, since the
type of \result is Object. (This also adheres to our goal of
using Java syntax and semantics to the extent possible.) Note
also that the conjunct \result instanceof BoundedThing

“protects” the next conjunct [LW97] since if it is false the
meaning of the cast does not matter.

2.2.2 Specification of BoundedStackInterface

The specification in the file BoundedStackInterface.java in
Figure 11 gives an interface for bounded stacks that extends
the interface for BoundedThing. Note that this specification
can refer to the instance fields MAX_SIZE and size inherited
from the BoundedThing interface.

The abstract model for BoundedStackInterface adds to
the inherited model by declaring a model instance field named
theStack. This field is typed as a JMLObjectSequence.

In the following we describe how the new model instance
field, theStack, is related to size from BoundedThing. We
also use this example to explain more JML features.

2.2.2.1 Data Groups and Represents Clauses The
in and represents clauses that follow the declaration of
theStack are an important feature in modeling with layers
of model fields.15 They also play a crucial role in relating
model fields to the concrete fields of objects, which can be
considered to be the final layer of detail in a design.

When a model field is declared, a data group with the
same name is automatically created; furthermore, this field
is always a member of the group it creates. A data group is
a set of fields (locations) referenced by a specific name, i.e.,
the name of the model field that created it [Lei98, LPHZ02].

When a data group (or field) is mentioned in the
assignable clause for a method M, then all members (i.e.,
fields) in that group can be assigned to in the body of M.
Fields can become a member of a data group through the
data group clauses (i.e., the in and maps-into clauses) that
come immediately after the field declaration, in this case the
in clause. The in clause in BoundedStackInterface says
that theStack is a member of the group created by the dec-
laration of model field size; this means that theStack might
change its value whenever size changes. However, another
way of looking at this is that, if one wants to change size,
this can be done by changing theStack. We also say that
theStack is a member of size.

The maps-into clause is another way of adding members to
a data group; it allows the fields of an object to be included in
an existing data group. For example, if a field F is a reference
or an array type, then the fields or array elements of F can
be included in a data group using the maps-into clause. The
following are examples.

protected ArrayList elems;

//@ maps elems.theList \into theStack;

protected java.lang.Object[] theItems;

//@ maps theItems[*] \into theStack;

In the first example, the maps-into clause says that
theList field of elems is a member of theStack data group.
Field elems is a concrete field of the type (i.e., it is not a
model field and thus is part of the implementation). This al-
lows model field theList of elems to change when theStack

changes. Since theList is a model field and data group, this
also allows concrete fields of elems to change as theStack

changes. Similarly, the second example says that the ele-
ments of the array, theItems, can change when theStack

changes.
Data groups have the same visibility as the model field

that declared it, i.e, public, protected, private, or package
visibility. A field cannot be a member of a group that is less
visible than it is. For example, a public field cannot be a
member of a protected group.

The in and maps-into clauses are important in “loosen-
ing up” the assignable clause, for example to permit the

15Of course, one could specify BoundedStackInterface without sep-
arating out the interface BoundedThing, and in that case, these layers
would be unnecessary. We have made this separation partly to demon-
strate more advanced features of JML, and partly to make the parts of
the example smaller.

13

package org.jmlspecs.samples.stacks;

//@ model import org.jmlspecs.models.*;

public interface BoundedStackInterface extends BoundedThing {

//@ public initially theStack != null && theStack.isEmpty();

/*@ public model instance JMLObjectSequence theStack;

@ in size;

@*/

//@ public instance represents size = theStack.int_length();

/*@ public instance invariant theStack != null;

@ public instance invariant_redundantly

@ theStack.int_length() <= MAX_SIZE;

@ public instance invariant

@ (\forall int i; 0 <= i && i < theStack.int_length();

@ theStack.itemAt(i) != null);

@*/

/*@ public normal_behavior

@ requires !theStack.isEmpty();

@ assignable size, theStack;

@ ensures theStack.equals(\old(theStack.trailer()));

@ also

@ public exceptional_behavior

@ requires theStack.isEmpty();

@ assignable \nothing;

@ signals_only BoundedStackException;

@*/

public void pop() throws BoundedStackException;

/*@ public normal_behavior

@ requires theStack.int_length() < MAX_SIZE && x != null;

@ assignable size, theStack;

@ ensures theStack.equals(\old(theStack.insertFront(x)));

@ ensures_redundantly theStack != null && top() == x

@ && theStack.int_length()

@ == \old(theStack.int_length()+1);

@ also

@ public exceptional_behavior

@ requires theStack.int_length() >= MAX_SIZE || x == null;

@ assignable \nothing;

@ signals_only BoundedStackException, NullPointerException;

@ signals (BoundedStackException)

@ theStack.int_length() == MAX_SIZE;

@ signals (NullPointerException) x == null;

@*/

public void push(Object x)

throws BoundedStackException, NullPointerException;

/*@ public normal_behavior

@ requires !theStack.isEmpty();

@ ensures \result == theStack.first() && \result != null;

@ also

@ public exceptional_behavior

@ requires theStack.isEmpty();

@ signals_only BoundedStackException;

@ signals (BoundedStackException e)

@ \fresh(e) && e != null && e.getMessage() != null

@ && e.getMessage().equals("empty stack");

@*/

public /*@ pure @*/ Object top() throws BoundedStackException;

}

Figure 11: The file BoundedStackInterface.java

14

fields of an object that implement the abstract model to be
changed [Lei95b, Lei95a]. This “loosening up” also applies
to model fields that are members of other groups. For exam-
ple, since theStack is a member of size, whenever size is
mentioned in an assignable clause, then theStack is implic-
itly allowed to be modified.16 Thus it is only for rhetorical
purposes that we mention both size and theStack in the
assignable clauses of pop and push. Note, however, that just
mentioning theStack would not permit size to be modified,
because size is not a member of theStack’s group. Further-
more, it is redundant to mention theStack when size has
already been mentioned (although this can help clarify the
assignable clause, i.e., clarify which fields can be changed).

The represents clause in BoundedStackInterface says
how the value of size is related to the value of theStack. It
says that the value of size is theStack.length().

A represents clause gives additional facts that can be used
in reasoning about the specification. It serves the same pur-
pose as an abstraction function in various proof methods for
abstract data types (such as [Hoa72]).

One can only use a represents clause to state facts about
a field and its data group members. To state relationships
among concrete data fields or on fields that are not related
by a data group membership, one should use an invariant.

2.2.2.2 Redundant Specification The second
invariant clause that follows the represents clause
in the specification of BoundedStackInterface, shown in
Figure 11, is our first example of checkable redundancy
in a specification [LB99, Tan94, Tan95]. This concept is
signaled in JML by the use of the suffix _redundantly

on a keyword (as in ensures_redundantly). It says both
that the stated property is specified to hold and that this
property is believed to follow from the other properties of
the specification. In this case the redundant invariant follows
from the given invariant, the invariant inherited from the
specification of BoundedThing, and the fact stated in the
represents clause. Even though this invariant is redundant,
it is sometimes helpful to state such properties, to bring
them to the attention of the readers of the specification.

Checking that such claimed redundancies really do follow
from other information is also a good way to make sure that
what is being specified is really what is intended. Such checks
could be done manually, during reviews, or with the aid of
a theorem prover. JML’s runtime assertion checker can also
check such redundant specifications, but, of course, can only
find examples where they do not hold.

2.2.2.3 Multiple Specification Cases After the redun-
dant invariant of BoundedStackInterface are the specifica-

16Note that the permission to assign a field goes from the more ab-
stract field to the one in its group (which in this case is also abstract).
Müller points out that this direction is necessary for information hiding,
because concrete fields are often hidden (e.g., they may be private), and
as such cannot appear in public specifications, so the public specification
has to mention the more abstract field, which give assignment rights to
its members [Mül02].

tions of the pop, push, and top methods. These are interest-
ing for several new features that they present. Each of these
has both a normal and exceptional behavior specified. The
meaning of such multiple specification cases is that, when
the precondition of one of them is satisfied, the rest of that
specification case must also be obeyed.

A specification with several specification cases is short-
hand for one in which the separate specifications are com-
bined [DL96, Lea97, Win83, Wil94]. The desugaring can be
thought of as proceeding in two steps (see [RL05] for more
details). First, the public normal_behavior and public

exceptional_behavior cases are converted into public

behavior specifications as explained above. This would pro-
duce a specification for pop as shown in Figure 12. The use
of implies_that introduces a redundant specification that
can be used, as is done here, to point out consequences of
the specification to the reader. In this case the specification
in question is the one mentioned in the refine clause. Note
that in the second specification case of Figure 12, the default
signals clause has been added. This clause was omitted from
the original specification, since no particular details of the
exception object were important to the specifier.

The second step of the desugaring is shown in Figure 13. As
can be seen from this example, public behavior specifica-
tions that are joined together using also have a precondition
that is the disjunction of the preconditions of the combined
specification cases. The assignable clause for the expanded
specification is the union of all the assignable clauses for the
cases. To compensate for this, the predicate \not_assigned,
is used in the exceptional behavior specification cases to pro-
hibit assignment to the locations (those in the data groups
of size and theStack) that are now part of the assignable
clause. The ensures clauses of the second desugaring step
correspond to the ensures clauses for each specification case;
they say that whenever the precondition for that specification
case held in the pre-state, its postcondition must also hold.
As can be seen in the specification in Figure 13, in logic this is
written using an implication between \old wrapped around
the case’s precondition and its postcondition. Having
multiple ensures clauses is equivalent to writing a single en-
sures clause that has as its postcondition the conjunction of
the given postconditions. Similarly, the signals clauses in
the desugaring correspond to those in the given specification
cases; as for the ensures clauses, each has a predicate that
says that signaling that exception can only happen when the
predicate in that case’s precondition holds.

In the file BoundedStackInterface.refines-java (in
Figure 13) the precondition of pop reduces to true. However,
the precondition shown is the general form of the expansion.
Similar remarks apply to other predicates.

Finally, note how, as in the specification of top, one can
specify more details about the exception object thrown. The
exceptional behavior for top says that the exception object
thrown, e, must be freshly allocated, non-null, and have the
given message.

15

//@ refine "BoundedStackInterface.java";

public interface BoundedStackInterface extends BoundedThing {

/*@ also

@ implies_that

@ public behavior

@ requires !theStack.isEmpty();

@ assignable size, theStack;

@ ensures theStack.equals(\old(theStack.trailer()));

@ signals (java.lang.Exception) false;

@ also

@ public behavior

@ requires theStack.isEmpty();

@ assignable \nothing;

@ ensures false;

@ signals_only BoundedStackException;

@ signals (java.lang.Exception) true;

@*/

public void pop() throws BoundedStackException;

}

Figure 12: First desugaring step.

//@ refine "BoundedStackInterface.jml";

public interface BoundedStackInterface extends BoundedThing {

/*@ also

@ implies_that

@ public behavior

@ requires !theStack.isEmpty() || theStack.isEmpty();

@ assignable size, theStack;

@ ensures \old(!theStack.isEmpty())

@ ==> theStack.equals(\old(theStack.trailer()));

@ ensures \old(theStack.isEmpty()) ==>

@ \not_assigned(size) && \not_assigned(theStack);

@ signals_only BoundedStackException;

@ signals (java.lang.Exception)

@ \old(!theStack.isEmpty()) ==> false;

@ signals (java.lang.Exception)

@ \old(theStack.isEmpty()) ==>

@ \not_assigned(size) && \not_assigned(theStack)

@ && true;

@*/

public void pop() throws BoundedStackException;

}

Figure 13: Second desugaring step.

16

/*@ public normal_behavior

@ requires theStack.length() < MAX_SIZE

@ && x != null;

@ assignable size, theStack;

@ ensures theStack.equals(

@ \old(theStack.insertFront(x)));

@ ensures_redundantly theStack != null

@ && top() == x

@ && theStack.length()

@ == \old(theStack.length()+1);

@ also

@ public exceptional_behavior

@ requires theStack.length() >= MAX_SIZE;

@ assignable \nothing;

@ signals (Exception e)

@ e instanceof BoundedStackException;

@ also // this is wrong!

@ public exceptional_behavior

@ requires x == null;

@ assignable \nothing;

@ signals (Exception e)

@ e instanceof NullPointerException;

@*/

public void push(Object x)

throws BoundedStackException,

NullPointerException;

Figure 14: An incorrect specification of push.

2.2.2.4 Pitfalls in Specifying Exceptions A particu-
larly interesting example of multiple specification cases oc-
curs in the specification of the BoundedStackInterface’s
push method. Like the other methods, this example has
two specification cases; one of these is a normal_behavior

and one is an exceptional_behavior. However, the excep-
tional behavior of push is interesting because it specifies more
than one exception that may be thrown. The requires clause
of the exceptional behavior says that an exception must be
thrown when either the stack cannot grow larger, or when
the argument x is null. The first signals clause says that,
if a BoundedStackException is thrown, then the stack can-
not grow larger, and the second signals clause says that, if a
NullPointerException is thrown, then x must be null. The
specification is written in this way because it may be that
both conditions occur; when that is the case, the specification
allows the implementation to choose (even nondeterministi-
cally) which exception is thrown.

Specifiers should be wary of such situations, where two
different signals clauses may both apply simultaneously, be-
cause it is impossible in Java to throw more than one excep-
tion from a method call. Thus, for example, if the specifica-
tion of push had been written as in Figure 14, it would not
be implementable.17 The problem is that both exceptional
preconditions may be true, and in that case an implementa-
tion cannot throw an exception that is an instance of both a
BoundedStackException and a NullPointerException.

17Thanks to Erik Poll for pointing this out.

One could fix the example in Figure 14 by writing one
of the requires clauses in the two exceptional behaviors to
exclude the other, although this would make the specification
deterministic about which exception would be thrown when
both exceptional conditions occur. In general, it seems best
to avoid this pitfall by writing signals clauses that do not
exclude other exceptions from being thrown whenever there
are states in which multiple exceptions may be thrown. That
is, instead of using multiple signals_only clauses or using
multiple signals clauses like:

signals (Exception e)

e instanceof BoundedStackException;

which only allows a BoundedStackException to be thrown
when the precondition is true, one can write a signals clause
like:

signals (BoundedStackException);

which says nothing about what happens when other excep-
tions are thrown (see Section 2.2.1.5 for more details).

2.2.2.5 Redundant Ensures Clauses Finally, there is
more redundancy in the specifications of push in the origi-
nal specification of BoundedStackInterface (shown in Fig-
ure 11), which has a redundant ensures clause in its normal
behavior. For an ensures_redundantly clause, what one
checks is that the conjunction of the precondition, the mean-
ing of the assignable clause, and the (non-redundant) post-
condition together imply the redundant postcondition. It is
interesting to note that, for push, the specifications for stacks
written in Eiffel (see page 339 of [Mey97]) expresses just what
we specify in push’s redundant postcondition. This conveys
strictly less information than the non-redundant postcondi-
tion for push’s normal behavior, since it says little about the
elements of the stack.18

In summary, using types like JMLObjectSequence for mod-
eling can help the specifier give more precise specifications.
We describe more about such types in the next section.

2.3 Types For Modeling

JML comes with a suite of types with immutable objects and
pure methods, that can be used for defining abstract mod-
els. These are found in the package org.jmlspecs.models,
which includes both collection and non-collection types (such
as JMLInteger) and a few auxiliary classes (such as excep-
tions and enumerators).

The collection types in this package can hold either objects
or values; this distinction determines the notion of equality
used on their elements and whether cloning is done on the
elements. The object collections, such as JMLObjectSet and
JMLObjectBag, use == and do not clone. The value collec-
tions, such as JMLValueSet and JMLValueBag, use .equals

18Meyer’s second specification and implementation of stacks (see page
349 of [Mey97]) is no better in this respect, although, of course, the
implementation does keep track of the elements properly.

17

to compare elements, and clone the objects added to and
returned from them. The objects in a value collection are
representatives of equivalence classes (under .equals) of ob-
jects; their values matter, but not their object identities. By
contrast an object container contains object identities, and
the values in these objects do not matter.

Simple collection types include the set types,
JMLObjectSet and JMLValueSet, and sequence types
JMLObjectSequence and JMLValueSequence. The bi-
nary relation and map types can independently have
objects in their domain or range. The binary rela-
tion types are named JMLObjectToObjectRelation,
JMLObjectToValueRelation, and so on. For example,
JMLObjectToValueRelation is a type of binary relations
between objects (not cloned and compared using ==) and
values (which are cloned and compared using .equals). The
four map types are similarly named according to the scheme
JML...To...Map.

Users can also create their own types with pure methods
for mathematical modeling if desired. Since pure methods
may be used in assertions, they must be declared with the
modifier pure and pass certain conservative checks that make
sure there is no possibility of observable side-effects from their
use. We discuss purity and give several examples of such
types below.

2.3.1 Purity

We say a method is pure if it is either specified with the
modifier pure or is a method that appears in the specification
of a pure interface or class. Similarly, a constructor is pure
if it is either specified with the modifier pure or appears in
the specification of a pure class.

A pure method, that is not a constructor, implicitly has a
specification that does not allow any side-effects. That is, its
specification has the clauses

diverges false;

assignable \nothing;

added to each specification case; if the method has no spec-
ification given explicitly, then these clauses are added as a
lightweight specification. For this reason, if one is writing
a pure method, it is not necessary to otherwise specify an
assignable clause (see Section 2.1.3.1), although doing so may
improve the specification’s clarity.

A pure constructor has the clauses

diverges false;

assignable this.*;

added to each specification case; if the constructor has no
specification given explicitly, then these clauses are added as
a lightweight specification. This specification allows the con-
structor to assign to the non-static fields of the class in which
it appears (including those inherited from its superclasses and
model and ghost instance fields from the interfaces that it im-
plements).

Implementations of pure methods and constructors will be
checked to see that they meet these conditions; i.e., that pure
methods do not assign to locations that exist in the pre-state,
and that pure constructors only assign to pre-existing loca-
tions that are fields of the this object. To make such check-
ing modular, some JML tools prohibit a pure method or con-
structor implementation from calling methods or constructors
that are not pure. However, more sophisticated tools could
more directly check the intended semantics [SR05].

A pure method or constructor must also be provably ter-
minating. Although JML does not force users to make such
proofs of termination, users writing pure methods and con-
structors are supposed to make pure methods total in the
sense that whenever, a pure method is called it either re-
turns normally or throws some exception. This is supposed to
lessen the possibility that assertion evaluation could loop for-
ever, help make pure methods more like mathematical func-
tions, and help the runtime assertion checker. The runtime
assertion checker turns exceptions into arbitrary values of the
appropriate result type [Che03, CL05]; it cannot do anything
with infinite loops.

Furthermore, a pure method is supposed to always either
terminate normally or throw an exception, even for calls that
do not satisfy its precondition. Static verification tools for
JML should enforce this condition, by requiring a proof that
a pure method implementation satisfies the following specifi-
cation

private behavior

requires true;

diverges false;

assignable \nothing;

(and similarly for constructors, except that the assignable
clause becomes assignable this.*; for constructors).

However, this implicit verification condition is a specifica-
tion, and is thus cannot be used in reasoning about calls to
the method, even calls from within the class itself and recur-
sive calls from within the implementation. For this reason we
recommend writing the method or constructor specification
in such a way that the effective precondition of the method
is “true,” making the proof of the above implicit verification
condition trivial, and allowing the termination behavior of
the implementation to be relied upon by all clients.

Recursion is permitted, both in the implementation of pure
methods and the data structures they manipulate, and in the
specifications of pure methods. When recursion is used in a
specification, the proof of well-formedness for the specifica-
tion involves the use of JML’s measured_by clause.

Since a pure method may not go into an infinite loop, if it
has a non-trivial precondition, it should throw an exception
when its normal precondition is not met. This exceptional
behavior does not have to be specified or programmed ex-
plicitly, but technically there is an obligation to meet the
specification that the method never loops forever.

Furthermore, a pure method must be deterministic, in the
sense that when called in a given state, it must always return

18

the same value. Similarly a pure constructor should be de-
terministic in the sense that when called in a given state, it
always initializes the object in the same way.

A pure method can be declared in any class or interface,
and a pure constructor can be declared in any class. JML will
specify the pure methods and constructors in the standard
Java libraries as pure.

As a convenience, instead of writing pure on each method
declared in a class and interface, one can use the modifier
pure on classes and interfaces. This simply means that each
non-static method and each constructor declared in such a
class or interface is pure. Note that this does not mean that
all methods inherited (but not declared in and hence not over-
ridden in) the class or interface are pure. For example, every
class inherits ultimately from java.lang.Object, which has
some methods, such as notify and notifyAll that are man-
ifestly not pure. Thus each class will have some methods that
are not pure. Despite this, it is convenient to refer to classes
and interfaces declared with the pure modifier as pure.

In JML the modifiers model and pure are orthogonal. (Re-
call something declared with the modifier model does not
have to be implemented, and is used purely for specification
purposes.) Therefore, one can have a model method that is
not pure (these might be useful in JML’s model programs);
conversely, a Java method can be pure (and thus not a model
method). Nevertheless, usually a model method (or construc-
tor) should be pure, since there is no way to use non-pure
methods in an assertion, and model methods cannot be used
in normal Java code.

By the same reasoning, model classes should, in general,
also be pure. Model classes cannot be used in normal Java
code, and hence their methods are only useful in assertions
(and JML’s model programs). Hence it is typical, although
not required, that a model class also be a pure class. We
give some examples of pure interfaces, abstract classes, and
classes below.

2.3.2 Money

The following example begins a specification of money that
would be suitable for use in abstract models. Our specifica-
tion is rather artificially broken up into pieces to allow each
piece to have a specification that fits on a page. This organi-
zation is not necessarily something we would recommend, but
it does give us a chance to illustrate more features of JML.

Consider first the interface Money specified in Figure 15.
The abstract model here is a single field of the primitive Java
type long, which holds a number of pennies. Note that the
declaration of this field, pennies, again uses the JML key-
word instance.

This interface has a history constraint, which says that the
number of pennies in an object cannot change.19

19There is no use of initially in this interface, so data type induc-
tion cannot assume any particular starting value. But this is desirable,
since if a particular starting value was specified, then by the history
constraint, all objects would have that value.

package org.jmlspecs.samples.prelimdesign;

import org.jmlspecs.models.JMLType;

public /*@ pure @*/ interface Money extends JMLType

{

//@ public model instance long pennies;

//@ public instance constraint pennies == \old(pennies);

/*@ public normal_behavior

@ assignable \nothing;

@ ensures \result == pennies / 100;

@ for_example

@ public normal_example

@ requires pennies == 703;

@ assignable \nothing;

@ ensures \result == 7;

@ also

@ public normal_example

@ requires pennies == 799;

@ assignable \nothing;

@ ensures \result == 7;

@ also

@ public normal_example

@ requires pennies == -503;

@ assignable \nothing;

@ ensures \result == -5;

@*/

public long dollars();

/*@ public normal_behavior

@ assignable \nothing;

@ ensures \result == pennies % 100;

@ for_example

@ requires pennies == 703;

@ assignable \nothing;

@ ensures \result == 3;

@ also

@ requires pennies == -503;

@ assignable \nothing;

@ ensures \result == -3;

@*/

public long cents();

/*@ also

@ public normal_behavior

@ assignable \nothing;

@ ensures \result

@ <==> o2 instanceof Money

@ && pennies == ((Money)o2).pennies;

@*/

public boolean equals(/*@ nullable @*/ Object o2);

/*@ also

@ public normal_behavior

@ assignable \nothing;

@ ensures \result instanceof Money

@ && ((Money)\result).pennies == pennies;

@*/

public Object clone();

}

Figure 15: The file Money.java

19

The following explain more aspects of JML related to the
specification in Figure 15.

2.3.2.1 Redundant Examples The interesting aspect
of Money’s method specifications is another kind of redun-
dancy. This new form of redundancy is examples, which fol-
low the keyword “for_example”.

Individual examples are given by normal_example clauses
(adapted from our previous work on Larch/C++ [Lea96,
LB99]). Any number of these20 can be given in a specifi-
cation. In the specification of Money (see Figure 15) there
are three normal examples given for dollars and two in the
specification of cents.

The specification in each example should be such that:

• the example’s precondition implies the precondition of
the expanded meaning of the specified behaviors,

• the example’s assignable clause specifies a subset of the
locations that are assignable according to the expanded
meaning of the specified behaviors, and

• assuming the example’s assignable clause, the conjunc-
tion of:

– the example’s precondition (wrapped by \old()),

– the precondition of the expanded meaning of the
specified behaviors (also wrapped by \old()), and

– the postcondition of the expanded meaning of the
specified behaviors

should be equivalent to the example’s postcondition.

Requiring equivalence to the example’s postcondition means
that it can serve as a test oracle for the inputs described
by the example’s precondition. If there is only one specified
public normal_behavior clause and if there are no precon-
ditions and assignable clauses, then the example’s postcon-
dition should the equivalent to the conjunction of the ex-
ample’s precondition and the postcondition of the public

normal_behavior specification. Typically, examples are con-
crete, and serve to make various rhetorical points about the
use of the specification to the reader. (Exercise: check all the
examples given!)

2.3.2.2 JMLType and Informal Predicates The in-
terface Money is specified to extend the interface JMLType.
This interface is given in Figure 16. Classes that implement
this interface must have pure equals and clone methods
with the specified behavior. The methods specified override
methods in the class Object, and so they use the form of
specification that begins with the keyword “also”.

The specification of JMLType is noteworthy in its use of in-
formal predicates [Lea96]. In JML these start with an open

20One may also give exceptional_example clauses, which are anal-
ogous to exceptional_behavior specifications, and example clauses,
which are analogous to behavior specifications. There is also a
lightweight form of example, this is similar to the example form, ex-
cept that the introductory keywords “public example” are omitted.

parenthesis and an asterisk (‘(*’) and continue until a match-
ing asterisk and closing parenthesis (‘*)’). In the public spec-
ification of equals, the normal_behavior’s ensures clause
uses an informal predicate as an escape from formality. The
use of informal predicates avoids the delicate issues of saying
formally what observable aliasing means, and what equality
of values means in general.21

In the implies_that section of the specification of the
equals method is a nested case analysis, between {| and
|}. The meaning of this is that each pre- and postcondition
pair has to be obeyed. The first of these nested pairs is essen-
tially saying that equals has to be symmetric. The second
of these is saying that it has to be reflexive.

The implies_that section of the clone method states
some implications of the specification given that are useful
for ESC/Java. These repeat, from the first part of clone’s
specification, that the result must not be null, and that the
result’s dynamic type, \typeof(\result), must be a subtype
of (written <:) the type JMLType.

2.3.3 MoneyComparable and MoneyOps

The type Money lacks some useful operations. The exten-
sions below provide specifications of comparison operations
and arithmetic, respectively.

The specification in file MoneyComparable.java (given in
Figure 17) is interesting because each of the specified pre-
conditions protects the postcondition from undefinedness in
the postcondition [LW97]. For example, if the argument m2

in the greaterThan method were null, then the expression
m2.pennies would not be defined.

The interface specified in the file MoneyOps.java (see Fig-
ure 18) extends the interface specified in Figure 17. MoneyOps
is interesting for the use of its pure model methods: inRange,
can_add, and can_scaleBy. These methods cannot be in-
voked by Java programs; that is, they would not appear in the
Java implementation. When, for example inRange is called
in a predicate, it is equivalent to using some correct imple-
mentation of its specification. The specification of inRange

also makes use of a local specification variable declaration,
which follows the keyword “old”. Such declarations allow
one to abbreviate long expressions, or, to make rhetorical
points by naming constants, as is done with epsilon. These
old declarations are treated as locations that are initialized
to the pre-state value of the given expression. Model meth-
ods can be normal (instance) methods as well as static (class)
methods.

Note also that JML uses the Java semantics for mixed-
type expressions. For example in the ensures clause of the
Figure 18’s specification of plus, m2.pennies is implicitly
coerced to a double-precision floating point number, as it
would be in Java.

21Observable aliasing is a sharing relation between objects that can be
detected by a program. Such a program, might, for example modify one
object and read a changed value from the shared object. Formalizing
this in general is beyond the scope of this paper, and probably beyond
what JML can describe.

20

package org.jmlspecs.models;

/** Objects with a clone and equals method.

* JMLObjectType and JMLValueType are refinements

* for object and value containers (respectively).

* @version $Revision: 1.20 $

* @author Gary T. Leavens and Albert L. Baker.

* @see JMLObjectType

* @see JMLValueType

*/

//@ pure

public interface JMLType extends Cloneable, java.io.Serializable {

/** Return a clone of this object. */

/*@ also

@ public normal_behavior

@ ensures \result != null;

@ ensures \result instanceof JMLType;

@ ensures ((JMLType)\result).equals(this);

@*/

//@ implies_that

/*@ ensures \result != null

@ && \typeof(\result) <: \type(JMLType);

@*/

public /*@ pure @*/ Object clone();

/** Test whether this object’s value is equal to the given argument.

*/

/*@ also

@ public normal_behavior

@ ensures \result ==>

@ ob2 != null

@ && (* ob2 is not distinguishable from this,

@ except by using mutation or == *);

@ implies_that

@ public normal_behavior

@ {|

@ requires ob2 != null && ob2 instanceof JMLType;

@ ensures ((JMLType)ob2).equals(this) == \result;

@ also

@ requires ob2 == this;

@ ensures \result <==> true;

@ |}

@*/

public /*@ pure @*/ boolean equals(/*@ nullable @*/ Object ob2);

/** Return a hash code for this object. */

public /*@ pure @*/ int hashCode();

}

Figure 16: The file JMLType.java

21

package org.jmlspecs.samples.prelimdesign;

public /*@ pure @*/ interface MoneyComparable extends Money

{

/*@ public normal_behavior

@ requires m2 != null;

@ assignable \nothing;

@ ensures \result <==> pennies > m2.pennies;

@*/

public boolean greaterThan(Money m2);

/*@ public normal_behavior

@ requires m2 != null;

@ assignable \nothing;

@ ensures \result <==> pennies >= m2.pennies;

@*/

public boolean greaterThanOrEqualTo(Money m2);

/*@ public normal_behavior

@ requires m2 != null;

@ assignable \nothing;

@ ensures \result <==> pennies < m2.pennies;

@*/

public boolean lessThan(Money m2);

/*@ public normal_behavior

@ requires m2 != null;

@ assignable \nothing;

@ ensures \result <==> pennies <= m2.pennies;

@*/

public boolean lessThanOrEqualTo(Money m2);

}

Figure 17: The file MoneyComparable.java

2.3.4 MoneyAC

The key to proofs that an implementation of a class or inter-
face specification is correct lies in the use of in, maps-into,
and represents clauses [Hoa72, Lei95b].

Consider, for example, the abstract class specified in the
file MoneyAC.java, as shown in Figure 19. This class is ab-
stract and has no constructors. The class declares a concrete
field numCents, which is related to the model instance field
pennies by the represents clause.22 The represents clause
states that the value of pennies is the value of numCents.
This allows relatively trivial proofs of the correctness of the
dollars and cents methods, and is key to the proofs of the
other methods.

2.3.5 MoneyComparableAC

The straightforward implementation of the pure abstract sub-
class MoneyComparableAC is given in Figure 20. Besides
extending the class MoneyAC, it implements the interface
MoneyComparable. Note that the model and concrete fields
are both inherited by this class.

An interesting feature of the class MoneyComparableAC is
the protected static method named totalCents. For this
method, we give its code with an embedded assertion, written

22This represents clause is implicitly an instance, as opposed to a
static, represents clause, because it appears in a class declaration.

package org.jmlspecs.samples.prelimdesign;

public /*@ pure @*/ interface MoneyOps extends MoneyComparable

{

/*@ public normal_behavior

@ old double epsilon = 1.0;

@ assignable \nothing;

@ ensures \result

@ <==> Long.MIN_VALUE + epsilon < d

@ && d < Long.MAX_VALUE - epsilon;

@ public model boolean inRange(double d);

@

@ public normal_behavior

@ requires m2!= null;

@ assignable \nothing;

@ ensures \result

@ <==> inRange((double) pennies + m2.pennies);

@ public model boolean can_add(Money m2);

@

@ public normal_behavior

@ ensures \result <==> inRange(factor * pennies);

@ public model boolean can_scaleBy(double factor);

@*/

/*@ public normal_behavior

@ old boolean can_add = can_add(m2); // FIXME: inline.

@ requires m2 != null && can_add;

@ assignable \nothing;

@ ensures \result != null

@ && \result.pennies == this.pennies + m2.pennies;

@ for_example

@ public normal_example

@ requires this.pennies == 300 && m2.pennies == 400;

@ assignable \nothing;

@ ensures \result != null && \result.pennies == 700;

@*/

public MoneyOps plus(Money m2);

/*@ public normal_behavior

@ old boolean inRange = inRange((double) pennies - m2.pennies); // FIXME: inline.

@ requires m2 != null

@ && inRange;

@ assignable \nothing;

@ ensures \result != null

@ && \result.pennies == this.pennies - m2.pennies;

@ for_example

@ public normal_example

@ requires this.pennies == 400 && m2.pennies == 300;

@ assignable \nothing;

@ ensures \result != null && \result.pennies == 100;

@*/

public MoneyOps minus(Money m2);

/*@ public normal_behavior

@ requires can_scaleBy(factor);

@ assignable \nothing;

@ ensures \result != null

@ && \result.pennies == (long)(factor * pennies);

@ for_example

@ public normal_example

@ requires pennies == 400 && factor == 1.01;

@ assignable \nothing;

@ ensures \result != null && \result.pennies == 404;

@*/

public MoneyOps scaleBy(double factor);

}

Figure 18: The file MoneyOps.java

22

package org.jmlspecs.samples.prelimdesign;

public /*@ pure @*/ abstract class MoneyAC implements Money

{

protected long numCents;

//@ in pennies;

//@ protected represents pennies = numCents;

/*@ protected constraint_redundantly

@ numCents == \old(numCents); @*/

public long dollars() {

return numCents / 100;

}

public long cents() {

return numCents % 100;

}

public boolean equals(/*@ nullable @*/ Object o2) {

if (o2 instanceof Money) {

Money m2 = (Money)o2;

return numCents

== (100 * m2.dollars() + m2.cents());

} else {

return false;

}

}

public int hashCode() {

return (int)numCents;

}

public Object clone() {

return this;

}

}

Figure 19: The file MoneyAC.java

package org.jmlspecs.samples.prelimdesign;

public /*@ pure @*/ abstract class MoneyComparableAC

extends MoneyAC implements MoneyComparable

{

protected static /*@ pure @*/

long totalCents(Money m2)

{

long res = 100 * m2.dollars() + m2.cents();

//@ assert res == m2.pennies;

return res;

}

public boolean greaterThan(Money m2)

{

return numCents > totalCents(m2);

}

public boolean greaterThanOrEqualTo(Money m2)

{

return numCents >= totalCents(m2);

}

public boolean lessThan(Money m2)

{

return numCents < totalCents(m2);

}

public boolean lessThanOrEqualTo(Money m2)

{

return numCents <= totalCents(m2);

}

}

Figure 20: The file MoneyComparableAC.java

23

following the keyword assert.23

Note that the model method, inRange is not implemented,
and does not need to be implemented to make this class cor-
rectly implement the interface MoneyComparable.

2.3.6 USMoney

Finally, a concrete class implementation is given in the file
USMoney.java shown in Figure 21. The class USMoney im-
plements the interface MoneyOps. Note that specifications as
well as code are given for the constructors.

The constructors each mention the fields that they initialize
in their assignable clause. This is because the constructor’s
job is to initialize these fields. One can think of a new expres-
sion in Java as executing in two steps: allocating an object,
and then calling the constructor. Thus the specification of a
constructor needs to mention the fields that it can initialize
in the assignable clause.

The first constructor’s specification also illustrates that re-
dundancy can also be used in an assignable clause. A re-
dundant assignable clause follows if the meaning of the set
of locations named is a subset of the ones denoted by the non-
redundant clause for the same specification case. In this ex-
ample the redundant assignable clause follows from the given
assignable clause and the meaning of the in clause inherited
from the superclass MoneyAC.

The second constructor in Figure 21 is noteworthy in that
there is a redundant ensures clause that uses an informal
predicate [Lea96]. In this instance, the informal predicate is
used as a comment (which could also be used). Recall that
informal predicates allow an escape from formality when one
does not wish to give part of a specification in formal detail.

The plus and minus methods use assume statements; these
are like assertions, but are intended to impose obligations
on the callers [BMvW98]. The main distinction between a
assume statement and a requires clause is that the former is
a statement and can be used within code. These may also be
treated differently by different tools. For example, ESC/Java
[LNS00] will require callers to satisfy the requires clause of a
method, but will not enforce the precondition if it is stated
as an assumption.

2.4 Use of Pure Classes

Since USMoney is a pure class, it can be used to make models
of other classes. An example is the abstract class specified in
the file Account.jml (see Figure 22). The first model field
in this class has the type USMoney, which was specified in
Figure 21.

23As of JDK 1.4, assert is also a reserved word in Java. One can thus
write assert statements either in standard Java or in JML annotations.
If one writes an assert statement as a JML annotation, all of the JML
extensions to the Java expression syntax see Section 3.1 for the predicate
can be used, but no side-effects are allowed in this predicate. Such a
JML assert-statement may also refer to model and ghost variables. In
a Java assert statement, i.e., in an assert-statement that is not in an
annotation, one cannot use JML’s extensions for assertions, because
such assertions must compile with a Java compiler.

package org.jmlspecs.samples.prelimdesign;

public /*@ pure @*/ class USMoney

extends MoneyComparableAC implements MoneyOps

{

/*@ public normal_behavior

@ assignable pennies;

@ ensures pennies == cs;

@ implies_that

@ protected normal_behavior

@ assignable pennies, numCents;

@ ensures numCents == cs;

@*/

public USMoney(long cs)

{

numCents = cs;

}

/*@ public normal_behavior

@ assignable pennies;

@ ensures pennies == (long)(100.0 * amt);

@ // ensures_redundantly (* pennies holds amt dollars *);

@*/

public USMoney(double amt)

{

numCents = (long)(100.0 * amt);

}

public MoneyOps plus(Money m2)

{

return new USMoney(numCents + totalCents(m2));

}

public MoneyOps minus(Money m2)

{

return new USMoney(numCents - totalCents(m2));

}

public MoneyOps scaleBy(double factor)

{

return new USMoney(numCents * factor / 100.0);

}

public String toString()

{

return "$" + dollars() + "." + cents();

}

}

Figure 21: The file USMoney.java

24

package org.jmlspecs.samples.prelimdesign;

public class Account {

//@ public model MoneyOps credit;

//@ public model String accountOwner;

/*@ public invariant accountOwner != null && credit != null

@ && credit.greaterThanOrEqualTo(new USMoney(0)); @*/

//@ public constraint accountOwner.equals(\old(accountOwner));

/*@ public normal_behavior

@ requires own != null && amt != null

@ && (new USMoney(1)).lessThanOrEqualTo(amt);

@ assignable credit, accountOwner;

@ ensures credit.equals(amt) && accountOwner.equals(own);

@*/

public Account(MoneyOps amt, String own);

/*@ public normal_behavior

@ assignable \nothing;

@ ensures \result.equals(credit);

@*/

public /*@ pure @*/ MoneyOps balance();

/*@ public normal_behavior

@ old boolean can_scale = credit.can_scaleBy(1.0 + rate);

@ requires 0.0 <= rate && rate <= 1.0

@ && can_scale;

@ assignable credit;

@ ensures credit.equals(\old(credit).scaleBy(1.0 + rate));

@ for_example

@ public normal_example

@ requires rate == 0.05

@ && (new USMoney(4000)).equals(credit);

@ assignable credit;

@ ensures credit.equals(new USMoney(4200));

@*/

public void payInterest(double rate);

/*@ public normal_behavior

@ old boolean can_add = credit.can_add(amt);

@ requires amt != null

@ && amt.greaterThanOrEqualTo(new USMoney(0))

@ && can_add;

@ assignable credit;

@ ensures credit.equals(\old(credit).plus(amt));

@ for_example

@ public normal_example

@ requires credit.equals(new USMoney(40000))

@ && amt.equals(new USMoney(1));

@ assignable credit;

@ ensures credit.equals(new USMoney(40001));

@*/

public void deposit(MoneyOps amt);

/*@ public normal_behavior

@ requires amt != null

@ && (new USMoney(0)).lessThanOrEqualTo(amt)

@ && amt.lessThanOrEqualTo(credit);

@ assignable credit;

@ ensures credit.equals(\old(credit).minus(amt));

@ for_example

@ public normal_example

@ requires credit.equals(new USMoney(40001))

@ && amt.equals(new USMoney(40000));

@ assignable credit;

@ ensures credit.equals(new USMoney(1));

@*/

public void withdraw(MoneyOps amt);

}

Figure 22: The file Account.jml

The specification of Account makes good use of examples.
It also demonstrates the various ways of protecting predicates
used in the specification from undefinedness [LW97]. The
principal concern here, as is often the case when using refer-
ence types in a model, is to protect against the model fields
being null. As in Java, fields and variables of reference types
can be null. In the specification of Account, the invariant
states that these fields should not be null. Since implementa-
tions of public methods must preserve the invariants, one can
think of the invariant as conjoined to the precondition and
postcondition of each public method, and the postcondition
of each public constructor. Hence, for example, method pre-
and postconditions do not have to state that the fields are
not null. However, often other parts of the specification must
be written to allow the invariant to be preserved, or estab-
lished by a constructor. For example, in the specification of
Account’s constructor, this is done by requiring amt and own

are not null, since, if they are null, then the invariant and the
postcondition could not be established.

2.5 Composition for Container Classes

The following specifications lead to the specification of a
class Digraph (directed graph). This gives a more inter-
esting example of how more complex models can be com-
posed in JML from other classes. In this example we use
model classes and the pure containers provided in the pack-
age org.jmlspecs.models.

2.5.1 NodeType

The file NodeType.java (given in Figure 23) contains the
specification of an interface NodeType. We also declare this
interface to be pure, since we want to use its methods in the
specifications of other classes. (This is appropriate, since all
the methods of NodeType are side-effect free.)

2.5.2 ArcType

ArcType is specified as a pure class in the file ArcType.jml

shown in Figure 24. In theory, this class could have been de-
clared with the model modifier, since it does not appear in the
interface to Digraph. However, we specify it as a normal Java
class for simplicity, and because model classes do not cur-
rently work in JML’s runtime assertion checker. We declare
ArcType to be a pure class so that its methods can be used in
assertions. The two model fields for ArcType, from and to,
are both of type NodeType. We specify the equals method so
that two references to objects of type ArcType are equal if and
only if they have equal values in the from and to model fields.
Thus, equals is specified using NodeType.equals. We also
specify that ArcType has a public clone method, fulfilling
the obligations of a type that implements JMLType. ArcType
must implement JMLType so that its objects can be placed in
a JMLValueSet. We use such a set for one of the model fields
of Digraph.

The use of also in the specification of ArcType’s equals

method is interesting. It separates two cases of the normal

25

package org.jmlspecs.samples.digraph;

import org.jmlspecs.models.*;

public /*@ pure @*/ interface NodeType extends JMLType {

/*@ also

@ public normal_behavior

@ requires !(o instanceof NodeType);

@ ensures \result == false;

@*/

public boolean equals(/*@ nullable @*/ Object o);

public int hashCode();

/*@ also

@ public normal_behavior

@ ensures \result instanceof NodeType

@ && ((NodeType)\result).equals(this);

@*/

public Object clone();

}

Figure 23: The file NodeType.java

behavior for that method. This is equivalent to using two
public normal_behavior clauses, one for each case. That
is, when the argument is an instance of ArcType, the method
must return true just when this and o have the same from

and to fields. And when o is not an instance of ArcType, the
equals method must return false.

2.5.3 Digraph

Finally, the specification of the class Digraph is given in
the file Digraph.jml shown in Figures 25 and 26. This
specification demonstrates how to use container classes, like
JMLValueSet, combined with appropriate invariants, to spec-
ify models that are compositions of other classes. In this spec-
ification, the container class JMLValueSet is used as the type
of the model fields nodes and arcs. Since JML currently only
works with a non-generic version of Java, the first invariant
clause restricts nodes so that every object in nodes is, in fact,
of type NodeType. Similarly, the next invariant clause we re-
strict arcs to be a set of ArcType objects. In both cases,
since the type is JMLValueSet, membership is determined by
the equals method for the type of the elements (rather than
reference equality).

An interesting use of pure model methods appears at the
end of the specification of Digraph in the pure model method
reachSet. This method constructively defines the set of all
nodes that are reachable from the nodes in the argument
nodeSet. This specification uses a nested case analysis, be-
tween {| and |}. The meaning of this is again that each pre-
and postcondition pair has to be obeyed, but by using nest-
ing, one can avoid duplication of the requires clause that is
found at the beginning of the specification. The measured_by
clause is needed because this specification is recursive; the
measure given allows one to describe a termination argument,
and thus ensure that the specification is well-defined. This

package org.jmlspecs.samples.digraph;

import org.jmlspecs.models.JMLType;

/*@ pure @*/ public class ArcType implements JMLType {

//@ public model NodeType from;

//@ public model NodeType to;

//@ public invariant from != null && to != null;

/*@ public normal_behavior

@ requires from != null && to != null;

@ assignable this.from, this.to;

@ ensures this.from.equals(from)

@ && this.to.equals(to);

@*/

public ArcType(NodeType from, NodeType to);

/*@ also

@ public normal_behavior

@ {|

@ requires o instanceof ArcType;

@ ensures \result

@ <==> ((ArcType)o).from.equals(from)

@ && ((ArcType)o).to.equals(to);

@ also

@ requires !(o instanceof ArcType);

@ ensures \result == false;

@ |}

@*/

public boolean equals(/*@ nullable @*/ Object o);

/*@ also

@ public normal_behavior

@ ensures \result instanceof ArcType

@ && ((ArcType)\result).equals(this);

@*/

public Object clone();

}

Figure 24: The file ArcType.jml

26

package org.jmlspecs.samples.digraph;

//@ model import org.jmlspecs.models.*;

public class Digraph {

//@ public model JMLValueSet nodes;

//@ public model JMLValueSet arcs;

/*@ public invariant_redundantly nodes != null;

@ public invariant (\forall JMLType n; nodes.has(n);

@ n instanceof NodeType);

@ public invariant_redundantly arcs != null;

@ public invariant (\forall JMLType a; arcs.has(a);

@ a instanceof ArcType);

@ public invariant

@ (\forall ArcType a; arcs.has(a);

@ nodes.has(a.from) && nodes.has(a.to));

@*/

/*@ public normal_behavior

@ assignable nodes, arcs;

@ ensures nodes.isEmpty() && arcs.isEmpty();

@*/

public Digraph();

/*@ public normal_behavior

@ requires_redundantly n != null;

@ assignable nodes;

@ ensures nodes.equals(\old(nodes.insert(n)));

@*/

public void addNode(NodeType n);

/*@ public normal_behavior

@ requires unconnected(n);

@ assignable nodes;

@ ensures nodes.equals(\old(nodes.remove(n)));

@*/

public void removeNode(NodeType n);

/*@ public normal_behavior

@ requires_redundantly inFrom != null && inTo != null;

@ requires nodes.has(inFrom) && nodes.has(inTo);

@ assignable arcs;

@ ensures arcs.equals(

@ \old(arcs).insert(new ArcType(inFrom, inTo)));

@*/

public void addArc(NodeType inFrom, NodeType inTo);

/*@ public normal_behavior

@ requires_redundantly inFrom != null && inTo != null;

@ requires nodes.has(inFrom) && nodes.has(inTo);

@ assignable arcs;

@ ensures arcs.equals(

@ \old(arcs).remove(new ArcType(inFrom, inTo)));

@*/

public void removeArc(NodeType inFrom, NodeType inTo);

Figure 25: First part of the file Digraph.jml

/*@ public normal_behavior

@ assignable \nothing;

@ ensures \result == nodes.has(n);

@*/

public /*@ pure @*/ boolean isNode(NodeType n);

/*@ public normal_behavior

@ requires_redundantly inFrom != null && inTo != null;

@ ensures \result == arcs.has(new ArcType(inFrom, inTo));

@

@*/

public /*@ pure @*/ boolean isArc(NodeType inFrom,

NodeType inTo);

/*@ public normal_behavior

@ requires nodes.has(start) && nodes.has(end);

@ assignable \nothing;

@ ensures \result

@ == reachSet(new JMLValueSet(start)).has(end);

@*/

public /*@ pure @*/ boolean isAPath(NodeType start,

NodeType end);

/*@ public normal_behavior

@ assignable \nothing;

@ ensures \result <==>

@ !(\exists ArcType a; arcs.has(a);

@ a.from.equals(n) || a.to.equals(n));

@*/

public /*@ pure @*/ boolean unconnected(NodeType n);

/*@ public normal_behavior

@ requires_redundantly nodeSet != null;

@ requires (\forall JMLType o; nodeSet.has(o);

@ o instanceof NodeType && nodes.has(o));

@ {|

@ assignable \nothing;

@ also

@ requires nodeSet.equals(OneMoreStep(nodeSet));

@ ensures \result != null && \result.equals(nodeSet);

@ also

@ requires !nodeSet.equals(OneMoreStep(nodeSet));

@ ensures \result != null

@ && \result.equals(reachSet(OneMoreStep(nodeSet)));

@ |}

@ public pure model JMLValueSet reachSet(JMLValueSet nodeSet);

@*/

/*@ public normal_behavior

@ requires_redundantly nodeSet != null;

@ requires (\forall JMLType o; nodeSet.has(o);

@ o instanceof NodeType && nodes.has(o));

@ assignable \nothing;

@ ensures_redundantly \result != null;

@ ensures \result.equals(nodeSet.union(

@ new JMLValueSet { NodeType n | nodes.has(n)

@ && (\exists ArcType a; a != null && arcs.has(a);

@ nodeSet.has(a.from) && n.equals(a.to))}));

@ public pure model

@ JMLValueSet OneMoreStep(JMLValueSet nodeSet);

@*/

}

Figure 26: Second part of the file Digraph.jml

27

clause defines an integer-valued measure that must always be
at least zero; furthermore, the measure for a call and recursive
uses in the specification must strictly decrease [ORSvH95].
The recursion in the specification builds up the entire set of
reachable nodes by, for each recursive reference, adding the
nodes that can be reached directly (via a single arc) from the
nodes in nodeSet.

2.6 Behavioral Subtyping

As in Java, a subtype inherits members (fields and methods)
from its supertypes. A subtype also inherits all the class
level-specifications associated with fields and all method spec-
ifications for public and protected instance methods. This
specification inheritance has the effect of making the sub-
type a behavioral subtype [LW94], in the sense that in-
stances of the subtype obey the specifications its supertype(s)
[DL96, LW95].

Class-level specifications associated with fields include in-
clude invariants and history constraints (see Section 2.2.1.2),
as well as initially clauses (see Section 2.1.1) data group
declarations (see Section 2.2), and represents clauses (see Sec-
tion 2.2.2.1). Inheritance of invariants means that each su-
pertype’s invariants must also hold in the subtype. Similarly,
every history constraint specified in each supertype must be
obeyed in the subtype. And all initially clauses specified for
supertype fields must also be obeyed in all subtypes. Fields
declared in a supertype retain their data group membership
when inherited. Their represents clauses are also inherited.

As in Java, private fields are inherited by a subtype but not
visible to it. Similarly, default privacy (i.e., package visibility)
fields are not accessible if the subtype is declared in a different
package than the supertype declaring the field. As in Java,
these fields are present in the objects of the subtype, but not
accessible to code written in the subtype. In the same way,
class level specifications associated with such fields must still
be obeyed by objects of the subtype. Various restrictions
to JML that ensure that this is always possible are being
investigated [RL00].

Specifications for instance methods are also inherited in
the sense that public and protected specification cases must
be obeyed by all overriding methods [DL96, Lea97]. This
inheritance of method specifications ensures that a client’s
reasoning about a method call will still be valid, even if the
method is overridden [Ame87, Ame91, LW95], and thus that
a subclass is a behavioral subtype of its supertypes [DL96].
Note that private and default (package) visibility specifica-
tion cases are not visible to subtypes, and hence do not have
to be obeyed by them; not inheriting such specification cases
does not cause clients reasoning problems, as these specifica-
tion cases are not visible to clients making method calls (in
general).24 Furthermore, specifications are not inherited for

24When such private and default visibility specification cases are vis-
ible to callers, they may only be used in verification of a method call if
the call can be shown to be executing that method, as opposed to some
override.

constructors or for static methods, since they are not involved
in dynamic dispatch.

Inheritance of method specifications can be thought of tex-
tually. For each instance method, m specified in a class C,
one can imagine copying into the specification of m the pub-
lic and protected specification cases for m given in all of C’s
ancestors and in all the interfaces C implements; these speci-
fication cases would be combined using also [DL96, RL05].25

(This is the reason for the use of also at the beginning of
specifications in overriding methods.) By the semantics of
method combination using also, these behaviors must all be
satisfied by the method, in addition to any explicitly specified
behaviors.

For example, consider the class PlusAccount, specified in
file PlusAccount.jml shown in Figures 27, 28, and 29. It is
specified as a subclass of Account (see Section 2.4). Thus
it inherits the fields of Account, and Account’s invariant,
history constraint, and public method specifications. (The
specification of Account given in Figure 22 does not have
any protected specification information.) Since it inherits
the fields of its superclass, a textual copy of the method spec-
ification cases of Account would still be meaningful in the
context of PlusAccount. Thinking of such textual copies
works if one adds new (model) fields to specify the subclass
and relates them to the existing ones. If instead one tried to
respecify the fields of a supertype with invariants and history
constraints that violated the (inherited) specification of that
supertype, then the resulting specification would be contra-
dictory, and hence not be correctly implementable.

Similarly, if one tried to respecify a method in a way that
violated an (inherited) specification case, then the method
would have to obey both specifications, and would not be cor-
rectly implementable. Thus, specification inheritance guar-
antees that all subtypes are behavioral subtypes in JML,
and trying to avoid behavioral subtyping results in unim-
plementable specifications [DL96].

Note that in the represents clause in Figure 27, instead
of a left-facing arrow, <-, the connective “\such_that” is
used to introduce a relationship predicate. This form of the
represents clause allows one to specify abstraction relations,
instead of abstraction functions.

3 Extensions to Java Expressions

JML makes extensions to the Java expression syntax for two
purposes. The main set of extensions are used in predicates.
But there are also some extensions used in store-ref s, which
are themselves used in the assignable and represents

clauses.
We give an overview of these extensions in this section.

However, we only describe the most important and useful
extensions here. See the JML Reference Manual [LPC+05]
for more extensions and for more detail.

25However, textual copying shouldn’t be taken literally; if a subclass
declares a field that hides the fields of its superclass, renaming must be
done to prevent name capture.

28

package org.jmlspecs.samples.prelimdesign;

public class PlusAccount extends Account {

//@ public model MoneyOps savings, checking; in credit;

/*@ public represents credit \such_that

@ credit.equals(savings.plus(checking));

@*/

//@ public invariant savings != null && checking != null;

/*@ public invariant_redundantly

@ savings.plus(checking)

@ .greaterThanOrEqualTo(new USMoney(0));

@*/

/*@ public normal_behavior

@ requires sav != null && chk != null && own != null

@ && (new USMoney(1)).lessThanOrEqualTo(sav)

@ && (new USMoney(1)).lessThanOrEqualTo(chk);

@ assignable credit, owner;

@ assignable_redundantly savings, checking;

@ ensures savings.equals(sav) && checking.equals(chk)

@ && owner.equals(own);

@ ensures_redundantly credit.equals(sav.plus(chk));

@*/

public PlusAccount(MoneyOps sav, MoneyOps chk, String own);

/*@ also

@ public normal_behavior

@ old boolean can_scale = credit.can_scaleBy(1.0 + rate);

@ requires 0.0 <= rate && rate <= 1.0

@ && can_scale;

@ assignable credit, savings, checking;

@ ensures checking.equals(

@ \old(checking).scaleBy(1.0 + rate));

@ for_example

@ public normal_example

@ requires rate == 0.05

@ && checking.equals(new USMoney(2000));

@ assignable credit, savings, checking;

@ ensures checking.equals(new USMoney(2100));

@*/

public void payInterest(double rate);

Figure 27: The first part of the file PlusAccount.jml

/*@ also

@ public normal_behavior

@ requires amt != null

@ && (new USMoney(0)).lessThanOrEqualTo(amt)

@ && amt.lessThanOrEqualTo(savings);

@ assignable credit, savings;

@ ensures savings.equals(\old(savings).minus(amt))

@ && \not_modified(checking);

@ also

@ public normal_behavior

@ requires amt != null

@ && (new USMoney(0)).lessThanOrEqualTo(amt)

@ && amt.lessThanOrEqualTo(credit)

@ && amt.greaterThan(savings);

@ assignable credit, savings, checking;

@ ensures savings.equals(new USMoney(0))

@ && checking.equals(

@ \old(checking).minus(amt.minus(savings)));

@ for_example

@ public normal_example

@ requires savings.equals(new USMoney(40001))

@ && amt.equals(new USMoney(40000));

@ assignable credit, savings, checking;

@ ensures savings.equals(new USMoney(1))

@ && \not_modified(checking);

@ also

@ public normal_example

@ requires savings.equals(new USMoney(30001))

@ && checking.equals(new USMoney(10000))

@ && amt.equals(new USMoney(40000));

@ assignable credit, savings, checking;

@ ensures savings.equals(new USMoney(0))

@ && checking.equals(new USMoney(1));

@*/

public void withdraw(MoneyOps amt);

/*@ also

@ public normal_behavior

@ old boolean can_add = credit.can_add(amt);

@ requires amt != null

@ && amt.greaterThanOrEqualTo(new USMoney(0))

@ && can_add;

@ assignable credit, savings;

@ ensures savings.equals(\old(savings).plus(amt))

@ && \not_modified(checking);

@ for_example

@ public normal_example

@ requires savings.equals(new USMoney(20000))

@ && amt.equals(new USMoney(1));

@ assignable credit, savings, checking;

@ ensures savings.equals(new USMoney(20001));

Figure 28: The second part of the file PlusAccount.jml

29

@*/

public void deposit(MoneyOps amt);

/*@ public normal_behavior

@ old boolean can_add = credit.can_add(amt);

@ requires amt != null

@ && amt.greaterThanOrEqualTo(new USMoney(0))

@ && can_add;

@ assignable credit, checking;

@ ensures checking.equals(\old(checking).plus(amt))

@ && \not_modified(savings);

@ for_example

@ public normal_example

@ requires checking.equals(new USMoney(20000))

@ && amt.equals(new USMoney(1));

@ assignable credit, checking;

@ ensures checking.equals(new USMoney(20001));

@*/

public void depositToChecking(MoneyOps amt);

/*@ public normal_behavior

@ requires amt != null;

@ {|

@ requires (new USMoney(0)).lessThanOrEqualTo(amt)

@ && amt.lessThanOrEqualTo(checking);

@ assignable credit, checking;

@ ensures checking.equals(\old(checking).minus(amt))

@ && \not_modified(savings);

@ also

@ requires (new USMoney(0)).lessThanOrEqualTo(amt)

@ && amt.lessThanOrEqualTo(credit)

@ && amt.greaterThan(checking);

@ assignable credit, checking, savings;

@ ensures checking.equals(new USMoney(0))

@ && savings.equals(

@ \old(savings).minus(amt.minus(checking)));

@ |}

@ for_example

@ public normal_example

@ requires checking.equals(new USMoney(40001))

@ && amt.equals(new USMoney(40000));

@ assignable credit, checking;

@ ensures checking.equals(new USMoney(1))

@ && \not_modified(savings);

@ also

@ public normal_example

@ requires savings.equals(new USMoney(30001))

@ && checking.equals(new USMoney(10000))

@ && amt.equals(new USMoney(40000));

@ assignable credit, checking, savings;

@ ensures checking.equals(new USMoney(0))

@ && savings.equals(new USMoney(1));

@*/

public void payCheck(MoneyOps amt);

}

Figure 29: The third part of the file PlusAccount.jml

3.1 Extensions to Java Expressions for
Predicates

The expressions that can be used as predicates in JML are
an extension to the side-effect free Java expressions. Since
predicates are required to be side-effect free, the following
Java operators are not allowed within predicates:

• assignment (=), and the various assignment operators
(such as +=, -=, etc.)

• all forms of increment and decrement operators (++ and
--),

• calls to methods that are not pure, and

• any use of operator new that would call a constructor
that is not pure.

Furthermore, within method specifications that are not
model programs, one cannot use super to call a pure su-
perclass method, because it is confusing in combination with
JML’s specification inheritance.26

We allow the allocation of storage (e.g., using operator new
and pure constructors) in predicates, because such storage
can never be referred to after the evaluation of the predicate,
and because such pure constructors have no side-effects other
than initializing the new objects so created.

JML adds the following new syntax to the Java expression
syntax, for use in predicates (see the JML Reference Manual
[LPC+05] for syntactic details such as precedence):

• Informal descriptions, which look like

(* some text describing a

Boolean-valued predicate *)

have type boolean. Their meaning is either true or
false, but is entirely determined by the reader. Since
informal descriptions are not-executable, they may be
treated differently by different tools in different situa-
tions.

• ==> and <== for logical implication and reverse implica-
tion. For example, the formula raining ==> getsWet

is true if either raining is false or getsWet is true. The
formula getsWet <== raining means the same thing.
The ==> operator associates to the right, but the <==

operator associates to the left. The expressions on ei-
ther side of these operators must be of type boolean,
and the type of the result is also boolean.

• <==> and <=!=> for logical equivalence and logical in-
equivalence, respectively. The expressions on both sides
of these operators must be of type boolean, and the type

26Suppose A is the superclass of B, and B is the superclass of C.
Suppose B ’s specification used super to call a method of A. The problem
is that when this specification is inherited by C, if we imagine copying
B ’s specification to C, then this use of super no longer refers to A, but
to B. Thanks to Arnd Poetzsch-Heffter for pointing out this problem.

30

of the result is also boolean. Note that <==> means
the same thing as == for expressions of type boolean,
and <=!=> means the same thing as != for boolean ex-
pressions; however, <==> and <=!=> have a much lower
precedence, and are also associative and symmetric.

• \forall and \exists, which are universal and existen-
tial quantifiers (respectively); for example,

(\forall int i,j;

0 <= i && i < j && j < 10;

a[i] < a[j])

says that a is sorted at indexes between 0 and 9. The
quantifiers range over all potential values of the vari-
ables declared which satisfy the range predicate, given
between the semicolons (;). If the range predicate is
omitted, it defaults to true. Since a quantifier quanti-
fies over all potential values of the variables, when the
variables declared are reference types, they may be null,
or may refer to objects not constructed by the program;
one should use a range predicate to eliminate such cases
if they are not desired. The type of a universal and ex-
istential quantifier is boolean.

• \max, \min, \product, and \sum, which are generalized
quantifiers that return the maximum, minimum, prod-
uct, or sum of the values of the expressions given, where
the variables satisfy the given range. The range pred-
icate must be of type boolean. The expression in the
body must be a built-in numeric type, such as int or
double; the type of the quantified expression as a whole
is the type of its body. The body of a quantified expres-
sion is the last top-level expression it contains; it is the
expression following the range predicate, if there is one.
As with the universal and existential quantifiers, if the
range predicate is omitted, it defaults to true. For ex-
ample, the following equations are all true (see chapter
3 of [Coh90]):

(\sum int i; 0 <= i && i < 5; i)

== 0 + 1 + 2 + 3 + 4

(\product int i; 0 < i && i < 5; i)

== 1 * 2 * 3 * 4

(\max int i; 0 <= i && i < 5; i)

== 4

(\min int i; 0 <= i && i < 5; i-1)

== -1

For computing the value of a sum or product, Java’s
arithmetic is used. The meaning thus depends on the
type of the expression. For example, in Java, floating
point numbers use the IEEE 754 standard, and thus
when an overflow occurs, the appropriate positive or neg-
ative infinity is returned. However, Java integers wrap
on overflow. Consider the following examples.

(\product float f; 1.0e30f < f && f < 1.0e38f; f)

== Float.POSITIVE_INFINITY

(\sum int i; i == Integer.MAX_VALUE || i == 1; i)

== Integer.MAX_VALUE + 1

== Integer.MIN_VALUE

When the range predicate is not satisfiable, the sum is 0
and the product is 1; for example:

(\sum int i; false; i) == 0

(\product double d; false; d*d) == 1.0

When the range predicate is not satisfiable for \max the
result is the smallest number with the type of the expres-
sion in the body; for floating point numbers, negative
infinity is used. Similarly, when the range predicate is
not satisfiable for \min, the result is the largest number
with the type of the expression in the body.

• \num_of, which is “numerical quantifier.” It returns the
number of values for its variables for which the range
and the expression in its body are true. Both the range
predicate and the body must have type boolean, and the
entire quantified expression has type long. The meaning
of this quantifier is defined by the following equation (see
p. 57 of [Coh90]).

(\num_of T x; R(x); P(x))

== (\sum T x; R(x) && P(x); 1L)

• Set comprehensions, which can be used to succinctly de-
fine sets; for example, the following is the JMLObjectSet
that is the subset of non-null Integer objects found in
the set myIntSet whose values are between 0 and 10,
inclusive.

new JMLObjectSet {Integer i |

myIntSet.has(i)

&& i != null && 0 <= i.getInteger()

&& i.getInteger() <= 10 }

The syntax of JML (see the JML Reference Manual
[LPC+05] for details) limits set comprehensions so that
following the vertical bar (‘|’) is always an invocation
of the has method of some set on the variable de-
clared. (This restriction is used to avoid Russell’s
paradox [WR25].) In practice, one either starts from
some relevant set at hand, or one can start from the
sets containing the objects of primitive types found in
org.jmlspecs.models.JMLModelObjectSet and (in the
same Java package) JMLModelValueSet. The type of
such an expression is the type named following new,
which must be JMLObjectSet or JMLValueSet.

• \elemtype, which returns the most-specific static type
shared by all elements of its array argument [LNS00]. For
example, \elemtype(\type(int[])) is \type(int).
The argument to \elemtype must be an expression of

31

type \TYPE, which JML considers to be the same as
java.lang.Class, and its result also has type \TYPE.
If the argument is not an array type, the result is null.

• \fresh, which asserts that objects were freshly allo-
cated; for example, \fresh(x,y) asserts that x and y

are not null and that the objects bound to these identi-
fiers were not allocated in the pre-state. The arguments
to \fresh can have any reference type, and the type of
the overall expression is boolean.27

• \nonnullelements, which can be used to assert that an
array and its elements are all non-null. For example,
\nonnullelements(myArray), is equivalent to [LNS00]

myArray != null &&

(\forall int i;

0 <= i && i < myArray.length;

myArray[i] != null)

• \old, which can be used to refer to values in the pre-
state; e.g., \old(myPoint.x) is the value of the x field
of the object myPoint in the pre-state. The type of such
an expression is the type of the expression it contains;
for example the type of \old(myPoint.x) is the type of
myPoint.x. The keyword \old can only be used in an
ensures-clause, a signals-clause, or a history-constraint ;
it cannot be used, for example, in preconditions.

• \result, which, in an ensures clause is the value or
object that is being returned by a method. Its type is
the return type of the method; hence it is a type error to
use \result in a void method or in a constructor. The
keyword \result can only be used in an ensures-clause;
it cannot be used, for example, in preconditions or in
signals clauses.

• \typeof, which returns the most-specific dynamic type
of an expression’s value [LNS00]. The meaning of
\typeof(E) is unspecified if E is null. If E has a static
type that is a reference type, then \typeof(E) means
the same thing as E.getClass(). For example, if c is a
variable of static type Collection that holds an object
of class HashSet, then \typeof(c) is HashSet.class,
which is the same thing as \type(HashSet). If E has a
static type that is not a reference type, then \typeof(E)

means the instance of java.lang.Class that repre-
sents its static type. For example, \typeof(true) is
Boolean.TYPE, which is the same as \type(boolean).
Thus an expression of the form \typeof(E) has
type \TYPE, which JML considers to be the same as
java.lang.Class.

• <:, which compares two reference types and returns true
when the type on the left is a subtype of the type on

27Note that it is wrong to use \fresh(this) in the specification of a
constructor, because Java’s new operator allocates storage for the object;
the constructor’s job is just to initialize that storage.

the right [LNS00]. Although the notation might suggest
otherwise, this operator is also reflexive; a type will com-
pare as <: with itself. In an expression of the form E1
<: E2, both E1 and E2 must have type \TYPE; since in
JML \TYPE is the same as java.lang.Class the expres-
sion E1 <: E2 means the same thing as the expression
E2.isAssignableFrom(E1).

• \type, which can be used to mark types in expressions.
An expression of the form \type(T) has the type \TYPE.
Since in JML \TYPE is the same as java.lang.Class, an
expression of the form \type(T) means the same thing
as T.class. For example, in

\typeof(myObj) <: \type(PlusAccount)

the use of \type(PlusAccount) is used to introduce the
type PlusAccount into this expression context.

To avoid referring to the value of uninitialized locations, a
constructor’s precondition can only refer to locations in the
object being constructed that are not assignable. This allows
a constructor to refer to instance fields of the object being
constructed if they are not made assignable by the construc-
tor’s assignable clause, for example, if they are declared with
initializers. In particular, the precondition of a constructor
may not mention a “blank final” instance variable that it
must assign.

Since we are using Java expressions for predicates, there
are some additional problems in mathematical modeling.
We are excluding the possibility of side-effects by limit-
ing the syntax of predicates, and by using type checking
[GL86, Luc87, LG88, NNA97, TJ94, Wri92] to make sure
that only pure methods and constructors may be called in
predicates.

Exceptions in expressions are particularly important, since
they may arise in type casts. JML deals with exceptions by
having the evaluation of predicates substitute an arbitrary ex-
pressible value of the normal result type when an exception is
thrown during evaluation. When the expression’s result type
is a reference type, an implementation would have to return
null if an exception is thrown while executing such a pred-
icate. This corresponds to a mathematical model in which
partial functions are mathematically modeled by underspec-
ified total functions [GS95]. However, tools sometimes only
approximate this semantics. In tools, instead of fully catching
exceptions for all subexpressions, many tools only catch ex-
ceptions for the smallest boolean-valued subexpression that
may throw an exception (and for entire expressions used in
JML’s measured-clause and variant-function).

JML will check that errors (i.e., exceptions that inherit
from Error) are not explicitly thrown by pure methods. This
means that they can be ignored during mathematical mod-
eling. When executing predicates, errors will cause run-time
errors.

32

3.2 Extensions to Java Expressions for
Store-Refs

The grammatical production store-ref (see the JML Refer-
ence Manual [LPC+05] for the exact syntax) is used to name
locations in the assignable and represents clauses. A
store-ref names a location, not an object; a location is ei-
ther a field of an object, or an array element. Besides the
Java syntax of names and field and array references, JML
supports the following syntax for store-ref s. See the JML
Reference Manual [LPC+05] for more details on the syntax.

• Array ranges, of the form A[E1 .. E2], denote the
locations in the array A between the value of E1 and
the value of E2 (inclusive). For example, the clause

assignable myArray[3 .. 5]

can be thought of an abbreviation for the following.

assignable myArray[3], myArray[4],

myArray[5]

• One can also name all the indexes in an array A
by writing, A[*], which is shorthand for A[0 ..

A.length-1].

• Two notations allow one to refer to the fields in some
particular object.

– The syntax x.* names all of the non-static fields
of the object referred to by x. For example, if p is
a Point object with two fields, x and y of type
BigInteger, then p.* names the fields p.x and
p.y. Notice that the fields of the BigInteger ob-
jects are not named. Also, p.*.* is not allowed.

– If a is an array of type Rocket [], then the store-
ref a[*].* means all of the non-static fields of each
Rocket object referred to by the elements of array
a.

4 Conclusions

One area of future work for JML is concurrency. Some re-
cent work by Rodriguez et al. [RDF+05] has investigated the
use of atomicity for specifying multi-threaded Java programs.
However, these ideas are not yet implemented in most of the
JML tools, and their use has not been fully explored.

JML has also been used as a research vehicle in a wide vari-
ety of other studies various papers on these ideas can be found
through the JML web page http://www.jmlspecs.org/.

JML is an expressive behavioral interface specification lan-
guage for Java. It combines the best features of the Eiffel
and Larch approaches to specification. It allows one to write
specifications that are quite precise and detailed, but also
allows one to write lightweight specifications. It has exam-
ples and other forms of redundancy to allow for debugging

specifications and for making rhetorical points. It supports
behavioral subtyping by specification inheritance.

More information on JML, including software to aid in
working with JML specifications, can be obtained from
http://www.jmlspecs.org/. The JML web site also in-
cludes an up-to-date version of this document with a table
of contents and an index.

Acknowledgments

The work of Leavens and Ruby was supported in part by a
grant from Rockwell International Corporation and by NSF
grant CCR-9503168. Work on JML by Leavens, Baker, and
Ruby was also supported in part by NSF grant CCR-9803843.
Work on JML by Leavens, Ruby, and others is supported
in part by NSF grants CCR-0097907,CCR-0113181, CCF-
0428078, and CCF-0429567.

Many people have helped with the semantics and design of
JML, and on this document. Thanks to Yoonsik Cheon,
David Cok, Bart Jacobs, Rustan Leino, Peter Müller, Erik
Poll, Arnd Poetzsch-Heffter, and Joachim van den Berg, for
many discussions about the semantics of JML specifications.
Thanks to Raymie Stata for spear-heading an effort at Com-
paq SRC to unify JML and ESC/Java, and to Rustan and
Raymie for many interesting ideas and discussions that have
profoundly influenced JML. For comments on earlier drafts
and discussions about JML thanks to Yoonsik, Bart, Rus-
tan, Peter, Eric, Joachim, Raymie, Abhay Bhorkar, Patrice
Chalin, Curtis Clifton, John Boyland, Martin Büchi, Peter
Chan, David Cok, Gary Daugherty, Jan Docxx, Marko
van Dooren, Stephen Edwards, Michael Ernst, Arthur Fleck,
Karl Hoech, Marieke Huisman, Anand Ganapathy, Doug
Lea, Claude Marche, Kristof Mertens, Yogy Namara, Sevtap
Oltes, Arnd Poetzsch-Heffter, Jim Potts, Arun Raghavan,
Alexandru D. Salcianu, Jim Saxe, Tammy Scherbring, Tim
Wahls, Wolfgang Weck, and others we may have forgotten.

Thanks to David Cok, Yoonsik Cheon, Curtis Clifton,
Patrice Chalin, Abhay Bhorkar, Kristina Boysen, Tongjie
Chen, Kui Dai, Werner Dietel, Marko van Dooren, Anand
Ganapathy, Yogy Namara, Todd Millstein, Arun Raghavan,
Frederic Rioux, Roy Tan, and Hao Xi for their work on the
JML checker and tools used to check and manipulate the
specifications in this document. Thanks to Katie Becker,
Kristina Boysen, Brandon Shilling, Elizabeth Seagren, Ajani
Thomas, and Arthur Thomas for help with case studies and
specifications in JML. Thanks to David Cok, Joe Kiniry,
Yoonsik Cheon, Kristina Boysen, Curtis Clifton, Judy Chan
Wai Ting, Peter Chan, Marko van Dooren, Kui Dai, Fermin
da Costa Gomez, Joseph Kiniry, Roy Patrick Tan, and Julien
Vermillard for bug reports about JML tools. Thanks to the
students in 22C:181 at the University of Iowa in Spring 2001,
and in Com S 362 at Iowa State University for suggestions
and comments about JML.

33

References

[AGH00] Ken Arnold, James Gosling, and David
Holmes. The Java Programming Language
Third Edition. Addison-Wesley, Reading, MA,
2000.

[Ame87] Pierre America. Inheritance and subtyping in
a parallel object-oriented language. In Jean
Bezivin et al., editors, ECOOP ’87, European
Conference on Object-Oriented Programming,
Paris, France, pages 234–242, New York, NY,
June 1987. Springer-Verlag. Lecture Notes in
Computer Science, volume 276.

[Ame91] Pierre America. Designing an object-oriented
programming language with behavioural sub-
typing. In J. W. de Bakker, W. P.
de Roever, and G. Rozenberg, editors,
Foundations of Object-Oriented Languages,
REX School/Workshop, Noordwijkerhout, The
Netherlands, May/June 1990, volume 489 of
Lecture Notes in Computer Science, pages 60–
90. Springer-Verlag, New York, NY, 1991.

[Bac88] R. J. R. Back. A calculus of refinements
for program derivations. Acta Informatica,
25(6):593–624, August 1988.

[BG98] Kent Beck and Erich Gamma. Test infected:
Programmers love writing tests. Java Report,
3(7):37–50, 1998.

[BMR95] Alex Borgida, John Mylopoulos, and Raymond
Reiter. On the frame problem in procedure
specifications. IEEE Transactions on Software
Engineering, 21(10):785–798, October 1995.

[BMvW98] Ralph Back, Anna Mikhajlova, and Joakim
von Wright. Modeling component en-
vironments and interactive programs us-
ing iterative choice. Technical Report
200, Turku Centre for Computer Science,
September 1998. http://www.tucs.abo.fi/

publications/techreports/TR200.html.

[BvW98] Ralph-Johan Back and Joakim von Wright.
Refinement Calculus: A Systematic Introduc-
tion. Graduate Texts in Computer Science.
Springer-Verlag, 1998.

[BW00] Martin Büchi and Wolfgang Weck. Generic
wrappers. In Elisa Bertino, editor, ECOOP
2000 — Object-Oriented Programming 14th
European Conference, volume 1850 of Lecture
Notes in Computer Science, pages 201–225,
2000.

[Cha02] Patrice Chalin. Back to basics: Language
support and semantics of basic infinite integer

types in JML and Larch. Technical Report CU-
CS 2002-003.1, Computer Science Department,
Concordia University, October 2002.

[Cha04] Patrice Chalin. JML support for primitive
arbitrary precision numeric types: Definition
and semantics. Journal of Object Technology,
3(6):57–79, June 2004.

[Che03] Yoonsik Cheon. A runtime assertion checker
for the Java Modeling Language. Technical Re-
port 03-09, Department of Computer Science,
Iowa State University, Ames, IA, April 2003.
The author’s Ph.D. dissertation.

[CL02a] Yoonsik Cheon and Gary T. Leavens. A run-
time assertion checker for the Java Modeling
Language (JML). In Hamid R. Arabnia and
Youngsong Mun, editors, Proceedings of the In-
ternational Conference on Software Engineer-
ing Research and Practice (SERP ’02), Las Ve-
gas, Nevada, USA, June 24-27, 2002, pages
322–328. CSREA Press, June 2002.

[CL02b] Yoonsik Cheon and Gary T. Leavens. A
simple and practical approach to unit test-
ing: The JML and JUnit way. In Boris
Magnusson, editor, ECOOP 2002 — Object-
Oriented Programming, 16th European Con-
ference, Máalaga, Spain, Proceedings, volume
2374 of Lecture Notes in Computer Science,
pages 231–255, Berlin, June 2002. Springer-
Verlag.

[CL05] Yoonsik Cheon and Gary T. Leavens. A con-
textual interpretation of undefinedness for run-
time assertion checking. In AADEBUG 2005,
Proceedings of the Sixth International Sympo-
sium on Automated and Analysis-Driven De-
bugging, Monterey, California, September 19–
21, 2005, pages 149–157. ACM Press, Septem-
ber 2005.

[Coh90] Edward Cohen. Programming in the 1990s: An
Introduction to the Calculation of Programs.
Springer-Verlag, New York, NY, 1990.

[DL96] Krishna Kishore Dhara and Gary T. Leav-
ens. Forcing behavioral subtyping through
specification inheritance. In Proceedings of the
18th International Conference on Software En-
gineering, Berlin, Germany, pages 258–267.
IEEE Computer Society Press, March 1996.
A corrected version is Iowa State University,
Dept. of Computer Science TR #95-20c.

[ECGN01] Michael Ernst, Jake Cockrell, William G. Gris-
wold, and David Notkin. Dynamically dis-
covering likely program invariants to support
program evolution. IEEE Transactions on

34

Software Engineering, 27(2):99–123, February
2001.

[Fin96] Kate Finney. Mathematical notation in for-
mal specification: Too difficult for the masses?
IEEE Transactions on Software Engineering,
22(2):158–159, February 1996.

[FL98] John Fitzgerald and Peter Gorm Larsen. Mod-
elling Systems: Practical Tools in Software De-
velopment. Cambridge, Cambridge, UK, 1998.

[GHG+93] John V. Guttag, James J. Horning, S.J. Gar-
land, K.D. Jones, A. Modet, and J.M. Wing.
Larch: Languages and Tools for Formal Speci-
fication. Springer-Verlag, New York, NY, 1993.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad
Bracha. The Java Language Specification Sec-
ond Edition. The Java Series. Addison-Wesley,
Boston, Mass., 2000.

[GL86] David K. Gifford and John M. Lucassen. In-
tegrating functional and imperative program-
ming. In ACM Conference on LISP and Func-
tional Programming, pages 28–38. ACM, Au-
gust 1986.

[GS95] David Gries and Fred B. Schneider. Avoiding
the undefined by underspecification. In Jan
van Leeuwen, editor, Computer Science To-
day: Recent Trends and Developments, num-
ber 1000 in Lecture Notes in Computer Sci-
ence, pages 366–373. Springer-Verlag, New
York, NY, 1995.

[Hay93] I. Hayes, editor. Specification Case Stud-
ies. International Series in Computer Science.
Prentice-Hall, Inc., second edition, 1993.

[Hoa69] C. A. R. Hoare. An axiomatic basis for com-
puter programming. Communications of the
ACM, 12(10):576–583, October 1969.

[Hoa72] C. A. R. Hoare. Proof of correctness of data
representations. Acta Informatica, 1(4):271–
281, 1972.

[Hui01] Marieke Huisman. Reasoning about Java Pro-
grams in higher order logic with PVS and Is-
abelle. Ipa dissertation series, 2001-03, Univer-
sity of Nijmegen, Holland, February 2001.

[Jon90] Cliff B. Jones. Systematic Software Develop-
ment Using VDM. International Series in Com-
puter Science. Prentice Hall, Englewood Cliffs,
N.J., second edition, 1990.

[Jon91] H. B. M. Jonkers. Upgrading the pre- and post-
condition technique. In S. Prehn and W. J.
Toetenel, editors, VDM ’91 Formal Software

Development Methods 4th International Sym-
posium of VDM Europe Noordwijkerhout, The
Netherlands, Volume 1: Conference Contribu-
tions, volume 551 of Lecture Notes in Com-
puter Science, pages 428–456. Springer-Verlag,
New York, NY, October 1991.

[JvdBH+98] Bart Jacobs, Joachim van den Berg, Marieke
Huisman, Martijn van Berkum, Ulrich Hensel,
and Hendrik Tews. Reasoning about Java
classes (preliminary report). In OOPSLA
’98 Conference Proceedings, volume 33(10)
of ACM SIGPLAN Notices, pages 329–340.
ACM, October 1998.

[LB99] Gary T. Leavens and Albert L. Baker. En-
hancing the pre- and postcondition technique
for more expressive specifications. In Jean-
nette M. Wing, Jim Woodcock, and Jim
Davies, editors, FM’99 — Formal Methods:
World Congress on Formal Methods in the De-
velopment of Computing Systems, Toulouse,
France, September 1999, Proceedings, volume
1709 of Lecture Notes in Computer Science,
pages 1087–1106. Springer-Verlag, 1999.

[LBR99] Gary T. Leavens, Albert L. Baker, and Clyde
Ruby. JML: A notation for detailed design.
In Haim Kilov, Bernhard Rumpe, and Ian
Simmonds, editors, Behavioral Specifications
of Businesses and Systems, pages 175–188.
Kluwer Academic Publishers, Boston, 1999.

[Lea96] Gary T. Leavens. An overview of Larch/C++:
Behavioral specifications for C++ modules. In
Haim Kilov and William Harvey, editors, Spec-
ification of Behavioral Semantics in Object-
Oriented Information Modeling, chapter 8,
pages 121–142. Kluwer Academic Publishers,
Boston, 1996. An extended version is TR #96-
01d, Department of Computer Science, Iowa
State University, Ames, Iowa, 50011.

[Lea97] Gary T. Leavens. Larch/C++ Refer-
ence Manual. Version 5.14. Available
in ftp://ftp.cs.iastate.edu/pub/larchc+

+/lcpp.ps.gz or on the World Wide Web
at the URL http://www.cs.iastate.edu/

~leavens/larchc++.html, October 1997.

[Lea00] Gary T. Leavens. Larch frequently asked
questions. Version 1.110. Available in
http://www.cs.iastate.edu/~leavens/

larch-faq.html, May 2000.

[Lei95a] K. Rustan M. Leino. A myth in the modu-
lar specification of programs. Technical Report
KRML 63, Digital Equipment Corporation,
Systems Research Center, 130 Lytton Avenue

35

Palo Alto, CA 94301, November 1995. Obtain
from the author, at leino@microsoft.com.

[Lei95b] K. Rustan M. Leino. Toward Reliable Modular
Programs. PhD thesis, California Institute of
Technology, 1995. Available as Technical Re-
port Caltech-CS-TR-95-03.

[Lei98] K. Rustan M. Leino. Data groups: Speci-
fying the modification of extended state. In
OOPSLA ’98 Conference Proceedings, volume
33(10) of ACM SIGPLAN Notices, pages 144–
153. ACM, October 1998.

[LG88] John M. Lucassen and David K. Gifford. Poly-
morphic effect systems. In Conference Record
of the Fifteenth Annual ACM Symposium on
Principles of Programming Languages, San
Diego, Calif., pages 47–57. ACM, January
1988.

[LH94] K. Lano and H. Haughton, editors. Object-
Oriented Specification Case Studies. The
Object-Oriented Series. Prentice Hall, New
York, NY, 1994.

[LNS00] K. Rustan M. Leino, Greg Nelson, and
James B. Saxe. ESC/Java user’s manual. Tech-
nical note, Compaq Systems Research Center,
October 2000.

[LPC+05] Gary T. Leavens, Erik Poll, Curtis Clifton,
Yoonsik Cheon, Clyde Ruby, David R. Cok,
Peter Müller, and Joseph Kiniry. JML refer-
ence manual. Department of Computer Sci-
ence, Iowa State University. Available from
http://www.jmlspecs.org, July 2005.

[LPHZ02] K. Rustan M. Leino, Arnd Poetzsch-Heffter,
and Yunhong Zhou. Using data groups to spec-
ify and check side effects. In Proceedings of
the ACM SIGPLAN 2002 Conference on Pro-
gramming Language Design and Implementa-
tion (PLDI’02), volume 37, 5 of SIGPLAN,
pages 246–257, New York, June 17–19 2002.
ACM Press.

[Luc87] John M. Lucassen. Types and effects: Towards
the integration of functional and imperative
programming. Technical Report TR-408, Mas-
sachusetts Institute of Technology, Laboratory
for Computer Science, August 1987.

[LvH85] David Luckham and Friedrich W. von Henke.
An overview of anna - a specification language
for Ada. IEEE Software, 2(2):9–23, March
1985.

[LvHKBO87] David Luckham, Friedrich W. von Henke,
Bernd Krieg-Brückner, and Olaf Owe. ANNA

- A Language for Annotating Ada Programs,
volume 260 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, New York, NY, 1987.

[LW94] Barbara Liskov and Jeannette Wing. A be-
havioral notion of subtyping. ACM Transac-
tions on Programming Languages and Systems,
16(6):1811–1841, November 1994.

[LW95] Gary T. Leavens and William E. Weihl. Speci-
fication and verification of object-oriented pro-
grams using supertype abstraction. Acta Infor-
matica, 32(8):705–778, November 1995.

[LW97] Gary T. Leavens and Jeannette M. Wing.
Protective interface specifications. In Michel
Bidoit and Max Dauchet, editors, TAPSOFT
’97: Theory and Practice of Software Devel-
opment, 7th International Joint Conference
CAAP/FASE, Lille, France, volume 1214 of
Lecture Notes in Computer Science, pages 520–
534. Springer-Verlag, New York, NY, 1997.

[Mey92a] Bertrand Meyer. Applying “design by con-
tract”. Computer, 25(10):40–51, October 1992.

[Mey92b] Bertrand Meyer. Eiffel: The Language.
Object-Oriented Series. Prentice Hall, New
York, NY, 1992.

[Mey97] Bertrand Meyer. Object-oriented Software
Construction. Prentice Hall, New York, NY,
second edition, 1997.

[Mor94] Carroll Morgan. Programming from Specifica-
tions: Second Edition. Prentice Hall Interna-
tional, Hempstead, UK, 1994.

[Mül02] Peter Müller. Modular Specification and
Verification of Object-Oriented Programs,
volume 2262 of Lecture Notes in Com-
puter Science. Springer-Verlag, 2002. The
author’s Ph.D. Thesis. Available from
http://www.informatik.fernuni-hagen.

de/import/pi5/publications.html.

[MV94] Carroll Morgan and Trevor Vickers, editors.
On the refinement calculus. Formal approaches
of computing and information technology se-
ries. Springer-Verlag, New York, NY, 1994.

[NNA97] H. R. Nielson, F. Nielson, and T. Amtoft.
Polymorphic subtyping for effect analysis: The
static semantics. In M. Dam, editor, Proceed-
ings of the Fifth LOMAPS Workshop, number
1192 in Lecture Notes in Computer Science.
Springer-Verlag, 1997.

[Org96] International Standards Organization. Infor-
mation technology – programming languages,

36

their environments and system software inter-
faces – Vienna Development Method – spec-
ification language – part 1: Base language.
ISO/IEC 13817-1, December 1996.

[ORSvH95] Sam Owre, John Rushby, Natarajan Shankar,
and Friedrich von Henke. Formal verification
for fault-tolerant architectures: Prolegomena
to the design of PVS. IEEE Transactions on
Software Engineering, 21(2):107–125, Febru-
ary 1995.

[OSWZ94] William F. Ogden, Murali Sitaraman,
Bruce W. Weide, and Stuart H. Zweben. Part
I: The RESOLVE framework and discipline —
a research synopsis. ACM SIGSOFT Software
Engineering Notes, 19(4):23–28, October 1994.

[PH97] Arnd Poetzsch-Heffter. Specification and ver-
ification of object-oriented programs. Habili-
tation thesis, Technical University of Munich,
January 1997.

[RDF+05] Edwin Rodŕıguez, Matthew B. Dwyer, Cormac
Flanagan, John Hatcliff, Gary T. Leavens, and
Robby. Extending JML for modular specifi-
cation and verification of multi-threaded pro-
grams. In Andrew P. Black, editor, ECOOP
2005 — Object-Oriented Programming 19th
European Conference, Glasgow, UK, volume
3586 of Lecture Notes in Computer Science,
pages 551–576. Springer-Verlag, Berlin, July
2005.

[RL00] Clyde Ruby and Gary T. Leavens. Safely cre-
ating correct subclasses without seeing super-
class code. In OOPSLA 2000 Conference on
Object-Oriented Programming, Systems, Lan-
guages, and Applications, Minneapolis, Min-
nesota, volume 35(10) of ACM SIGPLAN No-
tices, pages 208–228, October 2000.

[RL05] Arun D. Raghavan and Gary T. Leavens.
Desugaring JML method specifications. Tech-
nical Report 00-03e, Iowa State University, De-
partment of Computer Science, May 2005.

[Ros95] David S. Rosenblum. A practical approach to
programming with assertions. IEEE Trans-
actions on Software Engineering, 21(1):19–31,
January 1995.

[Spi92] J. Michael Spivey. The Z Notation: A Refer-
ence Manual. International Series in Computer
Science. Prentice-Hall, New York, NY, second
edition, 1992.

[SR05] Alexandru Salcianu and Martin Rinard. Pu-
rity and side effect analysis for java programs.

In Proceedings of the 6th International Confer-
ence on Verification, Model Checking and Ab-
stract Interpretation, January 2005.

[Tan94] Yang Meng Tan. Interface language for sup-
porting programming styles. ACM SIGPLAN
Notices, 29(8):74–83, August 1994. Proceed-
ings of the Workshop on Interface Definition
Languages.

[Tan95] Yang Meng Tan. Formal Specification Tech-
niques for Engineering Modular C Programs,
volume 1 of Kluwer International Series in
Software Engineering. Kluwer Academic Pub-
lishers, Boston, 1995.

[TJ94] Jean-Pierre Talpin and Pierre Jouvelot. The
type and effect discipline. Information and
Computation, 111(2):245–296, June 1994.

[WD96] Jim Woodcock and Jim Davies. Using Z:
Specification, Refinement, and Proof. Prentice
Hall International Series in Computer Science,
1996.

[Wil94] Alan Wills. Refinement in Fresco. In Lano and
Houghton [LH94], chapter 9, pages 184–201.

[Win83] Jeannette Marie Wing. A two-tiered approach
to specifying programs. Technical Report TR-
299, Massachusetts Institute of Technology,
Laboratory for Computer Science, 1983.

[Win87] Jeannette M. Wing. Writing Larch interface
language specifications. ACM Transactions on
Programming Languages and Systems, 9(1):1–
24, January 1987.

[Win90] Jeannette M. Wing. A specifier’s introduc-
tion to formal methods. Computer, 23(9):8–24,
September 1990.

[WLB00] Tim Wahls, Gary T. Leavens, and Albert L.
Baker. Executing formal specifications with
concurrent constraint programming. Auto-
mated Software Engineering, 7(4):315 – 343,
December 2000.

[WR25] A. N. Whitehead and B. Russell. Principia
Mathematica. Cambridge University Press,
London, second edition. edition, 1925.

[Wri92] Andrew K. Wright. Typing references by ef-
fect inference. In Bernd Krieg-Bruckner, ed-
itor, ESOP ’92, 4th European Symposium on
Programming, Rennes, France, February 1992,
Proceedings, volume 582 of Lecture Notes in
Computer Science, pages 473–491. Springer-
Verlag, New York, NY, 1992.

37

