
Enforcing Behavioral Constraints in 
Evolving 

Aspect-Oriented Programs

Raffi Khatchadourian1*, Johan Dovland2, and Neelam Soundarajan1

1The Ohio State University, USA
2University of Oslo, Norway

*Partially administered during visit to Lancaster University, UK

1



Introduction 

• AOP enables modular implementation of cross-
cutting concerns.

• Both formal and informal reasoning about AOP 
presents unique challenges especially in respect to 
evolution.

• As components enter, exit, and re-enter software, 
conclusions about behavior of components may be 
invalidated.

2



CC

A

Behavior of C+A

3



What We Want

• Desire a compositional reasoning approach, however 
the invasive nature of AOP makes this difficult.

• In the worst case, changes made to a single 
component require reexamining the entire program.

4



Questions

• Can we draw meaningful conclusions about 
component code without considering the actual 
advice code?

• Can we specify the behavior of components without 
any particular advice in mind?

• Can we parameterize specifications over all possibly 
applicable aspects?

• Can we suitably constrain the behavior of aspects as 
the software evolves?

5



Hiding Behind Interfaces

•Using interface is 
one answer (e.g., 
XPIs, Open 
Modules)

•But it would be 
nice to have a way 
to derive the 
enriched behavior 
of the base plus the 
aspects at compile 
time.

6



Insight

• AO programs inherently enjoy plug-n-play 
capabilities [Laddad03]

• Crosscutting features can be plugged-in to enrich the 
behavior of advised components.

• Likewise, can we specify components so that we can 
derive their behaviors in a similar fashion?

7



Spec(C) Spec(A2)Spec(A1)

CA
1

A
2

Behavior of C+A
1

C
o
m
p
o
se

C
o
m
p
o
se

Behavior of C+A
2

Behavior of C+A
1
+A

2

C
o
m
p
o
se

8



Obstacles 

•Usefulness
• Is it possible to draw meaningful conclusions from 

such incomplete information?

•Obliviousness
• Specifications contain “slots” for applications of 

crosscutting concerns.

9



Obstacles

•Abstraction
• Competing forces: 

• Specs abstract internal details components, 
aspects directly manipulate them.

•Composition
• Which pegs go into which holes?

• How to deal with dynamic and lexical pointcuts?

•Complexity
• What if no advice is applicable?

10



Tackling Specification Complexity 

• May need to make assumptions about the behavior of 
evolving components.

• Specification pointcuts

• Pointcut interfaces [Gudmundson01] annotated 
with behavioral specifications.

• “Exported” internal semantic events within the 
component.

• Adopt a rely-guarantee approach [Xu97] from 
concurrent programming to constrain the behavior 
of all possibly applicable advice using a rely clause.

• A guar clause may be used to constrain components.
11



Review of R/G for AOP [Khatchadourian07, 
Soundarajan07]

the set of all variables of 
the program

states in which each 
variable has a particular 
value

σ

σi,σj , ...

12



!
1

!
2

!
3

13



!
1

!
2

!
3

Aspect

!
2
'

14



Aspect

!
a

!
b

The state at a point in the execution 
of a component is σa.

The state when the class gets control 
back from an aspect is σb.

rely(σa, σb)

15



Rely() Example

rely(σ,σ′) ≡ (σ = σ′)

The entire state of 
C

This is 
“Harmless”[D&W 

POPL’06]

Fo
rbi

ds 
any

 ap
plic

abl
e

adv
ice

 fro
m m

aki
ng 

any
 

cha
nge

s in
 th

e s
tat

e!

16

http://www.cs.princeton.edu/sip/projects/aspectml/popl06.pdf
http://www.cs.princeton.edu/sip/projects/aspectml/popl06.pdf
http://www.cs.princeton.edu/sip/projects/aspectml/popl06.pdf
http://www.cs.princeton.edu/sip/projects/aspectml/popl06.pdf


Deriving Effective Behavior 

• Constraining parameterized behavior reduces 
complexity, but ...

• How are formal parameters expressed?

• How are actual parameters deduced?

• How are the specifications composed?

• Aspects are typically used to enrich the behavior of 
the an underlying component.

• Thus, we want to deriving the actual behavior of 
components with the aspects.

17



Join Point Traces

• A Join Point Trace (JPT) variable is introduced to 
track the flow-of-control through various join points 
within a component.

• A JPT is used as a parameter over the actions of all 
possibly applicable aspects.

• Method post-conditions will references to the JPT.

• Informally, a JPT is used to refer to the actions and 
resulting values taken by advice at certain join point.

18



Elements of the JPT

• The JPT is composed of several components that are 
associated with each join point.

• Just as there are different kinds of join points (e.g., 
call, execution), there different kinds of JPT 
entries.

19



JPT Method Call Completion Element

(oid ,mid , aid , args, res, σ, σ′)

Called 
Method

Called Object Applicable 
Aspect

Argument 
Values

Method 
Return Value

σ, σ′
State Vectors

σ[oid] State of object oid after 
completion of method mid

σ′[oid] State of object oid after 
completion of aspect aid

No applicable advice =⇒ σ = σ′

20



Rule for method specification

 Normal 
pre-condition

Post-condition, may 
include references to 

portions of JPT
R/G Clauses

21



Rule for method specification

 
Invocation of C.m 
on the local JPT

22



Rule for method specification

 Classic 
Hoare Triple

23



Rule for method specification

 

Don’t forget 
about the 
guarantee

24



Rule for method specification

 

If when q holds and 
applicable advice behaves 
properly implies that ...

25



Rule for method specification

 

... our post-
condition holds with a a 
new entry in the local 

JPT

Not sure which 
aspect is applicable yet, so 

we’ll leave this blank

Replace all 
occurrences of 
σ with σ’ 

26



Rule for Method Calls

27



Rule for Method Calls

Substitute 
actuals for formals

28



Rule for Method Calls

Local JPT for 
callee

Substitute 
formals for actuals

Local JPT for 
caller

29



Rule for Aspect Application (Simple)

Base-code 
pre-condition

Aspect pre-
condition

Base-code 
plus an aspect

Base-code 
post-condition

Aspect post-
condition

30



Rule for Aspect Application (Simple)

Advice body
Base-code 

satisfies guar

State vector 
immediately prior to 
the execution of the 

advice

31



Rule for Aspect Application (Simple)

32



Conclusion

• On-going work (hopefully thesis worthy! ;) )

• Complete formal model (suggestions here?)

• Sound axiomatic proof system

• Curbing notational complexity via predicates.

• Integration with IDE/theorem provers.

• Complement the Eclipse AJDT with a behavioral 
cross reference view?

• Integration with languages (e.g., via annotated 
pointcuts, JML)

33


