
Unweaving the Impact of Aspect Changes in
AspectJp

Luca Cavallaro – Mattia Mongag

Problem OutlineProblem Outline
• Small changes can have major and

nonlocal effects in programs

• For Aspect Oriented software the problem
is even more relevant for the obliviousnessis even more relevant, for the obliviousness
of Aspect oriented programs

• Local changes are not really local• Local changes are not really local
– Changes in the base system Influence Aspects

and vice versa!

Problem solution: Change Impact Analysis Problem solution: Change Impact Analysis
• We suppose to have two versions of the same

program and a test suite

• We run tests on two versions of the program

• We compare source of two versions to find
“atomic changes”
– “Small” changes in program sourceSmall changes in program source
– There are interdependencies between atomic

changes

• We compare graph representation of the two
program versions

Change impact analysis overviewChange impact analysis overview
• We find dangerous paths and map them on

atomic changesg

• An atomic change
– in dangerous paths is responsible for test result changeg p p g
– not mapped on dangerous edges do not to affect test

result
– not mapped on any test in the suite is not tested

• Deleting a set of AC in dangerous paths produces
a version of the program giving previous test

ltresult

Running exampleRunning example

Running exampleRunning example

Running example
B d i t t• Bound point aspect:
– A pointcut to capture setX and methods that calls it
– A pointcut to capture setX calls onlyp p y
– We add a field in modified version
// ====== advices ======

before(Point p, int x) throws
InvalidException:

setterX(p) && args(x) { // before }
void around(Point p): setterX(p) {

//around1 }
void around(Point p): setterXonly(p)p y p

{ // around2}
before (Point p): setterX(p){ //

before2
//modified to use added field

}
after(Point p) throwing (Exception

ex):
setterX(p) { // afterThrowing1 }
after(Point p): setterX(p){ //after(Point p): setterX(p){ //

after1 }

Test CaseTest Case
public static void main(String[] a) throws Exception {

Point p1 = new Point();
p1.setRectangular(5,2);
System out println("p1 = " + p1);System.out.println(p1 = + p1);
if(p1.x> 5){
p1.setX(6);
p1.setY(3);
System.out.println("p1 = " + p1);y p (p p);
}
else{

System.out.println("p1 = " + p1);
}
Point p2 = new PointExt();
p2.setRectangular(5,2);
System.out.println("p2 = " + p2);
p2.setX(5);

}}
}

Atomic changes exampleAtomic changes example

AspectJ interaction GraphAspectJ interaction Graph
• We use the AspectJ Interaction Graph

(AJIG) to represent program semantics(AJIG) to represent program semantics

• Control flow representation of an AspectJ p p
program

• Three main kinds of interactions:Three main kinds of interactions:
–Non-advice method calls
–Interactions between advices and

th dmethods
–Introductions and intertype declarations

ExampleExample
• Dangerous edge1 is due to

CAB of Before2CAB of Before2
– It is mapped on CBM and

AF
Dangerous edge 2 is due to• Dangerous edge 2 is due to
the LC PointExtm
Point.setX()

It is mapped on two AC:– It is mapped on two AC:
LC, AM

ImplementationImplementation
• We implemented change impact analysis

for AspectJ on top of abc and Ajanafor AspectJ on top of abc and Ajana
• abc is an extensible AspectJ compiler

– Built on top of Soot and PolyglotBuilt on top of Soot and Polyglot
– Allows to access program AST and to

implement analysis
– Due to two phases weaving we could analyzeDue to two phases weaving we could analyze

AspectJ programs without considering
instructions added by the compiler

• Ajana is a framework for AspectJ analysisAjana is a framework for AspectJ analysis
– Provides AJIG representation

Future workFuture work
• We produced and implemented an approach that

helps the programmer maintaining codehelps the programmer maintaining code
– Source code changes are decomposed into atomic

changes and are related
– Change in tests results are mapped on source codeChange in tests results are mapped on source code

changes
• For future work we plan to rise abstraction level

– Build changes classifiersBuild changes classifiers
– Classify possible changes following anti-patterns

classification
– Several work try to build metrics for changes in AOSeveral work try to build metrics for changes in AO

programs

