
http://www.st.informatik.tu-darmstadt.de/

On Abstraction, Information
Hiding and Crosscutting

Modularity

Mira Mezini
Darmstadt University of Technology

Where Started

Critique on Black-Box Modularity

http://www.st.informatik.tu-darmstadt.de/ 3

Black-Box Abstraction

HIDE!

But, What?

http://www.st.informatik.tu-darmstadt.de/ 4

Parnas

whatever is likely to change!

http://www.st.informatik.tu-darmstadt.de/ 5

Kiczales: Beyond the Black-Box

Clients confront an issue
that the interface claimed

to hide.

An open
implementation

presents two
interfaces

http://www.st.informatik.tu-darmstadt.de/ 6

Harrison & Ossher on Subjectivity

http://www.st.informatik.tu-darmstadt.de/ 7

Grady Booch on Subjectivity

Where we are
AOP improves software modularity

 - anonymous AOP researcher

AOP is anti-modular.
 - anonymous non-AOP researcher

http://www.st.informatik.tu-darmstadt.de/ 9

Questions Addressed in [KiczalesMezini05]

•  Does AOP improve or harm modularity?
–  in presence of crosscutting concerns (CCC) improves modularity of

aspects and non-aspects
–  does not harm modularity otherwise

•  If AOP is modular, what is modularity?
–  nearly the same idea and mechanisms as before
–  except for how interfaces are determined

•  aspect-aware interfaces
•  interface depends on overall system configuration

http://www.st.informatik.tu-darmstadt.de/ 10

Form of Argument

•  Start with
–  simple definitions of modularity and modular reasoning
–  Java and AspectJ implementations of a simple example

•  For both implementations
–  analyze static modularity
–  consider interfaces for both implementations
–  analyze ability to do modular reasoning

•  Discussion of aspect-aware interfaces

http://www.st.informatik.tu-darmstadt.de/ 11

Definitions:

•  Modular reasoning: make decisions about a module by studying only
–  its implementation and interface
–  interfaces of other modules referenced

in the module’s implementation or interface

•  Expanded modular reasoning: also study implementations of
referenced modules

•  Global reasoning: have to examine all the modules in the system

http://www.st.informatik.tu-darmstadt.de/ 12

Example

Display Shape
moveBy(int, int)

Point
getX()
getY()
setX(int)
setY(int)
moveBy(int, int)

Line
getP1()
getP2()
setP1(Point)
setP2(Point)
moveBy(int, int)

what constitutes

display state change
signal update

on display

state change

Update Signaling

*

2

http://www.st.informatik.tu-darmstadt.de/ 13

Java Implementation

class Point {
 int x, y;

 ...

 void setX(int nx) {

 x = nx;

 Display.update();

 }

}

class Line {
 Point p1, p2;

 ...

 void moveBy(int dx, int dy) {

 p1.x += dx; p1.y += dy;

 p2.x += dy; p2.y += dy;

 Display.update();

 }

}

http://www.st.informatik.tu-darmstadt.de/ 14

AspectJ Implementation

class Point {
 int x, y;

...

 void setX(int nx) {

 x = nx;

 }

}

class Line {
 Point p1, p2;

 ...

 void moveBy(int dx, int dy) {

 p1.x += dx; p1.y += dy;

 p2.x += dy; p2.y += dy;

 }

}

aspect UpdateSignaling {
 pointcut change(): execution(void Point.setX(int))

 || execution(void Point.setY(int))

 || execution(void Shape.moveBy(int, int));

 after() returning: change() {

 Display.update();

 }

}

http://www.st.informatik.tu-darmstadt.de/ 15

localized interface abstraction enforced composable
n o n
AOP

display updating no n/a n/a n/a n/a
Point, Line medium medium medium yes yes

AOP UpdateSignaling high yes ok yes yes
Point, Line high high high yes yes

Modularity Assessment

class Point {
...

 void setX(int nx) {

 x = nx;

 Display.update();

 }

}

class Line {
 ...

 void moveBy(int dx, int dy) {

 p1.x += dx; p1.y += dy;

 p2.x += dy; p2.y += dy;

 Display.update();

 }

}

http://www.st.informatik.tu-darmstadt.de/ 16

localized interface abstraction enforced composable
n o n
AOP

display updating no n/a n/a n/a n/a
Point, Line medium medium medium yes yes

AOP display updating high high medium yes yes
Point, Line high high high yes yes

Modularity Assessment

class Point {
...

 void setX(int nx) {

 x = nx;

 }

}

class Line {
 ...

 void moveBy(int dx, int dy) {

 p1.x += dx; p1.y += dy;

 p2.x += dy; p2.y += dy;

 }

}

http://www.st.informatik.tu-darmstadt.de/ 17

OO Interfaces

Point implements Shape
 int getX();
 int getY();
 void setX(int);
 void setY(int);
 void moveBy(int, int);

Line
 <similar>

http://www.st.informatik.tu-darmstadt.de/ 18

Aspect Aware Interfaces

Point implements Shape
 int getX();
 int getY();
 void setX(int): UpdateSignaling – after returning change();
 void setY(int): UpdateSignaling – after returning change();
 void moveBy(int, int): UpdateSignaling – after returning change();

Line
 Point p1, p2;
 Point getP1();
 Point getP2();
 void moveBy(int, int): UpdateSignaling – after returning change();

UpdateSignaling

after returning: change():
 Point.setX(int), Point.setY(int), Point.moveBy(int, int),
 Line.moveBy(int, int);

http://www.st.informatik.tu-darmstadt.de/ 19

•  Aspect cuts extended interface
–  through Point and Line

•  Interface of Point and Line
–  depend on presence of aspects
–  and vice-versa

aspect UpdateSignaling {

 pointcut change(Shape shape):
 this(shape) &&
 (execution(void Shape.moveBy(int, int) ||
 execution(void Shape+.set*(*)));

 after(Shape s) returning: change(s) {
 Display.update(s);
 }
}

Interface Depends on Deployment

class Line {
 private Point p1, p2;

 Point getP1() { return p1; }
 Point getP2() { return p2; }

 void setP1(Point p1) {
 this.p1 = p1;
 }
 void setP2(Point p2) {
 this.p2 = p2;
 }
}

class Point {
 private int x = 0, y = 0;

 int getX() { return x; }
 int getY() { return y; }

 void setX(int x) {
 this.x = x;
 }
 void setY(int y) {
 this.y = y;
 }
}

http://www.st.informatik.tu-darmstadt.de/ 20

Modular Reasoning Scenario

•  The example has a weakness
–  x and y fields of Point are public

•  The programmer decides to make x and y private.
•  When doing this (s)he must ensure the system works as before.

We compare :
•  reasoning with traditional interfaces

about the non-AOP code against
•  reasoning with AAIs about the AOP

code.

class Point {
 int x, y;

...

 void setX(int nx) {

 x = nx;

 }

}

http://www.st.informatik.tu-darmstadt.de/ 21

Reasoning About Change

Both implementations start out the same
•  define accessors
•  global reasoning to find references to fields
•  change to use accessors
•  simple change to Line.moveBy method

 void moveBy(int dx, int dy) {
 p1.x += dx;

 p1.y += dy;

 p2.x += dy;

 p2.y += dy;

 }

 void moveBy(int dx, int dy) {
 p1.setX(p1.getX() + dx);

 p1.setY(p1.getY() + dy);

 p2.setX(p2.getX() + dx);

 p2.setY(p2.getY() + dy);

 }

Is this change reasonable? Does it affect other concerns?
What kind of reasoning do I need to reach a conclusion?

http://www.st.informatik.tu-darmstadt.de/ 22

Reasoning About Change

To discover the effect of this potential change – violation
of the display updating invariant - the programmer
needs to pieces of information:

•  a specification of the invariant: “update the display
after any top-level change of a figure element”!

•  structure of update signaling to infer that the invariant
would be violated by the change.

http://www.st.informatik.tu-darmstadt.de/ 23

Reasoning in OOP

•  Discovering the invariant description
–  Nothing in Line is likely to describe the invariant.
–  Due to explicit call to Display.update(), the programmer might

go look at the Display class.
•  We assume, optimistically, that update()’s documentation

contains the invariant.
–  Expanded modular reasoning with one step leads the programmer

to the invariant

•  Discovering the structure of update signaling requires at least further
expanded modular reasoning and in general global reasoning

http://www.st.informatik.tu-darmstadt.de/ 24

Recovering in OOP

•  Add non-update-signaling setter methods to Point for the sole

purpose of calling them from Line.moveBy?
… maintenance nightmare

•  The best I can do is probably to let x and y public… this is probably
the reason why they were package public at first place!

•  Information hiding is broken not by accident!

http://www.st.informatik.tu-darmstadt.de/ 25

Reasoning and Recovering in the AOP

•  The interface of UpdateSignaling includes the complete
structure of what method executions will signal updates.
–  modular reasoning provides this information

•  Once the programmer understands that the change is invalid, the
proper fix is to use cflowbelow:

 after() returning: change() && !cflowbelow(change())
 { Display.update(); }

http://www.st.informatik.tu-darmstadt.de/ 26

Intermediate Conclusions

•  With AOP,
–  its interface cuts through the classes,
–  the structure of that interface is captured declaratively,
–  the actual implementation is modularized

•  Without AOP,
–  the structure is implicit
–  the actual implementation is not modular.
–  In presence of crosscutting concerns static modularity and

modular reasoning are impaired

Current modularity is not as good as claimed.!

http://www.st.informatik.tu-darmstadt.de/ 27

Intermediate Conclusions

•  But, for CCCs we inherently have to pay the main cost of AOP.
•  We have to know something about the total deployment

configuration, in order to do the global reasoning required to
reason about crosscutting concerns.

•  By using AOP, we get modular reasoning benefits back, whereas
not using AOP we do not.

•  constructing aspect-aware interfaces is simple: pointcuts (or other
mechanisms) can be declarative

The cost: We must know the deployment setting to
know the interface of a module.!

http://www.st.informatik.tu-darmstadt.de/ 28

To Hide or Not to Hide?

Agile Information Hiding

•  A disciplined way to establish additional
interface properties without explicitly stating
all of them in the interface.

•  “cut an interface through there and program
to it”

•  “there is a well-defined interface” versus
“has a well-defined interface”

aspect UpdateSignaling {

 pointcut change(Shape shape):
 this(shape) &&
 (execution(void Shape.moveBy(int, int) ||
 execution(void Shape+.set*(*)));

 after(Shape s) returning: change(s) {
 Display.update(s);
 }
}

class Line {
 private Point p1, p2;

 Point getP1() { return p1; }
 Point getP2() { return p2; }

 void setP1(Point p1) {
 this.p1 = p1;
 }
 void setP2(Point p2) {
 this.p2 = p2;
 }
}

class Point {
 private int x = 0, y = 0;

 int getX() { return x; }
 int getY() { return y; }

 void setX(int x) {
 this.x = x;
 }
 void setY(int y) {
 this.y = y;
 }
}

What Else Have We Done
A Quick Tour on “my” AOP

http://www.st.informatik.tu-darmstadt.de/

The Caesar Story

http://www.st.informatik.tu-darmstadt.de/ 31

Critique on AspectJ-like Languages

•  Physical separation of aspect from base code

•  Aspect described in terms of base application
•  Unfair description: “Aspect = specification of how to patch

the code such that an aspect is supported”

•  Difficult:
–  reusable aspects
–  assignment of domain experts to aspects

•  Aspects are “tangled”: use names from base application
•  Physical separation is not enough!

http://www.st.informatik.tu-darmstadt.de/ 32

The Goal by Analogy

circuit structure

layout

heat emission

power consumption

http://www.st.informatik.tu-darmstadt.de/ 33

The Goal by Analogy

http://www.st.informatik.tu-darmstadt.de/ 34

Crosscutting Models in CaesarJ
model superimposition by

structural and behavioral mapping

Model 1

Model 2

*

Call certain
method

if execution at certain
joinpoints

http://www.st.informatik.tu-darmstadt.de/

The ALPHA Story

http://www.st.informatik.tu-darmstadt.de/ 36

Critique on AspectJ-like Pointcuts

pointcut change():
 call(Point.setX(int))

 || call(void Point.setY(int))
 || call(void Shape+.moveBy(int, int));

instead of specifying WHAT the crosscutting
structure is,

this pointcut describes HOW it appears in the

concrete syntax of the program

http://www.st.informatik.tu-darmstadt.de/ 37

 “after data changes that was
previously read during the most
recent draw of a display, update
that display”

Robust.
Minimal knowledge about implementation details of

figures.

Precise.
Avoids unnecessary updates, e.g., after calls to
setX modifying an x not read in control flow of

draw.

Wanted

http://www.st.informatik.tu-darmstadt.de/ 38

Wanted …

Can we express something like this in AspectJ?

Yes: Aspect constructs an automaton making
extensive use of reflection

less dependent on names, but … complex

 “after data changes that was
previously read during the most
recent draw of a display, update
that display”

http://www.st.informatik.tu-darmstadt.de/ 39

don‘t try to read this!

Problems with Current Pointcuts …

http://www.st.informatik.tu-darmstadt.de/ 40

Abstractions for Behavioral Mapping

Challenges

Need knowledge about the execution: “previously
read”, “most recent draw”…

Need powerful abstraction mechanisms similar to

functional abstraction

 “after data changes that was
previously read during the most
recent draw of a display, update
that display”

http://www.st.informatik.tu-darmstadt.de/ 41

The Programming Model of Alpha

AST Trace Static typing Heap

pointcut abstraction via
inference rules

encode
pointcuts as
logic queries;
pointcut “fires”
if query has
non-empty
result

…

low-level user-defined pointcuts / 3rd party pointcut libraries

high-Level user-defined pointcuts / 3rd party pointcut libraries

…

Store facts about
program execution
in an extensible
list of logic DBs

… …

… …

uses/imports

http://www.st.informatik.tu-darmstadt.de/ C O D E 42

Pointcuts in ALPHA

This module really “talks”
about itself … about “its
slice” of the execution.

“after data changes that was read during the
most recent draw of d, update d”

Object specific
pointcut

Control flows in
the past

class Main {
 display d;

 before set (P, F, _),
 get (T1, _, P, F, _),

 calls (T2, _, @this.d, draw, _),
 cflow(T1, T2),

 reachable (P, d)

 { ... }

 ...

}

http://www.st.informatik.tu-darmstadt.de/ 43

[Masuhara/Kiczales, ECOOP 2003]

two modules in A&B crosscut when projections of the
modules into X intersect & neither is a subset of

the other

a module
(e.g., class) projection of

the module

Module A Module B

Execution Space X
 (join point model)

http://www.st.informatik.tu-darmstadt.de/

The EScala Story

http://www.st.informatik.tu-darmstadt.de/

EScala in a Nutshell

http://www.st.informatik.tu-darmstadt.de/

EScala in a Nutshell

OOP

Abstraction
Encapsulation
Modular compilation/loading
Dynamic structure

AOP

Obliviousness
Implicit events

Global quantification

EScala

EBS

decoupled producer/consumer

FRP

streams
data-driven programming

Larger-scale object modules

A la Newspeak

Where We Might Go

http://www.st.informatik.tu-darmstadt.de/

Classical vs. Non-Classical Modularity
48

•  “modularity = information hiding” point of view is rooted in classical
logic.

•  Well-known limitations of classical logic as a representation
formalism for human knowledge.

•  Yet, information hiding is a undisputed dogma in programming

•  Programmers use non-classical reasoning in meaningful ways, they
are humans too 

•  Classical information hiding has its limitations

Ostermann at al., Revisiting Information Hiding
ECOOP 11

http://www.st.informatik.tu-darmstadt.de/ 49

Classical vs. Non-Classical Modularity

•  Generally, it might be worth investigating notions of modularity based
on non-classical logic.

•  Some notions of modularity that escape classical modularity can be
understood based on non-classical logics:
–  AOP and default logic
–  State, mutation, aliasing and separation logic
–  Error handling and para-consistent logics

Ostermann at al., Revisiting Information Hiding
ECOOP 11

http://www.st.informatik.tu-darmstadt.de/ 50

Aspects and Default Logic

•  One can reason by default that the semantics of a method call is to
execute the corresponding method body,

•  Aspects that intercept such method calls are considered exceptions
to that default rule.

•  In this setting, one can - using defaults - reason locally about the
program behavior.

•  In case one learns later that the default assumption turns out to be
wrong, there is a controlled process of updating the conclusions one
has drawn from the invalid default assumption

Ostermann, Reasoning About Aspects with Common Sense
ECOOP 11

http://www.st.informatik.tu-darmstadt.de/ 51

•  Each module - statement, expression, function, object - is a little
“black box” - relates to the rest through a well-defined I/O interface
(IO-wires).

•  Intuition underlying communication between modules:
–  “sending pulses down a wire” - passing messages
–  “single-point sampling of the world at the end of the wire” by

algorithmic protocols

 Lanier: “world as a planet of the
help desks in which human race will
be largely engaged in maintaining
very large software systems …”

Lanier on Black-Box Abstraction

http://www.st.informatik.tu-darmstadt.de/ 52
Lanier on Black-Box Abstraction

•  Programmers forced to stream intentions into sequential steps
aligned with this pipeline view of the world

•  Complex algorithmic protocols needed to give meaning to sequences
of pulses
–  accidental complexity!

•  Pure hierarchical structuring
–  hard to accommodate different perspectives into pure hierarchical

systems (crosscutting concerns)

http://www.st.informatik.tu-darmstadt.de/

Surface Binding

•  Components probe “measurable fundamental” properties of
program execution and take decisions based on some
evolving model of the world

–  components connected by “surfaces” sampled at several
points in parallel instead of “wires sampled at single points”

–  pattern classification and automatic maintenance of implicit

confirmatory and predictive models instead of sampling
algorithmic protocols

53

http://www.st.informatik.tu-darmstadt.de/ 54

Heterarchy

There always exist different (hierarchical) logical sub-trees
of origination, each of which is reigned by a principle
(=archae) that cannot be subsumed under the guiding
principles of the other trees.

Diversity of organizing principles is the basis of adaptability.
In addition, adaptability if promoted by the organization of
diversity.

“[T]he sphere of complexity is that of organized
diversity, of the organization of diversity.”
Morin, Edgar. 1974. “Complexity.” International
Social Science Journal, 26(4):555-82.

http://www.st.informatik.tu-darmstadt.de/ 55

Crosscutting Models in Art and Creativity

Arthur Koestler. The Art of Creation

Looking at
problems from
different frames of
references is
argued to be at the
core of the
creativity process

http://www.st.informatik.tu-darmstadt.de/ 56

static void encodeStream(InputStream in, OutputStream out) {
 int readindex = 0;

 byte[] buff = new byte[N];

 while ((readindex = in.read(buff)) == N) {
 out.write(Encoder.encodeDuration(buff));
 }

 if (readindex > 0) {
 for (int i = readindex; i < N; i++) buff[i] = 0;
 out.write(Encoder.encodeDuration(buff));
 }
} read

write

exceptional case

buff
buff

readindex

Lopes et al. Onward 03

http://www.st.informatik.tu-darmstadt.de/ 57

static void encodeStream(InputStream in, OutputStream out) {
 int readindex = 0;

 byte[] buff = new byte[N];

 while ((readindex = in.read(buff)) == N) {
 out.write(Encoder.encodeDuration(buff));
 }

 if (readindex > 0) {
 for (int i = readindex; i < N; i++) buff[i] = 0;
 out.write(Encoder.encodeDuration(buff));
 }
}

Lopes et al. Onward 03

“after data changes that was read during the !
most recent draw of a display, update that display”!

The problem aggravated if one has to write things like

http://www.st.informatik.tu-darmstadt.de/ 58

Lopes et al. Onward 03
/**
* encodeStream converts stream of bytes into sounds.
* @param in stream of bytes to encode
* @param out stream of audio samples representing input
*/

encodeStream(InputStream input, OutputStream output) {

 while there is data in input: read N bytes from it,

 perform encodeDuration on those bytes, and write
 result into output

 if, however, after reading the input, the number of

 bytes read is less than N, then, before continuing
 with writing out, patch it with zeros.

}

refining a statement at a later point in the program
text happens pervasively in written discourse.

END

