Applying Translucid Contracts
for Modular Reasoning about
Aspect and Object Oriented Events

Mehdi Bagherzadeh
Gary T. Leavens
Robert Dyer

@Ig Foundations of Apsect Oriented Languages 2011
I Porto de Galinhas, Pernambuco, Brazil

Question

How to reason about events and event handling code?

Results:

* |n Ptolemy:
— Greybox specifications, “translucid contracts” [Main conference]

* |n other languages
— This talk

Question for this talk:

How to extend translucid contracts to other languages?

Background + Our Previous Works

Problems for Modular Reasoning
About control (with Advice)

1. Pervasive join point shadows:
mySquare.setX (9);

2. Black-box specifications
can’t specify control effects of advice

Ptolemy Highlights

* Events:
— Explicit Declaration
— Explicit Announcement

— Quantification for handlers

 Translucid Contracts

O 0 J o U W DN

Ptolemy Example

Subject Event Type

class Enforce

10 Fig event Changed {

class Fig {bool isFixed;} 11 Fig fe; 22 Enforce init () {,register (this) }
class Point extends Fig{ 1 23 Fig enforce (thunk Fig rest,rig fe)
int x, vy; 13 24 if(!fe.isFixed)
Fig setX(int x) { 14 25 invoke (rest)
announce Changed(this) { | 15 26 else refining
this.x = x; this 16 27 establishes| fe==o0ld(fe) {
} 17 28 fe }
} 18 29 1}
} 19 30 ®when Changed do enforce;
0} \Si } /
Event
Annoiv:cr::ment Declaration Quantification Registration

* Skip execution of setX() when isFixed is true.
* Event-driven-programming:
announces event Changed when setX() is called.

— Event handler enforce registers for Changed and runs when the event is
announced.

— Handler enforce implements the above requirement.

Translucid Contracts Example

10 Fig event Changed {
11 Fig fe;

12 requires fe != null
13 assumes({

14 if (! fe.isFixed)

15 invoke (next)

1o else

17 establishes fe==o0ld(fe)
18 &

19 ensures fe != null

20 }

e Contract Limits the behavior of the handler

— requires/ensures labels pre-/postconditions

* Greybox limits the handler’s code

— assumes block with program/spec. expressions

Assumes Block

10 Fig event Changed {
11 Fig fe;

12 requires fe != null
13 assumes({

14 1Tl fe isiived)

15 invoke (next)

16 else

17 establishes fe==o0ld(fe)
18 }

19 ensures fe != null

20 }

* Assumes block is a mixture of
— Specification exprs
* Hide implementation details
— Program exprs

* Reveal code details
e Must be present in code

12
13
14
15
16
17
18
19

TC Refinement

RAC

requires fe != null 2

3

assumes{
1l Fe 1=F xod) Textual match 2
invoke (next)

else 6
establishes fe==o0ld|(fe) Refines 2F
} 28

ensures fe != null 2

RAC

9

Fig enforce (thunk Fig rest,Fig fe) {

if (!fe.isFixed)
invoke (rest)
else refining
establishes fe==o0ld(fe) {
fe }

A program expr. is refined by a textually matching prog. expr.

A specification expr. is refined by a refining expression
with the same specification.

The pre-/postconditions are enforced using runtime assertion
checks (RACs)

Handler should structurally match the TC assumes block.

How Translucid Contracts
rely on Ptolemy

21 class Enforce {

22 .

23 Fig enforce(thunk Fig rest,Fig fe) {
24 if(!fe.isFixed)

25 invoke (rest)
26 else
277 refining establishes fe==o0ld(fe) {
28 fe }
29 1}
30 when Changed do enforce;
31 }
Event Handler
Name Name

* Handlers statically know about types of event they handle.
* So can find contract for the handler, ...
* Allows modular checking of handler’s refinement.

Ptolemy and Modular Reasoning

 Reasoning about control effects of AO programs:

1. Pervasive join point shadows
1. Solution: Limit the application of advice:
1. Ptolemy’s explicit event announcement
2. Black-box specifications can’t handle control effects

1. Solution: Use grey-box spec to specify control effects:
1. Translucid contracts:
1. Limit the behavior of advice

* Ptolemy +Translucid contracts enables modular reasoning
about control effects

Observation

* Greybox specifications
are not Ptolemy-specific

* We show applicability to: |

— Several AO interfaces
— OO language, C#

Key Problem

e Statically find what types of events
a handler can handle

* So can find specification for event handler

Applicability of Translucid Contracts
to other AO interfaces

* AO interfaces make join points explicit
— Mitigates problem of pervasive join point shadows.

 Some AO interface proposals:
— Crosscut programming interfaces (XPIs)
— Aspect-aware interfaces (AAls)
— Open modules
— Join point types
— Explicit join points

Translucid Contracts for XPls

* XPls: a design-rule based interface;
decouples the design of base and aspects

e XPI limits:
— Exposure of join points
— Behavior of base and aspect using black-box

* No mechanism provided to check the refinement

XPI

Translucid Contracts for XPls

1 aspect Changed {
2epointcut Jjp(Fig fe): 13 aspect Enforce {
3 1 call(Fig Figt+.set*(..))&& target(fe); 14 Fig around(Fig fe): Changed.jp(fe) {
4 requires fe != null 15 if (! fe.isFixed)
5 assumes | 16 proceed (fe) ;
6 Aif(!fe.isFixed) 17 else
7 \proceed(fe); 18 refining establishes fe==old(fe) {
8 else 19 return fe;
9 é;:stablishes fe == old(fe); 20 }
0%q | 21}
1 ensures fe != null 22 }
ZE=
Pointcut
Declaration

Unlike Ptolemy, TC in XPl is attached to the pointcut
rather than the event type

Only variables in pointcut, fe, could be used in translucid contracts

Refinement rules are added to AO type system in Enforce where it is
reusing the pointcut Changed.jp

Translucid Contracts for AAls

1 class Point extends Fig {
2 int x, y;
3 Fig setX(int x): Enforce -
4 after returning Changed.jp(Fig fe)
5 requires fe != null
6 assumes {
= 7 if (! fe.isFixed)
< 8 proceed (fe) ;
9 | else
10 |\ establishes fe —= old(fe);
11 4
12 ensures fe != null
13 /* body of setX () */
1.4}
Extracted
AAl

* Syntax/refinement rules are similar to XPI.

Translucid Contracts for
Open Modules

 Open modules allow explicit exposure of
pointcut for behavioral modifications , similar
to signaling events in Ptolemy

)

Open Modul

DS N

[

WO @O -1 o U

o
=)

12
13
14
15
16

Translucid Contracts for
Open modules

module Changed{

}

class Fig;
expose: XPI.jp(Fig)

aspect XPI | 13 aspect Enforce {
pointcut jp(Fig fe): 14 Fig around(Fig fe): XPI.jp(fe)
call (Fig Fig+.set*(..))&& target(fe); 15 if (!fe.isFixed)
requires fe != null 16 proceed (fe) ;
assumes | 17 else
ifﬂ!fe.isFixed) 18 refining establishes fe==0ld(fe) {
pﬁoceed{fe}; 19 return fe;
else 20 }
establishes fe == old(fe); 21}
]\ 22 }
ensurés .. = null
} Exposed
Join Point

Open module changed exposes a pointcut of class Fig to be advised
by Enforce.

Like XPls and unlike Ptolemy, TCs are attached to pointcut decl.

Translucid Contracts for
Join Point Types & Explicit Join Points

* Join point types and Explicit join points
are similar to Ptolemy’s event types.

Applicability to OO languages

* For each handler, need to statically know
about the type of events it can handle.

 C# has built-in:

— events (EventType interface)

— delegates (method pointers)

Problem Determining Handled Event
Type of a Handler

1 class Point extends Fig{

2 int x, vy;

3 delegate Fig Changed (Fig fe); 12 class Enforce {
4 Changed changed = 13

5 new Changed (Enforce.enforce) 14 ®Fig enforce (Fig fe)
6 Fig setX(int x) {

7 changed () ;

8 ©hiasilisaliisl 52 2 19}

9 return this; 20 }

10 1}
11 }

Event Register Handler
Announcement V\:gith Delegate Event Handler

* Any method with the same signature as delegate Changed
could be registered as its handler.

 Handler enforce has no way to tell which event it is
handling.

Solution:
A Simple Convention

* Every handler,
takes as first argument an
instance of the event type
it handles

C# Library

* A C# library, emulating Ptolemy’s functionality,
using C# events and delegates developed

c#

Event Declaration

10 class :EventType <Fig, Changed.Context>{

11 eclass Context{ .

12 Fig fe; 10 Flg event {

13 Context (Fig fe){ this.fe = fe;) 11 Fig fe;

14 Fig contract () ({ 1? requlreT fe !'= null

P _...,_ - g P assumes

15 iuut1uu..Requ1re$?;: = nul;.;f > 1. e I

16 Contract .Ensures (fe ! null | ; g L= e k-(i

17 if (!fe.isFixed) o e e

18 return new Changed() .Invoke () ; m & 16 else | I e

19 else | 17 establishes fe==o0ld(fe)

20 Contract.Assert (true) ; 18 }

21 Contract.Assert (fe==Contract.0ldValue (fe)); 19 ensures fe != null

29 } 20 }

23 }1)

 Event extends the built-in EventType with return type Fig
and context variable fe.

* Translucid contract is attached to the event type

 Method contract() documents the translucid contract.

* Pre/postconditions are written using Code Contracts

o

Specification exprs are documented using assert exprs.

Event Announcement

1 class Fig { int isFixed; }

2 class Point:Fig { 1 class Fig {int isFixed;}
3 int x, vy; 2 class Point extends Fig{
4 void setX(int x) { _ 3 oint x, yi

& 5 Changed.Announce (g 4 Fig setX(int x) { _
6 new Changed.Context (this), ()=>{ S ° announce Changed (this) {
7 this.x = x; & 6 this.x = x; this
8 return this;}); 7 }
9 } 8 }
10 } 9 }

* Event body is provided as an anonymous closure.

c#

26 class Enforce {

Event Handler

21 class Enforce {
22 Enforce init(){ register (this) }

27 Fig enforce (ChangedEvent next) { 23 Fig enforce(thunk Fig rest,Fig fe) {
28 if (!'next.fe.isFixed) 24 if (! fe.isFixed)
29 return next.Invoke(); g 25 invoke (rest)
30 else o
> s { . S 26 else

return next.fe; a 27 refining establishes fe==o0ld(fe) {
32 ¥ 28 fe }
33} 29 1}
34 } 30 when Changed do enforce;

31 }
Refining

Expression

Quantification

Passing the event type to the handler, emulates Ptolemy’s

guantification.

Can statically determine which events a handler is handling.

Then the event type contract could be pulled out and the handler
refinement of the contract could be checked statically for structural
refinement and dynamically by runtime assertion checking.

Conclusion

Previous work: Translucid Contracts enable modular
reasoning of control effects in AO programs.
Implemented in Ptolemy

 This work: Translucid contracts are

not Ptolemy-specific , can be used to reason about:
— Other AO interfaces
— OO languages such as C#

Questions

ou!

	Applying Translucid Contracts for Modular Reasoning about Aspect and Object Oriented Events
	Question
	Background + Our Previous Works
	Problems for Modular Reasoning About control (with Advice)
	Ptolemy Highlights
	Ptolemy Example
	Translucid Contracts Example
	Assumes Block
	TC Refinement
	How Translucid Contracts rely on Ptolemy
	Ptolemy and Modular Reasoning
	Observation
	Key Problem
	Applicability of Translucid Contracts to other AO interfaces
	Translucid Contracts for XPIs
	Translucid Contracts for XPIs
	Translucid Contracts for AAIs
	Translucid Contracts for Open Modules
	Translucid Contracts for Open modules
	Translucid Contracts for Join Point Types & Explicit Join Points
	Applicability to OO languages
	Problem Determining Handled Event Type of a Handler
	Solution: A Simple Convention
	C# Library
	Event Declaration
	Event Announcement
	Event Handler
	Conclusion
	Questions

