THE OHIO STATE UNIVERSITY COLLEGE OF ENGINEERING

'e)t|l@] Department of
LS\[{‘}U\ Computer Science and Engineering

http://www.CS€.ohio-state edu

Enforcing Behavioral Constraints in
Evolving
Aspect-Oriented Programs

Raffi Khatchadourian'’, Johan Dovland?, and Neelam Soundarajan!

'The Ohio State University, USA
2University of Oslo, Norway
"Partially administered during visit to Lancaster University, UK

OHIO

SIATE Introduction

UNIVERSITY

e AOP enables modular implementation of cross-
cutting concerns.

e Both formal and informal reasoning about AOP
presents unique challenges especially in respect to
evolution.

e As components enter, exit, and re-enter software,
conclusions about behavior of components may be
invalidated.

%31;1[% What We Want

UNIVERSITY

e Desire a compositional reasoning approach, however
the invasive nature of AOP makes this difficult.

e In the worst case, changes made to a single
component require reexamining the entire program.

OHIO

SIATE Questions

UNIVERSITY

e Can we draw meaningful conclusions about
component code without considering the actual
advice code?

e Can we specify the behavior of components without
any particular advice in mind?

e Can we parameterize specifications over all possibly
applicable aspects?

e Can we suitably constrain the behavior of aspects as
the software evolves?

OHIO

SIATE

UNIVERSITY

e Using interface is
one answer (e.g.,
XPIs, Open
Modules)

e But it would be
nice to have a way
to derive the
enriched behavior
of the base plus the
aspects at compile
time.

Hiding Behind Interfaces

Insight

e AO programs inherently enjoy plug-n-play
capabilities [Laddado3]

e Crosscutting features can be plugged-in to enrich the
behavior of advised components.

e Likewise, can we specify components so that we can
derive their behaviors in a similar fashion?

Q
O
3
o
O
7]
(¢

Behavior of €+A, Behavior: of C+A +A,

%?AI;I[% Obstacles

UNIVERSITY

® Usefulness

e Is it possible to draw meaningful conclusions from
such incomplete information?

e Obliviousness

e Specifications contain “slots” for applications of
crosscutting concerns.

%31;1[% Obstacles

UNIVERSITY

e Abstraction
e Competing forces:

e Specs abstract internal details components,
aspects directly manipulate them.

e Composition

e Which pegs go into which holes?

e How to deal with dynamic and lexical pointcuts?
o Complexity

e What if no advice is applicable?

OHIO

SIATE Tackling Specification Complexit

UNIVERSITY

e May need to make assumptions about the behavior of
evolving components.

e Specification pointcuts

e Pointcut interfaces [Gudmundsono1] annotated
with behavioral specifications.

e “Exported” internal semantic events within the
component.

e Adopt a rely-guarantee approach [Xu97] from
concurrent programming to constrain the behavior
of all possibly applicable advice using a rely clause.

e A guar clause may be used to constrain components.

11

Review of R/G for AOP [Khatchadouriano?,

Oiy047, ...

Soundarajano7]

the set of all variables of
the program

states 1n which each
variable has a particular
value

14

The state at a point in the execution
of a component is 0a.

The state when the class gets control
back from an aspect is ov.

15

OHIO

STATE Rely() Example

UNIVERSITY

This is
“Harmless”’[D&W
POPL06] entire state of

16

http://www.cs.princeton.edu/sip/projects/aspectml/popl06.pdf
http://www.cs.princeton.edu/sip/projects/aspectml/popl06.pdf
http://www.cs.princeton.edu/sip/projects/aspectml/popl06.pdf
http://www.cs.princeton.edu/sip/projects/aspectml/popl06.pdf

OHIO

SAIE Deriving Effective Behavior

UNIVERSITY

e Constraining parameterized behavior reduces
complexity, but ...

e How are formal parameters expressed?
e How are actual parameters deduced?
e How are the specifications composed?

e Aspects are typically used to enrich the behavior of
the an underlying component.

e Thus, we want to deriving the actual behavior of
components with the aspects.

17

OHIO

SIATE Join Point Traces

UNIVERSITY

e A Join Point Trace (JPT) variable is introduced to
track the flow-of-control through various join points
within a component.

e A JPT is used as a parameter over the actions of all
possibly applicable aspects.

e Method post-conditions will references to the JPT.

e Informally, a JPT is used to refer to the actions and
resulting values taken by advice at certain join point.

18

OH IO Elements of the JPT

UNIVERSITY

e The JPT is composed of several components that are
assoclated with each join point.

e Just as there are different kinds of join points (e.g.,
call, execution), there different kinds of JPT

entries.

19

(g)ﬁI?A{ITCE) JPT Method Call Completion Element

UNIVERSITY

Called Argument
Method Valuiz s
. : . /
(01d, mid, aid, args, res, o, o)

o) Return Value

completion of aspect aid

No applicable advice =— 0 = o’

20

OHIO

SIATE Rule for method specification

UNIVERSITY

Normal

pre-condition

C.m:: (pre, post, guar(), rely())

Post-condition, may

include references to
portions of |PT

21

Rule for method specification

pre A (AT = ((inv,C.m))| = p

Invocation of C . m

on the local |PT

C.m:: (pre, post, guar(), rely())

Rule for method specification

pre A (AT = ((inv,C.m))| = p

{p}tSiq}

Classic

Hoare Triple

C.m:: (pre, post, guar(), rely())

Rule for method specification

pre A (AT = ((inv,C.m))| = p

{p}S{q}

q = guar()

Don’t forget

about the
guarantee

Rule for method specification

pre A (AT = ((inv,C.m))| = p

{p}S{q}

q = guar|()
[q A rely(o,0")] =

C.m:: (pre, post, If when g holds and

applicable advice behaves
properly implies that ...

OHIO

SIATE Rule for method specification

UNIVERSITY

Not sure which Replace all

aspect is applicable yet, so S{q}
we'll leave this blank KIZAY

\(0,0")] =

post| AT < A1 (this, C.m,?,args,res,o,0'), 0 « 0|

occurrences of
O with O’

... OUr post-
condition holds with a a

new entry in the local
JPT

26

ethod Calls

{p} ob.m(args) { q }

Rule for Method Calls

Substitute

actuals for formals

p = C.m.pre|pars/args)

{p}ob.m(args) { q}

Rule for Method Calls

Local JPT for
caller

Substltute
formals for actuals

OHIO

SIATE Rule for Aspect Application (Simple)

UNIVERSITY

Base-code Aspect post-

pre-condition condition .ct

{pre A ap } C.m() + A {post A aq }

Aspect pre- Base-code

condition post-condition

30

OHIO

SIATE Rule for Aspect Application (Simple)

UNIVERSITY

Base-code

satisfies guar AAdvice body

{ guar(o) A ap } Augw {relylo/oc@pre, o’ /o] N\ aq}

State vector
immediately prior to

the execution of the
advice

31

Application (Simple)

{ guar(o) A ap } Away {rely[o/cQpre, o’ /o] A\ aq}
C.m:: (pre, post, quar, rely)

{pre A ap } C.m() + A {post A aq }

OHIO

SIATE Conclusion

UNIVERSITY

e On-going work (hopefully thesis worthy! ;))
e Complete formal model (suggestions here?)

e Sound axiomatic proof system

e Curbing notational complexity via predicates.
e Integration with IDE/theorem provers.

e Complement the Eclipse AJDT with a behavioral
cross reference view?

e Integration with languages (e.g., via annotated
pointcuts, JML)

33

