
Semantic/Foundational Issues of AOP:

Challenges for FOAL

Shmuel Katz

The Technion

1

What have we accomplished?

• Several semantic definitions for aspect languages
similar to AspectJ (Denotational, Operational, …)
– Simpler object structure (Featherweight Java)
– Define pointcuts and weaving strategies

• Specifications for aspects
– Assume-Guarantee based
– Correctness criteria, including for interference

• Verification for aspects
– Based on model checking
– Based on theorem proving (extended Hoare logic)
– Both for woven system, and libraries of aspect models

2

More accomplishments

• Language extensions

– Richer pointcut languages (with history, context)

– More dynamic

– For functional languages

• Static analysis tools

– Dataflow and slicing for defining kinds of aspects

– Detecting potential interference among aspects (A
changes the value of a variable used in B)

3

A (Big) Problem with Aspects

• Interest may be subsiding!!
• Is it just research, or is the practice not catching

on?
• One claim:

– Non-standard, might be dangerous to use

• Another:
– Too conservative, doesn’t provide what I want

• Can Foundational Studies make any difference?

4

What exactly is the problem?

• Maybe AspectJ is the wrong aspect language

• Maybe the perceived benefit is too small

• Maybe aspects are too nonstandard and seen as
dangerous

• Maybe verification is too expensive and hard to
do

5

Trends from the mainstream

• Fundamental semantics are understood, new variants
are suggested, but challenged with
– “ How does this help me?”

• Settle for bug detection, rather than full formal
verification (e.g., bounded model checking with SAT)

• Runtime verification
• Make formal verification practical

– “Under the hood” philosophy
– Hoare’s verifying compiler—directly from code
– No user involvement, or interactive queries
– Microsoft’s SLAM verifier for software drivers

6

Implications for Aspect Language
Constructs
• New ideas for modularity and cleaner constructs
1. Symmetric models?

– HyperJ. Classpects, …
– Need better ways of combining and merging

2. Better interfaces, treating fragile pointcuts
3. More abstract aspects

– Combining aspects into more complex aspects
– Use terminology natural to the aspect, not to the

underlying system and its method calls

4. Move upstream: language independent constructs,
mapped to various languages

5. Evaluate constructs with user experiments

7

 Implications for Aspect Verification
1. Combining and chaining aspect analysis tools

– Very little done so far

– Dataflow for potential influence, model checking to
detect real interference using specifications

– Common Aspect Proof Environment (CAPE)

2. Automatic checks for aspects, interferences, and
weaving, for fixed domain properties (“no harm”)

3. Combining static analysis and runtime checks

4. Verify code: Extend Java tools to treat aspects
independently

5. Evaluate and compare tools using experiments

8

More Implications

1. Aspects still need clear programming styles
that increase reliability

– Verified design patterns for aspects

2. Can use aspects to modularize

– Specifications and annotations

– Abstractions (reducing state space)

– Runtime checks for hard questions

9

Can this help?

• Would like to revitalize aspect research
agenda (with more new ideas in the following
discussion)

• For the wider picture---only time will tell

10

My Suggestions
L1. Symmetric models?
L2. Improved interfaces
L3. Abstract aspects (combining aspects, natural terms)
L4. Move upstream
L5. Evaluate with user experiments
V1. Combine and chain tools
V2. Automatic built-in checks
V3. Combine static analysis and runtime verification
V4. Verify directly from code
V5. Evaluate and compare tools
M1. Verified styles and design patterns for aspects
M2. Use aspects for modular specification and verification

11

