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Introduction 

• AOP enables modular implementation of cross-
cutting concerns.

• Both formal and informal reasoning about AOP 
presents unique challenges especially in respect to 
evolution.

• As components enter, exit, and re-enter software, 
conclusions about behavior of components may be 
invalidated.
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What We Want

• Desire a compositional reasoning approach, however 
the invasive nature of AOP makes this difficult.

• In the worst case, changes made to a single 
component require reexamining the entire program.
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Questions

• Can we draw meaningful conclusions about 
component code without considering the actual 
advice code?

• Can we specify the behavior of components without 
any particular advice in mind?

• Can we parameterize specifications over all possibly 
applicable aspects?

• Can we suitably constrain the behavior of aspects as 
the software evolves?
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Hiding Behind Interfaces

•Using interface is 
one answer (e.g., 
XPIs, Open 
Modules)

•But it would be 
nice to have a way 
to derive the 
enriched behavior 
of the base plus the 
aspects at compile 
time.
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Insight

• AO programs inherently enjoy plug-n-play 
capabilities [Laddad03]

• Crosscutting features can be plugged-in to enrich the 
behavior of advised components.

• Likewise, can we specify components so that we can 
derive their behaviors in a similar fashion?
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Obstacles 

•Usefulness
• Is it possible to draw meaningful conclusions from 

such incomplete information?

•Obliviousness
• Specifications contain “slots” for applications of 

crosscutting concerns.
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Obstacles

•Abstraction
• Competing forces: 

• Specs abstract internal details components, 
aspects directly manipulate them.

•Composition
• Which pegs go into which holes?

• How to deal with dynamic and lexical pointcuts?

•Complexity
• What if no advice is applicable?
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Tackling Specification Complexity 

• May need to make assumptions about the behavior of 
evolving components.

• Specification pointcuts

• Pointcut interfaces [Gudmundson01] annotated 
with behavioral specifications.

• “Exported” internal semantic events within the 
component.

• Adopt a rely-guarantee approach [Xu97] from 
concurrent programming to constrain the behavior 
of all possibly applicable advice using a rely clause.

• A guar clause may be used to constrain components.
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Review of R/G for AOP [Khatchadourian07, 
Soundarajan07]

the set of all variables of 
the program

states in which each 
variable has a particular 
value

σ

σi,σj , ...
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Aspect

!
a

!
b

The state at a point in the execution 
of a component is σa.

The state when the class gets control 
back from an aspect is σb.

rely(σa, σb)
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Rely() Example

rely(σ,σ′) ≡ (σ = σ′)

The entire state of 
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Deriving Effective Behavior 

• Constraining parameterized behavior reduces 
complexity, but ...

• How are formal parameters expressed?

• How are actual parameters deduced?

• How are the specifications composed?

• Aspects are typically used to enrich the behavior of 
the an underlying component.

• Thus, we want to deriving the actual behavior of 
components with the aspects.
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Join Point Traces

• A Join Point Trace (JPT) variable is introduced to 
track the flow-of-control through various join points 
within a component.

• A JPT is used as a parameter over the actions of all 
possibly applicable aspects.

• Method post-conditions will references to the JPT.

• Informally, a JPT is used to refer to the actions and 
resulting values taken by advice at certain join point.
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Elements of the JPT

• The JPT is composed of several components that are 
associated with each join point.

• Just as there are different kinds of join points (e.g., 
call, execution), there different kinds of JPT 
entries.
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JPT Method Call Completion Element

(oid ,mid , aid , args, res, σ, σ′)

Called 
Method

Called Object Applicable 
Aspect

Argument 
Values

Method 
Return Value

σ, σ′
State Vectors

σ[oid] State of object oid after 
completion of method mid

σ′[oid] State of object oid after 
completion of aspect aid

No applicable advice =⇒ σ = σ′
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Rule for method specification

 Normal 
pre-condition

Post-condition, may 
include references to 

portions of JPT
R/G Clauses
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Rule for method specification

 
Invocation of C.m 
on the local JPT
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Rule for method specification

 Classic 
Hoare Triple
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Rule for method specification

 

Don’t forget 
about the 
guarantee
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Rule for method specification

 

If when q holds and 
applicable advice behaves 
properly implies that ...
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Rule for method specification

 

... our post-
condition holds with a a 
new entry in the local 

JPT

Not sure which 
aspect is applicable yet, so 

we’ll leave this blank

Replace all 
occurrences of 
σ with σ’ 
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Rule for Method Calls
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Rule for Method Calls

Substitute 
actuals for formals
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Rule for Method Calls

Local JPT for 
callee

Substitute 
formals for actuals

Local JPT for 
caller
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Rule for Aspect Application (Simple)

Base-code 
pre-condition

Aspect pre-
condition

Base-code 
plus an aspect

Base-code 
post-condition

Aspect post-
condition
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Rule for Aspect Application (Simple)

Advice body
Base-code 

satisfies guar

State vector 
immediately prior to 
the execution of the 

advice
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Rule for Aspect Application (Simple)
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Conclusion

• On-going work (hopefully thesis worthy! ;) )

• Complete formal model (suggestions here?)

• Sound axiomatic proof system

• Curbing notational complexity via predicates.

• Integration with IDE/theorem provers.

• Complement the Eclipse AJDT with a behavioral 
cross reference view?

• Integration with languages (e.g., via annotated 
pointcuts, JML)
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